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Algebra + homotopy = operad
BRUNO VALLETTE

“If I could only understand the beautiful consequences following from the
concise proposition d2 D 0.” —Henri Cartan

This survey provides an elementary introduction to operads and to their ap-
plications in homotopical algebra. The aim is to explain how the notion of
an operad was prompted by the necessity to have an algebraic object which
encodes higher homotopies. We try to show how universal this theory is by
giving many applications in algebra, geometry, topology, and mathematical
physics. (This text is accessible to any student knowing what tensor products,
chain complexes, and categories are.)
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Introduction

Galois explained to us that operations acting on the solutions of algebraic equa-
tions are mathematical objects as well. The notion of an operad was created in
order to have a well defined mathematical object which encodes “operations”.
Its name is a portemanteau word, coming from the contraction of the words
“operations” and “monad”, because an operad can be defined as a monad encoding
operations. The introduction of this notion was prompted in the 60’s, by the
necessity of working with higher operations made up of higher homotopies
appearing in algebraic topology.

Algebra is the study of algebraic structures with respect to isomorphisms.
Given two isomorphic vector spaces and one algebra structure on one of them,
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one can always define, by means of transfer, an algebra structure on the other
space such that these two algebra structures become isomorphic.

Homotopical algebra is the study of algebraic structures with respect to
quasiisomorphisms, i.e. morphisms of chain complexes which induce isomor-
phisms in homology only. The main difference with the previous situation is that
quasiisomorphisms of chain complexes are not invertible in general. However,
given two quasiisomorphic chain complexes and one algebra structure on one of
them, one can always define, on the other chain complex, an algebra structure.
But, in this case, the relations are satisfied only up to homotopy. In the end, these
two algebra structures become quasiisomorphic in some way. This last result is
called the homotopy transfer theorem, or HTT for short.

In the first cases like associative algebras, commutative algebras, and Lie
algebras, this kind of result can be proved by hand. However, in general, the
transferred algebra structure yields a coherent system of higher homotopies,
whose complexity increases exponentially with the number of the initial opera-
tions. Using operad theory, for instance Koszul duality theory, one can prove the
HTT with explicit formulae. In this way, one recovers, and thus unifies, many
classical objects appearing in algebra, geometry, topology and, mathematical
physics like spectral sequences, Massey products, or Feynman diagrams, for
instance.

This text does not pretend to be exhaustive, nor to serve as a faithful reference
to the existing literature. Its only aim is to give a gentle introduction to the ideas
of this field of mathematics. We would like to share here one point of view on
the subject, from “student to student”. It includes many figures and exercises to
help the learning reader in its journey. To ease the reading, we skipped many
technical details, which can be found in [Loday and Vallette 2012].

Convention. In this text, a chain complex .V; d/ is usually a graded module
V WD fVngn2Z equipped with a degree �1 map d (homological convention),
which squares to zero. For the simplicity of the presentation, we always work over
a field K of characteristic 0, even if some exposed results admit generalizations
beyond that case.

1. When algebra meets homotopy

In this section, we treat the mother example of higher algebras: A1-algebras.
We show how this notion appears naturally when one tries to transfer the structure
of an associative algebra through homotopy data. We provide an elementary
but extensive study of its homotopy properties (Homotopy Transfer Theorem,
A1-morphism, Massey products and homotopy category).
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1.1. Homotopy data and algebraic data. Let us first consider the following
homotopy data of chain complexes:

.A; dA/h
%% p //

.H; dH /
i

oo

IdA� ip D dAhC hdA ;

where i and p are morphisms of chain complexes and where h is a degree C1
map. It is called a homotopy retract, when the map i is a quasiisomorphism, i.e.
when it realizes an isomorphism in homology. If moreover pi D IdH , then it is
called a deformation retract.

Exercise 1. Since we work over a field, show that any quasiisomorphism i

extends to a homotopy retract. (Such a statement holds over Z when all the
Z-modules are free.)

Hint. Use the same kind of decomposition of chain complexes with their homol-
ogy groups as in Section 1.4.

Independently, let us consider the following algebraic data of an associative
algebra structure on A:

� W A˝2! A; such that �.�.a; b/; c/D �.a; �.b; c//; for all a; b; c 2 A:

For simplicity, we choose to depict these composites by the following graphically
composition schemes:

where we forget about the input variables since they are generic. Actually,
we consider a differential graded associative algebra structure on .A; dA/, dga
algebra for short, on A. This means that the differential dA of A is a derivation
for the product �:

(In this section, we do not require that the associative algebra has a unit.)

1.2. Transfer of algebraic structure. One can now try to study how these data
mix. Namely, is it possible to transfer the associative algebra structure from A

to H through the homotopy data in some way ? The first answer is given by the
following formula for a binary product on H :

�2 WD p ı � ı i
˝2
W H˝2!H:
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In our graphical representation, this gives

Now, let us check whether the product �2 is associative:

If the map i were an isomorphism, with inverse p, the answer would be yes.
But, this does not hold in general; so the answer is no. Since the composite ip is
equal to the identity up to the homotopy h, the transferred product �2 seems to
be associative only “up to the homotopy h”. Let us make this statement precise.

The associativity relation is equivalent to the vanishing of the associator

in Hom.H˝3;H/. This mapping space becomes a chain complex when equipped
with the usual differential map @.f / WD dHf � .�1/jf jdH˝3f . We introduce
the element �3

It has degree C1, since it is the composite of maps of degree 0 (the maps i , p,
and �) and one map of degree 1 (the map h).

Exercise 2. We leave it to the reader to check that

This means that, in the chain complex .Hom.H˝3;H/; @/, the associator of �2
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is not zero in general, but vanishes up to the homotopy �3. Under this property,
one says that the product �2 is associative up to homotopy.

The next step consists in checking whether the two operations �2 and �3
satisfy some relation. The answer is again yes, they satisfy one new relation
but only up to yet another homotopy, which is a linear map �4 of degree C2 in
Hom.H˝4;H/. And so on and so forth.

Let us now proceed and give a general answer: generalizing the previous two
formulae, we consider the family of maps

�n D

in Hom.H˝n;H/, for any n � 2, where the notation PBTn stands for the set
of planar binary rooted trees with n leaves. This defines linear maps of degree
n� 2, which satisfy the following relations:

1.3. A1-algebra. The aforementioned example triggers the following general
definition.

Definition (A1-algebra). An associative algebra up to homotopy, also called
homotopy associative algebra orA1-algebra for short, is a chain complex .A; d/
endowed with a family of operations �n W A˝n! A of degree n� 2, for any
n� 2, satisfying the aforementioned relations.

This notion was discovered by Jim Stasheff in his Ph.D. thesis [1963a; 1963b]
on loop spaces.

Example. An A1-algebra, whose higher operations �n D 0 vanish for n� 3,
is a dga algebra. If we define a morphism of A1-algebras to be a chain map
commuting with the respective operations, then the category of dga algebras is a
full subcategory of the category of A1-algebras:

dga alg � A1-alg:
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Theorem 1 (homotopy transfer theorem for dga algebras [Kadeishvili 1980]).
The operations f�ngn�2 defined on H from the associative product � on A by
the formulae of Section 1.2 form an A1-algebra structure.

Proof. We leave the proof to the reader as an easy and pedagogical exercise. �

1.4. Application: Massey products. As a first kind of example, consider

.H; dH / WD .H�.A; dA/; 0/;

together with the following deformation retract. First the degree n spaceAn is the
direct sum An ŠZn˚Bn�1 of the n-cycles Zn WD fx 2 AnI dA.x/D 0g with
the .n� 1/-boundaries Bn�1 WD dA.An/. Then, one lifts the homology groups
Hn WD Zn=Bn, to finally get An Š Bn˚Hn˚Bn�1. Such a decomposition
induces the required maps:

i WHn� Bn˚Hn˚Bn�1; p W Bn˚Hn˚Bn�1�Hn;

h W An�1 Š Bn�1˚Hn�1˚Bn�2� Bn�1� Bn˚Hn˚Bn�1 Š An:

It is an easy exercise to prove that the product � of a dga algebra induces an
associative product N� on the underlying homology groups. Moreover, Theorem 1
allows us to endow H.A/ with a much richer structure extending N� D �2.

Proposition 2. The underlying homology groupsH.A/ of a dga algebra A carry
an A1-algebra structure, with trivial differential, and extending the induced
binary product.

Definition (A1-Massey products). We call A1-Massey products the operations
f�n WH.A/

˝n!H.A/gn�2 of the transferred A1-algebra structure on H.A/.

In the light of the formulae of Section 1.2, we would like to say that the induced
binary product on homology is associative “for a bad reason”: not that the first
homotopy �3 vanishes, but just because the differential map dH is trivial! In this
case, even if �2 is associative, the higher homotopies f�ngn�3 are not trivial, in
general, as the example below shows. The A1-Massey products actually encode
faithfully the homotopy type of the dga algebra A; see Section 1.7.

The classical Massey products, as defined by William S. Massey [1958], are
only partially defined and live on some coset of the homology groups. For
example, the triple Massey product h Nx; Ny; Nzi is defined for homology classes
Nx; Ny; Nz such that N�. Nx; Ny/ D 0 D N�. Ny; Nz/ as follows. Let us denote by x; y; z
cycles representing the homology classes. Because of the hypothesis, there exist
chains a and b such that .�1/jxj�.x; y/D dA.a/; .�1/jyj�.y; z/D dA.b/. Then
the chain

.�1/jxj�.x; b/C .�1/jaj�.a; z/

is a cycle and so defines an element h Nx; Ny; Nzi inH.A/=fN�. Nx;H.A//CN�.H.A/; Nz/g:
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Exercise 3. Show that �3.x; y; z/, as defined by the formula of Section 1.2,
provides a representative for the partial triple Massey product h Nx; Ny; Nzi.

The formulae defining the Massey products are similar to the formulae defining
the A1-Massey products. The difference lies in the fact that, in the latter case,
all the choices are made once and for all in the deformation retract. (The various
liftings are then given by the homotopy h.)

Proposition 3. The A1-Massey products provide representatives for the partial
Massey products.

