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On some deformations of Fukaya categories
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A certain deformation of a mirror pair in Strominger–Yau–Zaslow mirror
setting is discussed. We propose that the mirror dual of a deformation of a
complex manifold by a certain (real) deformation quantization is a symplectic
manifold with a foliation structure. In order to support our claim that these
deformations of mirror pairs are mirror dual to each other, we construct cate-
gories associated to these deformations of complex and symplectic manifolds
and discuss homological mirror symmetry between them.
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1. Introduction

In this paper, we discuss a certain deformation of a mirror pair in Strominger–Yau–
Zaslow mirror setting. In particular, we construct categories associated to these
deformations of complex and symplectic manifolds and discuss homological
mirror symmetry between them.

One of our hopes is to understand how to formulate deformations of categories.
This is motivated by what the homological mirror symmetry [Kontsevich 1995]
is expected to reproduce: (genus zero part of ) the mirror symmetry isomorphism
of Frobenius manifolds [Kontsevich 1995; Barannikov and Kontsevich 1998]. In
this story, a category is believed to reproduce a Frobenius manifold as a space of
deformations of the category with suitable structures on it. However, at present,
there is no formulation of deformations of categories which reproduces Frobenius
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manifolds. Actually, it is already unclear how to obtain a manifold of the space
of deformations even locally.

In order to figure out what we should do for this problem, we can study some
examples. For noncommutative two-tori, we can actually construct categories
associated to them, which are regarded as deformations of categories on two
tori, and discuss homological mirror symmetry (see for example [Kajiura 2002;
2004; Polishchuk and Schwarz 2003; Kim and Kim 2007], and also [Kajiura
2008] for an overview). This is one of the easiest examples. In this example, the
situation seems to be easier since it is of real dimension two. Thus, in [Kajiura
2007] we tried to consider categories on noncommutative higher dimensional tori
to discuss their homological mirror symmetry. There, we constructed (curved)
DG-categories which are deformations of holomorphic vector bundles on higher
dimensional complex tori by (real) Moyal star products. A Moyal star product
(giving a deformation quantization) is defined by a constant Poisson bivector. For
T 2nDT n�T n viewed as a trivial T n bundle overBDT n, denote by x1; : : : ; xn
and y1; : : : ; yn the coordinates of the base space and the fiber, respectively. Then
a Poisson bivector is in general of the form

nX
i;jD1

�
1
2
.�1/ij

@

@xi
^

@

@xj
C .�2/ij

@

@xi
^

@

@yj
C
1
2
.�3/ij

@

@yi
^

@

@yj

�
:

These coefficients are combined together into the skew-symmetric 2n�2nmatrix

‚ WD

�
�1 �2
�� t2 �3

�
:

In [Kajiura 2007], noncommutative deformations corresponding to �1, �2 and �3
are discussed independently. We see that deformation by �1 is that on the base
space, and deformation by �3 is that on the fiber. In the present paper, we discuss
deformation corresponding to �2, which includes the case of noncommutative
two-tori. For this deformation of �2 type, almost all of the arguments can
be generalized to SYZ torus fibration set-up. Therefore, we construct non-
commutative deformation of this kind for those torus fibrations. The mirror
dual of this noncommutative deformation is then given in Section 5B, as some
deformation of symplectic torus fibration. As is for noncommutative two-tori
[Kajiura 2002], a foliation structure associated to �2 appears naturally in this
mirror dual symplectic side. Note that the foliations we treat are different
from Lagrangian foliations discussed in [Fukaya 1998]. For our purpose, we
hope to keep the objects . D Lagrangians D A-branes/ as unchanged as we
can, and deform the composition structure and other data in the corresponding
category. Therefore, our Lagrangians are not foliations but still submanifolds
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even after deformation. Our foliation structure corresponds to the configuration
of open strings stretching between A-branes. This viewpoint gives an intuitive
understanding of the composition .D product/ structure in the corresponding
category. See [Kajiura 2002] for two-tori case.

From the viewpoint of generalized geometry [Gualtieri 2003] (see also [Ben-
Bassat 2006a; 2006b]), the deformations we discuss in the present paper are
explained as follows. We start from a torus fibration LM ! B as a complex
manifold, but here, for simplicity, we let LM be the “canonical” complex n-tori
T 2n whose complex structure J is defined by

J

�
@

@xi

�
D

@

@yi
; J

�
@

@yi

�
D�

@

@xi
; nD 1; : : : ; n:

The generalized complex structure J W �.T LM ˚ T � LM/! �.T LM ˚ T � LM/

associated to this J is given in matrix description by

JD

0BB@
0 1 0 0

�1 0 0 0

0 0 0 1

0 0 �1 0

1CCA ;
where each block is an n by n matrix. Namely, for each point p 2 LM , we express
Tp LM ˚T

�
p
LM as the direct sum

.TpB˚Tp LFp/˚ .T
�
p B˚T

�
p
LFp/; (1)

where LFp is the fiber T n of LM ! B which includes the point p. Then, for a
given skew-symmetric 2n� 2n matrix ‚,

J‚ WD

�
12n �‚

02n 12n

�
J

�
12n ‚

02n 12n

�
again defines a generalized complex structure. This is believed to correspond to
the noncommutative deformation by ‚. By a direct calculation, J‚ turns out to
be

J‚ D

0BB@
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0 1 � t2 ��3
0 0 1 0

0 0 0 1
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On the other hand, taking mirror dual is T-dualizing the fiber T n, which corre-
sponds to exchanging Tp LFp for T �p LFp in (1). Thus, the mirror dual generalized
complex structure LJ‚ to J‚ is0BB@
1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

1CCA
0BB@

0 1 �2��
t
2 �3��1

�1 0 �3��1 �
t
2��2

0 0 0 1

0 0 �1 0

1CCA
0BB@
1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

1CCAD
0BB@

0 �3��1 �2��
t
2 1

0 0 �1 0

0 1 0 0

�1 � t2��2 �3��1 0

1CCA :
This shows that, if and only if �1 D �3 D 0, LJ‚ is the generalized complex
structure corresponding to a symplectic structure !� , � WD �2, where

!� D
1
2

�
dx dy

� ��2� � t2 1
�1 0

��
dx

dy

�
: (2)

In general, for the class of torus fibrations called T n-invariant manifolds or
semiflat torus fibrations, the argument above is similar [Ben-Bassat 2006a;
2006b]. We may just modify the 1 in the above matrix in (2) by using the metric
g on the base space B; see (15).

This is the generalized geometric background of the geometry we shall discuss.
Namely, generalized geometry suggests that the mirror dual of the noncommuta-
tive deformation of LM of �2 type is the symplectic manifold .M;!� /. We agree
with this suggestion, but our assertion is that the mirror dual .M;!� / possesses
naturally an additional foliation structure F� . We support this assertion by
constructing the corresponding categories and discussing homological mirror
symmetry.

The present paper is organized as follows. In Section 2, we briefly recall the
construction of a mirror pair M ! B and LM ! B as SYZ torus fibrations over
a base manifold B . In Section 3, we discuss Lagrangian submanifolds in M
and holomorphic vector bundles on LM associated to sections of the torus bundle
M ! B . In Section 4, we discuss the homological mirror symmetry in the
SYZ set-up. This part should be mainly equivalent to that given in [Kontsevich
and Soibelman 2001], but we include some generalizations in order to discuss
their deformations. In Section 4A, we define a curved DG-category DG LM
consisting of line bundles on LM and the full subcategory DG LM .0/ where the
line bundles are holomorphic. In Section 4B, we define a curved DG-category
DGM consisting of sections of M ! B and the full subcategory DGM .0/
of Lagrangian sections. As we explain in Section 4C, these two curved DG-
categories DG LM and DGM are canonically isomorphic to each other, where
DG LM .0/'DGM .0/. Thus, we can say that the homological mirror symmetry
holds true if DGM .0/ is A1-equivalent to the corresponding (full subcategory
of the) Fukaya category Fuk.M/. In Section 4E, we explain a rough idea to show
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an A1-equivalenceDGM .0/
A1
� Fuk.M/ following [Kontsevich and Soibelman

2001].
We then discuss some deformations. First, we consider a (real) noncommuta-

tive deformation LM� D . LM; �/ of LM in Section 5A and propose that the mirror
dual of LM� is the triple M� WD .M;!� ;F� / in Section 5B. To support the claim
that they are mirror to each other, we construct curved DG-categories DGM�
and DG LM�

on M� and LM� , respectively. The relation of DG LM�
with DG LM

is as follows. We consider a full subcategory of DGM consisting of objects
associated to affine sections. One can define deformations of these objects, as
discussed in Section 6A. We further modify the space of morphisms, and define
the curved DG-category DG LM�

consisting of these deformed objects. These
curved DG-categories DGM� and DG LM�

are defined so that they are canonically
isomorphic to each other. A geometric interpretation of these deformed objects
in DGM� is given in Section 6B. Finally we discuss the relation of DGM� with
the Fukaya category associated to M� in Section 6E.

2. T n-invariant manifolds

In this section, we briefly review the SYZ torus fibration set-up [Strominger et al.
1996]. For more details see [Leung et al. 2000; Leung 2005].

Throughout this paper, we consider an n-dimensional tropical Hessian mani-
fold B , which we will define shortly, as the base space of a torus fibration. A
smooth manifold B is called affine if B has an open covering fU�g�2ƒ such
that the coordinate transformation is affine. This means that, for any U� and U�
such that U� \U� ¤ ∅, the coordinate systems x.�/ WD .x1.�/; : : : ; x

n
.�/
/t and

x.�/ WD .x
1
.�/
; : : : ; xn

.�/
/t are related to each other by

x.�/ D '��x.�/C ��; (3)

with some '�� 2 GL.nIR/ and  �� 2 Rn. If in particular '�� 2 GL.n;Z/ for
any U� \U�, then B is called tropical affine. (If in addition  �� 2 Zn, B is
called integral affine.) See [Gross 2011] for these materials.

