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1. Introduction

We introduce a notion of deformation of expressions for elements of an algebra.
Deformation quantization [Bayen et al. 1978a; 1978b] deforms the commutative
world into a noncommutative world. In contrast, our formalism involves the
deformation of expressions of elements of algebras from one commutative world
into another.

2. Definition of %-functions and intertwiners

Let C[w] be the space of polynomials in one variable w. For a complex parame-
ter t, we define a new product on this space:
AR 23,00
f*rgZZ%awfawg (= fe5twdug), (2-1)
k=0 )

We see easily that *; makes C[w] into a commutative and associative algebra,
which we denote by (C[w], *;). If =0, then (C[w], *¢) is the usual polynomial
algebra, and t € C is called a deformation parameter. What is deformed is not
the algebraic structure, but the expression of elements.

Intertwiners and infinitesimal intertwiners. It is not hard to verify that the
mapping
92
e 4%+ (Cw]. o) — (Clw]. *7) (2-2)

. . . 92 . _152
gives an algebra isomorphism: e 7% has the inverse e~ %% and we have

92 92 92
eZ (frog)=(e2% [)x (eF g).

The isomorphism /= &% is called the intertwiner. Defining Ir’/ =1 g/(lg )1
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gives the intertwiner from (C[w], ;) onto (C[w], /). Its differential

d
d 2
dl,=I7" T:_drflft I/ﬂ:%aw
is called the infinitesimal intertwiner.
Defining wg, by I§w" we get
n!
wl =P, (w, )= 7 pkynik 2-3
be=Paw. D= 4kjc) (n—2k)! (29

k=[n/2]

Let Hol(C) be the space of all entire functions on C with the topology of uniform
convergence on each compact domain. Hol(C) is known to be a Fréchet space
defined by a countable family of seminorms. It is easy to see that the product
x; extends naturally to f, g € Hol(C) if either f or g is a polynomial. By the
inductive limit topology C[w] is a complete topological algebra with uncountable
basis of neighborhoods of 0. We easily see the following:

Theorem 2.1. For a polynomial p(w), the multiplication p(w)*. is a contin-
uous linear mapping of Hol(C) into itself. By polynomial approximations, the
associativity f*¢(g*ch) = (f*:g)*ch holds if two of f, g, h are polynomials.
Hol(C) is a topological Clw] bimodule.

Star-exponential functions and t-expressions. We now study the deformation
of the exponential function ¢*". Although the ordinary exponential function
e is not a polynomial, the intertwiner / given by (2-2) extends to give
Ig(eZaw) — €2aw+a2r — eazr eZaw’ reC. (2-4)

Using Taylor expansion, we get

eZaw*T ewa — eZ(a+b)w+2abr’ eZaw*rf(w) — eZawf(w —i—ar), (2-5)
for every f € Hol(C). We have also associativity,

eZaw*t(e2bw*rf’(w)) — (€2aw*1; ezbw)*rf(w),

for every f € Hol(C). Computation via intertwiners gives
Irr’(e%szr esw) — e%szr’ i
. 12 . .
We denote by e the family {e4° 7 ¢*"; v € C} and call this the x-exponential
function.
Associated with polynomials and exponential functions f(w), we construct a
family of functions

{fe(w)iteC}  fo=I5(f(w)), (2-6)
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which is denoted by fi(w). We view fix(w) as an element of the abstract algebra.
Given f we refer to the object (2-6) as a *x-function. Using the notation : - :; we
write

Se(w)ir = fr(w).

We view : fi:; as the T-expression of fi. Then we have :eS%:; = ed57T oS0 We
call the right-hand side the t-expression of e3. The product formula (2-1) gives
the exponential law

LSW .

tw.
ey Vipkgien

o= ST forall T € C. (2-7)
Note that :e¥:; is the solution for every t of the differential equation dg(¢)/dt =
wx*;g(¢) with the initial condition g(0) = 1. It is easy to see the exponential

law ¢! e¥ = ef¥ TS holds for the ordinary exponential function e¢*. The formula

elWi =Y, 1" /nl:w!:; also holds.

For every f € Hol(C), the formula (2-5) gives
02k f(w) = e2sw+s2rf(w +57). (2-8)
Using this, we have several basic properties of x-exponential functions:

Proposition 2.1. Associativity holds in every t-expression:
Pl x f) = el T f = P x(frel).
If f(w) € Hol(C) satisfies :e'5%: %, f(w) = 0, then f(w) = 0.

i 2 i . i .
As :e2MW: = TN T2V if Re £>(), then :e2"¥:, tends to 0 very quickly.
Using this we have:

oye . o0 n .. .
Proposition 2.2. If a power series Z’l:O anz" has a positive radius of con-
vergence, then :eﬁ’w:,*r Yoo o anietW: is an entire function of w for every

leZ
On the other hand we note the following:

Proposition 2.3. If{ > 3 and t # 0, the radius of convergence of the power series
o . ¢ .
590 o "/nl:w: in t is 0. That is, el¥* cannot be defined as a power series

for £ > 3.

Applications to generating functions. As is well known, exponential functions
contribute to construct generating functions. We now show how :x-exponential
functions relates to generating functions.

The generating function of the Hermite polynomials is given by

o0 n
V2ix—4e2 l
e 2 —E Hn(x)—n!.

n=0
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This is the Taylor expansion formula of :e;ﬁz’ w._y.
Noting that e£?* = 3 "(¢:" /n!)(aw)" and setting

tn
e = 3 (Vaw)i—
n>0 ’

we see Hy(w) =:(~/2w)”:_;. Hence it is easy to see that Hy, (w) is a polynomial
of degree n. For every t € C, we define the x-Hermite polynomials H,(w, *) by

o0 t”
e;ﬁtw = Z Hy(w, *)a, (2-9)
n=0
where
Hy,(w,7) =:Hy(w,*):;y and Hy(w,—1)= Hy(w).

Since %e;ﬁ’w = 2w+ e we have
T
V2

where H, (w, 1) = 0H(w, 7)/0w.
The exponential law yields

Hyy(w, ) + V2wHy(w, 7) = Hyp1(w, 1),

|
k+t=n

On the other hand, differentiating both sides of (2-9) with respect to w gives
V2nHy_y(w, %) = H, (w, ). Differentiate again and use the equality above to
get

tH) (w, 1) + 2wH, (w, 1)—2nHy(w, ) = 0.

By setting
2\ 1
x/ilw4—£t2=z t+£w — —w?,
2 2 T T
the Hermite polynomial H,(w, *) is obtained via the formula
e—%wz _ e—%wz = " " e%wZ.
JV2) dwn

The orthogonality of { H,(w, t)}, is shown under the condition Ret < 0 as
follows:

/eiwan(w,f)Hm(w,t)dw:/
R

R

dn T ﬁ 2
Hy(w, 1) = Wez(t-i- 22 w)

t=0

n
T d" 1,2
— eV Hy,(w, t)dw.
(Ji ) dw" m- o)

If n # m, one may suppose n > m without loss of generality. Hence this vanishes
by the integration by parts n times. For the case n = m, we set
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2 > t"
T
e 2w = QYW 3 Hy(w, 7).
n!
n=0

Hence we see that

(n/2] n
i S ]
_ — vy - - _ |
n!Hn(w,r) = pE:O P (n—2p)!41’w S Hy(w,7) =2 nl.

It follows that
/ e%wan(w, ) Hy(w, 7)dw = n! (—1)" / et dw = n! (—0)"/—t/7.
R R
The generating function of the Bessel functions J,(z) is known to be

oo

eizsins: Z Jn(z)eins'

n=—00

Keeping this in mind, we define x-Bessel functions by

o0

eé(e”_e_”)“w = Z Jn(aw, %)™, Jy(aw, %)y = Jp(aw,7), a€C.

n=—o00
Replacing s by s + /2 gives

eé(els-i_e_ZS)aw — Z ian(alU, *)eins’

n=-—00

and basic symmetric properties hold. First we see J, (aw, *) = (—1)"J_, (aw, *).
Replacing w by —w in the first equality gives J,(—aw, %) = J_,(aw, *). Since

.e%(e”—e*”)aw.
e :

1

. —e l6a2r(els_efls)ze%(els_efls)aw

1.2 1 .2 2i —2i 1,0 i
— e84 T 164 t(e“'S+e ”)ej(e”—e ”)aw’
Jn(aw, 7) and J,(aw) are related by
oo 1 1 0o
i 2 2,205y ,—2i ,
E Ju(aw, ‘L')ems = e84 T 169 (e e =1%) E Jn(aw)ezns'

n=-—00 n=-—00

Setting s = 0, we see in particular 1 = Y 02 Julaw, ) = >0 Jn(aw).

n=—oo n=—00

The exponential law of left-hand side of the defining equality gives that

Lis —is
=e,>%(e,”* e ') (a+b)w

= Z Jn(aw + bw, x)e"™
n

1 is_,—is 1c,is_,—is
e%(e e )aw*e%(e e "bw
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and
o
Jplaw + bw, x) = Z Jm(aw, %)% Jy—m(bw).

m=—0o0

If a®> + b2 = 1, then

eé(e”—e*”)aw*eé(e”+e*”)bw — e*%((a+ib)e”—(a—ib)e*”)w
= Jn(w. %) (a+ib)"e""
n

and

oo

o0
Z Ji(aw, x)e'*s « Z i (bw, x)e'ts = ZJn(w, %)(a +ib)"e™s.
n

k=—o00 {=—00

The generating function of the Legendre polynomials Py, (z) is

1 o0
—_— = Z Py(2)t", for small |z|.