The original Massey products were defined in the context of the singular
cohomology since, for any topological space X , the cup product [ endows the
singular cochain complex C �sing.X/ with a dga algebra structure; see [Hatcher
2002, Section 3:2].

Application (Borromean rings). The Borromean rings are three interlaced rings,
which represent the coat of arms of the Borromeo family in Italy:

Removing any one of the three rings, the remaining two are no longer interlaced.
We consider the complement of the Booromean rings in the 3-sphere. Each

“ring” (solid torus) determines a 1-cocycle: take a loop from the basepoint with
linking number one with the circle. Since any two of the three circles are disjoint,
the cup product of the associated cohomology classes is 0. The nontriviality of the
triple Massey product of these three cocycles detects the nontrivial entanglement
of the three circles [Massey 1958].

1.5. Homotopy transfer theorem. We have seen that starting from a dga algebra
structure on one side of a homotopy data, one gets an A1-algebra structure, with
full higher operations, on the other side. What will happen if one starts from an
A1-algebra structure f�n W A˝n! Agn�2?

In this case, one can extend the aforementioned formulae, based on planar
binary trees, by considering the full set PTn of planar rooted trees with n leaves,
this time (see Figure 1 on next page).
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�n D

Figure 1. Set PTn of planar rooted trees with n leaves.

Theorem 4 (homotopy transfer theorem for A1-algebras [Kadeishvili 1982]).
The operations f�ngn�2 defined on H from the A1-algebra structure f�ngn�2
on A by the aforementioned formulae form an A1-algebra structure.

Proof. Once again, we leave this straightforward computation to the learning
reader. �

So, with the definition of A1-algebras, we have reached a big enough “cate-
gory”, including that of dga algebras, and stable under transfer through homotopy
data. It remains to define a good notion of morphism.

1.6. A1-morphism.

Definition (A1-morphism). An A1-morphism between two A1-algebras

.A; dA; f�ngn�2/ and .B; dB ; f�ngn�2/

is a collection of linear maps

ffn W A
˝n
! Bgn�1

of degree n� 1 satisfying

where�1DdA and �1DdB . The data of anA1-morphism is denoted f WA B .
The composite of two A1-morphisms f W A B and g W B C is defined by

.gıf /n WD
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Exercise 4. Show that A1-algebras with A1-morphisms form a category. We
denote this category by 1-A1-alg, where the first symbol 1 stands for the
A1-morphisms.

By definition, the first component f1 WA!B of anA1-morphism is a morphism
of chain complexes.

Definition (A1-isomorphism and A1-quasiisomorphism). When the map f1
is an isomorphism (resp. a quasiisomorphism), the A1-morphism f is called an
A1-isomorphism (resp. an A1-quasiisomorphism).

Exercise 5. Show that A1-isomorphisms are the invertible morphisms of the
category1-A1-alg. (This proof is similar to the proof that power series a1xC
a2x

2C � � � with first term invertible are invertible).

Theorem 5 (homotopy transfer theorem withA1-quasiisomorphism [Kontsevich
and Soibelman 2001]). Starting from a homotopy retract, the maps Q{1 WD i W
H ! A and

Q{n WD W H˝n! A;

for n� 2, define an A1-quasiisomorphism Q{ WH � � A between the transferred
A1-algebra structure f�ngn�2 on H and the initial A1-algebra structure
f�ngn�2 on A.

Proof. As usual, the proof is left to the reader as a good exercise. �

One can actually proceed one step further and extend the whole homotopy
data from the category of chain complexes to the category of A1-algebras. There
exists a notion of an A1-homotopy between A1-morphisms, whose equivalence
relation is denoted �h. Starting from a deformation retract, the complete result
states that the quasiisomorphism p extends to an A1-quasiisomorphism Qp and
that the homotopy h extends to an A1-homotopy between IdA and the composite
Qp Q{; see [Markl 2004].

1.7. Homotopy theory of A1-algebras.

Theorem 6 (fundamental theorem of A1-quasiisomorphisms [Lefevre-Hase-
gawa 2003]). Any A1-quasiisomorphism A � � B admits a homotopy inverse
A1-quasiisomorphism B � � A.

This is the main property of A1-quasiisomorphisms. Notice that given a
quasiisomorphism of dga algebras, there isn’t always a quasiisomorphism in the
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opposite direction as dga algebras. These two notions of quasiisomorphisms are
related by the following property: there exists a zig-zag of quasiisomorphisms
of dga algebras if and only if there exists a direct A1-quasiisomorphism

9 A �� � �!� � �� � � � � � �!� B ” 9 A � � B:

Definition (formality). A dga algebra .A; d; �/ is called formal if there exists a
zig-zag of quasiisomorphisms of dga algebras

.A; d; �/ �� � �!� � �� � � � � � �!� .H.A/; 0; N�/:

Proposition 7. (1) If a dga algebra is formal, then the higher Massey products,
i.e. for n� 3, vanish.

(2) If the higher A1-Massey products, i.e. for n � 3, vanish, then the dga
algebra is formal.

Proof. The proof of the second point is a corollary of the HTT, Theorem 5.
When the higher A1-Massey products vanish, the map Q{ WH.A/ � � A is an
A1-quasiisomorphism between two dga algebras. We conclude then with the
above property. �

In the latter case, the Massey products vanish in a “uniform way”; see [Deligne
et al. 1975] for more details.

Definition (homotopy category). The homotopy category of dga algebras

Ho.dga alg/ WD dga algŒqi�1�

is defined as the localization of the category of dga algebras with respect to the
class of quasiisomorphisms.

This is the “smallest” category containing the category dga alg in which quasi-
isomorphisms become invertible. It is actually made up of more maps than the
category dga alg since the maps of the homotopy category are (some equivalence
classes) of chains of maps either from the morphisms of dga algebras or from
the formal inverse of quasiisomorphisms:

A // � // � // �
�

gg // � � � � � // � // �
�

gg // �
�

hh // B:

The following results shows that the homotopy classes of A1-morphisms corre-
spond to the maps in the homotopy category of dga algebras.

Theorem 8 (homotopy category [Munkholm 1978; Lefevre-Hasegawa 2003]).
The following categories are equivalent:

Ho.dga alg/ Š 1-A1�alg=�h Š 1-dga alg=�h :
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Proof. The last equivalence with the category of dga algebras equipped with the
A1-morphisms is given by the Rectification property: any A1-algebra admits a
dga algebra, which is A1-quasiisomorphic to it. �

Questions. (1) Why this particular definition of an A1-algebra when starting
from an associative algebra?

(2) How could we perform the same theory starting from other types of algebras,
like commutative algebras, Lie algebras or Lie bialgebras, for instance?

2. Operads

In this section, we introduce the notion of an operad trough the paradigm given by
the multilinear maps of a vector space. One can also use operads in the context of
topological spaces, differential graded modules and simplicial sets, for instance.
Operads encode categories of algebras having operations having multiple inputs
and one output. When one wants to encode other types of algebraic structures,
one has to introduce some generalizations of operads.

2.1. Unital associative algebras and their representation theory. Let V be a
vector space. The vector space Hom.V; V / of endomorphisms of V , equipped
with the composition ı of functions and the identity morphism idV , becomes a
unital associative algebra. Representation theory is the study of morphisms of
unital associative algebras with target the endomorphism algebra:

ˆ W .A; �; 1/ ! .Hom.V; V /; ı; idV /

a 7!

This means that the map ˆ sends the unit 1 to the identity idV and any product
of two elements of A to the associated composite

ˆ.�.b˝ a// Dˆ.b/ ıˆ.a/D

On the one hand, the endomorphism space Hom.V; V / is the space of all “con-
crete” linear operations acting on V . On the other hand, the elements composing
the image of the representation ˆ form a particular choice of operations. The
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type (number, relations, etc.) of these operations is encoded, once and for all V
and ˆ, by the algebra A.

Example (algebra of dual numbers and chain complexes). Let us begin with an
elementary example. Suppose that we want to encode in one associative algebra,
the algebraic data of a unary square-zero operator. In this case, we would first
consider the free unital associative algebra on one generator ı: it is explicitly
given by the tensor module

T .Kı/ WD
M
n2N

.Kı/˝n;

equipped with the concatenation product. This is meant to represent all the
possible “formal” compositions of the operator with itself. Any morphism of
unital associative algebras ˆ W T .Kı/!Hom.V; V / is completely characterized
by the image d WD ˆ.ı/ of this generator. Then we quotient this free algebra
by the ideal generated by ı2, that is the relation we want to model. It gives the
algebra of dual numbers:

D WD T .Kı/=.ı2/:

In this case, a morphism of unital associative algebras ˆ WD! Hom.V; V / is
characterized by the image d WDˆ.ı/ of the generator ı, which has to satisfy the
relation d2 D 0. Finally, a vector space equipped with a square-zero operator is
a representation of D. If we work with graded vector spaces and if we place the
generator ı in degree �1, then we get nothing but the notion of a chain complex.

Example (Steenrod operations and Steenrod algebra). Even if the previous
example can seem naive at first sight, the idea of abstracting families of unary
operations, which act in the same way is not trivial. Consider again the singular
cohomology H �sing.X/ of topological spaces. Norman E. Steenrod [1947] con-
structed natural unary operations, the Steenrod squares fSqigi�1 in characteristic
2, which act on the singular cohomology Hsing�.X/. They are higher operators
which come from the higher homotopies for the commutativity of the cup product.
They are functorial and always satisfy the same relations, the Adem relations,
for any topological space X . So, Henri Cartan [1955] introduced an algebra

A2 WD T .fSqigi�1/=.RAdem/

naturally called the Steenrod algebra. It encodes all the Steenrod squares at once.
Proving a functorial result for all Steenrod operations amounts to proving only
one statement on the level of the Steenrod algebra.
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2.2. Operads and multilinear representation theory. We now wish to develop
the same kind of theory but with operations having multiple inputs this time. On
the right side, we consider the family

EndV WD fHom.V ˝n; V /gn�0

of multilinear maps. The goal now is to find what kind of mathematical object
P should be put on the left side:

ˆ W ¿ P ?! EndV :

Let us extract the properties of EndV as follows.