For simplicity, we take such an open covering fU�g�2ƒ so that the open sets
U� and their intersections are all contractible. It is known that B is an affine
manifold if and only if the tangent bundle TB is equipped with a torsion free
flat connection. When B is affine, then its tangent bundle TB forms a complex
manifold. This fact is clear as follows. For each open set U D U�, let us denote
by .x1; : : : ; xnIy1; : : : ; yn/ the coordinates of U �Rn ' TBjU so that a point

nX
iD1

yi
@

@xi

ˇ̌̌
x
2 TxB � TB
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corresponds to .x1; : : : ; xnIy1; : : : ; yn/2U�Rn. We locally define the complex
coordinate system by .z1; : : : ; zn/, where zi WD xi C iyi with i D 1; : : : ; n. By
the coordinate transformation (3), the bases are transformed by

@

@x.�/
D '

t;�1
��

@

@x.�/
;

@

@x
WD

�
@

@x1
; : : : ;

@

@xn

�t
;

and hence the corresponding coordinates are transformed by

y.�/ D '��y.�/; y WD .y1; : : : ; yn/t

so that the combination
P
i y
i .@=@xi / is independent of the coordinate systems.

This shows that the transition functions for the manifold TB are given by�
x.�/
y.�/

�
D

�
'�� 0

0 '��

��
x.�/
y.�/

�
C

�
 ��
0

�
;

and hence the complex coordinate systems are transformed holomorphically:

z.�/ D '��z.�/C ��:

On the other hand, for any smooth manifold B , the cotangent bundle T �B
has a (canonical) symplectic form !T �B . For each U�DU , when we denote the
coordinates of T �BjU ' U �Rn by .x1; : : : ; xnIy1; : : : ; yn/, !T �B is given
by

!T �B WD d

� nX
iD1

yidx
i

�
D

nX
iD1

dxi ^ dyi :

This is defined globally since the coordinate transformations on T �B are induced
from the coordinate transformations of fU�g�2ƒ. Actually, one has

dx.�/ D '��dx.�/

and the corresponding coordinates are transformed by

Ly.�/ D '
t;�1
��
Ly.�/; Ly WD .y1; : : : ; yn/

t ; (4)

so the combination
Pn
iD1 yidx

i 2 T �B is independent of the coordinates. This
implies that the symplectic form !T �B D d

�Pn
iD1 yidx

i
�

is defined globally.
By choosing a metric g on a smooth manifold B , one obtains a bundle

isomorphism between TB and T �B (sometimes called a musical isomorphism).
For each b 2 B , this isomorphism TB ! T �B is defined by � 7! g.�; / for
� 2 TbB . This actually defines a bundle isomorphism since g is nondegenerate
at each point b 2 B . This bundle isomorphism also induces a diffeomorphism
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from TB to T �B . In this sense, hereafter we sometimes identify TB and T �B .
By this identification, yi and yi is related by

yi D

nX
jD1

gijy
j ; gij WD g

� @

@xi
;
@

@xj

�
:

When an affine manifold B is equipped with a metric g that is expressed
locally as

gij D
@2�

@xi@xj

for some local smooth function �, we call .B; g/ a Hessian manifold. When
B is a Hessian manifold, TB ' T �B is equipped with the structure of Kähler
manifold as we explain below. In this sense, a Hessian manifold is also called
an affine Kähler manifold.

First, whenB is affine, then TB is already equipped with the complex structure
JTB . We fix a metric g and set a two-form !TB on TB as

!TB WD

nX
i;jD1

gij dx
i
^ dyj :

This !TB is nondegenerate since g is nondegenerate. Furthermore, !TB is closed
if and only if .B; g/ is Hessian, where !TB coincides with the pullback of !T �B
by the diffeomorphism TB ! T �B . This is shown by direct calculations as
follows. The closedness of !TB implies that

d.gij dx
i /D 0 (5)

for each j . In this situation, for each i there exists a function �i of x such that

@

@xi
�j D gij ;

since the one-form
Pn
iD1 gj idx

i is closed and hence exact locally. Furthermore,Pn
iD1 �idx

i is closed:

d

� nX
iD1

�i dx
i

�
D

nX
iD1

d.�i / dx
i
D

nX
i;jD1

gij dx
j
^ dxi ;

where gij is symmetric with respect to i; j . Thus, locally, there exists a function
� such that d.�/D

Pn
iD1 �i dx

i , which implies that

gij D
@

@xi
@

@xj
�:
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Conversely, if .B; g/ is Hessian, then we see that !TB is the pullback of the
symplectic form !T �B and hence is closed.

So a Hessian manifold .B; g/ is equipped with the complex structure JTB
and the symplectic structure !TB . A metric gTB on TB is then given by

gTB.X; Y / WD !TB.X; JTB.Y //

for X; Y 2 �.T .TB//. This is locally expressed as

gTB D

nX
i;jD1

.gij dx
i dxj Cgij dy

i dyj /:

This shows that gTB is positive definite. To summarize, for a Hessian manifold
.B; g/, .TB; JTB ; !TB/ forms a Kähler manifold, where gTB is the Kähler
metric.

In order to define a Kähler structure on T �B , we employ the dual affine
coordinates on B . As we saw in (5),

Pn
jD1 gij dx

j is closed if .B; g/ is Hessian.
Thus, for each i , there exists a function xi WD �i of x such that

dxi D

nX
iD1

gij dx
j :

This again defines an affine structure on B . Actually, the local description of the
metric is changed by

g.�/ D
˚
.g.�//ij

	
i;jD1;:::;n

D '
t;�1
��

g.�/'
�1
��;

so one has d Lx.�/ D '
t;�1
��

d Lx.�/ for Lx WD .x1; : : : ; xn/t and then

Lx.�/ D '
t;�1
��
Lx.�/C L �� (6)

for some L �� 2 Rn. Thus, the combinations zi WD xi C iyi , i D 1; : : : ; n, form
a complex coordinate system on T �B , and T �B forms a complex manifold.
Actually, by (4) and (6), one has the holomorphic coordinate transformation

Lz.�/ D '
t;�1
��
Lz.�/C L ��; Lz WD .z1; : : : ; zn/

t :

Using these dual coordinates, the symplectic form !T �B is expressed locally
as

!T �B D

nX
i;jD1

gij dxi^ dyj ;

where gij is the .i; j / element of the inverse matrix of fgij g. Then, we set a
metric on T �B by

gT �B.X; Y / WD !T �B.X; JT �B.Y //
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for X; Y 2 �.T .T �B//, which is locally expressed as

gT �B D

nX
i;jD1

.gijdxidxj Cg
ijdyidyj /:

These structures define a Kähler structure on T �B .
For a tropical Hessian manifold B , we consider two T n-fibrations over B

obtained by a quotient M of TB and a quotient LM of T �B by fiberwise Zn

action as follows.
For TB , we locally consider TBjU and define a Zn-action generated by

yi 7! yi C 2� for each i D 1; : : : ; n. For T �B , we again locally consider
T �BjU and define a Zn-action generated by yi 7! yiC2� for each i D 1; : : : ; n.
Both Zn-actions are well-defined globally since B is tropical affine, i.e., the
transition functions of n-dimensional vector bundles TB and T �B belong to
GL.nIZ/. Then

M WD TB=Zn

is a Kähler manifold whose symplectic structure !M and complex structure JM
are those naturally induced from !TB and JTB on TB . Similarly,

LM WD T �B=Zn

is a Kähler manifold whose symplectic structure ! LM and complex structure J LM
are those induced from !T �B and JT �B , respectively. These M and LM are
often called semiflat torus fibrations or T n-invariant manifolds. See [Leung et al.
2000; Leung 2005; Fukaya 2005].

Strominger, Yau and Zalow’s approach [Strominger et al. 1996] to the mirror
symmetry is based on a pair .M; LM/ of Kähler manifolds as above. For a given
Calabi–Yau manifold X , we first try to describe X as a semiflat torus fibration.
To do so, unfortunately we need to include singular fibers in general. Suppose
now that X is described as a semiflat torus fibration with singular fibers, where
the total space of the general fibers M is a dense subset of X . Then, the mirror
LX of X is defined by modifying LM by what is called the instanton corrections.

The construction of the mirror pairs of this kind is now extended to more general
Kähler manifolds instead of Calabi–Yau manifolds (see [Auroux 2007]). When
X is a Kähler manifold which is not Calabi–Yau, one may again describe it as a
semiflat torus fibration with singular fibers and consider the dual fibration LM
of the generic fiber M of X , but one should further add contributions of some
holomorphic disks associated to the singular fibers as a “(Landau–Ginzburg)
superpotential” (see [Cho and Oh 2006; Auroux 2007; Fukaya 2005]). In the
present paper, we do not include singular fibers and treat a pair .M; LM/ as a mirror
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pair. More precisely, we will discuss a (mirror) duality between the symplectic
manifold .M;!M / and the complex manifold . LM;J LM /, and its deformations.

3. Lagrangian submanifolds and holomorphic vector bundles

In this section, we discuss Lagrangian submanifolds in M and holomorphic
vector bundles on LM associated to sections of the torus bundle M ! B . These
are discussed in [Leung et al. 2000; Leung 2005]. See also [Fukaya 2005].