V1=2tz 412 n=0
1 d”
2np! dzn

1 L )
J1-2t(z +a) + 12 Xn: il dan G HO™=D

is viewed as the Taylor expansion of the left-hand side. Using the Laplace
transform, we rewrite the left-hand side, and we see

It is known that Py (z) = (z2—1)". Hence

1 1 * —s(1—2t(z+a)+t2)d i Pu(z + )t"
= — —e NS Z+ajr”.
VI=2tz+ay+12 Jmlo /s !

This implies also that

n=0

da" 1 Sy 1 e—s(1—2t(z+a)+t2) ds — i n

dinli=oyz Jo s 2n dan
Replacing the exponential function in the integrand by the *x-exponential
function, we define *-Legendre polynomial by

((z +a)®=1)". (2-10)

1 [ 1 —s(1-2t(w+a)+1%) Z Po(w +a, #)1"
—e S = w a, x .
v o s F ot "

— — 2 2.2 _ _ 2
As e sU2twra)+1%).  — p7s717 p=s(1-20(w+a)+17) e assume that Re 7 < 0

so that the integral converges. Setting P,(w 4+ a, 1) = : Py,(w + a, *):¢, we have
1 *1

o0
ﬁ ﬁersztze—s(l—Zt(w-i-a)-i-tz) ds = Z Pn (w +a, T)Zn.
0

n=0
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As the variable z is used formally in (2-10), the same formula as in (2-10) holds
for x-exponential functions; i.e.,

d"
din

oS (=2 (wta) %) o 1 d"

to\/_ f 2ndn

By means of this trick we see that

(w+a);=D).

e-SU=2t(wHa)+1%) g0 _ Z Pu(w + a, *)t"

n=0
o)

7 h 5

=i,

Generating functions for Bernoulli numbers, Euler numbers and Laguerre
polynomials will be mentioned in later sections, for there are some other problems
for the treatment.

Jacobi’s theta functions, and imaginary transformations. For arbitrary a € C,
consider the *-exponential function e/ *9)_ Since :e!W+a): = ¢3! *etwta)
we see, by supposing Re t < 0, that this is rapidly decreasing on R. Hence both

o0

/oo t(w+a) . dt and Z 5€Z(w+a)21
—o00

n=—00

converge absolutely on every compact domain in w to give entire functions of w.

In this section, we treat first a special case 6(w, *) = Y, ¢2"¥ under the
condition Re 7 > 0. If we set ¢ = e~ 7, the t-expression 6(w, 7) = :6(w, *):¢ is
givenby (w, 1) =),z g™ e This is Jacobi’s elliptic §-function 63 (w, ).
Furthermore, Jacobi’s elliptic theta functions 6;,i = 1 ~ 4 are t-expressions of
bilateral geometric series of x-exponential functions as follows (cf. [Andrews
et al. 1999]):

- . 00 ‘
01 (w, *) =— Z (—1)n€§<2"+1)lw, Or(w, *) = Z ef”"'l)’w,
! n=—c0 n=—00
00 . (2-11)
O3(w, %) = Y "™, Oa(w, %) = Y (=1)"ex"™.
n=-00 n=—o0

This was fact mentioned in [Omori 2007], but no further investigation of this
fact has been made.

The exponential law e4¥ 15 = ¢9%eS for s € C gives that the 0;(w, *) are
2y -periodic. (Precisely, 81 (w, x) and 6, (w, *) are alternating s-periodic, while
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03 (w, *) and 04(w, *) are w-periodic.) Furthermore the exponential law (2-7)
gives the trivial identities

e2Wx0;(w, %) = O;(w, %), (i =2,3),

eiiw*Gi(w, x)=—0;i(w,*), ((=14).

For every 7 such that Re 7 > 0, 7-expressions of these are given by using
:e2iW: = ¢7Te2W and (2-8) as follows:
AT (w+it, T) = 6;(w, ), i=2,3), .

. (2-12)
AT (w+it, 1) =—0i(w, 1), (i=1,4).

0; (w; =) is a parallel section defined on the open right half-plane, but the ex-
pression parameter 7 turns out to give the quasi-periodicity with the exponential
factor 2% 7,

Noting that (e2/* —1)%03(w, ) = 0 in the computation of *,-product, we
have

Proposition 2.4. If ' € Hol(C) satisfies f(w + ) = f(w) and
:(eiiw—l):t*,f =0,
then f =c:03(w, *):y, c¢€C.

Proof. By periodicity, the Fourier expansion theorem gives

f(w) — ZaneZinw’

but by the formula of x-exponential functions, this is rewritten as

f(w) = :che:i”w:,.
This gives the result, for the second identity implies ¢,+1 = ¢x. O

Two different inverses of an element and *-delta functions. The convergence
of bilateral geometric series for a x-exponential functions is responsible for
somewhat strange features. If Re T > 0, the t-expressions of Y oo, e2"®
and — Zn:—oo e2™W both converge in Hol(C) to give inverses of the element
:(1—e2™™):, and 63 (w, ) is the difference of these inverses. We denote these
inverses by using short notations:

o0

o0
(1—e2)ih =3 e, (1—e2imyl= =" eg2miv,
=

n=

(1 —21w) Z e—me
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Apparently, this breaks associativity:
((=e3™)sp s (1—eg™)) e (1—e5™), 1

£ (1—e2™) ;b xe ((1—e2 ™) (1—e2™); ).

Similarly, 84 (w, *) is the difference of two inverses of 1 + eﬁi w,

o0 o0
(I+ed™)eh =) (=D"e"™, (1 +el) L == (=1)e 2.
Note also that
2eiWy Z(—l)"eii”w and 2e; %x Z(—l)”e;%”w

n=0 n=0

are both x-inverses of %(eiw + e;"™). We denote them by
(cosx w);lr and (cosx w);i.
Then, we see that
2061 (w, *) = (cosx w);lr — (cosx w), 1.

Every 6;(w, ) is written as a difference of two different inverses.
Next, we note the similar phenomenon as above for the generator of the
algebra:

Proposition 2.5. IfRe >0, then for every a € C, the integrals

0 . w .
i/ elt@tw). gy, —i/ elt@tw). gy

—00 0
converge in Hol(C) to give inverses of a + w.
Denote these inverses by

0 .
(a+w)piie = i/ elt@tw). gy,
—00

o0
(a4 w)ly = —i/ eft@rw). gr Ret>0.
0
The difference of these two inverses is given by

oo
(@+wil—(@a+w)il=i / elt@tw) gy Re 7> 0. (2-13)
—o0
The right-hand side may be viewed as a §-function in the world of *-functions.
We set
1 [ ;
8x(a+w) = 2—/ eit@tw) gy Re 1> 0, (2-14)
i

—0o0



180 HIDEKI OMORI, YOSHIAKI MAEDA, NAOYA MIYAZAKI AND AKIRA YOSHIOKA

and call (2-14) the *-§ function. We see easily that (¢ + w)*d«(a + w) = 0.
Note that (a + u));j_ ~+cié«(a+ w) gives the inverse of @ + w for any constant c.

In the ordinary calculus, ffzo e'1@+x) gt — 27§(a + x) is not a function
but a distribution. By contrast, in the world of *-functions, the t-expression
bx(a + w):r of §x(a + w) is an entire function:

L[ 1.
Bx(a+w)y = — o W17 pit(atw) g
27 J—so
1
= —e_%(a+w)2, Ret>0,acC. (2-15)

JT

Jacobi’s imaginary transformations. By (2-15), we see that the series
B (w, ) = ;(—1)"5*(11) + 5 +mn). Gaw.x) = ;(—1)”5*@ +mn),

é3(w,*)=2n:8*(w+nn), 0~4(w,*)=2n:8*<w+%+nn),

converge in the t-expression for Re t > 0. These may be viewed as r-periodic
or m-alternating periodic *-delta functions on R. As 27" = |, we have the
identities

iV xbi(w, ¥ = i(w. ) (1 =2.3),

eiiw*éi(w, x) = —0;(w, %) (i =1,4).
By a slight modification of Proposition 2.4, we have 6; (w, *) = «; éi(w, *),

a; € C. Note that «; does not depend on the expression parameter t. Taking the

T-expressions of both sides at T = 7 and setting w = 0, we have o; = %

Proposition 2.6. We have 0;(w, *) = %5,-(w, x) for i =1 ~ 4. The Jacobi
imaginary transformation is given by taking the t-expression of these identities.