(i) First, it is made of a family of vector spaces indexed by the integers, so will
be P WD fPngn2N.

(ii) Then, the space EndV of multilinear maps is equipped with the classical
composition of functions. Given a first level of k operations and one operation
with k inputs, one can compose them in the following way:

Mimicking this composition, we require P to be equipped with composite maps


i1;:::;ik W Pk˝Pi1 ˝ � � �˝Pik ! Pi1C���Cik ;
�˝ �1˝ � � �˝ �k 7! 
.�I �1; : : : ; �k/;

which we of course represent similarly.
The composition of functions is associative in the following way: if we

consider 3 levels of functions, composing the two upper levels and then the result
with the third one or beginning with the two lower levels and then compositing
with the first one, this gives the same function. This associativity condition reads
as follows.



242 BRUNO VALLETTE

(iii) Finally, we have the identity morphism idV in Hom.V; V /. So, we ask for
a particular element I in P.1/, which behaves as a unit for the composite maps:


1;:::;1 W �˝ I˝ � � �˝ I 7! � and 
k W I˝� 7! �:

Definition (nonsymmetric operad). A nonsymmetric operad P , ns operad for
short, is a family fPngn2N of vector spaces with an element I 2P1 and endowed
with associative and unital composite maps


i1;:::;ik W Pk˝Pi1 ˝ � � �Pik ! Pi1C���Cik :

Examples. ˘ The endomorphism operad EndV WD fHom.V ˝n; V /gn�0 is the
mother of (nonsymmetric) operads.

˘ Let .A; �; 1A/ be a unital associative algebra. We consider the family A
defined by A1 WDA and An WD 0 for n¤ 1 and we set I WD 1A. All the composite
maps are equal to zero, except for 
1 WD �. So a unital associative algebra
induces a ns operad. In the other way round, any ns operad concentrated in arity
1 is a unital associative algebra.

Since the notion of a nonsymmetric operad is a generalization of the notion of
unital associative algebra, we will be able to extend many results from associative
algebras to operads.

Definition (morphism of ns operads). A morphism f W P ! Q between two
ns operads .P; 
; IP/ and .Q; �; IQ/ is a family ffn W Pn ! Qngn�0 of linear
morphisms which preserve the units f1.IP/D IQ and which commute with the
composite maps

�i1;:::;ik ı .fk˝fi1 ˝ � � �˝fik /D fi1C���Cik ı 
i1;:::;ik :

We now define the representations of a nonsymmetric operad P in a vector
space V by the morphisms of nonsymmetric operads:

ˆ W P! EndV :

Such a map associates to any “formal” operation � 2 Pn a “concrete” n-
multilinear operation ˆ.�/ 2 Hom.V ˝n; V /.

The operations in the image of ˆ satisfy the same relations as that of P . In the
other way round, given a certain category of algebras, like associative algebras,
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commutative algebras or Lie algebras, for instance, we are able to encode the
space of all possible operations into one operad, as follows.

Definition (P-algebra). Let P be an operad. A P-algebra structure on a vector
space V is a morphism of ns operads ˆ W P! EndV .

2.3. The examples of As and uAs. Let us see how this works on an example.
We go back to the example of Section 1: the category of associative algebras,
not necessarily unital. Let us now try to figure out the operad, which models
this category. Given n elements a1; : : : ; an of an associative algebra A, what
are the operations, induced by the associative binary product, acting on them?
Keeping the variables in that order, that is without permuting them, there is just
one because any bracketing will produce the same result under the associativity
relation. Hence, we decide to define

Asn WD K

the one-dimensional vector space, for any n� 1. For an algebra over an operad,
the set P0 is sent to Hom.K; V /, since V ˝0 D K by convention. Therefore it
stands for the set of particular elements in V . In the case of associative algebras,
we have none of them. There is no unit for instance; so we define As0 WD 0.

The composite map 
i1;:::;ik W Ask ˝Asi1 ˝ � � � ˝Asik ! Asi1C���Cik is the
multiplication of scalars, i.e. the isomorphism K˝K˝ � � �˝KŠ K.

Exercise 6. Show that, with this definition, the data .As; 
; I/ forms a nonsym-
metric operad.

The next proposition shows that we have done a good job.

Proposition 9. The category of As-algebras is isomorphic to the category of
associative algebras.

Proof. Let ˆ W As ! EndV be a representation of the ns operad As. Since
As0 D 0 and As1 D K I, they code for nothing. Let us call the image of by

� WDˆ
� �

:

It defines a binary product on V . The composite of

˝
�
˝ I

�
and ˝

�
I ˝

�
in As give the same result. Therefore the composite of their respective image in
Hom.V ˝3; V / are equal, which gives the associativity of �. As usual, we leave
the rest of the proof to the reader as a good exercise. �



244 BRUNO VALLETTE

If we want to model the category of unital associative algebras this time, we
define the operad uAs in the same way, except for uAs0 WD K 1.

Exercise 7. Show that .uAs; 
; I/ forms a nonsymmetric operad and that uAs-
algebras are unital associative algebras.

Remark. At this point of the theory, some readers might be confused by the
fact that unital associative algebras appeared twice: on the one hand, the notion
of a nonsymmetric operad is a generalization of the notion of unital associative
algebra and, on the other hand, there is one operad uAs, which encodes the
category of unital associative algebras. So, one should be careful. In these two
cases, the category of unital associative algebras does not play the same role and
is not placed on the same footing.

2.4. Symmetric operads. Let us now extend the definition of a nonsymmetric
operad in order to take care of the possible symmetries of the operations that we
aim to encode.

First, we notice that the space Hom.V ˝n; V / of n-multilinear maps carries a
natural right action of the symmetric group Sn, induced by the permutation of
the input elements:

f � .v1; : : : ; vn/ WD f .v��1.1/; : : : ; v��1.n//:

The composition of multilinear functions satisfies natural equivariance properties
with respect to this action.

Exercise 8. Write down these equivariance properties.

Definition (symmetric operad). A symmetric operad P , or simply an operad, is
a family fP.n/gn2N of right Sn-modules with an element I 2P.1/ and endowed
with associative, unital and equivariant composite maps


i1;:::;ik W P.k/˝P.i1/˝ � � �˝P.ik/! P.i1C � � �C ik/:

We refer to this definition as to the classical definition of an operad, since it
coincides with the original definition of J. Peter May [1972]. The definition of a
morphism of symmetric operads and the definition of an algebra over a symmetric
operad are the equivariant extensions of the nonsymmetric ones. So, forgetting
the action of the symmetric groups, one defines a functor from symmetric operads
to nonsymmetric operads.

Exercise 9 (partial definition). Show that the definition of an operad structure
on a family of Sn-modules fP.n/gn�0 is equivalent to the data of partial com-
positions

ıi W P.m/˝P.n/! P.m� 1Cn/; for 1� i �m;
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satisfying

˘ the equivariance with respect to the symmetric groups (to be made precise),

˘ the axioms�
(I) .� ıi �/ ıi�1Cj � D � ıi .� ıj �/ for 1� i � l; 1� j �m;
(II) .� ıi �/ ık�1Cm � D .� ık �/ ıi � for 1� i < k � l;

for any � 2 P.l/; � 2 P.m/; � 2 P.n/,
˘ and having a unit element I 2 P.1/.

We refer to this definition as to the partial definition of an operad.

Examples. ˘ Let us define the symmetric operad Com (respectively uCom),
in the same way as the nonsymmetric operad As (respectively uAs), by the
one-dimensional spaces

Com.n/ WD K

but endowed with the trivial representation of the symmetric groups, this time. As
usual, we leave it, as a good exercise, to the reader to check that these data form
an operad. Prove also that the category of Com-algebras (respectively uCom-
algebras) is isomorphic to the category of commutative algebras (respectively
unital commutative algebras).

˘ In contrast to the operad Com of commutative algebras, the various known
bases of the space of n-ary operations of the operad Lie of Lie algebras do not
behave easily with respect to both the operadic composition and to the action of
the symmetric groups.

On the one hand, we know that the right module Lie.n/ is the induced rep-
resentation IndSn

Z=nZ
.�/, where .�/ is the one-dimensional representation of the

cyclic group given by an irreducible nth root of unity. On the other hand, the
following bases of Lie.n/, due to Guy Melançon and Christophe Reutenauer
[1996], behaves well with respect to the operadic composition.

We consider the subset MRn of planar binary trees with n leaves such that,
at any given vertex, the leftmost (resp. rightmost) index is the smallest (resp.
largest) index among the indices involved by this vertex. Here are the elements
of MR2 and MR3.
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We define the partial compositions t ıi s of two such trees by grafting the root of
s on the leaf of t with label i and by shifting the indices accordingly. We leave
it to the reader to verify that this endows fKMRng with a nonsymmetric operad
structure.

For more properties about this basis of the operad Lie, we refer the reader to
the end of Section 3.5.

Exercise 10. One can also encode the category of associative algebras with a
symmetric operad, which we denote by Ass, where the second “s” stands for
“symmetric”. Since the multilinear operations of an associative algebra have in
general no symmetry, the component of arity n of the operad Ass is the regular
representation of the symmetric group: Ass.n/ WD KŒSn�. We leave it to the
reader to make the composite maps explicit.

2.5. Changing the underlying monoidal category. One can also consider op-
erads not only over the category of vector spaces but over other categories as
follows.

In order to define the notion of an operad, we used the fact that the category
.Vect;˝/ of vector spaces is a monoidal category, when endowed with the tensor
product ˝. To write down the associative property of the composite maps 
 ,
one needs this monoidal category to be symmetric because we have to commute
terms separated by tensors.

In the end, one can define the notion of an operad over any symmetric monoidal
category. To name but a few:

SYMMETRIC MONOIDAL CATEGORY TYPE OF OPERAD

Vector spaces .Vect;˝/ Linear operads
Graded modules .gr Mod;˝/ Graded operads

Differential graded modules .dg Mod;˝/ Differential graded operads
Sets .Set;�/ Set-theoretic operads

Topological spaces .Top;�/ Topological operads
Simplicial sets .Set;�/ Simplicial operads

˘ Set-theoretical operad: the example of monoids. Let us define the set-theoretic
ns operad Mon, in the same way as the ns operad uAs, by the following one-
element sets:

Monn WD

( )
;

for n2N. In this case, the category of Mon-algebras is isomorphic to the category
of monoids.
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Figure 2. Little discs configuration in D2.3/.