3A. Lagrangian submanifolds in M . We fix a tropical affine open covering
fU�g�2ƒ. Let s W B!M be a section of M ! B . Locally, we may regard s as
a section of TB ' T �B and describe it by a collection of functions as

yi.�/ D s
i
.�/.x/

on each U�.
On U�\U�, these local expressions are related to each other by

s.�/.x/D s.�/.x/C I�� (7)

for some I�� 2 Zn. Here, x may be identified with either x.�/ or x.�/. Also,
s.�/.x/ and s.�/.x/ are expressed by the common coordinates y.�/ or y.�/. This
transformation rule automatically satisfies the cocycle condition

I��C I�� C I�� D 0 (8)

forU�\U�\U�¤∅. We denote by s such a collection fs.�/ WU�!TBjU�g�2ƒ
which is equipped with the transformation rule (7) satisfying the cocycle condition
(8).

Now we discuss when the graph of s forms a Lagrangian submanifold in M .
By definition, an n-dimensional submanifold L in a 2n-dimensional symplectic
manifold .M;!M / is Lagrangian if and only if !M jL D 0. This is a local
condition. Thus, in order to discuss whether the graph of a section s WB!M is
Lagrangian or not, we may check the condition locally and in particular in T �B .

It is known (as shown easily by taking the basis) that the graph of
Pn
iD1 yi dx

i

with local functions yi is Lagrangian in T �B if and only if there exists a local
function f such that

Pn
iD1 yi dx

i D df . Now, a section s W B!M is locally
regarded as a section of T �B by setting yi D

Pn
jD1 gijy

j D
Pn
jD1 gij s

j , from
which one has

nX
iD1

yi dx
i
D

nX
iD1

� nX
jD1

gij s
j

�
dxi D

nX
jD1

sjdxj :

Thus, the graph of the section s WB!M is Lagrangian if and only if there exists
a local function f such that

Pn
jD1 s

jdxj D df .
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The easiest example of these Lagrangian sections is the zero section s0.
Namely, y D s0.x/ is the zero function on any U�. The corresponding section
s0 W B!M is called the zero section of M ! B .

If the tropical Hessian manifold B is oriented, then there exists a holomorphic
n-form � which is locally defined as

�D dz1 ^ � � � ^ dzn:

Thus, TB and M are almost Calabi–Yau manifolds.1 For an almost Calabi–Yau
manifold, one can define special Lagrangian manifolds. Let us briefly discuss
when a section s defines a special Lagrangian submanifold, though it is not
needed in this paper. A special Lagrangian submanifold L is by definition a
Lagrangian submanifold satisfying

Im.ei˛�/jL D 0 (9)

for some ˛ 2 R. For a section s W B!M , a basis of the tangent vector space of
the graph of s at .x; s.x// 2M is given by

�i WD
@

@xi
C

nX
jD1

@sj .x/

@xi
@

@yj
; i D 1; : : : ; n:

Thus, the condition (9) turns out to be

0D Im
�
ei˛ .dz1 ^ � � � ^ dzn/.�1; : : : ; �n/

�
D Im

�
ei˛ det

�
1C

�
@sj .x/

@xi

�
i;j

��
:

This implies that y D s.x/ satisfies this equation with some ˛ if s is affine
with respect to xi . (Thus, the zero section of M ! B is a special Lagrangian
submanifold.) On the other hand, in this paper, sections s W B ! M which
are affine with respect to Lx play a central role as we see in Section 6C. They
are characterized as objects having constant curvatures. Unfortunately, sections
which are affine with respect to Lx do not correspond to special Lagrangians even
if s defines a Lagrangian.

3B. Holomorphic vector bundles on LM . Consider a section s W B !M and
express it as a collection s D fs.�/g�2ƒ of local functions. We define a line
bundle V with a U.1/-connection on the mirror manifold LM associated to s. We

1A Kähler manifold equipped with a nowhere vanishing holomorphic top form is called an
almost Calabi–Yau manifold.
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set the covariant derivative locally as

D WD d C i
nX
iD1

si .x/dyi ;

whose curvature is

D2 D i
nX

i;jD1

@si

@xj
dxj ^ dyi :

The .0; 2/-part vanishes if and only if the matrix .@si=@xj / is symmetric, which
is the case when there exists a function f locally such that df D

Pn
iD1 s

idxi .
Thus, the condition that D defines a holomorphic line bundle on LM is equivalent
to that the graph of s is Lagrangian in M .

This covariant derivative D is in fact defined globally. Suppose that D is
given locally on each LM jU� of the T n-fibration LM ! B with a fixed tropical
affine open covering fU�g�2ƒ. Namely, we continue to employ fU�g�2ƒ for
local trivializations of the line bundle associated to a section s W B!M . The
transition functions for .V;D/ are defined as follows. Recall that the section
s W B!M is expressed locally as

yi.�/ D s
i
.�/.x/

on each U�, where, on U�\U�, the local expression is related to each other by

s.�/.x/D s.�/.x/C I��

for some I�� 2 Zn (see (7)). Correspondingly, the transition function for the
line bundle V with the connection D is given by

 .�/ D e
�iI��� Ly .�/

for local expressions  .�/,  .�/ of a smooth section  of V , where

I�� � Ly WD

nX
jD1

ijyj

for I�� D .i1; : : : ; in/. We see the compatibility

.D .�//.�/ DD. .�//

holds true since the left-hand side turns out to be

e�iI��� Ly..d C is.�/.x/ � dy/eiI��� Ly .�//

D e�iI��� LyeiI��� Ly..d C i.s.�/.x/C I��/ � dy/ .�//
D .d C is.�/.x/ � dy/ .�/:
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Since .V;D/ is locally-trivialized by f LM jU�g�2ƒ, for each x 2B ,  .x; �/ gives
a smooth function on the fiber T n. Thus, on each U�,  .x; y/ can be Fourier-
expanded as

 .x; y/jU� D
X
I2Zn

 �;I .x/e
iI � Ly ;

where I � Ly WD
Pn
jD1 ijyj for I D .i1; : : : ; in/. Note that each coefficient  �;I

is a smooth function on U�. In this expression, the transition function acts to
each  �;I as X

I2Zn

 �;I e
iI � Ly
D e�iI��� Ly

X
I2Zn

 �;I e
iI � Ly

D

X
I2Zn

 �;I e
i.I�I��/� Ly

D

X
I2Zn

 �;ICI��e
iI � Ly ;

and hence  �;I D  �;ICI�� .

4. Two (curved) DG-categories

4A. Curved DG-category DG LM
associated to LM . We define a curved DG-

categoryDG LM as follows. The objects are line bundles V withU.1/-connections
D associated to lifts s of sections as we defined in Section 3B. We often label
these objects as s instead of .V;D/. For any two objects sa D .Va;Da/, sb D
.Vb;Db/ 2DG LM , the space DG LM .sa; sb/ of morphisms is defined by

DG LM .sa; sb/ WD �.Vb; Va/˝C1. LM/
�0;�. LM/;

where�0;�. LM/ is the space of antiholomorphic differential forms, and �.Vb; Va/
is the space of homomorphisms from Vb to Va. The space DG LM .sa; sb/ is
a Z-graded vector space, where the grading is defined as the degree of the
antiholomorphic differential forms. The degree r part is denoted DGr

LM
.sa; sb/.

We define a linear map

dab WDG
r
LM
.sa; sb/!DGrC1

LM
.sa; sb/

as follows. We decompose Da into its holomorphic part and antiholomorphic
part DaDD

.1;0/
a CD

.0;1/
a , and set 2D.0;1/a DW da. Then, for  2DGr

LM
.sa; sb/,

we set
dab. / WD da � .�1/

r db 2DG
rC1
LM
.sa; sb/:

In particular, when sb is the zero section, sb D s0, the differential

da0 WDG
r
M .sa; s0/!DGrC1M .sa; s0/
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is also denoted da0 DW da. We call the two-form Wa defined by

.da/
2
DWa^ D

�
1

2

nX
i;jD1

W ij
a d Nzi ^ d Nzj

�
^

the curvature of the object sa 2DG LM .
The product structure m WDG LM .sa; sb/˝DG LM .sb; sc/!DG LM .sa; sc/ is

defined by the composition of homomorphisms of line bundles together with the
wedge product for the antiholomorphic differential forms. Then, DG LM forms a
curved DG-category.2

In particular, the full subcategory DG LM .0/ consisting of holomorphic line
bundles forms a DG-category since .da/2 D 0 for a holomorphic line bundle
.Va;Da/.

In order to construct another equivalent curved DG-category, we rewrite this
curved DG-category DG LM more explicitly. We Fourier-expand morphisms as
we did for a section of a line bundle in Section 3B. For two objects sa; sb 2DG LM ,
DG0

LM
.sa; sb/ is the space of sections of Va if sb is the zero-section, sb D s0, in

TB . Now, we discuss DGr
LM
.sa; sb/ with general sa; sb and r . For an element

 2DGr
LM
.sa; sb/, we express this locally as

 .x; y/D
X
I2Zn

 I .x/e
iI � Ly ;

where  I is locally a smooth antiholomorphic differential form of degree r .
Namely, it is expressed as

 I D
X
i1;:::;ir

 I Ii1���ird Nzi1 ^ � � � ^ d Nzir ;

with smooth functions  I Ii1���ir . Let us express the transformation rules for sa
and sb as

.sa/.�/ D .sa/.�/C Ia; .sb/.�/ D .sb/.�/C Ib

with Ia D IaI�� 2 Zn, Ib D IbI�� 2 Zn. Then, the transition function is given
by  .�/ D e�i.Ia�Ib/� Ly .�/, and hence

 .�/;I D  .�/;ICIa�Ib :

2 A curved DG-category is a generalization of a DG-category such that the differentials are
replaced by “curved differentials”, i.e., their squares are in general nonzero and are regarded as
curvatures. The precise definition can be found in [Kajiura 2008] and references therein.)
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The differential dab is expressed locally as follows. Since

Da D d C i
nX

jD1

sja .x/dyj

D

nX
jD1

�
@

@xj
dxj C

�
@

@yj
C isja

�
dyj

�

D
1

2

nX
jD1

�
@

@xj
� i
�
@

@yj
C isja

��
dzj C

1

2

nX
jD1

�
@

@xj
C i

�
@

@yj
C isja

��
d Nzj ;

one has

da D 2D
.0;1/
a D

nX
jD1

�
@

@xj
� sja C i

@

@yj

�
d Nzj

and then

dab. /D 2N@. /�

nX
iD1

.sa � sb/
id Nzi ^ : (10)

4B. Curved DG-category DGM associated to M . We define a curved DG-
categoryDGM as follows. As we shall see, we construct it so that it is canonically
isomorphic to the previous curved DG-category DG LM . We fix a tropical affine
open covering fU�g�2ƒ of B .