This may be proved directly as follows. Since f(t) =), e2n+niw jq o
periodic function of period 1, the Fourier expansion formula gives

1 . .
f(l) — Z[) f(s)e—anms dseZﬂlmt

and
1
O5(w, %) = f(0) = Z/O (Z ei(”+s)lw)e—2mms ds.
m n

Since ¢~ 27ims — p=2xim(s+n) ye have
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1
f(O) — Z/O Zei(n-i-s)lwe—z(n-i-s)mm ds
m n

o0
; 1
:Z/ eist(w—i—nm) ds = 525*(w+nm).
m Y~ m

Hence (2-15) gives

2w T _1 2
O3(w, 1) = 7:25*(111 +mn)i = ,/? Ze v (wtmn)
n n
T _1y2 —m2n2t 1 2gnt 1w
=,/—e 7 e
Ve

2
b4 W T
= [Eem vy, (__) (2-16)
T it T
This is a remarkable explicit relation between two different expressions (view-
points).
In particular, Jacobi’s theta relation is obtained by setting w = 0 in (2-16):

2
05(0,7) = \/§93 (o, ”7) (2-17)

This will be used to obtain the functional identities of the *-zeta function in a
forthcoming paper.

Calculus of inverses. We first note that the method of constant variation creates
many inverses of a single element. By the product formula (a + w)*, a € C, is
viewed as a linear operator of Hol(C) into itself. If T # 0,

(@+w)*; f(w) =0

gives a differential equation (@ + w) f(w) + 50w f(w) = 0. Solving this, we
have
_L(‘H_w)z N —L(a—f—w)z _
(a+w)*;Ce™ 7 =Ce™ = *7(a+w) =0.

The method of constant variation gives a function g,(w) such that
(a+w)xcgq(w) = ga(w)*(a +w) = 1.
Thus, we have

1
ga(w) = %/ et (@rwn?=@tw?y, g o Ce_%(‘”rw)z, T#0. (2-18)
T Jo

This breaks associativity:

(6_%(""—"’)2*1(& + w)) *r ga(w) # e—%(a-i—w)z*l_((a +w) *z ga(w)).
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If b + w has also two different *x-inverses, then by providing a # b, the four
elements
1 _ -
(et w)is -G +w)l)
(with independent + signs) give respectively x-inverses of (a + w)*(b + w).
Thus, we define *-inverses with independent £-sign by

_ _ 1 _ _
(@a+w)tx(b+w)3' = ﬁ((a+w)*i—(b+w)*i)- (2-19)
Direct computation of the x-product shows that, for any a,b € C, a # b,
((@+w)pi—@+w)")«((b+w)yp—(b +w)yl) =0

Half-series algebra. 1t is well known that if a formal power series satisfies
Y o2 o anz"™ = 0, then a, = 0. This is proved by setting z = 0 to get ag = 0,
and then taking d;|,—¢ to get @; = 0 and so on. Hence this method cannot be
applied to formal power series Y o0 o a,e¥.

We suppose Re t > 0 throughout this subsection. A formal power series
263" anz", L € 7, is called convergent if Y00 o a,z" has a positive radius
of convergence. Proposition 2.2 shows that for a convergent power series of this
form,

oo
f(w) = :eti™« Z aned’™

n=0

is an entire function of w. Hence if f(w) = 0, then Proposition 2.1 gives

00

niw. __
Zane* =0,
n=0

and a¢ = 0 by taking w — ioco. Thus the repeated use of Proposition 2.1 shows
all the a, vanish.

The product of two convergent power series is a convergent power series. If
Zt ZZO=0 anz™ (L €Z)is aconvergent power series, its inverse (zg Z:io anz" )_1
obtained by the method of indeterminate constants is also a convergent power
series. We denote by $ the space of power series :e5/% % 3% a,e™:; made
by convergent power series 7t 322 o anz". We call §4 the half-series algebra.

Its fundamental property is this:

Theorem 2.2. (4, *;) is a topological field of periodic entire functions of w
of period 2.
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Proof. The proof is completed by showing the uniqueness of the inverse. It is
reduced to showing that

o0 o

niw. kiw., _
E aney, -r*rE bre'":: =0,
n=0 k=0

and ag # 0 gives Y po g bke’,fi W:2 = 0. The repeated use of Proposition 2.1 gives
all b, = 0. O

Euler numbers. Recall the generating function of Euler numbers,
2 e? e % >

1
= + = Ery——2z", |z < 7.
eZ+eZ  1+4e22  1+e22 Z 2n (2n)! g

n=0

The left-hand side is a convergent power series obtained by the method of
indeterminate constants. Hence Proposition 2.2 gives

el iw —el¥ _ iw
ey *(1+ E 2%ey k!) +e, *(1+ E (—2)%ey k!)

k=0 k=0

- Z Eop (2n)'ei’”w, (2-20)
n=0 ’

where
oo L
:I:eiw _ (:I:l) Liw
€x = E i ey .
=0

On the other hand, by using the formal power series of (iw)”, we can compute

the inverses
[e’9) . kn—1 [e9) . kn—1
(2lw)* (—le)*
(”Z K ) | (”Z a )

k=0 k=0

by the method of indeterminate constants. Hence we have also

. ad 1\ ! . ad 1
e;w*(l +> (Ziw)lia) +e;’w*(1 + Z(—2iw)’,ﬁﬁ)
k=0 k=0

-1

e} 1 ' .
= ;Ezn@(lwﬁ . (-21)

It is clear that the replacement (i w)]; by efi W gives (2-20). It is interesting to
compare the left-hand side with e£* (1 + e2'V) 1 + e "Wk (1 + e 2'W) 1. We
are naturally led to the following:
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Conjecture. By using another expression parameter 7’ such that Re t’ > 0 and

: j 2iwy—1 —i —2iwy—1 ;
Re(t—1') > 0, the 7’-expression of e} (1 4 e;'™) L +e (1 +e ™) is
an entire function of w. Denote this by

o0
e (143t + e sl + e biw = D a(r, T):(w) e,
n=0
and regard the right side as a t’-expression of the *-function ) _,, a»,(z, 7/)(i w)2",
Then, the replacement (i w)2" by 2" gives
> 1
. nyniw. . 2mw
.Zn:an(f,f)e* = ZEz,, ) e; "Wy,

n=0

Bernoulli numbers. Recall here the generating function of Bernoulli numbers:

1 1 z/ 1 1 as 1
_ — _ — B - 211‘
Z(z+e2—1) 2(e2—1 e—Z—l) ZO 2 oy~

n=

One computes - ZZ I and e__zZ ] by the method of indeterminate constants as

2\ 1, 1
(;(nm!) =2 By 5

1

(=2 \ L
(Z(n+1)') =2 B 4 57

as in (2-20), the right-hand side is a convergent power series. Hence we have

—1 [ee)
mw ’“w ! 2nlw
(Z (n + 1)') (Z (I’l + 1)') - HX: BZn (2 )' . (2—22)

On the other hand, we have for every t’ a formal power series

| Gwy" \7' 1 (—iw)" B (iw)2F
E(Xn:(n+1)!) +§(Xn:(n+1)!) ‘ Z 2k gy T

where both sides are computed as formal power series of (i w). It is clear that
the replacement (iw)2* by e2¥1% in the right-hand side gives

( 2kiw)

o0
> By
2k~

k=0

Hence, we have the same conjecture for

LA (A DR s D B



DEFORMATION OF EXPRESSIONS FOR ELEMENTS OF AN ALGEBRA 185

3. Srar-functions made by tempered distributions
Throughout this section, we assume Re 7 > 0. Note that

1 e—%(x—w)2
T

Sx(x—w):; =

is rapidly decreasing. Suppose f(x) has ¢*!* growth on R with 0 < & < 2. Then
the integral [ f(x):8«(x—w):¢dx is well-defined to give an entire function with
respect to w.

The next theorem is a key tool in extending the class of *-functions via the
Fourier transform:

Theorem 3.1. For every tempered distribution f(x), the t-expression of

foo F(x)6(x—w) dx

is an entire function of w whenever Re t>0. In particular,

Sx(a—w) = /oo S(x—a)ds(x—w) dx.

—0

Although the product 84 (x—w)*d8«(x—w) diverges, the next one is important:
Sx(x—w)*85 (x'—w) = 8(x — x")8u(x'—w) (3-1)

in the sense of distributions. This is proved directly as follows:

1\2 . .
S (r—w)ss (') = (5-) // Q110w s gy g1

— (%)2 // eitx-i—isx’e;i(t-i-s)w dt ds
T
1\2 L, :

— (2_> // els(x —x)e;a(x—w) ds do
T

= §(x'—x)8% (x—w).
For every tempered distribution f(x), we define a x-function fix(w) by

fu(w) = /_ f(w)é*(x—w)dx=\/;2—n /_ FOe™d. ()

where f (¢) is the inverse Fourier transform of f(x). Since f(x) is a tempered
distribution, one may write

/f(x):(S*(x—w):r dx = % // F(x)e!™ e 1Y dt dx

under the existence of a rapidly decreasing function :e,*/¥:; in the integrand.
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By the definition of the Fourier transform of tempered distributions, one may
exchange the order of integration. Letting f(¢) be the inverse Fourier transform
of f(x), we have

1 - —itw. . . _
./Rf(x)é*(x—w) dx:; = \/T_n /R S(@):e " Vipdt = fu(w)ir. (3-3)

If another *-function is given by g«(w) = [ g(x)8+(x—w) dx, we define
their product by