ı1 D

Figure 3. Example of partial composition in the little discs operad.

˘ Topological operad: the example of the little discs. The mother of topological
operads is the little discs operad D2, which is a topological operad defined as
follows. The topological space D2.n/ is made up of the unit disc (in C) with n
subdiscs with nonintersecting interiors. So, an element on D2.n/ is completely
determined by a family of n continuous maps fi W S1 ! D2; i D 1; : : : ; n,
satisfying the nonintersecting condition; see Figure 2.

The enumeration of the interior discs is part of the structure. The operadic
composition is given by insertion of a disc in an interior disc. The symmetric
group action is given by permuting the labels. Figure 3 gives an example of a
partial composition.

It is clear how to proceed to define the little k-discs operad Dk , for any k 2N.
In the case k D 1, one gets the little intervals operad.

Exercise 11. Prove that any k-fold loop space �k.Y / is an algebra over Dk .

The main property of the little k-discs operad is the following result, which goes
the other way round.

Theorem 10 (recognition principle [Boardman and Vogt 1973; May 1972]). If
the connected topological space X is an algebra over the little k-discs operad,
then it is homotopy equivalent to the k-fold loop space of some other pointed
space Y :

X ��k.Y /:
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So, up to the homotopy relation of topological spaces, the category of Dk-
algebras is the category of k-fold loop spaces.

˘ Differential graded operad: the Gerstenhaber operad example. A Gersten-
haber algebra is a graded vector space A endowed with:

F a commutative binary product � of degree 0;

F a commutative bracket h ; i of degree C1, i.e., jha; bij D jajC jbjC 1, where
the notation j j stands for the grading of elements.

such that

B the product � is associative;
B the bracket satisfies the Jacobi identity

hh ; i; i C hh ; i; i:.123/ C hh ; i; i:.321/ D 0I

B the product � and the bracket h ; i satisfy the Leibniz relation

h - ; - � - i D .h - ; - i � -/ C . - � h - ; - i/:.12/:

We denote by Ger the graded symmetric operad that encodes Gerstenhaber
algebras.

Any symmetric monoidal functor between two symmetric monoidal categories
induces a functor between the associated notions of operads. For instance, the
free vector space functor .Set;�/! .Vect;˝/ is symmetric monoidal. Under
this functor, the set-theoretic ns operad Mon is sent to the linear ns operad
uAs D KMon. Since we are working over a field, the homology functor

H � W .Top;�/! .gr Mod;˝/;

defines such a symmetric monoidal functor.

Theorem 11 (homology of the little discs operad [Cohen et al. 1976]). The
homology of the little discs operad is isomorphic to the operad encoding Ger-
stenhaber algebras

H �.D2/Š Ger:

2.6. Other types of operads. Depending on the type of algebraic structure that
one wants to encode (several spaces, scalar product, trace, operations with
multiple inputs and multiple outputs, etc.), it is often possible to extend the
previous definition of an operad.

˘ Colored operad. Algebraic structures acting on several underlying spaces
can be encoded with colored operads. In this case, the paradigm is given by
EndV1˚���˚Vk

. An operation in a colored operad comes equipped with a color
for each input and a color for the output. The set of “colors” corresponds to the
indexing set of the various spaces, for instance f1; : : : ; kg.
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Figure 4. A tangle (courtesy of V. F. R. Jones).

Exercise 12. The data of two associative algebras .A; �A/ and .B; �B/ with a
morphism f W A! B between them can be encoded into a 2-colored operad
denoted As�!ı. Show that this operad is made up of corollas of three types :
only black inputs and output (for the source associative algebra A), only white
inputs and output (for the target associative algebra B), and corollas with black
inputs and white output (either for the composite of iterated products in A and
then the morphism f or for the composite of tensors of copies of the morphism
f and then iterated products in B).

Example. An interesting example of topological colored operad is given by
the operad of tangles of Vaughan F. R. Jones [2010]; see Figure 4. (Notice the
similarity with the little discs operad.) Algebras over this operad are the planar
algebras [Jones 1999], notion related to Jones invariants of knots.

˘ Cyclic operad. The purpose of cyclic operads is to encode algebraic structures
acting on spaces endowed with a nondegenerate symmetric pairing h�;�i W
V˝V !K. In this case, the endomorphism operad EndV .n/DHom.V ˝n; V /Š
Hom.V ˝nC1;K/ is equipped with a natural action of SnC1, which extends the
action of Sn and which is compatible with the partial compositions. On the
level of cyclic operads, this means that we are given an action of the cycle
.1 2 : : : nC 1/ which exchanges input and output:
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As usual, the data of an algebra over a cyclic operad is given by a morphism
of cyclic operads P ! EndV . For example an algebra over the cyclic operad
Ass is a finite dimensional associative algebra equipped with a nondegenerate
symmetric pairing h�;�i, which is invariant:

hab; ci D ha; bci:

Example. A Frobenius algebra, central notion in representation theory [Curtis
and Reiner 1962], is nothing but a cyclic uAs-algebra. (The nonsymmetric
operad uAs-can be endowed with a cyclic nonsymmetric operad structure, that
is with an action of the cyclic groups Z=.nC 1/Z). A symmetric Frobenius
algebra, central notion in topological quantum field theory [Kock 2004], is a
cyclic uAss-algebra. Let us recall that a Frobenius algebra (resp. symmetric
Frobenius algebra) is a unital associative algebra, equipped with a nondegenerate
(resp. and symmetric) bilinear form, such that hab; ci D ha; bci.

Exercise 13. Show that the operad Lie can be endowed with a cyclic operad
structure. Prove that any finite dimensional Lie algebra g, becomes an algebra
over the cyclic operad Lie, when equipped with the Killing form.

˘ Modular operad. In a cyclic operad, one makes no distinction between inputs
and outputs. So one can compose operations along genus 0 graphs. The idea of
modular operad is to also allow one to compose operations along any graph of
any genus.

Example. The Deligne–Mumford moduli spaces NMg;nC1 of stable curves of
genus g with nC 1 marked points [Deligne and Mumford 1969] is the mother
of modular operads. The operadic composite maps are defined by intersecting
curves along their marked points:

The Gromov–Witten invariants of enumerative geometry endow the cohomol-
ogy groups H �.X/ of any projective or symplectic variety with a H�. NMg;nC1/-
algebra structure; see [Kontsevich and Manin 1994]. A Frobenius manifold
[Manin 1999] is an algebra over the cyclic operad H�. NM0;nC1/. By definition,
the quantum cohomology ring is the H�. NM0;nC1/-algebra structure on H �.X/.
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˘ Properad. A properad fP.n;m/gm;n2N is meant to encode operations with
several inputs and several outputs. But, in contrast to modular operads, where
inputs and outputs are confused, one keeps track of the inputs and the outputs in
a properad. Moreover, we consider only compositions along connected graphs
as follows.

Example. Riemann surfaces (smooth compact complex curves) with parametrized
holomorphic holes form a properad. We denote by Rg;n;m its component of
genus g with n input holes and m output holes. The properadic composite maps
are defined by sewing the Riemann surfaces along the holes.

A conformal field theory, as defined by Graeme Segal [2004], is nothing but an
algebra over the properad Rg;n;m of Riemann surfaces.

In the rest of the text, we will introduce algebraic properads to encode various
categories of “bialgebras”. The name “properad” is a portemanteau word from
“prop” and “operad”.

˘ Prop. A prop is like a properad, but where one can also compose along non-
necessarily connected graphs. This is the operadic notion which was introduced
first, by Saunders Mac Lane [1965] as a symmetric monoidal category C, whose
objects are the natural numbers and whose monoidal product is their sum. In
this case, the elements of HomC.n;m/ are seen as the operations with n inputs
and m outputs. An algebra over a prop is what F.-W. Lawvere [1963] called an
algebraic theory.

Example. The categories of cobordism, where the objects are the d -dimensional
manifolds and where the morphisms are the .d C1/-dimensional manifolds with
d -dimension boundary, form a prop. Sir Michael F. Atiyah proposed to define
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a topological quantum field theory, or TQFT for short, as an algebra over a
category of cobordism [Atiyah 1988].

˘ Wheeled properad, wheeled prop. Sergei A. Merkulov [2009] introduced the
notion of wheels to encode algebras equipped with traces. A trace is a linear
map tr W Hom.V; V /! K satisfying tr.fg/D tr.gf /. We translate this on the
operadic level by adding contraction maps

� ij W P.n;m/! P.n� 1;m� 1/

whose action can be represented by

7!

and satisfying

D :

There are obvious functors between these notions. For instance, fixing an output,
the genera 0 and 1 composition maps of a modular operad induce a wheeled
operad structure. In general, a modular operad induces a properad, which contains
all the higher genera compositions. The advantage is that properads can act on
infinite dimensional vector spaces and that a Koszul duality theory is defined on
properads level; see Section 3.4.

Now that we have opened the Pandora’s box, we hope that the reader feels
comfortable enough to go on and define new kinds of operads, which suit its
problem best.
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3. Operadic syzygies

Using the notion of an operad, we can answer the two questions raised at the
end of Section 1. The example studied in Section 1 shows that some categories
of algebras over an operad are not stable under homotopy data: the category
of associative algebras is not stable, but the category of A1-algebras is stable,
as Theorem 4 shows. The conceptual explanation is that the ns operad A1,
encoding A1-algebras, is free.

So, the method to provide a good framework for homotopy theory with a
given category of algebras is as follows.

First, one encodes the category of algebras by an operad P . Then, one
tries to find a free operad P1, which resolves the operad P , i.e. which is
quasiisomorphic to it. Finally, the category of P1-algebras carries the required
homotopy properties and the initial category of P-algebras sits inside it.

operad P

��

P1 D .T .X/; d/ W free resolution�oo

��
category of algebras �

� // category of homotopy algebras

3.1. Quasifree operad. As well as for unital associative algebras, operads admit
free operads as follows. Forgetting the operadic compositions, one defines a
functor U from the category of operads to the category of families of right
modules over the symmetric groups Sn, called S-modules.