The objects are the same as those in DG LM , that is, lifts s of sections of
M ! B . For any two objects sa; sb 2 DGM , we express the transformation
rules for sa and sb as

.sa/.�/ D .sa/.�/C Ia; .sb/.�/ D .sb/.�/C Ib;

as we did in the previous subsection. For each �2ƒ and I 2Zn, let��;I .sa; sb/
be the space of complex-valued smooth differential forms on U�. The space
DGM .sa; sb/ is then the subspace ofY

�2ƒ

Y
I2Zn

��;I .sa; sb/

consisting of elements with the following properties:

� ��;I 2��;I .sa; sb/ satisfies

��;I jU�\U� D ��;ICIa�Ib jU�\U�

whenever U�\U� ¤∅.

� The sum
P
I2Zn ��;I e

iI � Ly converges as smooth differential forms on each
M jU� .
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The space DGM .sa; sb/ is a Z-graded vector space, where the grading is defined
as the degree of the differential forms. The degree r part is denotedDGrM .sa; sb/.
We define a linear map dab WDGrM .sa; sb/!DGrC1M .sa; sb/ which is expressed
locally as

dab.��;I / WD d.��;I /�

nX
jD1

.sja � s
j

b
C ij / dxj ^��;I

for ��;I 2 ��;I .sa; sb/ with I WD .i1; : : : ; in/ 2 Zn, where d is the exterior
differential on B . In particular, when sb D s0, the differential

da0 WDG
r
M .sa; s0/!DGrC1M .sa; s0/

is denoted by da0 DW da. We call the two-form Wa defined by

.da/
2
DWa^ D

�
1

2

nX
i;jD1

W ij
a dxi ^ dxj

�
^

the curvature of the object a 2DGM . One has

.dab/
2
D

nX
i;jD1

�

�
@s
j
a

@xi
�
@s
j

b

@xi

�
dxi ^ dxj^D .Wa �Wb/^ :

Therefore, dab defines a differential if and only if sa and sb have the same
curvature Wa D W D Wb . In particular, if sa and sb are both Lagrangian
submanifolds, then Wa D 0 D Wb and hence dab is a differential. Note that
the curvature Wa is regarded as an element in DG2M .sa; sa/ such that WaI�;I D
WajU� if I D 0 and otherwise WaI�;I D 0.

The composition of morphisms

m WDGM .sa; sb/˝DGM .sb; sc/!DGM .sa; sc/

is defined by

m.�abI�;I ; �bcI�;J / WD �abI�;I ^�bcI�;J 2��;ICJ .sa; sc/

for �abI�;I 2��;I .sa; sb/ and �bcI�;J 2��;I .sb; sc/. These structures define a
curved DG-category DGM . In particular, the full subcategory DGM .0/ consist-
ing of (lifts of) Lagrangian submanifolds is a DG category since Wa D 0 for sa
such that sa is a Lagrangian submanifold. Note that this DGM .0/ is believed to
be A1-equivalent to the corresponding full subcategory of the Fukaya category
Fuk.M/. (Compare thisDGM .0/ with what is called the de Rham model for the
Fukaya category in [Kontsevich and Soibelman 2001], in particular a construction
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in the Appendix (Section 9.2).) In Section 4E, we shall explain the outline of
how to compare DGM .0/ with the Fukaya category.

For a fixed two form W , the full subcategory DGM .W / consisting of objects
sa with curvature Wa DW also forms a DG-category. Later (in Section 6E) we
shall discuss generalizations of DGM .0/ of this kind.

4C. Equivalence between DGM and DG LM
. The curved DG-category DGM

is canonically isomorphic to the curved DG-category DG LM . In fact, we see that
the objects inDGM are the same as those inDG LM . The spaces of morphisms in
DGM and in DG LM are also identified canonically as follows. For a morphism
�ab D f�abI�;I g 2DG

r
M;I .sa; sb/, each �abI�;I is expressed as

�abI�;I D
X
i1;:::;ir

�abI�;I Ii1���irdxi1 ^ � � � ^ dxir :

To this, we correspond an element in DGr
LM
.sa; sb/ which is locally given asX

i1;:::;ir

.�abI�;I Ii1���ir e
iI � Ly/ d Nzi1 ^ � � � ^ d Nzir

on U�. Let us denote this correspondence by

f WDGM !DG LM ; id W Ob.DGM /! Ob.DG LM /

f1 WDGM .sa; sb/!DG LM .sa; sb/:

Proposition 4.1. The functor f WDGM !DG LM is a curved DG-isomorphism.

Proof. It is obvious that f preserves the product structure in these curved DG-
categories. It is also clear that f1.Wa/DWa for any sa 2DGM . The remaining
thing to be checked is the compatibility of this correspondence f with the opera-
tions d in both sides. Namely, we now check that

f1.dab.�I //D dab.f1.�I // (11)

holds true. Since dab is expressed locally as

dab D 2N@. /�

nX
iD1

.sa � sb/
id Nzi ;

(see (10)), where 2N@D
nP

jD1

d Nzj

�
@

@xj
Ci @
@yj

�
, the right-hand side of (11) becomes

dab. /D

nX
jD1

d Nzj

�
@

@xj
�

�
sja � s

j

b
� i @
@yj

��
. /
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for  D
P
i1;:::;ir

.�I Ii1���ir e
iI � Ly/ d Nzi1 ^ � � � ^ d Nzir . It is clear that this coincides

with the left-hand side of (11). �

4D. On isomorphisms between objects. Since objects in DGM or DG LM are
the lifts s of sections of M ! B , different objects s and s0 defining the same
section s D s0 W B!M should be isomorphic to each other. We shall confirm
here that this actually holds true.

Given a section s WB!M , let s2DGM be an object defined as yD s.�/.x/ on
each U�. The identity morphism on s 2DGM is given by f��;I g 2DGM .s; s/
with

��;I D

�
1 I D 0;

0 I ¤ 0:

Now, let us consider another object s0 2DGM which is defined as

y D s0.�/.x/D s.�/.x/CJ.�/;

with some J.�/ 2 Zn for each � 2ƒ. One sees that this together with the appro-
priate transformation rule actually gives an object s0 2DGM which corresponds
to the same section s W B !M . Then, a morphism � D f��;I g 2DGM .s; s

0/

defined by

��;I D

�
1 I D�J.�/;

0 otherwise;

is a closed morphism. Similarly, a morphism �0D f�0
�;I
g 2DGM .s

0; s/ defined
by �0

�;J.�/
D 1 and zero otherwise is a closed morphism. These � and �0 give

isomorphisms between s and s0.
Since DG LM is canonically isomorphic to DGM , there exist similar isomor-

phisms in DG LM . Namely, s and s0 are isomorphic to each other in DG LM if
s D s0. Note that this implies that s and s0 are in fact isomorphic line bundles.

4E. The DG-category DGM .0/ and the Fukaya category Fuk.M/. In this
subsection, we discuss the relation of the DG-categoryDGM .0/ with the Fukaya
category Fuk.M/ introduced in [Fukaya 1993]. The idea to relate them is to
apply homological perturbation theory to the DG-category DGM .0/ (as an A1-
category) in an appropriate way so that the induced A1-category coincides
with the full subcategory of the Fukaya category Fuk.M/. More precisely, what
should be induced directly fromDGM .0/ is the Fukaya–Oh category for the torus
fibration M !B introduced in Section 5.2 of [Kontsevich and Soibelman 2001].
Here, the Fukaya–Oh category means the A1-category of Morse homotopy
on B introduced in [Fukaya 1993]. It is shown in [Fukaya and Oh 1997] that
the Fukaya–Oh category is equivalent to (a full subcategory of) the Fukaya
category Fuk.T �B/. The Fukaya–Oh category for the torus fibration M !B is
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a generalization of the Fukaya–Oh category on B so that it corresponds to the
Fukaya category Fuk.M/ instead of Fuk.T �B/. Below, we shall relateDGM .0/
to the Fukaya category Fuk.M/ in this way.

For a given DG-category or more generally an A1-category C, assume that
a deformation retract is given for each space of morphisms. Here, we say that
a deformation retract is given for a chain complex .V; d/ when we are given
a degree minus one map h W V r ! V r�1 such that P WD id�.dhC hd/ is
an idempotent. Then, the restriction of d onto PV still defines a differential.
Namely, we obtain a subcomplex .PV; dP / of .V; d/. If in particular dP D 0,
then PV is isomorphic to the cohomology of .V; d/. In this case, we call the
deformation retract a Hodge decomposition. Then, the homological perturbation
theory gives us another A1-category C0 and an A1-quasiisomorphism C0! C.
Here, an A1-quasiisomorphism f WD ff If1; f2; : : : g is an A1-functor such that

� f W Ob.C0/! Ob.C/ is bijective and

� f1 W C0.a; b/ ! C.f .a/; f .b// is a quasiisomorphism for each pair of
objects a; b 2 C0.

Since f is bijective, hereafter we drop f and identify objects of C0 with those of
C. Then, the space C0.a; b/ of morphisms which the homological perturbation
theory gives is the subcomplex of C.a; b/ given by the deformation retract.