Je(w)kgx(w) =/_ S (w)g(w)d«(x—w) dx

1 v )
:E/(ﬁ/f(t—a)gf(a)da)e;”w dt, (3-4)

if f(x)g(x) is defined as a tempered distribution or the convolution product
f gt = (1/«/_)f f(t 0)g(0)do is defined as a tempered distribution.
Hence (3-4) may be viewed as an integral representation of the intertwiner
I5(f(x)) = f«(w). If f(x) is a slowly increasing function (a function with a
value at each point x € R and a tempered distribution), applying (3-4) to the case
g« (w) = 84 (a—w) gives

fr(w) * 8 (a—w) = /f(x)S(a—x)S*(x—w) dx = f(a)d«(a—w). (3-5)

Applications. The function 1/(a—w), for a € R, is slowly increasing. Recalling
our assumption that Re 7 > 0, it is not hard to verify that

/ 1 {(a—w);lL ifIm a <0,
a_

(a—w)y! ifIma>0.
o0 —&
Yi(w) = lim/ Sx(x—w)dx, Yi(—w)= lim/ Sx(x—w) dx.
€0 Jg el0 J 0o

Define

It is clear that
o0 o0
Jw lim/ Sx(x—w)dx = —lim/ 0x0x(x—w) dx = §x(—w) = 8« (w).
E»LO & 8»1/0 &
Using (3-1) we have
Ye(w) + Y (—w) = / Sx(x—w)dx =1
R

and Yy (w)*Ys(w) = Y (w), Ye(w)*Yy(—w) = 0.
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Defining
sgn, (w) = Ye(w)—Ys(-w),

we have sgn, (w)* sgn, (w) = Ye(w) + Y (—w) =1, sgn, (w) +sgn, (—w) =0.
Since 84 (z—w) is holomorphic in z, the Cauchy integral theorem implies that
every contour integral vanishes; but we see easily that, for every simple closed
curve C,
1

1
/ —8x(z—w)dz = 6«(w), Ret >0.
2ni Jo z

Note that v.p. 1/x and Pf. x™™, for m € N, are tempered distributions rather
than functions; but their Fourier transform may be viewed as slowly increasing
functions. Hence we see that

—1 T . 1 _ —

Pf./ XMy (x—w) dx = —l/ (—i )" sgn(r)e; ™ di
R 2 R (m—l)‘

= (D" I +w™).

1
V.p./ —bx(x—w)dx =
R X

Periodical distributions. A tempered distribution f(x) is said to be 27 -periodic
if it satisfies f(x + 27w) = f(x). For every distribution f(x) with compact
support, the infinite sum ), f(x +2mn) is a 2r-periodic tempered distribution.
The fundamental relation between 27 -periodic tempered distributions and Fourier
series is

Z Sx(a+2mn+w) = Z eintatw) (3-6)
n n

A continuous function f(x) on [—, 7r] extends to a (not continuous) 27 -periodic
function f7 (x) to give a 2m-periodic tempered distribution, where

]FH(X) — % ;(/_nf(s)e—ins ds)einx — ;aneinx'
Hence

Fosw) = [ Fa)balxmw) dx = Y aneir™. G-7)

4. Star-exponential function of w2

As we have seen, the x-exponential function eih*(w) is well-behaved if the order
of h(w) is less than 2. In this section, we treat the x-exponential function of

—tx?

quadratic form w2. As e is a slowly increasing function of x for Re # > 0, the

. —x2 . 2 .
integral fR e X7 5 (x—w) dx defines a semigroup e "** under the expression
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parameter Re 7 > 0. Noting that :w2:; = w? + t/2 in the t-expression, we now
define the star-exponential function of w2 by the real analytic solution of the
evolution equation

d :
Eﬁ::wﬁzr*rf,, fo=1, (4-1)

or explicitly
d 72
Eft:I ,”+twf/+(w2+%)f,, f():l.

To solve this, we set : fy:; = g(r)eht w? by taking the uniqueness of real analytic
solution in mind. Then, we have a system of ordinary differential equations:

dh(t)/dt = (1 + th(t))?, h(0) =0,
dg(1)/dt = 3(T*h(t) + )g (1), g(0) = 1.

The solution :eiw% .z is given by
1
:efkwi:r = 1 eﬁwz, whenever T # 1, 1t # 1 (double-valued). (4-2)
—Tt

It is rather surprising that the solution has a branching singular point, and hence
this does not form a complex one parameter group whenever t # 0 is fixed.
Moreover, the solution is double-valued with respect to the variable ¢. This
solution is obtained also via the intertwiner [ g e'W? of (4-4). Here that there is

. e . 2
no restriction on 7: one obtains e+ for every 7.

Generating function of Laguerre polynomials. L,(,a)(x) is given as follows:

1 _t
(et T = L L (<)
n=0
Ifo= —%, this is the 7 = —1 expression of e;twi, that is,
:e;twi:_l _ 1 le—ﬁwz _ ZLIS_I/Z)(wZ)tn~
(1-1)2 n=0

Using these, we define the *-Laguerre polynomials L, (w?, 7) = :L,(w?, %)z

2 _ 1
elWs = Z Lﬁ, 1/2)(u)2, *)at”,
n

d”l
T

4-3
. (4-3)

=0 (l—l‘[)%

_ 1 .2 1.2
er(l—tr)w e ,[w .

LEYD w2, 1)
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As t = 0 is a regular point, this is well defined, and the exponential law gives

Lg—l/z)(wz’*) _ Z Ll(c—l/z)(wz’*)*Lg—l/z)(wz’*)_

k+€l=n
Setti 2 h d x=7 Q=m0 d 1 x? ﬁU'
etting x =w~,wehave ————e¢*V11) =m — — —— ¢ i~ . usin
g di (1—17)® dx © (I—t7)+1 g

this, we see that
da" 1
dr"|,—o (1-t1)2

12 1.2 o d" 1 1 1 _1
eta— W e TW =(T nd n(x2+”efx))x 2¢7 7",
X

It follows that setting x = w?

1 da"
Lg—l/Z)(x’ 7) = _'(_L,—n
n:

dxn

(xiJr”eix))x_ie_lx.

As in the case of Hermite polynomials, this formula is used to obtain the
orthogonality of {Lf,_l/ 2 (x, )} by restricting x to the real axis and supposing
Re r < 0. Namely, we want to show

/ x%e%xL,(,_l/z)(x, r)L,(n_l/z)(x, 1) dx = bpm-
R
First note that L, (x, 7) is a polynomial of degree n, and
/ x%e%xL,(z_l/z)(x, r)L,(n_l/Z)(x, 7)dx
R

n
:/ ! 1(d xi"'”eix)Lﬁn_l/z)(x,r)dx.
R

!\ dx"
If n # m, one may suppose n > m. Hence this vanishes by integration by parts
n times.
For the case n = m, recalling that Lfl_l/ 2 (x, ) is a polynomial of degree n,
and applying d”/dx" to both sides of the second equality in (4-3), we have

—dn L&1/2) — i_dn d” —1 =X
d n n (X, ‘L')— 'd" d n le T
X niat” | =odx" (1—t1)2
1 d" 1" ‘
= nldm el
n. t=0(1—tt)2™"

But the last term does not contain x, for it must be of degree 0. Hence

dan 1 d"
2 7 (=1/2) _
dxm Ly (x,7) = n! di"

tn
1
t=0(1—t7)2 ™"
. 2 2 .
In spite of double-valued nature of ef**, one can treat :e}%*:; as a continuous
function on any continuous curve C that does not hit singular points. In particular,

=1.
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2
/ et W dt
c

without ambiguity. The uniqueness of real analytic solutions gives the exponential
2 2 2
law eiw* *eiw* = eis+t)w*:

one can treat the integral

52 1 L2 1 st 0
el—rsw *r el—rtw = —elfr(ert)w .

l—ts V1—tt Vi—t(s+1)

Indeed this holds through calculations such as

Vavb = ab, Ja/Ja=~1=+1.

i s+tw%

Similarly, we have the exponential law es*eiw = ey with an ordinary

scalar exponential function e*.

Intertwiners are 2-to-2 mappings. Recall that the intertwiner /7 " is defined by

1 _ 2 . . . .
ea(=0%  For the case of exponential functions of quadratic forms, this is
treated by solving the evolution equation

d 2
o = 0y f(w),  fo(w) =ce™".
Setting f; = g(t)e9®®? | this equation is changed into

dq(t)/dt =4q(t)*  q(0) =a,
dg(n)/dt =2g(t)q(t) g(0)=c.

. . 2 c —a__ 2 . . 1,7
Solving this we get g (¢)e?®®” = eT=ara", Pluggingin ¢ = z(z'—1),
we obtain V1—dta

c 2

’ 2 —a __w
I.;.[ (Ceaw )= el-G@'—va™ |

VI—('—1)a

To reveal its double-valued nature, we rewrite this equality as

’ C t 2 C t 2
It ( eT—r ¥ ) = eT—T W~ (4-4)
f\ V1=t 1—1't
Since the branching singular point of the double-valued parallel section of the
source space moves by the intertwiners, 1 f/ must be viewed as a 2-to-2 mapping.
To describe (4-4) more clearly, we take two sheets with slit from 771 to oo,
and denote points by (¢; +); or (;—)¢. [ t’/ has the property that

I7((t: %)) = (5 £)o
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as a set-to-set mapping, and one may define this locally as a 1-to-1 mapping.
Note that

5IE I (1, £)0) = (1, £)e,

but this is neither the identity nor —1. This depends on ¢ discontinuously.