Definition (free operad). The left adjoint T to the forgetful functor

U W Operads • S-modules W T

produces the free operad, since it freely creates operadic compositions from any
S-modules.

Exercise 14. Show that the free operad T .X/ on an S-module X is equivalently
characterized by the following universal property: there exists a natural morphism
of S-modules X ! T .X/, such that any morphism of S-modules f WX ! P ,
where P is an operad, extends to a unique morphism of operads Qf W T .X/! P :

X //

f
""

T .X/
Qf
��

P :

One defines the same notion on the level of nonsymmetric operads by replacing
the category of S-modules by the category of families of K-modules, called
N-modules.
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We make this functor explicit. To begin with the nonsymmetric case, let X be
an N-module and let t be a planar tree. We consider the space t .X/ defined by
trees of shape t with vertices labelled by elements of X according to their arity.

Its structure of vector space is given by identifying t .X/ with X˝k , where k is
the number of vertices of the tree t . We define the N-module T .X/ by the sum
of all the X -labelled planar trees:

T .X/n WD
M
t2PTn

t .X/:

The operadic compositions are given by the grafting of trees. In the symmetric
case, one considers the set of rooted trees “in space”, instead of planar rooted
trees, with leaves labelled bijectively by 1; : : : ; n. Then one labels the vertices
with the elements of the S-module X in a coherent way with respect to the
action of the symmetric group on X and on the set of inputs of the vertices;
see [Loday and Vallette 2012, Section 5:5] for more details. In a similar way,
one can perform free operad constructions over the various underlying monoidal
categories mentioned in Section 2.5.

Proposition 12 (free operad). The tree-module T .X/, with the grafting of trees
as operadic compositions, is the free operad on X .

Proof. As usual, we leave this proof to the reader as a good exercise. �

According to Section 2.5, a differential graded operad, dg operad for short, is
a differential graded S-module .P; d / endowed with operadic compositions, for
which the differential d is a derivation:

d.
.�I �1; : : : ; �k//D
.d.�/I �1; : : : ; �k/C

kX
iD1

˙ 
.�I �1; : : : ; d.�i /; : : : ; �k/:

Exercise 15. Show that the differential d on a free operad T .X/ is completely
characterized by the image of the generators X ! T .X/. Make explicit the full
differential d from its restriction to the space of generators.

Definition (quasifree operad). A dg operad whose underlying graded operad is
free, that is after forgetting the differential, is called a quasifree operad.
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The operad itself is free but not the differential map. In a free dg operad,
the differential is completely characterized by the differential of the space of
generators dX W X ! X and carries no more terms. In a quasifree operad, the
differential associates to a generator of X a sum of labelled trees in T .X/, as
the example of the next section shows.

3.2. Operadic syzygies. Let us make explicit a quasifree resolution for the ns
operad As. We shall begin with a topological resolution of the set-theoretic ns
operad Mon defined by

Mon0 WD∅; and Monn WDMonn D
� �

; for n� 1;

and which provides a basis for As.

˘ In arity 1, the ns operad Mon has one element of degree 0, so as the free ns
operad T .X/ on a generating set X empty in arity 1: X1 D∅. Hence, in arity
1, one has two 0-cells, Mon1 D T .X/1 D fIg, which are obviously homotopy
equivalent.

˘ In arity 2, the ns operad Mon has one element of degree 0. So, we introduce
a degree 0 element of arity 2 in the generating set X of T .X/. In arity 2, one
has now two 0-cells, which are homotopy equivalent.

˘ In arity 3, on the one hand, the ns operad Mon has one element of degree 0: .
On the other hand, the free ns operad T .X/ has 2 different elements of degree
0: the left comb and the right comb . So, we introduce in X3 a degree 1
element of arity 3, whose boundary is equal to these two degree 0 elements
respectively. Finally, in arity 3, one has now one 0-cell, on one side, and two
0-cells linked by a 1-cell, on the other side. These two topological spaces are
homotopy equivalent.

˘ In arity 4, on the one hand, the ns operad Mon has one element of degree 0.
On the other hand, the operad T .X/ has 5 elements of degree 0, the 5 planar
binary trees with 4 leaves, and 5 elements of degree 1, the 5 planar trees with 2
vertices and 4 leaves. They are attached to one another to form a pentagon.
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To get a topological space, homotopy equivalent to the point, we introduce in
X4 a degree 2 element , whose boundary is equal to the boundary of the
pentagon. This kills the homology group of degree 1 in the free operad.

Exercise 16. Proceed in the same way in arity 5 to discover the following
polytope of dimension 3 with fourteen 0-cells, twenty 1-cells, nine 2-cells, and
one new 3-cell. Label it!

˘ In general, one has to introduce one cell of dimension n� 2 in arity n to kill
the .n� 2/-nd homotopy group. In the end, the generating space X is made
up of one element of degree n� 2 in arity n, for n� 2. The boundary of each
generator is given, according to some orientation, by the set of planar trees with
2 vertices. These polytopes are called the associahedra, or the Stasheff polytopes
after Jim Stasheff [1963a; 1963b]. (They also correspond to the Hasse diagrams
of the Tamari lattices [1951] made up of planar binary trees with the partial order
generated by the covering relation � . We could also use the little intervals
operad to get a topological resolution of Mon.)

Definition (operad A1). We define the dgns operad

A1 WD .C
cell
�
.T .X//; d/

by the image, under the cellular chain functor, of the aforementioned free topo-
logical resolution T .X/ of the ns operad Mon.
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Theorem 13 (resolution A1). The dgns operad A1 provides the following
quasifree resolution of As:

A1 D
�
T
�

; ; ; : : :
�
; d
�
�!� As;

where the boundary condition for the top dimensional cells translates into the
following differential:

Proof. Since the topological ns operad T .X/ is homotopy equivalent to Mon,
the dgns operad A1 is quasiisomorphic to As. �

Last step of the method explained in the introduction: an algebra over the
resolution A1 of As is an A1-algebra, as defined in Section 1.3. Indeed, a
morphism of dgns operads

A1 D
�
T
�

; ; ; : : :
�
; d
�
! .EndV ; @/

is characterized by the images of the generators, which give here a family of
operations �n W V ˝n! V of degree n� 2, for any n � 2. The commutativity
of the differentials applied to the generators amounts precisely to the relations
given in Section 1.3 of an A1-algebra. Finally, this section answers Question (1)
raised at the end of Section 1.

Definition (operadic syzygies). The generating elements X of a quasifree reso-
lution T .X/ are called the operadic syzygies.

The problem of finding a quasifree resolution for an operad is similar to the
problem of finding a quasifree resolution

� � � ! A˝M2! A˝M1! A˝M0�M

for a module M over a commutative ring A in algebraic geometry; see [Eisenbud
2005]. In this case, the generating elements fMngn�0 of the free A-module form
the classical syzygies.

As in the classical case of modules over a commutative ring, we have in-
troduced here a first syzygy corresponding to the generator of As. Then, we
have introduced a second syzygy for the relation of As. The third syzygy was
introduced for the relations among the relations, etc. This iterative process
is called the Koszul–Tate resolution after Jean-Louis Koszul [1950] and John
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Tate [1957]. (It was successfully used to compute the BRST cohomology in
mathematical physics [Henneaux and Teitelboim 1992] and to compute rational
homotopy groups in rational homotopy theory [Sullivan 1977].)

Remark. One can develop the homotopy theory for dg operads by endowing this
category with a model category structure; see [Quillen 1967; Hinich 1997; Berger
and Moerdijk 2003]. The conceptual reason why the category of algebras over a
quasifree operad behaves well with respect to homotopy data is that quasifree
operads are cofibrant, the general notion for being projective. (This is actually
true over nonnegatively graded chain complexes. In general, one has to require
the existence of a good filtration on the syzygies standing for the generators, the
relations, the relations among the relations, etc.)

The Koszul–Tate method works step by step. We would like now to be able to
produce all the syzygies at once.

3.3. Ideal, quotient operad and quadratic operad. As well as for unital asso-
ciative algebras, operads admit ideals and quotient operads.

Definition (operadic ideal). A sub-S-module I � P of an operad is called an
operadic ideal if the operadic compositions satisfy 
.�I �1; : : : ; �k/ 2 I, when
at least one of the �; �1; : : : ; �k is in I.

Exercise 17. Show that, in this case, the quotient S-module P=I carries a unique
operad structure which makes the projection of S-modules P� P=I into an
operad morphism.

For any sub-S-module R of an operad P , there exists a smallest ideal containing
R. It is called the ideal generated by R and denoted .R/.

The free operad T .E/ admits a weight grading T .E/.k/ given by the number
of vertices of the underlying tree.

Definition (quadratic data and quadratic operad). A quadratic data .EIR/ con-
sists of an S-module E and a sub-S-module R � T .E/.2/. It induces the
quadratic operad

P.EIR/ WD T .E/=.R/:

Examples. ˘ The algebra of dual numbers D D T .Kı/=.ı2/ of Section 2.1 is a
quadratic algebra, and thus a quadratic operad concentrated in arity 1.

˘ The ns operad As admits the quadratic presentation

As Š P
�
I

�
;

with one binary generator. Indeed, the free ns operad T . / resumes to planar
binary trees and, under the relation among the subtrees , the planar binary
trees with the same number of leaves identify to one another.
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˘ In the same way, the operad Com admits the quadratic presentation

ComŠ P

0@ I ;

1A ;
with one binary generator invariant under the action of S2.

˘ The operad Lie is defined by the quadratic data

Lie WD P

0@ I

1A :
˘ The presentation of the operad Ger encoding Gerstenhaber algebras, given in
Section 2.5, is quadratic.