Following the idea in [Kontsevich and Soibelman 2001], our plan is to adjust
these homotopy operators h on the space of morphisms in CDDGM so that
the resulting A1-category C0 coincides with (a full subcategory of) the Fukaya
category Fuk.M/. As we shall see below, there are many difficulties in proceed-
ing this plan. However, we shall show some evidence implying that the plan can
be accomplished. We hope to come back to presenting the details elsewhere.

First, in this story we assume that B is compact. Otherwise in general we
need to modify the space of morphisms by imposing some conditions for the
asymptotic behavior near the ’boundaries’. Given two objects sa; sb 2DGM .0/,
suppose that the corresponding graphs are transversal to each other. In this case
we say that sa and sb are transversal. For dab WDGrM .sa; sb/!DGrC1M .sa; sb/,
we consider the following one-parameter family

d
�

�Iab
WDGrC1M .sa; sb/!DGrM .sa; sb/

of operators:

d
�

ab;�
.�abI�;I / WD

�
�d��

nX
i;jD1

.sa � sbC I /
igij �@=@xj

�
�abI�;I ;

where d� is the adjoint of d and �@=@xi is the inner derivation by @=@xi . Then, a
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one-parameter family h�Iab of homotopy operators is defined as

h�Iab WD d
�

�Iab

Z 1
0

dt exp
�
�.dabd

�

�Iab
C d

�

�Iab
dab/ t

�
:

For a pair .sa; sb/ which are not transversal to each other, we (tentatively) set
hab;� D 0. These homotopy operators h�Iab define deformation retracts of
DGM .sa; sb/, where

P�Iab WD id�.dabh�IabC h�Iabdab/

is the idempotent defining the space

C0�.sa; sb/ WD P�IabDGM .sa; sb/:

In particular, this is a Hodge decomposition when sa and sb are transversal to
each other. Then, the family C0� ofA1-categories is obtained via the homological
perturbation theory.

For each transversal pair sa; sb , the operators dab , d�
�Iab

and then h�Iab can
also be regarded as operators on a covering space of B as follows. Since sa
and sb define Lagrangians, locally there exist functions fa and fb such thatPn
iD1 s

i
adxi D dfa and

Pn
iD1 s

i
b
dxi D dfb . Then,

dab WDGM;I .sa; sb/!DGM;I .sa; sb/

is expressed as

dab D d � .sa � sbC I / � d Lx D d � d.fa �fbC I � Lx/^ :

We formally introduce Zn copies fU�;I g.�;I /2 Qƒ of the tropical affine open cover-
ing fU�g�2ƒ. If U�\U�¤∅, then we identify the corresponding subspaces of
U�;I with that of U�;J by the coordinate transformation, where J is determined
naturally by the transformation rule of the lifted sections sa and sb . Repeating
this, we obtain a tropical affine covering space QBab WD

`
.�;I /2 Qƒ

U�;I= � of
B . A morphism �ab D f�abI�;I g.�;I /2 Qƒ 2DGM .sa; sb/ is then regarded as a
complex-valued smooth differential form, which is also denoted by �ab , on QBab .
Form the locally defined Morse functions ffa � fb C I � Lxg, one can define a
globally defined Morse function Fab on QBab (using the ambiguity of constant
functions for each local Morse function). For each pair of objects sa; sb , we
fix such a function Fab . Then, dab and d�

�Iab
are expressed, as operations on

QBab , as

dab D d � dFab^; d
�

�Iab
D �d�� �grad.Fab/:
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For each transversal pair sa; sb , the space C0�.sa; sb/ D P�IabDGM .sa; sb/

consists of solutions �ab 2DGM .sa; sb/ of the equations

dab.�ab/D 0; d
�

�Iab
.�ab/D 0: (12)

A basis of the solution space C0�.sa; sb/ is given as follows. Let pab 2 B be
a point such that the Lagrangian sections corresponding to sa and sb intersect
in the fiber M jpab of pab . This is in one-to-one correspondence with a critical
point Qpab 2 QBab of the Morse function Fab on QBab . The connected component
of QBab including the point Qpab is denoted QB.pab/. Correspondingly, we define
a subset Qƒ.pab/� Qƒ so that

QB.pab/D
� `
.�;J /2 Qƒ.pab/

U�;J

�.
� :

This QB.pab/ is also a covering space of B (which is not compact in general).
From a differential form � on QB.pab/, a collection �Df��;I g is defined naturally
by setting �J D 0 on U� if .�; J / does not belong to Qƒ.pab/. This � D f��;I g
defines an element in DGM .sa; sb/ if the sum

P
I2Zn ��;I e

iI � Ly converges on
each U�. The gradient flow of Fab is well-defined on QB.pab/, and let us denote
by U.pab/ the unstable manifold associated to pab 2 QB.pab/. Now, we define
a solution �ab D e�.pab/ of the equations (12). For each pab , there exists a
differential form on QB.pab/

� whose degree coincides with n minus the Morse index of Fab at Qpab , and

� which approaches to eFab ŒU.pab/� by the limit �! 0.

We normalize this solution and set e�.pab/ so that

lim
�!0

e�.pab/D e
Fab.x/�Fab. Qpab/ŒU.pab/�:

Then, the solution space C0�.sa; sb/ of the equations (12) is spanned by these
bases e�.pab/ associated to the critical points pab .

Next, we discuss the A1-structure induced by the homological perturbation
theory. Since we start from the DG-categoryDGM .0/, the inducedA1-structure
m� is described in terms of trivalent rooted tree graphs as is done in [Kontsevich
and Soibelman 2001]. Namely, for each trivalent rooted n-tree 
n, we definem�
n
by assigning the product m in DGM .0/ at the trivalent vertices, the homotopy
operators h�I�� at the internal edges and the projection P�I�� at the root edge.
The A1-product m�n is then the sum over all those trivalent rooted n-trees:

m�n D
X

n

m�
n :
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The Fukaya category seems to correspond to the limit lim�!0 C�. Unfortu-
nately, in this limit, each lim�!0 e�.pab/ is no more a differential form but
a current. However, we can obtain “almost all of” the A1-products mn WD
lim�!0m�n by looking at the limit directly as follows. First, we consider
a sequence sa1 ; sa2 ; : : : ; san ; sanC1 of objects which are transversal to each
other. For each i , we take the base e�.paiaiC1/ 2 DGM .sai ; saiC1/ asso-
ciated to a critical point paiaiC1 and set e.paiaiC1/ WD lim�!0 e�.paiaiC1/.
We discuss mn.e.pa1a2/; : : : ; e.pananC1//, which turns out to coincide with
that in the Fukaya–Oh category for the torus fibration M ! B in [Kontse-
vich and Soibelman 2001] and hence that in the Fukaya category when each
m
n.e.pa1a2/; : : : ; e.pananC1// can be well-defined. The term

m
n.e.pa1a2/; : : : ; e.pananC1//

is a linear combination of e.pa1anC1/ with all critical points pa1anC1 , so we
may determine the coefficients cpa1a2 ���pananC1panC1a1 .
n/ of

m
n
�
e.pa1a2/; : : : ; e.pananC1/

�
D

X
pa1anC1

cpa1a2 ���pananC1panC1a1 .
n/ � e.pa1anC1/:

These coefficients are given as follows. First, for each paiaiC1 , i 2 Z with
i C .nC 1/ D i , we fix � such that paiaiC1 2 U�, and consider IaiaiC1 2 Zn

such that .�; IaiaiC1/ 2 Qƒ.paiaiC1/. Then, for each fixed collection

.pa1a2 ; Ia1a2/; : : : ; .pananC1 ; IananC1/; .panC1a1 ; IanC1a1/

with
IanC1a1 D�.Ia1a2 C � � �C IananC1/;

we look for a tree graph in fU�;I g.�;I /2 Qƒ whose external edges are gradient
lines starting from .paiaiC1 ; IaiaiC1/ and whose internal edges are on gradient
lines of the corresponding Morse functions. Such a tree is called a gradient tree.
We see that there exists only one or no gradient tree. Generically, a gradient tree
obtained in such a way is a trivalent tree. We set

c
Ia1a2 ���IananC1
pa1a2 ���pananC1panC1a1

.
n/ WD ˙ exp
�
�

X
lW edges

Sl

�
; (13)

with an appropriate sign ˙ when there exists a gradient tree which is isomorphic
to 
n as rooted tree graphs. Here l is an (internal or external) edge of 
n,
which is identified with the gradient tree, and Sl is the symplectic area of a
surface surrounded by the corresponding two Lagrangian sections on l in the
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corresponding covering space QB�� of B and the fibers at the end points of l in
QB��. If a gradient tree is not isomorphic to 
n, then we set

c
Ia1a2 ���IananC1
pa1a2 ���pananC1panC1a1

.
n/D 0:

The conclusion is that the coefficient cpa1a2 ���pananC1panC1a1 .
n/ given by the
homological perturbation theory actually turns out to be the sumX

Ia1a2 ;:::;IananC1

c
Ia1a2 ���IananC1
pa1a2 ���pananC1panC1a1

.
n/

when all the operations in the homological perturbation theory formula are well-
defined at the limit lim�!0. We can expect that this is the case when sai are
generic enough. This A1-structure is exactly the one in the Fukaya–Oh category
for torus fibration given in [Kontsevich and Soibelman 2001] and hence coincides
with the one in the Fukaya category Fuk.M/.

To summarize, we can view the limit mn when sa1 ; : : : san ; sanC1 are objects
such that:

� they are transversal to each other,

� any gradient tree is trivalent,

� the homological perturbation theory formula on e.pa1a2/; : : : ; e.pananC1/
is well-defined.