On the other hand, we want to retain the feature of being a complex one-
parameter group. For that purpose, we have to set

:.92“’%:r =1

as the multiplicative unit for every expression. The problem is caused by another
sheet, for we have to distinguish 1 and —1.

It is important to recognize that there is no effective theory to understand such
a vague system. This is something like an “air pocket” of the theory of point-set
topology. As it will be seen in the next section, this system forms an object
which may be viewed as a “double covering group” of C. This is absurd since C
is simply connected!

5. Extended notions for group-like objects

Recall that :efkwi :z does not form a group. However, using various expression
parameters t # 0, eiwi behaves like a group. To handle the group-like nature
of the one-parameter family of x-exponential function efkwi , we introduce the
notion of a blurred covering group of a topological group by using the notion
of local groups. Thus, {eiwi;l € C} is viewed as a blurred covering group of
the abelian group {e’ w? e C}. We need such a strange notion to understand
the strange behavior of *x-exponential functions for quadratic forms of several
variables.

In spite of Lie’s third theorem, which asserts that every finite-dimensional Lie
algebra is the Lie algebra of a Lie group, we see in this section that the notion
of local Lie groups is much wider than that of Lie groups, since it has to treat

singular points.

A topological local group with unit. Recall that :eiwz:t is defined for ¢ in

C\{1/7}. Abstracting the property of an open connected neighborhood D of the
identity e of a topological group leads to this:

Definition 5.1. A topological space D is called a topological local group with
identity e if the following conditions are satisfied:

(a) For every g € D, there are neighborhoods U of g and V of e such that both
gh and hg are defined continuously for every ge U, he V.

(b) g~ ! is defined on an open dense subset of D and it is continuous.



192 HIDEKI OMORI, YOSHIAKI MAEDA, NAOYA MIYAZAKI AND AKIRA YOSHIOKA
(c) Associativity holds whenever both sides are defined.

A blurred covering group of a topological group. Let G be a locally simply
arcwise connected topological group and let {Oy; o € I} be an open covering
of G. It may be helpful to keep in mind the correspondence

1 ~
G-C, oo —, @aeﬁ\{%}, I < 75, Ge{efkw%}
T

in order to understand the following abstract conditions:

(a) Forevery o € I, Oy contains the identity e. We call Oy an abstract expression
space, and o an expression parameter.

(b) For every a € I, O, is open, dense and connected, but it may not be simply
connected.

(c) Forevery a, B € I, there is a homeomorphism (;55 :Oq — Og.

(d) For every g,h € G, there is @ € I and continuous path g(¢), h(?) € G,
t €10, 1], such that

g)=hO)=e, g()=gh(l)=h and g@).h(),g(t)h(r)
are in Oy, for every ¢ € [0, 1].

An open covering {Oy; @ € I} is called a natural covering of G if it satisfies
(a)—(d). Condition (c) shows that there is an abstract topological space X homeo-
morphic to every O,. We consider a connected covering space 7 : X — X. This
is same to say we consider a connected covering my : @x — Og for each «. It
is easy see that 7, ! (e) is a group given as a quotient group of the fundamental
group of Oy. As G is locally simply connected, 7, ! (¢) forms a discrete group,
and ¢£ lifts to an isomorphism q;o'? cy(e) — Jtﬂ_l (). We denote 7, 1 () = Iy,
and the isomorphism class is denoted by I".

Choose &y € 7, ! (e) and call &, a tentative identity. For any continuous path
g(t) in Oy such that g(0) = g(1) = e, the continuous chasing among the set
71 (g (1)) starting at &, gives a group element y € I,.

By a standard argument, it is easy to make O a local group such that my is a
homomorphism: We define first that é,e, = &,. For paths g(z), h(t), g()h(?)
such that they are in Oy for every ¢ € [0, 1] and g(0) = /4(0) = e, we define the
product by a continuous chasing among the set-to-set mapping

g (gO)mg  (h(1) = 75 (g (DA (D))

We set Oqg = Oy NOg and Oyg,, = Oy N Og N0, for simplicity.
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As G is locally simply connected, the full inverse 7, ! V of a simply connected
neighborhood V' C Oy of the identity e € G is the disjoint union [ [, 17;” each
member X 3, of which is homeomorphic to V.

Moreover 7, l@aﬂ is also a local group for every B.

Isomorphisms modulo I'. For every o, 8, we define the notion of “isomorphism”
IO’? of local groups, which corresponds to the notion of intertwiners in the previous
section:

B
Oy D Hojl@a/g ﬂﬂ_l@ﬂa C Og
]Ta 7'[/3
Oq D @(xﬁ = @ﬂa C @ﬁ

such that Ig = (If )~!, but the cocycle condition 15 4 IZ; 1) = 1is not required
for Oypy .

Since the correspondence I(f does not make sense as a point-set mapping, we
should be careful about the definition.

Note that If is a collection of 1-to-1 mapping Io’? (g):7; (g) — nﬂ_l (g) for
every g € Oyg = Oy, which may not be continuous in g.

For each g there is a neighborhood V of the identity e such that Veg COyp
and the local trivialization 7, I(Vg g) = Vegxm, ~1(g). Thus I (g) extends to
the correspondence

ID(h.g):my (hg) — mg' (hg), he Vg,
which commutes with the local deck transformations.

Definition 5.2. The collectlon If ={l, 4 (g): g € Oy} is called an isomorphism
modulo I, if I"‘ (hg)] (h, g) is in the group I" for every g € Oyg and /1 € V.
(It follows the contlnulty of I (hg) with respect to A.)

The condition given by this definition means roughly that IO’? (g) has discontinuity
in g only in the group I".
= {@a, Mo, IO'?, a, p € 1} is called a blurred covering group of G if each O

is a covering local group of Oy, where {Oy; & € I} is a natural open covering of a
locally simply arcwise connected topological group G and [, are isomorphisms
modulo I".

Because of the failure of the cocycle condition, this object does neither form
a covering group, nor a topological point set. However, this object looks like a
covering group.
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For g, let I ={a € I;04 > g} be the set of expression parameters involving g.
For every a € I(g, h, gh) = Ig N I, N Iy, we easily see that ;W (g)m,  (h) =
Ty, I(gh). In general, this is viewed as set-to-set correspondence, but if g or / is
in a small neighborhood of the identity, we can make these correspondence a
genuine point-set mapping. Hence, we have the notion of indefinite small action
or infinitesimal left/right action of small elements to the object. This corresponds
to the infinitesimal action w2 or *w? in the previous section.

Next, we choose an element & € 7, ! (¢), and call it a local identity. We call
Ty L(e) the set of local identities of G. The failure of the cocycle condition gives
that My e, may not be a single point set, but forms a discrete abelian group.
Hence an identity of our object is always a local identity.

Since G is locally simply connected, there is an open simply connected
nelghborhood Vg of e contained in Og. Hence, there is the unique lift VB through
eg. Setting V,gy = VB N V,, and so on, we see easily that / y(Vﬁy) =V,8.

The {5y € Oy; € I} may be viewed as an element of GifIbg 8o = g8
but this is not a single point set by the same reason. In spite of this, one can
distinguish individual points within a small local area.

The x-exponential function eiwi may be viewed as a blurred covering group
of C by treating this as a family {:eiwi :r; T}, where the feature of complex one
parameter group is retained.

Several remarks for the equation (w2—a*)x f = 0. If f satisfies w2 f =
a® f, then e’ a? £ is the real analytic solution of the evolution equation

d
i) = wi fyw),
t
with the initial value f. Hence, one may write efkwi xf =e' a? f by defining the
*-product by this way. Next one gives a justification:

Proposition 5.1. [fRe t > 0, then :ei’”i*(?*(w + «):¢ is holomorphic int € C.
That is,

{:eiwi:f;t eC}
acts on 8x(w + «):¢ as a genuine one parameter group. That is,
103 kS (w + a)ir = €'Y i8 (W + a):r
(See (3-3).)
Proof. Since f(w)*.e®™ = f(w + at/2)e?™, we see

2 1 _t 2 _io iry— T g2
:eiw >]< elU(w-l-Ot) — —el—trw +1—trw+loa 4(1—tt)0 .

1—tt
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If Re 7 > 0 and ¢ # 7!, the integral

2 .
/ el W :T*,:eﬁf(w“‘):f do
R

1 2i
| eﬁnwz—m—zr)(w”(l—”»Z/e—ulim(U—f’(wﬂ(l—”))zd(;

V1 —tt R

converges. A calculation similar to that leading to (2-15) gives

c 2w
/Rexp(—4(l_”) (a— ?(w +a(l —tr))z))da = T

Note that = t~! is a removable singularity in this integral. Hence,

w2,

1
el F kb (w o) = 7eazzte—f(w—i-oz)z

1
= et“2:8*(w +a) = e’(_“)Z:S*(—a—w):f. O

Note. This exemplified the fact that even though the family {efkwi, t € C} does
not form a group, it can act as a genuine one-parameter group on some restricted
family. This gives also an example that the formula eiw% = [e'* 25*()c—w) dx
does not extend for ¢ € C.