˘ In the same way, there exists a notion of free properad, explicitly given by
labelled directed connected graphs. Properadic ideals and quotient are defined
similarly; see [Vallette 2007] for more details. The category of Lie bialgebras,
introduced by Vladimir Drinfeld [1987], is encoded by the quadratic properad
BiLie WD P.EIR/, where

E WD

(
;

)
with skew-symmetric action of S2 in both cases, and where

R WD8̂<̂
: ; ;

9>>=>>; :
An involutive Lie bialgebra is a Lie bialgebra satisfying the following extra
“diamond” condition:

:

Such a structure can be found in string topology; see [Chas and Sullivan 1999].
The properad BiLie˘ encoding involutive Lie bialgebras is quadratic.
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˘ In any symmetric Frobenius algebra, one can dualize the product via the
nondegenerate bilinear form to define a cocommutative coproduct. This gives
rise to the notion of Frobenius bialgebra, which is encoded by the following
quadratic properad:

Frob WD P
�

; I ; ; ;
�
:

Exercise 18. Show that the properad Frob is graded by the genus of the underly-
ing graphs. Prove that the component Frobg.n;m/ of genus g, with n inputs and
m outputs, is one dimensional. Then, make the properadic composition maps
explicit.

An involutive Frobenius bialgebra is a Frobenius bialgebra satisfying the extra
“diamond” condition: . The associated properad admits the following quadratic
presentation :

Frob˘ WD P
�

; I ; ; ; ;
�
:

Exercise 19. Show that in the properad Frob˘, the composite of operations along
graphs of genus greater or equal than 1 vanishes. Prove that the component
Frob˘.n;m/ with n inputs and m outputs is one dimensional. Then, make the
properadic composition maps explicit.

Definition (quadratic-linear operad). A quadratic-linear operad is a quotient
operad P.EIR/ WD T .E/=.R/ generated by a quadratic-linear data .EIR/:

R �E˚ T .E/.2/:

Examples. ˘ The universal enveloping algebra

U.g/ WD T .g/=.x˝y �y˝ x� Œx; y�/

of a Lie algebra g is a quadratic-linear algebra.

˘ The Steenrod algebra A2 is the quadratic-linear algebra

A2 WD A.fSqigi�1; RAdem/

over the characteristic 2 field F2, where jSqi j D i and where RAdem stands for
the Adem relations:

SqiSqj D

�
j � 1

i

�
SqiCj C

Œi=2�X
kD1

�
j � k� 1

i � 2k

�
SqiCj�kSqk;

for i; j > 0 with i < 2j .
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˘ A Batalin–Vilkovisky algebra is a Gerstenhaber algebra equipped with an extra
square-zero unary operator � of degree C1 satisfying the following quadratic-
linear relation: the bracket is the obstruction to � being a derivation with respect
to the product �

h - ; - i D �. - � -/ � .�. -/ � -/ � . - ��. -//:

So, the operad BV encoding Batalin–Vilkovisky algebras is a quadratic-linear
operad.

Exercise 20. Show that any operad admits a quadratic-linear presentation.

Definition (quadratic-linear-constant operad). A quadratic-linear-constant op-
erad is a quotient operad P.EIR/ WD T .E/=.R/ generated by a quadratic-
linear-constant data .EIR/:

R � KI˚E˚ T .E/.2/:

Examples. ˘ Let V be symplectic vector space, with symplectic form ! W

V ˝2! K. Its Weyl algebra is the quadratic-linear-constant algebra defined by

W.V; !/ WD T .V /=.x˝y �y˝ x�!.x; y//:

In the same way, let V be a quadratic space, with quadratic form q W V ! K. Its
Clifford algebra is the quadratic-linear-constant algebra defined by

Cl.V; q/ WD T .V /=.x˝ x� q.x//:

˘ The nonsymmetric operad uAs admits the following quadratic-linear-constant
presentation:

uAs Š P
�
; I ; ;

�
;

where the arity 0 generator encodes the unit.

˘ The properad uFrob encoding unital and countial Frobenius bialgebras admits
the following quadratic-linear-constant presentation:

uFrob WD

P
�
; ; I

; ; ; ; ; ; ;
�

This notion classifies 2-dimensional topological quantum field theories [Kock
2004].
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Exercise 21. Let E be an S-module and let R be a sub-S-module of T .E/. We
consider the category of operads T .E/!P under T .E/ such that the composite
R� T .E/!P is zero. A morphism in this category is a morphism of operads
P // Q such that the diagram

T .E/ //

""

P

��
Q

is commutative. Show that the quotient operad P.EIR/ D T .E/=.R/ is the
initial object of this category.

3.4. Koszul duality theory. The Koszul duality theory first applies to operads
having a quadratic presentation

P WD P.EIR/D T .E/=.R/; R � T .E/.2/:

Working in the opposite category of vector spaces, that is changing the orientation
of every map, one defines the notion of a cooperad. Dually, the quadratic data
.EIR/ induces a quadratic cooperad, which, in the Koszul case, provides all the
syzygies as follows.

Definition (nonsymmetric cooperad). A nonsymmetric cooperad is an N-module
fCngn2N equipped with counital and coassociative decomposition maps

�i1;:::;ik W Ci1C���Cik ! Ck˝ Ci1 ˝ � � �˝ Cik :

The notion of (symmetric) cooperad takes care of the symmetric groups action.
Dualizing the partial compositions, one gets partial decompositions

�.1/ W C! T .C/.2/;

which splits elements of C into two.

Exercise 22. Show that the linear dual P WD C� of a nonsymmetric cooperad is
a nonsymmetric operad. Give an example of a nonsymmetric operad P whose
linear dual P� is not a nonsymmetric cooperad with the dual decomposition
maps. Give a sufficient finite dimensional condition on P for C WD P� to be a
nonsymmetric cooperad.

One can dualize the definition of the free operad to get the notion of the
cofree cooperad T c.E/; see [Loday and Vallette 2012, Section 5:7:7] for more
details. It shares the same underlying labeled-tree module as the free operad,
with the decomposition maps given by the pruning of trees. (Since the notion
of a cooperad is not the exact linear dual of the notion of an operad, as the
above exercise shows, this cooperad only satisfies the universal property of the
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cofree cooperad only among connected cooperads, that is cooperads for which
the iteration of the decomposition maps produces only finite sums (loc. cit.).

Let .E;R/ be a quadratic data, we consider the category dual to the one
introduced in Exercise 21: this is the category of cooperads C! T c.E/ over
T c.E/ such that the composite C! T c.E/� T c.E/.2/=R is zero.

Definition (quadratic cooperad). The quadratic cooperad C.EIR/ is the termi-
nal object in the aforementioned category.

Definition (Koszul dual cooperad). The Koszul dual cooperad is the quadratic
cooperad

P ¡
WD C.sEI s2R/;

where s stands for the degree C1 suspension shift.

Theorem 14 (Koszul duality theory [Ginzburg and Kapranov 1994; Getzler and
Jones 1994]). To any quadratic data .EIR/, there is a morphism of dg operads

P1 WD
�
T .s�1P ¡

/; d2
�
�! P.EIR/;

where P ¡
WD P ¡=I and where d2 is the unique derivation which extends the

cooperad structure on P ¡.

Definition. A quadratic operad P is called a Koszul operad, when the above
map is a quasiisomorphism.

In this Koszul case, all the syzygies and the differential map of the resolution
are produced at once by the quadratic data under the universal property of a
quadratic cooperad. There are many methods for proving that P is a Koszul
operad; we will give an elementary one in the next section.

The careful reader might object that it is not a common task to compute a
quadratic cooperad, though this is the proper conceptual object which produces
all the syzygies. In general, one proceeds as follows. We consider the Koszul
dual operad P Š defined as (some desuspension of) the linear dual of the Koszul
dual cooperad P ¡�. Exercise 22 shows that P ¡� is always an operad.

Proposition 15 (Koszul dual operad [Ginzburg and Kapranov 1994; Getzler and
Jones 1994]). When the generating space E is finite dimensional, the Koszul
dual operad admits the quadratic presentation

P Š Š P.E_IR?/;

where E_ DE.2/�˝ sgnS2
, when E is concentrated in arity 2 and degree 0.

Finally, the method consists in computing the Koszul dual operad, via this
formula, and linearizing the result to get the space of syzygies together with the
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differential. (For more details on how to compute R?, we refer the reader to
[Loday and Vallette 2012, Section 7:6].)

Examples. ˘ The algebra DŠ, Koszul dual to the algebra of dual numbers
D WD T .ı/=.ı2/, is the algebra of formal series in one variable DŠ D KŒŒ„��.
The coalgebra D¡, Koszul dual to the algebra of dual numbers D, is the cofree
coassociative coalgebra T c.sı/ on one generator. The algebra of dual numbers
is Koszul. A D1-module, also know as multicomplex in the literature, is a chain
complex .A; d/ equipped with linear maps

dn W A! A; for n� 1; jdnj D n� 1;

such that the following identities hold:

ddnC .�1/
ndnd D

X
iCjDn
i;j�1

.�1/ididj for any n� 1:

˘ The orthogonal R?As of the associativity relation of the ns operad As is again
generated by the associator

thanks to the signs and the suspensions. So the ns operad As is Koszul autodual:
AsŠDAs. Finally the Koszul resolutionA1�!� As coincides with the resolution
given in Section 3.2.

˘ The presentations of the operads Lie and Com, given in Section 3.3, show that
LieŠ Š Com. The operad Lie is Koszul; see next section.
A homotopy Lie algebra, also called an L1-algebra, is a dg module .A; d/
equipped with a family of skew-symmetric maps `n W A˝n ! A of degree
j`nj D n� 2, for all n� 2, which satisfy the relationsX

pCqDnC1
p;q>1

X
�2Sh�1

p;q

sgn.�/.�1/.p�1/q. p̀ ı1 `q/� D @.`n/;

where Shp;q stands for the set of .p; q/-shuffles, that is permutations � 2 SpCq

such that
�.1/ < � � �< �.p/ and �.pC 1/ < � � �< �.pC q/:

Exercise 23. Let .A; d; f�ngn�2/ be an A1-algebra structure on a dg module
A. Show that the antisymmetrized maps `n W A˝n! A, given by

`n WD
X
�2Sn

sgn.�/�n� ;
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endow the dg module A with an L1-algebra structure.