For each fixed Ia1a2 ; : : : ; IananC1 , the argument to derive the coefficient (13)
via the homological perturbation theory reduces to that in the case of cotangent
bundles instead of torus fibrations (see [Kajiura 2011]). In particular, when
BDR (though R is noncompact), i.e., T �BDR2, theA1-structure is calculated
explicitly in [Kajiura 2009] along this story. This construction for R2 is directly
applied to the construction for T 2, see the last section of [Kajiura 2011].

Fukaya [2005] introduced Morse functions on certain covering spaces of B
to discuss mirror symmetry for torus fibrations having singular fibers. We do
not still treat singular fibers in the present paper, so our Morse functions are not
directly related to those in [Fukaya 2005], though the Morse functions in both
constructions are related to the symplectic areas of holomorphic disks.

5. Deformations of torus fibrations

5A. A noncommutative deformation LM� of LM . We consider a deformation
quantization of LM by a Poisson structure (Poisson bivector) � which is locally
defined by

nX
i;jD1

�ij
@

@xi
^

@

@yj
;
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with a constant matrix f�gi;jD1;:::;n. We call such a Poisson structure constant.
Here, for the torus fibration LM ! B , we fix a tropical affine open covering
fU�g�2ƒ of B . As we explained in Section 2, f LM jU�g�2ƒ forms an open
covering of LM which locally-trivializes the tangent bundle T LM of LM . In
particular, the transition functions are given by constant matrices. Thus, the
notion of constant Poisson structures is well-defined. In particular, if T LM is
trivial, then we can always extend a locally defined constant Poisson structure
globally. The pair . LM; �/ is denoted LM� .

For a formal parameter „, a (formal) deformation quantization of a Poisson
manifold . LM; �/ is a (noncommutative) algebra .C1. LM/ŒŒ„��; ?/, where ? is an
„-bilinear associative product (called the star product) given by

f ?g D f �gC„ff; ggC higher order terms in „

for f; g 2 C1. LM/� C1. LM/ŒŒ„�� [Bayen et al. 1978a; 1978b]. Here, ff; gg is
the Poisson bracket defined by the Poisson structure. A (formal) deformation
quantization of a Poisson manifold . LM; �/ actually exists and it is unique up
to a natural equivalence relation. It is shown in [De Wilde and Lecomte 1983]
when the Poisson structure is symplectic and in [Kontsevich 2003] for a general
Poisson manifold. A geometric construction using a Weyl algebra bundle is
also given in [Omori et al. 1991; Fedosov 1994] for � being symplectic and in
[Cattaneo et al. 2002] for a general Poisson structure � .

In our case, since we treat a Poisson manifold . LM; �/ such that � is constant,
there exists a canonical deformation quantization such that its star product is
given locally by the following Moyal star product:

f ?g D f exp
�
„

2

nX
i;jD1

�ij

�  �
@

@xi

�!
@

@yj
�

 �
@

@yj

�!
@

@xi

��
g:

This star product is well-defined globally since the Poisson structure � is well-
defined globally and is constant.

If we discuss a nonformal deformation quantization, it corresponds to substi-
tuting „ D 1 in a formal deformation quantization. Instead, it is more popular
(and natural from the viewpoint of physics) to consider a nonformal deformation
quantization of complex-valued smooth functions with „ D i or „ D�i. Namely,
in our set-up, the star product is given locally by

f ?g D f exp
�
�

i
2

nX
i;jD1

�ij

�  �
@

@xi

�!
@

@yj
�

 �
@

@yj

�!
@

@xi

��
g (14)

for complex-valued smooth functions f and g. For instance if B D S1, then
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LM D T 2 and this nonformal deformation quantization is equivalent to a non-
commutative torus such as in [Connes and Rieffel 1987]. However, for general
LM , the star product of Moyal type in (14) may not be well-defined since the

exponential in (14) is defined as its infinite Taylor expansion. Here, we have
three choices. One is to discuss a formal Moyal star product and its mirror dual.
The other one is to discuss the case when the deformation quantization of a
nonformal constant Poisson structure converges. The last one is to restrict the
space of functions and differential forms on LM to a subspace where the Moyal
star product of a constant Poisson structure is well-defined. We shall discuss the
last case though the second case is enough for LM to be a real higher dimensional
torus. We shall define the restricted subspaces of the space of morphisms in
Section 6C.

5B. Foliated symplectic manifold M� . We claim that the mirror dual of the non-
commutative complex manifold LM� D . LM; �/ is M equipped with a symplectic
form !� and a foliation structure F� . The symplectic form !� is defined as

!� WD

nX
i;jD1

�
gijdx

i
^ dyj C .� � � t /ijdy

i
^ dyj

�
: (15)

The foliation structure F� is defined by

xi �

nX
jD1

�ijy
j
D const:

Namely, if � D 0, then the leaves of the foliation are the fibers. The triple
.M;!� ;F� / is denoted M� .

Now, it is clear that there exists a one-to-one correspondence between non-
commutative complex manifolds LM� D . LM; �/ and foliated symplectic manifolds
M� D .M;!� ;F� /. In order to support the claim that the correspondence
between LM� and M� is mirror, in the next section we construct categories
on M� and LM� as deformations of certain subcategories of DGM and DG LM ,
respectively, and discuss the homological mirror symmetry between them.

6. Deformations of the DG-categories

Now, we would like to discuss a deformation of the curved DG-category DG LM
by a constant Poisson structure � and the mirror dual. Though not all of the
objects seem to behave well under the deformation, we can fortunately define
natural deformations of line bundles having constant curvature connections. In
the next subsection, we discuss how to define deformation of those objects. After
that, we construct (curved) DG-categories deformed by � .
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6A. Deformation of objects. Let us start from the case where � D 0 (commu-
tative case). For an object s D .V;D/ 2 DG LM , recall that D is the covariant
derivation expressed locally as

D D d C i
nX
iD1

sidyi ^ :

For the transformation rule s.�/ D s.�/C I��, the transition function is given
as  .�/ D e�iI��� Ly .�/ as we saw in Section 3B. Let us denote by ��. LM/ the
space of smooth complex-valued differential forms on LM . Then, .��. LM/; d;^/

forms a DG (commutative) algebra and .V;D/ has a structure of a (right) curved
DG module over ��. LM/. In particular, D satisfies the Leibniz rule

D.� � a/DD.�/ � aC .�1/j�j� � d.a/ (16)

for any a 2��. LM/ and � 2 �.V /˝
C1. LM/

�j�j. LM/. The curved DG-modules
defined in this way naturally form a curved DG-category. By extracting the
antiholomorphic part from this curved DG-structure, one obtains the curved
DG-structure in DG LM . So, in order to define deformations of DG LM , we will
study noncommutative deformations of the curved DG modules .V;D/.

Now, we switch on the noncommutative parameter � . We first replace the
wedge product ^ in��. LM/ by

?
^, the wedge product with the Moyal star product

(14). This operation
?
^ is defined locally, where the product of coefficients for

the bases of the differential forms are replaced by the Moyal star product. Since
B is affine,

?
^ is well-defined globally. Then, .��. LM/; d;

?
^/ again forms a DG

algebra (which is not commutative).
For a given line bundle .V;D/ on LM as above, we construct its deformation,

which is again denoted .V;D/, as a curved DG module over the DG-algebra
.��. LM/; d;

?
^/. Our discussion of this kind is originally inspired by the non-

commutative supergeometry à la A. Schwarz; see [Schwarz 2003]. First, the
transition functions are set to be the same ones as the commutative case, but the
product is replaced by the Moyal star product:

 .�/ D e
�iI��� Ly ? .�/:

Thus, V is the set of collections of local functions f �g�2ƒ which are related
to each other by the transition functions above. The covariant derivation D is
given locally as

D D d C i
nX
iD1

sidyi
?
^ (17)

for local functions si . Since we replaced the wedge product ^ by
?
^, this again
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satisfies the Leibniz rule. However, each local function si is different from the
original one defining .V;D/ onM . It is modified by � so that the locally-defined
D satisfies the compatibility

.D .�//.�/ DD. .�//;

which turns out to be

e�iI��� Ly ?
�
.d C is.�/.x/ � dy/ ? eiI��� Ly � .�/

�
D
�
d C i.e�iI��� Ly ? s.�/.x/ ? e

iI��� Ly C I��/ � dy
�
? .�/

D .d C is.�/.x/ � dy/ ? .�/:

Thus, if s D fs.�/g�2ƒ satisfies the transformation rule

s.�/ D e
�iI��� Ly ? s.�/.x/ ? e

iI��� Ly C I��; (18)

then such an sDfs.�/g�2ƒ is regarded as a deformation of the original sD .V;D/
on M .

Now we have two problems. One is that, for a given object sD .V;D/2DG LM ,
there does not necessarily exist its deformation in the sense above. The other one
is, as explained below, that the structure of the resulting curved DG category is
not what we want. Assume that the deformation of an object sD .V;D/2DG LM
exists. If we decomposeDDD.1;0/CD.0;1/ and set d WD2D.0;1/, the two-form
W 2�2. LM/ defined by d2 DW

?
^ should be regarded as the curvature of the

deformed object .V;D/. For W D 1
2

Pn
i;jD1W

ijd Nzi ^ d Nzj , one has

W ij
D
@si

@xj
�
@sj

@xi
:

A different point from the commutative case is that the two-form W no more
belongs to the center of .��. LM/; d;

?
^/ if W ij is not constant for some i and

j . This means that, if we construct the curved DG-category consisting of
these deformed objects, the full subcategory consisting of objects with the same
curvature W does not form a DG-category.