The equation (> —w?2)* f = 0 can be solved by the Fourier transform. Namely,
by setting f = fo(w) = [ fo(¢)el!¥ dt, the equation is changed into

/]’;(z)(az—wi)*ei’w dt = /f;,(z)(oz2 + j—;eitw) dt = 0.
Integration by parts gives
fult) =ae'® +be @' 4 b eC.
Hence we have

fu(w) = / (ae'® + be™*) W dr b eC.

If Re ©>0, the right-hand side makes sense for any o € C. This is equivalent to
giving the solution as

Ja(w) = ads(w + o) + bés (w—a).

By (2-15), the t-expression of f, (w) is

(ae—%(w-i-ot)2 + be—%(w—a)z)‘

1
:fa(w):r = «/ﬁ
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Thus, the equation (¢?—w2)* f = 0 is solved uniquely by the boundary data
f«(0) and f2(0). Let ®4(w, 7), Wo(w, ) be the solutions of (¢2—w2)*f =0
such that

e (0,7) =1, ®,(0,7) =0, Wyu(0,7)=0, W, (0,7)=1.

As these are linear combinations of x-delta functions, Proposition 5.1 shows that
eiwi*éa(w, %), eiwi*\ll(x(w, x) are defined without singularity. This shows
that the singular point of the differential equation df; /dt = (w? + t/2)*¢ f;
depends on the initial functions. If fy = 1, the solution :efkwi:, has a singular
point at t = v~ !, but if fy = &, (w, 7) or ¥, (w, 1), there is no singular point.

On the other hand, the integral along a closed path > ei(”"'wi) dz satisfies

(v + w2)x / ei(”ﬂ”%) dz =0,
Cc2

where C? is the path turning around the same circle C twice avoiding singular

. . . 2 . .
points, so the integrand is closed on that path. As [» eZ2(vFwi) 47 is a function

of w?, we see that [, :eZ

by the value at w? = 0. Hence, we have

2 . .
v+w): gz = ad, (w, 7), the constant & being given

zZV
/C2 :ei(‘”””i):r dz = /C2 \/j__ndz ®,(w, 7). (5-1)
e(r_1+s2)v )

Computing the Laurent expansion of
see that

at s = 0 and setting z = s° we

s/—1

eZV
/ dz =0,
c2 A 1—zt

the secondary residue a_, does not appear in the Laurent series. Hence, we have
the following extraordinary property:

Proposition 5.2. / ei(”’Lwi) dz =0 for any closed path C?.
C2

Besides integrals along closed paths, the integral along a noncompact path I",

2 ez" z 2
/:ei(”+w*):rdz:/ et dz,
r r V1—zt

converges if I is suitably chosen under Re v > 0. By the continuity of (v +w?2)x,
the integral must satisfy

(v +w?) */ ei(”er%) dz = / iei(‘ﬂrwi) dz =0.
T T dz

This integral has a remarkable feature: it is given as the difference of two
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inverses of v + w2. Specifically, let I'y. be different paths from —oo to 0 such
that ' = 'y \ ['_. Then,

0 0
[* o [ o
Ty _

is nontrivial and satisfies the equation (v + w2)* f = 0.

Residues and Laurent series. Note that :eiwi :z has a branching singular point
at z = t~!. Let D be a small disk with center at t—!. Let s be the complex
coordinate of the double covering space D, of D\{1/t} such that z = s> + 771,
We view :eiwizt as a single-valued holomorphic function of s on the double
covering space Dy The residue at s = 0 is defined as the coefficient a_; of 1 /s
in the Laurent series expansion at the isolated singular point s = 0. We extend
the term residue to mean 0 at a regular point.

Using (4-2), we see that the 1-form

452w, _ds _15722 I 1,2
e * dS =—¢ T4s e
* ! s -t
1 1,2(1 w? w*
= e T —— ==+ —F<—|ds 5-2
-t (S 1253 21743 (5-2)
has terms only of negative odd degrees in s. The 1-form :egf_l +s)wg :z ds may
be written as
w2 dz
eg x

Tz 1
by setting a suitable slit. The Cauchy’s integral theorem gives that the residue is
given by

1 _
Resz=t—1 (:eiwi:t) — % 5 :egf 1-{-52)10%:1_ dS
— 1 e_%sz le_szer w? ds
N 2ri J& s
1
— e, (5-3)

V=T
where C corresponds to C2, the path turning around the same circle C = 9D
twice so that the integrand is closed. As there are only two singular points, s = 0
and s = oo, one does not need to take the radius of C small, but one may set

|s| = 1. It is very suggestive to compare the residue formula with the (2-15). If

Re 7t > 0, then
1
et = V=m8e(w)ig.

D
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Note also that the integral obtaining the residue may be replaced as follows by
taking the & sheet and the slit in mind:

1 2 dz
R Y z(v+wi): — . z(v+w*):
€S;—=1 1(6* 7) _2]”. o2 €y 1——2 ’—Z—-L——l
1 vd
=— / e (5-4)
2ni Jc NVz—t~l

where C? means the union C4 and C_ of C viewed as a curve in %-sheets.
Note that the £=-sign changes on =+ sheets. The existence of the slit keeps the
integrand single-valued, and dz is treated as —dz in the negative sheet. Hence
dz/~z—t~! does not change sign on the opposite sheet.

Discontinuity of Laurent coefficients. Recall that

. (T_l+52)(v+w£): T_IV 1 —%wZI Vs _5%7 (5_5)

.6’* T =€ ﬁ B

2 1
. . V§ST—— =W
We can write the Laurent series for %e 2527 ag

C_ V, T, W c_1(v, T
(2k+21]1( ) "'+L-FC](U,T,U))S-FC:;(V,‘E,U))SS 4,
s2k+1 <

without terms of even degree. We have cpx 41 (v, 7, w) =0atv =0 for k >0,
by (5-2). Hence the Laurent series of :eg_l"‘sz)("*'wi):t is given by
_ -1, 1 _1,2 _
Zazk_l(v,r, w)s2k=l =Y e ¥ Zczk_l(v,r, w)s2k1,

k

kez VT

_ —1442 2
g (v, T, W) = Ress=0(:s 2ke£r +s )(v+w*):t),

<

e

» —p)k 2k
a_l(v,r,w)=\/__Ie_%w Xk:%(%) ) (5-6)

Note that every a,x_1(v, T, w) can be written in the form

—1 1 1,2 _
ark—1 (v, T, w) =e’ vﬁe =¥ Pak—1(T l,wz),

for some polynomial p,j_;(z~!, w?). The following is easy to see.

Proposition 5.3. a5;_1(0,7,w) =0for 2k—1>0, and a,;_1(v,7,0) =0 for
2k—1<-2. Hence a»;_1(0,1,0)=0exceptfor k=0: a_1(0,7,0)=1//—1.

A strange fact arises by writing these as integrals:
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1 _ —1,2 2
Uojoy =— g 2ke§<r +s )(u+w*):r ds
2wi J&
= ! e_lwzez—l./ L evsz_ﬁwzds,
V-t 2mi Jg skl

where C is any simple closed curve in the covering space C\{z~!} turning
positively around t~!. By Cauchy’s theorem, it does not depend on C, hence it
may be infinitesimally small. Integration by parts gives

1 1 ., .d —1,2 2
(v 4 w2)ipkedag_y =i GES 2k laef DO+ g,

1 Can_ _
=+ 3) gy [l O g

= (k+31)azk+1. (5-7)
(If v =10, (5-2) shows that apx+q = 0 for k > 0.)
There is a strange phenomenon as follows.
Proposition 5.4. Although (5-7) implies :(v+w2):p%cazk—1 (v, T) # 0, we have

2
VT a1 (v, T) =0

for any t # 0, and this is not continuous at t = 0. Hence, differentiating by t at
t = 0 is prohibited.
Proof. Using the formula (5-3) and the exponential law, we have
:ef;("""”i):t>x<,—1 : / s_Zk:ef_l"'sz)(”"'wi) ds
2wi J&
1 —142
- /~ S—2k:eit+t 1+s’)(u+w§):r ds.
2wi J&

This is ensured since both sides satisfies the same differential equation

d I [ ok =t as? b2
Eft:(v—i—wi)*f,, fozﬁ 5S Zk:e,ff +s)(twd) ¢

The radius of C can be infinitesimally small by Cauchy’s integral theorem. Hence
if # # 0, then ¢ 4+ ! is outside the path of integration. Thus it must vanish. [J

Apparently, this is caused that C is chosen infinitesimally small. Therefore, if
C is big enough, the integral

L/ S—zk:eia+r—1+s2)(v+wi):tds
2wi J&

is defined to give a,x 1. Thus, to avoid possible confusion, it is better to fix the
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definition of the residue by
Resg—o f(s) = lim / f(s)ds, (5-8)
r—0 c(r)

where C(r) is a circle of radius r with the center at s = 0.

Though Proposition 5.4 shows that :(v +w?2):; % Res,_ 1 (:ei(”wi):t) #0
in general, the case v = 0 is rather special.