Hint. Use the morphism of cooperads Lie¡
! Ass¡ induced by the morphism of

operads Lie! Ass.

˘ The presentations of the operads Com and Lie show that ComŠ Š Lie. The
operad Com is Koszul; see next section.

A homotopy commutative algebra, also called aC1-algebra, is anA1-algebra
.A; d; f�ngn�2/ such that each map �n W A˝n! A vanishes on the sum of all
.p; q/-shuffles for pCq D n. This is proved by considering the epimorphism of
cooperads Ass¡� Com¡ and by showing that its kernel is given by the sum of
the shuffles (Ree’s Theorem [1958]).

˘ The operad GerŠ, Koszul dual to the operad Ger encoding Gerstenhaber
algebras, is equal to Ger, up to some suspension. The notion of G1-algebra is
made explicit in [Gálvez-Carrillo et al. 2012, Section 2:1].

˘ The Koszul duality theory was extended to properads in [Vallette 2007]. The
properads BiLie and Frob˘ are sent to one another under the Koszul dual functor.
In the same way, the properads BiLie˘ and Frob are sent to one another:

BiLie
Š
 ! Frob˘ and BiLie˘

Š
 ! Frob:

One can prove, by means of distributive laws, that the properads BiLie and Frob˘
are Koszul. It is still an open conjecture to prove that the properads BiLie˘ and
Frob are Koszul.

This theory defines the notion of homotopy Lie bialgebra (resp. homotopy invo-
lutive Lie bialgebra). One makes it explicit by using that the coproperad structure
on Frob�˘ (resp. on Frob�) is obtained by dualizing the result of Exercise 19
(resp. Exercise 18); see [Merkulov 2006b] (resp. [Drummond-Cole et al. 2010])
for more details.

This theory also defines the notion of homotopy Frobenius bialgebra and
homotopy involutive Frobenius bialgebra, whose explicit form is more involved.

When the operad P WD P.EIR/ admits a quadratic-linear presentation, R �
E˚ T .E/.2/, we first consider the homogeneous quadratic operad

qP WD P.E; qR/;

where qR is the image of R under the projection q W T .E/� T .E/.2/. On the
Koszul dual cooperad qP ¡, we define a square-zero coderivation d' , which takes
care of the inhomogenous relations. The Koszul dual dg cooperad P ¡ of P is
define by the dg cooperad .qP ¡; d'/.
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Theorem 16 (inhomogeneous Koszul duality theory [Gálvez-Carrillo et al.
2012]). For any quadratic-linear data .EIR/, there is a morphism of dg operads

P1 WD
�
T .s�1qP ¡

/; d1C d2
�
�! P.EIR/;

where d1 is the unique derivation which extends d' .

A quadratic-linear operad P is called a Koszul operad, when the above map
is a quasiisomorphism. This happens when the generating space E is minimal,
when the space of relations R is maximal and when the homogeneous quadratic
operad qP is Koszul.

Examples. ˘ The Koszul dual dga coalgebra of the universal enveloping algebra
U.g/ is the following dga coalgebra

U.g/¡ Š .ƒc.sg/; dCE /;

whereƒc stands for the cofree exterior coalgebra and where dCE is the Chevalley–
Eilenberg boundary map defining the homology of the Lie algebra g.

˘ The linear dual of the Koszul dual dga coalgebra of the Steenrod algebra A2
is a dga algebra, which is antiisomorphic to the ƒ algebra of [Bousfield et al.
1966]. Notice that its homology gives the second page of the Adams spectral
sequence which computes homotopy groups of spheres.

The examples of the Steenrod algebra and the universal enveloping algebra of
a Lie algebra prompted the Koszul duality theory, which was created by Stewart
Priddy [1970] for associative algebras.

˘ The operad BV is an inhomogeneous Koszul operad; see [Gálvez-Carrillo
et al. 2012], with Koszul dual dg cooperad

BV ¡
Š .T c.s�/˝Ger¡; d'/:

The dual td' of the differential is equal to .s�/� ˝ dCE , where dCE is the
Chevalley–Eilenberg boundary map defining the homology of the free Lie algebra.
The notion of BV1-algebra is made explicit in [Gálvez-Carrillo et al. 2012,
Section 2:3].

When the operad P WD P.EIR/ admits a quadratic-linear-constant presentation
R � KI ˚ E ˚ T .E/.2/, we endow the Koszul dual cooperad qP ¡ with a
coderivation d' W qP ¡! qP ¡, which takes care of the linear part of the relations,
and with a curvature � W qP ¡! KI, which takes care of the constant part of the
relations. All together, these two maps satisfy the same relations as the curvature
in geometry.
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Theorem 17 (curved Koszul duality theory [Hirsh and Millès 2012]). For any
quadratic-linear-constant data .EIR/, there is a morphism of dg operads

P1 WD
�
T .s�1qP ¡

/; d0C d1C d2
�
�! P.EIR/;

where d0 is the unique derivation which extends the curvature � .

A quadratic-linear-constant operad P is called a Koszul operad, when the
above map is a quasiisomorphism. This happens under the same conditions as
in the quadratic-linear case. Notice that, in this curved case, the Koszul dual
cooperad .qP ¡; d' ; �/ is not a dg object, whereas the Koszul resolution P1 is a
dg operad.

Examples. ˘ The curved Koszul duality theory was settled for algebra in [Posit-
selski 1993; Polishchuk and Positselski 2005], where the examples of the Weyl
algebras and the Clifford algebras are treated.

˘ The nonsymmetric operad uAs is treated in detail in [Hirsh and Millès 2012]
and is proved therein to be Koszul. A homotopy unital associative algebra, or
uA1-algebra, is a dg module .A; d/ equipped with a family of mapsn

�Sn D W A˝.n�jS j/! A; j�Sn j D n� 2CjS j
o
;

where the set S runs over the subsets of f1; : : : ; ng for any integer n � 2, and
where S D f1g, for nD 1. We choose to represent them by planar corollas with
n leaves and with the inputs in S labelled by a “cork”. They satisfy the following
relations:

; ;

:

This notion of a uA1-algebra, obtained by the Koszul duality theory, coincides
with the notion of anA1-algebra with a homotopy unit given and used in [Fukaya
et al. 2009a; 2009b]. The associated topological cellular operad was recently
constructed by F. Muro and A. Tonks [2011].

˘ No Koszul resolution have been proved, so far, for the properad uFrob. How-
ever, Joseph Hirsh and Joan Millès [2012] introduced a bar-cobar resolution of it
(of curved origin).
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3.5. Rewriting method. In this section, we explain the rewriting method, which
provides a short algorithmic method, based on the rewriting rules given by the
relations, to prove that an operad is Koszul.

Let us first explain the rewriting method for binary quadratic nonsymmetric
operads P.EIR/, with the example of the ns operad As in mind.

Step 1. We consider an ordered basis �1 < �2 < � � � < �k for the generating
space E2 of binary operations.

Example. The ns operad As is generated by one operation of arity 2: .

Step 2. The weight 2 part of the free ns operad T .E/ is spanned by the left
combs �i ı1 �j and by the right combs �i ı2 �j . We consider the following
total order on this set:8̂<̂

:
�i ı2 �j < �i ı1 �j ; for any i; j;

�i ıa �j < �k ıa �l ; whenever i < k; aD 1or 2; and for any j; l;

�i ıa �j < �i ıa �l ; whenever j < l; aD 1 or 2:

The operad P is determined by the space of relations R, which is spanned by a
set of relators written in this basis as

r D ��i ıa �j �
X

�
i;a;j

k;b;l
�k ıb �l ; �; �

i;a;j

k;b;l
2 K and �¤ 0;

where the sum runs over the indices satisfying �i ıa�j >�kıb�l . The operation
�i ıa �j is called the leading term of the relator r . One can always suppose that
� is equal to 1, that the leading terms of the set of relators are all distinct and
that there is no leading term of any other relator in the sum on the right side.
This is called a normalized form of the presentation.

Example. There is only one relator in As:

r D :

Step 3. Every relator gives rise to a rewriting rule in the operad P:

�i ıa �j 7!
X

�
i;a;j

k;b;l
�k ıb �l :

Example.

Given three generating binary operations �i ; �j ; �k , one can compose them
in 5 different ways: they correspond to the 5 planar binary trees with 3 vertices.
Such a monomial, i.e., decorated planar tree, is called critical if the two subtrees
with 2 vertices are leading terms.



ALGEBRA + HOMOTOPY = OPERAD 269

Example. For the nonsymmetric operad As, the left comb is the only following
critical monomial.

Step 4. There are at least two ways of rewriting a critical monomial ad libitum,
that is, until no rewriting rule can be applied any more. If all these ways lead to
the same element, then the critical monomial is said to be confluent.

Example. The critical monomial of As gives rise to the confluent graph.

Conclusion. If every critical monomial is confluent, then the ns operad P is
Koszul.

Exercise 24. Consider the same example but with the modified associativity
relation

D 2 :

Show that the only critical monomial is not confluent. (It can be proved that this
ns operad is not Koszul.)

The general method holds for quadratic operads P.EIR/ as follows. We
forget the symmetric group action and we consider a K-linear ordered basis
�1 <�2 < � � �<�k for the generating space E. Then, the only difference lies in
Step 2, where one has to use a good basis for the free operad T .E/. To this end,
we introduce the set T� of shuffle trees , which are planar rooted trees equipped
with a bijective labeling of the leaves by integers f1; 2; : : : ; ng satisfying the
following condition. First, we label each edge by the minimum of the labels of
the inputs of the above vertex. Secondly, we require that, for each vertex, the
labels of the inputs, read from left to right, are increasing. See Figure 5.



270 BRUNO VALLETTE

Figure 5. A shuffle tree.

Proposition 18 (shuffle tree basis [Hoffbeck 2010; Dotsenko and Khoroshkin
2010]). The set T�.f1; 2; : : : ; kg/ of shuffle trees with vertices labelled by
1; 2; : : : ; k forms a K-linear basis of the free operad T .E/.