One can solve these two problems at the same time if we concentrate on affine
sections only as follows. If we consider a collection s D fs.�/g�2ƒ such that
each s.�/ is an affine function with respect to Lx, then W ij becomes constant.
Furthermore, in this case, the transformation rule (18) becomes simpler. Let us
express s locally as

s D A LxC c
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for A 2Mat.nIR/ and c 2 Rn. Then, The transformation rule (18) turns out to
be

s.�/ D s.�/C .1CA�/I��: (19)

In particular, for a given line bundle s D .V;D/ on LM such that s is affine with
respect to Lx, there exists its deformation s on LM� with the same fI��g when � is
generic. In fact, when we express s on LM locally by sDA LxCc, its deformation
s satisfies the transformation rule (19) if

A LxC cD .1CA�/.A LxC c/;

which can be rewritten as

.1�A�/A LxC cD A LxC .1CA�/cI

hence one obtains AD .1�A�/�1A if the matrix .1�A�/ is invertible. This
leads 1CA� D .1�A�/�1, so cD .1�A�/�1c. Thus, for a given s locally
expressed as A LxC c on LM , there exists its deformation s locally expressed as
s D A LxC c, AD .1�A�/�1A, cD .1�A�/�1c unless det.1�A�/D 0. In
Section 6D we shall define the curved DG-category DG LM�

consisting of these
objects which are affine with respect to Lx.

6B. Geometric interpretation of these deformed objects. We give a geometric
interpretation of the deformed object s in the previous subsection.

For the foliated symplectic manifold M� D .M;!� ;F� /, the foliation F� is
transversal to the zero section s0. Consider another affine section s W B !M

which is transversal to F� and its lift s. It is locally expressed as si DAijxj Cci .
Let Lx0 2 B be a point, which is identified with a point in the graph of Ns0, and
consider the leaf which includes Lx0. The intersection point of this leaf and the
graph of s is given by the two equations yi DAijxj C ci and xi ��ijyj D x0;i ,
where Lx0 D .x0;1; : : : ; x0;n/t . One obtains

Lx D .1� �A/�1. Lx0C �c/;

y D .A.1� �A/�1/. Lx0C �c/C c

D .1�A�/�1.A Lx0C c/:

Namely, using the coordinates Lx0, the section s is described by the last equation,
that is, yDA Lx0Cc with AD .1�A�/�1A and cD .1�A�/�1c. The condition
that the graph of s is transversal to the leaves is equivalent to that the matrix
1�A� is invertible.

Hereafter we drop the lower index 0, writing xi for x0;i or Lx for Lx0. Thus,
in the deformed categories we shall discuss, the coordinates Lx are interpreted
geometrically as the coordinates Lx0 above.
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Next, we check the transformation rule for these local descriptions. For the
transformation rule (7),

s.�/.x/D s.�/.x/C I��;

of the lifted section s, one has

A.�/ LxC c� D .A.�/ LxC c�/C I��

on U�\U�, where A.�/DA.�/DA, and hence c�D c�CI��. Therefore, one
obtains

A LxC c� D .1�A�/
�1.A LxC c�/D .1�A�/

�1.A LxC c�C I��/

D A LxC c�C .1�A�/
�1I��: (20)

Recall that one has the identity .1�A�/�1 D 1CA� . Thus, the transformation
rule for this deformed object agrees with the one (19) discussed previously:

s.�/ D s.�/C .1CA�/I��:

In the next subsection, we employ this transformation rule (20) for the defini-
tion of the objects of the deformed curved DG-category which we shall construct.
Note that, though we started from a section s W B!M to discuss the deformed
object s, the s will not need to come from a section of M ! B . For instance,
when � is general, then in the deformed category we can include an object which
corresponds to the Lagrangian fiber T n at each point in B . This is the case where
AD���1 and so .1CA�/D 0.

6C. Curved DG-category DGM�
. Now, for a fixed constant Poisson structure

� , we define two curved DG-categories DGM� and DG LM�
associated to M� and

LM� . The objects shall be defined according to the previous two subsections. As
mentioned at the end of Section 5A, the spaces of morphisms (in DG LM�

) shall
be defined so that the corresponding Moyal star product is well-defined. The
curved DG-categories DGM� and DG LM�

are defined so that they are canonically
curved DG-isomorphic to each other. We first define the curved DG-category
DGM� below.

Each object s 2 DGM� is a collection fs.�/g such that:

� Each s.�/ is an affine function on U� described as

s.�/ D A.�/ LxC c�

for some A.�/ 2Mat.n;R/ and c� 2 Rn.

� The transformation rule

s.�/ D s.�/C .1CA�/I�� (21)
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is satisfied for each U�\U�¤∅. Here, I�� satisfies the cocycle condition
(8).

For two objects sa and sb , we express their transformation rules as

.sa/.�/ D .sa/.�/C Ia; .sb/.�/ D .sb/.�/C Ib

with Ia D IaI�� and Ib D IbI��. We define the space DGM� .sa; sb/ of mor-
phisms as the subspace of Y

�2ƒ

Y
I2Zn

��;I .sa; sb/

such that:

� For each open set U� � B and a point p 2 U�, the Taylor expansion

1X
i1D0

� � �

1X
inD0

.x1�p1/
i1

i1Š
� � �
.xn�pn/

in

inŠ

�
@

@x1

�i1
� � �

�
@

@xn

�in
��;I .p/

converges at any Lx 2 Rn and coincides with ��;I on U� for any I 2 Zn.

� ��;I 2��;I .sa; sb/ satisfies

��;I . Lx/D ��;ICIb�Ia
�
LxC 1

2
.IaC Ib/�

�
; Lx 2 U�\U�

for any U�\U� ¤∅.

� f��;I . Lx/gI2Zn goes to zero as I !1 faster than any inverse power of
I (meaning ji1j�j1 ji2j�j2 � � � jinj�jn for some j1; : : : ; jn 2 Z�0) and uni-
formly with respect to Lx 2 Rn.

The last two conditions are modifications of those forDGM .sa; sb/ in Section 4B.
In the first condition, by the Taylor expansion of ��;I , we mean the Taylor
expansions of the coefficients of the differential form ��;I . Thus, a degree zero
element in DG0M� .sa; sb/ is a kind of an entire function on the real analytic
manifold QBab . In the second condition, the point LxC 1

2
.IaC Ib/� may belong

to neither U� nor U� even if Lx 2 U� \ U�. However, the right-hand side
makes sense as its Taylor expansion. The third condition then implies that (each
coefficient of the differential form) ��;I . Lx/ is a Schwartz function on I 2 Zn

but its convergence is uniform with respect to Lx.
The differential dab is modified by � as follows. We define

dab W DGrM� .sa; sb/! DGrC1M�
.sa; sb/
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locally by

dab.��;I / WD d.��;I /�

nX
jD1

�
sa � sbC

�
1C 1

2
.AaCAb/�

�
I
�j
dxj ^��;I :

In particular, when sb D s0, the differential is denoted da0 DW da, where the
two-form Wa D

1
2

Pn
i;jD1W

ij
a dxi ^dxj defined by .da/2DWa^ is called the

curvature of the object a. Then, for any sa; sb , one has .dab/2DWa�Wb , which
turns out to be zero if and only if sa and sb have the same constant curvature
Wa DWb DW .

The (deformed) composition

m W DGM� .sa; sb/˝ DGM� .sb; sc/! DGM� .sa; sc/

of morphisms is then defined by

m.�abI�;I ; �bcI�;J /. Lx/

WD �abI�;I
�
LxC 1

2
�J
�
^�bcI�;J

�
Lx� 1

2
�I
�
2��;ICJ .sa; sc/ (22)

for �abI�;I 2 ��;I .sa; sb/, �bcI�;J 2 ��;J .sb; sc/ and Lx 2 U�. Here, the
formula for m again makes sense by regarding �abI�;I and �bcI�;J as their
Taylor expansions even if LxC .�J=2/ or Lx � .�I=2/ may not be in U�. This
product m is in fact associative and satisfies the Leibniz rule with respect to the
differential. Thus, DGM� forms a curved DG-category. In particular, the full
subcategory DGM� .W / consisting of objects having the same constant curvature
W forms a DG category.

6D. Curved DG-category DG LM�
. As stated in the previous subsection, we de-

fine the curved DG-category DG LM�
which is canonically isomorphic to DGM� .

The objects are the same as those in DGM� . For any two objects sa; sb 2 DGM�
and morphism �ab WD f�abI�;I g 2 DGM� .sa; sb/, we set f1.�ab/D ab , which
is locally defined by

 abjU� WD
X
I2Zn

 abI�;I e
iI � Ly ;

where  abI�;I is obtained by replacing each dxi in �abI�;I by d Nzi . By con-
struction,  abjU� and  abjU� are related to each other by

 abjU� D e
�iIay ?^ . abjU�/

?
^ eiIby

on U�\U�, where Ia D IaI�� and Ib D IbI��. We set the space DG LM�
.sa; sb/

as the space of all such elements  ab . The differential

dab W DGrM� .sa; sb/! DGrC1M�
.sa; sb/
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is set to be

dab. / WD 2N@ �

nX
iD1

.sia
?
^ � 

?
^ sib/d Nzi :

In particular, when sb D s0, we write da0 DW da, and the antiholomorphic
two-form Wa D

1
2

Pn
i;jD1W

ij
a d Nzi ^ d Nzj defined by .da/2 D Wa^ is called

the curvature of sa. Note that when the curvature of an object sa 2 DGM�
is Wa D 1

2

P
i;j W

ij
a dxi ^ dxj , the corresponding object sa 2 DG LM�

has the
curvature Wa D 1

2

P
i;j W

ij
a d Nzi ^ d Nzj with the same fW ij

a g. In this sense, we
denoted the curvatures in both categories by the same letter Wa. Hereafter, we
say sa 2 DGM� and sb 2 DG LM�

have the same curvature W if W ij
a DW

ij

b
for

any i; j D 1; : : : ; n.
The composition of morphisms is defined so that the maps f1 gives an iso-

morphism of these curved DG-categories DGM� and DG LM�
. Namely,

m.f1.�ab/; f1.�bc// WD f1.m.�ab; �bc//

for any �ab 2 DGM� .sa; sb/ and �bc 2 DGM� .sb; sc/. Since

f1.�ab/jU� D  abjU� D
X
I

 abI�;I e
iI � Ly ;

f1.�bc/jU� D  bcjU� D
X
I

 bcI�;I e
iI � Ly ;

one has

m.f1.�ab/; f1.�bc//jU�.x; y/

D f1.m.�ab; �bc//jU�.x; y/

D
P
I;J

 abI�;I
�
xC 1

2
�J
�
^ bcI�;J

�
x� 1

2
�I
�
ei.ICJ/�y

D . ab
?
^ bc/jU�.x; y/:

Namely, the composition of morphisms in DG LM�
is given by

?
^, the “deformation

quantized wedge product”. Thus, DG LM� is defined quite naturally as a category
on (the deformation quantization of) LM� .