By (5-2), we see that :w2:; %, Res,_.—1 (:eiwi:r) = 0. Hence, there must be
a constant « such that

2
Res,_,—1 (:eiw*:,) = adg(w?, 1),
where « is given by the value at w? = 0. Hence, we have an equality

1

—ZT

Res,_,—1 (:eZ%% 1) = ResZ=r_1( )‘I)o(wz’ 7)

1
= ﬁ¢0(w2, 7). (5-9)

This is strange, for the right-hand side of (5-9) satisfies

1 1
Tkt ,__TCDO(u)Z,‘E): =

but Proposition 5.4 shows

2
Ltw?.
ey *

®o(w?, 1),

2 2 :
e oxe Res, 1 (105" 10) = Res,— o1 (e FW5er) = 0,

for ¢ # 0 by the computations as residues. Recall that ®g(w?, 7) is defined by
the differential equation, while Res,_ 1 (:eiwi :¢) is defined by the integral on
an infinitesimally small circuit. The equality

Res,_ -1 (:eiwi ) = \/l_cho(wz, T)
holds only on some restricted stage.

It is convenient to use the notion of formal distributions to avoid such a strange
impression. We regard Res,_,—1 :ei(wiﬂ):t as a formal distribution supported
only on the surface Sx: z = . This is the notion based on the calculations of
residues by regarding Laurent polynomials as test functions. Formal distributions
are used extensively in conformal field theory.

Covariant differentials and x-product integrals. In general, the Laurent coeffi-
. 2 2 . . .
cient asj_; of :eﬁf*’s )v+wi).  is obtained in the formula

- + a — +—1
2 2 ,
RCSS_()(:S Zkeiz s )(U+w*):r) { 2k—1 Z =T 1
0 z 75 T .
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This is a formal distribution of (z, 7) € C2. We denote this by
R —R —2k. (7 1+s>)w2. S —1
k—1(z, 1) = ess=o(s ey .T) (z—17).

If we set E(z,7)(s) = :egf"'sz)(”"'w’%):r for s # 0, and regard this a formal
distribution supported on z = !, the Laurent expansion theorem shows that

E(z. 1))=Y Ryp—1(z.0)s* 7' 0<s] < o0.
kez

Now we are interested only in the function Ry;_;(t™!, 7) restricted to the
surface Sy. The infinitesimal intertwiner is given by

Y I Y
Jm o =gt

for every Hol(C)-valued function f'(z, 7, w). We now define
V. fz.z7w)y =0, f(z, 1. w){r:z_l
1
=0:(f(z 2 w) + 50, f(E 2 w). (5-10)
z

This will be called covariant or comoving differentiation. In other words, we
define

1 e

V-1 f@ L w) =81im g(lt(t '+8) lf(r_1 +8, t,w)—f(r L 1, w)). (5-11)
-0

Noting that d; f(z, T, w) = —%raZw, we extend the notion of covariant derivative

to functions f(z, t) without w by

Vof(z.z7) =0 /(0| -1

We easily see that d,((m + k)z"’—mrkz””rk)‘T=Z_l = 0, for every pair of
integers (m, k). Hence setting fx ,(z,7) = (m + k)z"—mtkzmk  one may
treat this a parallel polynomial of degree k as V; fi (2, z=1y = 0. However,
we do not use 9, (log z—zr)}t=z,1 = 0 for log z is multivalued. Such parallel
polynomials forms a commutative algebra. We call these parallel polynomials

on z =t~ ! and denote this by P[S4].

Proposition 5.5. Any Laurent coefficient dsg—1 (v, w?)(z) of :e{T s @+wd).
satisfies the differential equation

Ve—tag—1 (v, w?)(¥) = :(v + w3)iexeani—1 (v, w?)(7). (5-12)

We insist that V_—; is the notion of comoving derivative. The equality above
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may be written as
V-1 T EDOTWD . () 2 ke IO, (£ 0) (5-13)

The equation V- F(t7!,7) = :(v + w2):;*. F(z~!, 7). Note that for every
parallel polynomial ¢(z, 7), c(r™!, 7) F(z !, r) must satisfy the original equa-
tion. Rewrite the equation

Vi Fr o) =:(v + w2 F(z 7!, 1)

by using (5-10) on the left-hand side and the product formula on the right-hand
side. Then, the highest parts cancel out and the equation becomes a differential
equation of first order:

0,-1 Fa Lo)=twi, Fe o)+ (w2 +v+ %)F(t_l, 7). (5-14)

Recalling that F(t!, 7) involves the variable (generator) w, we can solve
(5-14) by a standard manner. First set F(t™!, 1) = e_’_lsz(r_l, w). Then,
(5-14) turns out 9,—1G = Twdy G + (v + v/2)G. Thus, we have

Fz ' 1) = r—le’_l(”_wz)H(r_lw), (5-15)
using an arbitrarily holomorphic function H(z). If the initial data is given at
t=!'=1and F(1,1) = 1, then

Fz ' 1) = 1ot W) ,—(—T2w?)

Proposition 5.6. If the initial data is not singular, then there is no singular point
on the solution of

Vo1 F(r™ o) = :(v + w2 F(z 71 7).

On the other hand, there must be a holomorphic function H(z, s) on CxxCy
such that
.e(r_'+s2)(v+wi):r _ T_let_l(v_wZ)H(T_lw, 5).

Tk

. .2 (v—w? .
Putting 7! = —s2, we have 1 = ise™* =) [ (—s2w, 5), or, with z = —s2w,

1 2_. 2.2
H(z,s)=—e" 7%7% 7,
LS

and
LTS +wD). ! e%(v—wz)ie(”z_lesz w?)
Cx T ﬁ is .

This is nothing but the t-expression of e~ +s?)+w3)
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6. Isolated singular points and formal distributions

. . . 2 2 . .
In this section, we view E(z, T) = Resy—q :eZT)Wi+): g 3 formal distribu-
tion. Recall that
.e(1.'71+sz)(w,%+v).I _ Lty 1 —zw? 1 ys2- L
ey :

e
AT S

For every Laurent polynomial f(s) € C[s, s '], we set

(F(5)} = f(s):elT DIV e g, 571 |re T HsD@IHD).

Note that { f(s) + g(s)} and { f(s)g(s)} are defined in the usual manner. More-
over by definition, we have

S){g ()} ={/(s)g(s)}
Define the action of the Lie algebra of vector fields /4(s)ds, & € C[s,s™!], as
follows:
h(s)ds(f(s):elT P ) = (h(s)ds f(s)):el HIWE
+h(s)(29) £ (5):(w2 + v)xelF HWERD),

For simplicity, we denote it by

h($)ds{(f ()} = {h(s)ds ()} + :{h(5)(25) S ()} (W +v)ie.  (6-1)
For later use we denote these operations on the generators:
(" A" =" s ST = T
ST LY = {ms™ T 4 25" 2 (w2 4 V)i, (6-2)
We use the notation {s°}, but we do not use the notation {1}.
The space {C[s, s~ 1]} = Cls, s~ el D@+ is a C[s, s~ !]-module,

often called a loop algebra, on which the Lie algebra C[s, s~ 1], acts naturally
as derivations, where a derivation means that

h(s)ds(f(s){g(5)}) = (h(s)ds f(s)){g(s)} + f(s)N(s)0s{g(s5)}.

By defining [V (s), f(s)]= V(s) f(s) and [f(s), g(s)] = 0, the direct product
space {C[s, s!]} @ C[s, s~!]9; has a Lie algebra structure including {C[s, s~ ']}
as a commutative Lie ideal.

We denote by V; the vector space spanned by

Resg—o f(s)0k e D@ - ke N, £(s) € Cls,s71].

2
That is, V; = C[r, 771, v, wz]ege_T.
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We note that the essential part of residue calculus is
Resg—o(3sh(s)) =0 forall h € Vi[s,s™']. (6-3)

From a basic viewpoint of the conformal field theory, a nontrivial residue
gives a violation of the additive structure around s = 0. Namely, integration by
parts gives
Resg{(f'(s)g(s))} =

—Ress{ /()¢ ()} Ress (/(9)(29)g(s):ef I sl +v):).
Denote the second term by Ress(:{ f(5)(25)g(s)}*(w2 + v):¢), a symmetric

bilinear form. Using this bilinear form, we extend the usual commutative structure
on the space {C[s, s~!]}@®V; to a noncommutative product by defining

()} a)o(g(s)}.b) =
({f(s)+ g},
a+b—Resg—o(:{ £ (5)sg(s) (w3 + v):c) + Resg—o{ /' (5)g(s)}).

This gives a noncommutative extension of the usual additive operation. Howeyver,
we regard this as an extension of the commutative Lie algebra {C[s, s~ [}@®V;
by introducing a Lie bracket:

[({/(9)}.a), ({g()}. 0)] = (0. Ress { f(5) g (s)}— Resy{g (s) £ (5)}).
We call this a Heisenberg Lie algebra and denote it by g.

We now make its universal enveloping algebra 2(; of g, but note here that
the multiplicative structure is nothing to do with the original multiplicative
structure of C[s, s~!]. For that purpose, we extend first the vector space V; to
the commutative algebra V; generated by V.

~ v w2
Ve =[x, =1, wz]eN?e_N7.
We define next
{f(s)}e{g(s)}
= {/($)g(5)} +Ress=ot /" (5)g($)} +Resg=o (:{ f ()5 ()} (w3 +v):z),
{f ()} (g ()b (wE +v)ic)
= {f($)2(s)}x(wg 4 v)ix + Res=o (:{ /() g ()} (Wi + 1)),
(L)} (wE +v)ie) o {g(s)}
= {f($)2(s)}x(wg 4 v):x + Ress—o ({ /() () (w3 +v):2).
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Furthermore, we define

(L) 2 +v)Fi) e (Lg(s) (w2 +1)bsy)
= {f(5)g () (w2 + ) T £ Resso (£ (5)g(s) 1% (w2 + v)FTEry).

All this would yield a commutative product, but for the term Resg—of{ //(s)g(s)}
in the definition of { /(s)}*{g(s)}. We call this the Heisenberg vertex algebra
and denote it by 2(;. Note that

Aea=aeA for A€, ac 17,.

Recall the action /(s)ds{ f} = {h(s) f(s)} + {h(s)(25) f(s) (w2 + v):q.
This forms an action of the Lie algebra C[s, s~!]d;, called the Witt-Lie algebra.
That is, we have

hs(kds{f})—kds(hos{ f}) = [hds. kds[{f},
where [hds, kdg] = (hk'—kh')0;.
Next, we extend this as a derivation of ;. Namely, we define
hos({f1eig}) = (hds{f}eig} + 1/} (hdsig})
= ({hf"y + {h(2s) (w4 v)ic) o g}
+{fyo(thgy + :hQ2s) g} (ws +v)ic).

As the residues such as Resg—o{ //(s)g(s)} do not involve the variable s, it
looks at a glance that hds[{ £}, {g}] = 0, but the term (w2 + v):; can act on the
residue part. Indeed, the action hds[{ '}, {g}] is given as follows:

has({f o dgd) = ((hf"} + :{hQ2s) 1+ (wg + v):c) o (g}
+{/ e (the'y +:{h2s) g} x(wi + v):c)
= {hf'g} +Res{(hf") g} +Res:{shf' g} (w; + v):
+ :{2shfg}>x<(w,% +v):r +Res :{2shfg}>x<(w,‘2< +v)ig
+{fhg'} +Res{f'hg'} +Res {sfhg'tx(w? +v):
+ {25 hg (w2 4+ v):r +Res {25 fhg (w2 + v):q.
Hence, by using
Res{(hf") g} + Res{(hf’'g'} +Res {2shf gt (w? +v):r =0,
exchanging f and g gives

hds([{ S}, {g}]e) = Res:{25h(f'g— f&")} (w3 + v):c. (6-4)
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Note that this term arises from terms such as :{2s/hf }*(w2 + v):;: hence (6-4)
must vanish, if one can eliminate these terms by a change of generators.

Central extensions caused by singularities. To clarify, consider the generators
Xm = {s™}. The Heisenberg Lie algebra is given by

. . -1
g= {Z CnXn;Cn € C; [Xm, Xn] = m—n)amypn—1(z™ ", v, w)}
nez
where a,,45—1 (71, v, w) are Laurent coefficients. Next, we make its univer-
sal enveloping algebra 2(; by extending the vector space V; to an algebra V;

generated by
ot
T

under the ordinary commutative product. 2, is a noncommutative associative
algebra generated by infinitely many generators {x;; k € Z} together with com-
mutation relations [X,;, X,] = (m—1)am4n_1(z~!, v, w). In the case v = 0 and
w = 0, we see that

umxﬂ=2m&ﬁmﬁ;é?,amﬂﬁwf*ﬂx»=o,a_ufﬂonr=v;?
but in general x,, *x;, = X, X, + (M—N)am4n—1 (r_l, v, w).

Let E%) be the linear space spanned by Vtxnl ®Xp,® -+ ®Xp,. Itis not hard
to see that the space £ @ consisting of all quadratic forms such as ) _ ¢;nXm*xp
forms a Lie algebra acting on E™) under the commutator bracket product
[a,ble = asb—bea; that is, [E®, E®M] = EM_ This extends naturally to
2. as derivations:

[E@ A C U, [A, fog]l=[A, flog+ [o[A. g].

We want to write the extended action /(s)ds{ f(s)} on the generators. Recall-
ing that
s05{s™} = {ms™} + {252 (w2 + v)ig,

we define
[Lo, Xm] = mxm + 23xm+2*(wi + ).

Since
[s" Lo, xm] = s" (mxy, + 2:xm+2*(w£ +v)i7)

. 2 )
= MXptm + 2 Xntmt2%(Wy + V)i,
we set L, = s" L and define

[Ln, Xxm]| = mxp4m + 2:xn+m+2*(wi +v)ig.
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Then
. 2 .
[Le.[Ln, xm]] = m@ +m)Xpgmae + 200 +m 4+ 2): Xy pmper 2 (W3 4 1)
F4n 4 m A+ L+ )Xy e rax (Wi +0)50

It follows that

(Lo (L, xm]] = [Les [Lns Xm]
= m(n—L)Xprmat + 20— Xppmit42:%(W2 +v)ig.

Thus, this is an action of the Witt—Lie algebra

[[Ln» Le],xm] = (n—0)[Lu+¢, Xm)-
Direct computation shows the following.
Proposition 6.1. For every integer m, an element
0 k
(=2
Ym = Z T:xm—i-k*(wi + V)k:r’

k=0

written as a formal power series of :(w2 + v){::r satisfies [Lo, ym] = mym. It
follows that

[Ln, ym] = Sn[LO, Ym] = ms”)’m =MYn+m-

Note that
= (=2)
ym =) s ok (w + v)
k=0
o0 k
=" sk —(_kZ') (w2 4 V)R et @A),
k=0 '

Hence this is defined only as a formal power series in general, for this is

_ 2 —14 2V (ap2 142 2
Sm:e*Zs(w*—i-v)*eit +s )(w*+v)2-,;=sm€§f +s 2s)(w*+v):r’

and this diverges at s = 2. Although the expression seems a slightly confusing,
it is convenient to view this as

o —2s(wZ4v) m
ey

—1 2 2 _ 2
Ym = sMae(T HWAV). s i) g

as it is inverted easily by

2s(w2+v).
T

—1 2 2
Vm*es = MeTT AW, —
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The Heisenberg vertex algebra. Since (as is easy to see)

[:Xm* (w2 + V), k(w2 + v)e:t] = [ Xn)e: (w2 + v)ETE
the commutator [y, v,] belongs to the space Vr*t[:(wﬁ =+ v):.] of all formal
power series written in the form

Zak(r_l, v, w)k (w2 + v){ﬁ:r, ar(t v, w) e V.
k

Set [V, ¥n] = Cm,n. By Proposition 6.1 and by the remark below (6-4), we
see [Lg, Cm,n] = 0. Since Ly acts as a derivation, Jacobi identity of Lie algebra
gives restriction to the constants G, :
0=[Li.[ve:yml] = [[Li: yel.ym]+[ve. [Lic, yml] = etk yml+mlye, Ym+k].
Hence

Coik,m +mCy ik = 0. (6-5)
Set k = 0 to obtain Cy , = cmbg4m,0- Set m = 1 further in (6-5) to obtain
Lc18g4k+1,0 + Ck+10¢04+k+1,0 = 0. Hence, we have ¢, = mcy, with

(=2)F* i 2k
C1 =C—1,1 = (—2)2Wak+g_1(v,r_ ,W):(w*+V) + T
ki Ll

42}1 B
=(-2) Z w:az,,_l(v, L w)x(w2 + )2,
p !

Consequently:

Proposition 6.2. The system {yn,, m € Z} has the following properties.

[J/m, J/n] = m(sm—f-n,ocl, 1 € f/’vt*tﬂ:(wi + v):,]],
[Lm. Yn]l = MYm+n,
[[Lm’ Ly, yﬁ] = [(m—n)Lmy+n. yel-

It follows in paiz‘icular [¥0, ym] = Ofgr every ym. In particular, as there is no
zero-divisor in Vg, if Y i ax Vi, ax € Vz, satisfies [ ;. ax Vi, ym] = 0 for every
Ym. then 3y ag yx = aoyo.

The set {ym; m € Z} forms a standard basis of the Heisenberg vertex algebra

over
Vet [:(w? 4+ v)].

So far, L, is not an established element defined only as an adjoint opera-
tor [Ly,, ] acting on E(). The following theorem is known as the Sugawara
construction:
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Theorem 6.1. Elements of Witt—Lie algebra can be represented by elements of
E®.

Thus, regarding L,, as an element of E®), we set
[Lm, Ln]= (m—n)Lpin+ Kmn.
Since

(Kmn> el = [Lmv [Ln, LVZ]] - [Ln, [Lm, J’Z]] — (m—n)[Lm+n, y¢] =0,

the K, » must be central elements. This central extension of the Witt algebra

is called the Virasoro algebra. Such an extended Lie algebra is known to be

isomorphic to the one defined by

m(m?—1)
12

[Ly,cv, 71 w)]=0. (6-6)

[Lm, L]l = (m—n) L4y + c(v, 1 w) Sm+n,0

Note that restricting n even integers {L,,;n € Z} forms a Lie subalgebra.
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