6E. Homological mirror symmetry. By construction, the correspondence f1 in
the previous subsection gives the canonical isomorphism between the curved
DG-categories:

DGM� ' DG LM�
:

This in particular induces a DG-isomorphism DGM� .W / ' DG LM�
.W / for

any W . As we mentioned before, in the commutative case, the DG-category
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DGM .0/ (or DGM�D0.0/) is the de Rham model for (a full-subcategory of) the
Fukaya category Fuk.M/. Now, we claim that the DG-category DGM� .W / is
the de Rham model for the Fukaya category Fuk.M;!� / with potential W in
the following sense.

Let �F� W TB!B be the projection associated to the foliation structure. Here,
we identify the base space B with the graph of the zero section s0 of TB . In
particular, if � D 0, then �F� coincides with the projection defining the tangent
bundle TB! B . For a fixed constant two-form W on B , the two form

!� � .�F� /
�W

again defines a symplectic form on TB . Since this is a constant two form with
respect to the coordinates Lx and y, there exists a corresponding symplectic form
onM . Then, submanifolds defined by the objects in DGM� .W / form Lagrangian
submanifolds with respect to this symplectic form. We call this Fukaya category
consisting of these Lagrangians the Fukaya category Fuk.M;!� / with potential
W . 3 In order to show that each object s 2 DGM� .W / defines a Lagrangian, it is
enough to discuss it locally. A key point is that, using the coordinates associated
to the foliation structure F� , !� (15) is described as

!� D

nX
iD1

dx0;i ^ dy
i

on TB , where x0;i are the coordinates in the sense of Section 6B. Thus, in this
coordinate system, one has

!� � .�F� /
�W D

nX
iD1

dx0;i ^ dy
i
�
1

2

nX
i;jD1

W ijdx0;i ^ dx0;j

D

nX
iD1

dx0;i ^
�
dyi � 1

2
W ijdx0;j

�
:

This shows, by setting yi0 WD y
i �

1
2
W ijx0;j , the symplectic form is of the form

!� � .�F� /
�W D

nX
iD1

dx0;i ^ dy
i
0:

3Here we called it so just because W plays a similar role to a Landau–Ginzberg superpotential
(or the corresponding object in the mirror dual side). We do not give any interpretation of this
potential in this paper.
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Then, each object s 2 DGM� .W / expressed locally as yi D Aijx0;j C ci is
rewritten as

yi0 D

nX
jD1

Aijx0;j C ci �
1

2

nX
jD1

W ijx0;j D
1

2

nX
jD1

.ACAt /ijx0;j C ci ;

since W ij D A�At . We see that s defines a Lagrangian since the coefficient
1
2
.ACAt /ij is symmetric with respect to i and j .
The precise statement of our hope is then as follows.

Conjecture 6.1. The DG-category DGM� .W / is A1-equivalent to a full sub-
category of the Fukaya category Fuk.M;!� / with potential W .

Here, we say an A1-functor is an A1-equivalence when it induces an equiv-
alence of the cohomology categories of the A1-categories.4 This notion is a
generalization of the notion ofA1-quasiisomorphisms. In fact, roughly speaking,
an A1-equivalence is an A1-quasiisomorphism up to isomorphisms of objects
in the target A1-category.

Conjecture 6.1 actually holds true if we assume the de Rham model DGM .0/
is A1-equivalent to the full subcategory of the Fukaya category Fuk.M/ in the
usual commutative case as discussed in Section 4E. We already saw that the
objects in DGM� .W / define Lagrangians with respect to the symplectic form
!� � �

�
F�
W . In particular, just as in the commutative case, we see that two

objects defining the same Lagrangian are isomorphic to each other. Then, as in
the commutative case in Section 4E, we apply homological perturbation theory
to DGM� in order to obtain the corresponding Fukaya category. More precisely,
we obtain an A1-category C0 D lim�!0 C0� which is A1-quasiisomorphic to
DGM� . Since (infinitely) many objects s in C0 defining the same Lagrangian are
isomorphic to each other, we can choose a representative corresponding to each
Lagrangian. Our hope is that the full A1-subcategory of C0 consisting of these
representatives is regarded as the corresponding Fukaya category. This means
that DGM� is A1-equivalent to the corresponding Fukaya category.

We end with explaining that why the A1-category C0 is expected to corre-
spond, in the sense above, to the Fukaya category. First, for dab , the homotopy
operator hab is given similarly. Then, we consider a sequence

sa1 ; sa2 ; : : : ; san ; sanC1

of objects which are transversal to each other, and calculate the A1-products
mn defined by the homological perturbation theory formula. As we mentioned

4This is what is called a quasiequivalence in [Seidel 2008].
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in Section 4E, each A1-product is given as the sum

mn D
X

n

m
n

over all the trivalent rooted n-trees 
n, where each m
n is defined by attach-
ing the product m in DGM� to the trivalent vertices, the homotopy operators
h�� to the internal edges, and the projection P�� to the root edge. Then, the
only difference from the commutative case is that the product m is deformed;
we see in the formula (22) that m depends on the indices I and J . How-
ever, we may calculate the product m in the formula for m
n by using the
isomorphisms of objects mentioned above. For instance, on each U�, the
product m W ��;I .sa; sb/˝��;J .sb; sc/ ! ��;ICJ .sa; sc/ can be obtained
by m W ��;0.sa; s0b/˝��;0.s

0
b
; s0c/ ! ��;0.sa; s

0
c/, where s0

b
and s0c are the

objects which are isomorphic to sb and sc , respectively, and are expressed as

s0b D sbC I; s0c D sc C I CJ

on U�. Since the formula for the product,

m W��;0.sa; s
0
b/˝��;0.s

0
b; s
0
c/!��;0.sa; s

0
c/;

is the same as in the commutative case, the A1-products mn are obtained just
in the same way as in the commutative case in Section 4E.

7. Concluding remarks

As the objects of our curved DG-categories, we consider only those which come
from sections of M ! B . They are, in the curved DG-category DG LM , line
bundles with U.1/-connections. One can also construct higher dimensional
vector bundles (with U.1/-connections) by considering multisections of M !B .
For instance, see [Leung et al. 2000]. It is not difficult to include these as the
objects in our set-up. In mirror symmetry, one generally needs to include U.1/
local systems on Lagrangian submanifolds. This inclusion of U.1/ local system
corresponds to including pure imaginary constant terms to the connections on
vector bundles. This generalization is also neglected in this paper for simplicity.

However, even if we include these generalizations in our set-up, it is not clear
whether the resulting objects are enough to discuss homological mirror symmetry
or not. For instance, it is not clear whether the DG-category DG LM .0/ generates
the derived category Db.coh. LM// of all coherent sheaves on LM as the zero-th
cohomology of the pretriangulated DG-category of twisted complexes (in the
sense of [Bondal and Kapranov 1990]) in DG LM .0/. The answer is positive for
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the case M D T 2 and its noncommutative deformation, but it may depend on
the manifold M . We postpone this discussion for a future paper.

Though we did not include singular fibers, there are not many examples of
Kähler manifolds which are described as semiflat torus fibrations without singular
fibers. For example, one can enjoy the constructions in the present paper for
the case M D CP1nf2 pointsg, where B D R. Since B has an open covering
consisting of only one coordinate chart, it is automatically tropical affine. One
can also discuss the case when M is the generic T n-fibration in CPn in a similar
way, where B ' Rn. However, in order to discuss the mirror symmetry for CPn

instead of M � CPn, we need to compactify M by singular fibers and also
add some effects from holomorphic disks (see [Cho and Oh 2006]). It may be
interesting to discuss how to compactify M� and LM� in these examples.

The case M is the trivial T n fibration over B D T n is of course the main
example of the construction in this paper, where M and LM are actually mirror
dual to each other. In this case, the (curved) DG-category DGM� coincides with
a (curved) DG-category associated to a (higher dimensional) noncommutative
torus constructed in [Polishchuk and Schwarz 2003; Kajiura 2004; 2007], except
for some minor details. However, in this M D T 2n case, there is another way of
defining the mirror dual since the base space and the fiber are both T n. Namely,
one can T-dualize both the base T n and the fiber T n. Equivalently, one can deal
with vector bundles on LM such that their sections can be Fourier expanded on the
base T n instead of the fiber T n, though one T-dualizes the fiber T n according
to [Strominger et al. 1996]. Actually, the mirror duality for (commutative) T 2n

explained in the reference [Kajiura 2006] is the one in the sense above, which is
therefore different from the one in the present paper. Anyway, all these (curved)
DG-categories are equivalent via T-dualizing in various directions.

Finally, though we discussed a particular deformation of the categories, we
believe that similar deformations can be formulated for various other categories.
In particular, we hope to try it for DG enhancements of categories of singularities
elsewhere.
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