We then consider a suitable order on shuffle trees, that is a total order, which
makes the partial compositions into strictly increasing maps. For instance, the
path-lexicographic order, defined in [Hoffbeck 2010], is a suitable order. On
binary shuffle trees with 2 vertices, it is given by

2 3

1 1

1

<

2 3

1 2

1

< � � � <

2 3

1 k

1

<

2 3

1 1

2

< � � � <

2 3

1 k

k

<

1 3

1 2

1

<

1 2

1 3

1

<

1 3

2 2

1

< � � �

The rewriting method relies on the following result.

Theorem 19 (rewriting method). Let P.EIR/ be a quadratic (resp. nonsym-
metric) operad. If its generating space E admits an ordered basis, for which
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there exists a suitable order on shuffle (resp. planar) trees such that every critical
monomial is confluent, then the (resp. nonsymmetric) operad P is Koszul.

Proof. This theorem is proved by a version of the diamond lemma of George M.
Bergman [1978] for operads; see [Dotsenko and Khoroshkin 2010] and [Loday
and Vallette 2012, Chapter 8]. �

Exercise 25. Apply the rewriting method to the operad Lie to show that it is
Koszul. First, prove that, under the path-lexicographic order, the Jacobi relation
becomes the following rewriting rule:

Finally, show that there is only one critical monomial, which is confluent:

Remark. Notice that the graph given here is a compact version of the full
rewriting graph of the operad Lie. There is another way to draw this rewriting
diagram, which gives the Zamolodchikov tetrahedron equation. It leads to the
categorical notion of Lie 2-algebra; see [Baez and Crans 2004, Section 4].

Exercise 26. Apply the rewriting method to the operad Com, to show that it is
Koszul.
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When the rewriting method applies, the operad P admits a K-linear basis made
up of some planar trees called a Poincaré–Birkhoff–Witt basis, or PBW basis.
The PBW basis is given by the set of shuffles (resp. planar) trees with vertices
labelled by 1; 2; : : : ; k such that no subtree with 2 vertices is a leading term.

Examples. ˘ The ns operad As admits a PBW basis made up of the right combs:

It is interesting to notice that one recovers exactly Mac Lane’s coherence theorem
[Mac Lane 1971] for (nonunital) monoidal categories. This is not a so big surprise
since both actually relies on the Diamond Lemma. With this remark in mind,
the reading of [Mac Lane 1995, Section VII-2] enjoys another savor.

˘ The MRn-trees, defined in Section 2.4, form the PBW basis of the operad
Lie. It appears quite often in the literature when one wants to prove that some
representation of the symmetric group, coming either from algebraic topology or
algebraic combinatorics, is isomorphic to Lie.n/; see for instance [Cohen et al.
1976; Robinson and Whitehouse 2002; Tourtchine 2006; Salvatore and Tauraso
2009].

The notion of operadic PBW basis provides a special basis for quotient operads
P.EIR/D T .E/=.R/. It was introduced by Eric Hoffbeck [2010]. The dual
notion of Gröbner basis for the operadic ideal .R/ was introduced by Vladimir
Dotsenko and Anton Khoroshkin [2010].

4. Homotopy transfer theorem

The purpose of this section is to extend all the results given in Section 1 on the
level of associative algebras to any category of algebras over a Koszul operad
P . We first state a Rosetta stone, which gives four equivalent definitions of
a P1-algebra. The homotopy transfer theorem can be proved with the third
equivalent definition and the notion of an1-morphism is defined with the fourth
one. This provides us with all the necessary tools to study the homotopy theory
of P1-algebras.

4.1. The Rosetta stone for homotopy algebras. In this section, we give three
other equivalent definitions of a P1-algebra.

Let C be a dg cooperad and let Q be a dg operad. Their partial compositions
and decompositions endow the space of S-equivariant maps

HomS.C;Q/ WD
Y
n2N

HomSn
.C.n/;Q.n//



ALGEBRA + HOMOTOPY = OPERAD 273

with a dg Lie algebra structure .HomS.C;Q/; Œ ; �; @/, called the convolution
algebra.

Definition (twisting morphism). A twisting morphism ˛ is a solution ˛ W C!Q
of degree �1 to the Maurer–Cartan equation

@.˛/C 1
2
Œ˛; ˛�D 0

in the convolution dg Lie algebra. The associated set is denoted by Tw.C;Q/.

This notion is sometimes called twisting cochain in algebraic topology. This
bifunctor can be represented both on the left-hand side and on the right-hand
side by the following bar-cobar adjunction.

� W (augmented) dg cooperads• (conilpotent) dg operads W B:

Definition (bar and cobar constructions). The bar construction BQ of an (aug-
mented) dg operad .Q; dQ/ is the dg cooperad

BQ WD .T c.sQ/; d1C d2/;

where d1 is the unique coderivation which extends dQ and where d2 is the
unique coderivation which extends the partial compositions of the operad Q. (An
augmented operad is an operad such that QŠ I˚Q is a morphism of operads).

The cobar construction �C of a (coaugmented) dg cooperad .C; dC/ is the dg
operad

� C WD .T .s�1C/; d1C d2/;

where d1 is the unique derivation which extends dC and where d2 is the unique
derivation which extends the partial decompositions of the cooperad C.

Notice that the Koszul resolution of Section 3.4 is given by the cobar construction
of the Koszul dual cooperad:

P1 D�P ¡:

We apply the preceding definitions to the dg cooperad C WD P ¡ and to the dg
operad Q WD EndA. Let us begin with

HomS.P ¡;EndA/

D

Y
n2N

HomSn
.P ¡.n/;Hom.A˝n; A//Š Hom

�M
n2N

P ¡.n/˝Sn
A˝n; A

�
:

We denote by P ¡.A/ WD
L
n2N P ¡.n/˝Sn

A˝n; this is the cofree P ¡-coalgebra
structure on A. Since coderivations on cofree P ¡-coalgebras are completely
characterized by their projection P ¡.A/ ! A onto the space of generators,
we get HomS.P ¡;EndA/ Š Coder.P ¡.A//. Under this isomorphism, twisting
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morphisms correspond to square-zero coderivations, that we call codifferentials
and the set of which we denote Codiff.P ¡.A//.

Theorem 20 (Rosetta stone). The set of P1-algebra structures on a dg module
A is equivalently given by

Homdg Op.�P ¡; EndA/„ ƒ‚ …
.definition/

Š Tw.P ¡; EndA/ .deformation theory/

Š Homdg Coop.P ¡; B EndA/ .HTT/

Š Codiff.P ¡.A// .1-morphism/

We indicated which equivalent definition suits which question best. The first
one was used in Section 3 to define P1-algebras. The second one is used to
study the deformation theory of P-algebras and P1-algebras; see [Loday and
Vallette 2012, Section 12:2]. The third one will be used in Section 4.3 to state
the Homotopy Transfer Theorem (HTT). We are going to use the fourth one in
the next section to define the notion of an1-morphism between P1-algebras.

Exercise 27. Describe the aforementioned four equivalent definitions in the case
of A1-algebras.

Hint. The Koszul resolution�As¡ was described in Section 3.2. The convolution
dg Lie algebra Tw.As¡; EndA/ is the Hochschild cochain complex together with
the Gerstenhaber bracket [1963]. Finally, the data of an A1-algebra structure on
A is equivalently given by a square-zero coderivation on the noncounital cofree
coassocative coalgebra T c.sA/.

Exercise 28. Describe the aforementioned four equivalent definitions in the case
of L1-algebras.

Hint. The Koszul resolution�Lie¡ was described in Section 3.4. The convolution
dg Lie algebra Tw.Lie¡; EndA/ is the Chevalley–Eilenberg cochain complex
together with the Nijenhuis–Richardson bracket [1966; 1967]. Finally, the
data of an L1-algebra structure on A is equivalently given by a square-zero
coderivation on the noncounital cofree cocommutative coalgebra Sc.sA/.

4.2. 1-morphism. We use the fourth definition given in the Rosetta stone to
define a notion of morphisms between P1-algebras with nice properties.

Definition (1-morphism). Let A and B be two P1-algebras. An1-morphism
A B between A and B is a morphism P ¡.A/! P ¡.B/ of dg P ¡-coalgebras.

Two such morphisms are obviously composable and the associated category is
denoted1-P1-alg.

Exercise 29. Show that, in the case of the ns operad As, ones recovers the
definition of an A1-morphism given in Section 1.6.
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Exercise 30. Make explicit the notion of1-morphism between L1-algebras.
This notion is called L1-morphism in the litterature.

As a morphism to a cofree P ¡-coalgebra, an1-morphism is completely char-
actrized by its projection P ¡.A/ ! B onto the space of generators. Such a
data is equivalent to giving a morphism of S-modules P ¡ ! EndAB , where
EndAB WD fHom.A˝n; B/gn2N. The commutativity of the respective codifferen-
tials translates into some relation satisfied by this latter map P ¡! EndAB .

Exercise 31. Make this relation explicit in terms of the decomposition maps and
the partial decompositions of the cooperad P ¡.

For any1-morphism f W A B , the image of I 2 P ¡ produces a chain map
f1 W A! B .

Definition (1-isomorphism and1-quasiisomorphism). When the map f1 is
an isomorphism (resp. a quasiisomorphism), the1-morphism f is called an
1-isomorphism (resp. an1-quasiisomorphism).

Proposition 21. The1-isomorphisms are the invertible morphisms of the cate-
gory1-P1�alg.

Proof. We use the weight grading on the Koszul dual cooperad P ¡ � T c.sE/.
The proof is then similar to the proof that power series a1xC a2x2C � � � with
invertible first term are invertible. �

4.3. Homotopy transfer theorem. We now have all the tools to prove the fol-
lowing result, with explicit constructions.

Theorem 22 (homotopy transfer theorem [Gálvez-Carrillo et al. 2012]). Let P
be a Koszul operad and let .H; dH / be a homotopy retract of .A; dA/:

.A; dA/h
%% p //

.H; dH /
i

oo

IdA� ip D dAhC hdA and i quasiisomorphism:

Any P1-algebra structure on A can be transferred into a P1-algebra structure
on H such that i extends to an1-quasiisomorphism.

Remark. The existence part of the theorem can also be proved by model category
arguments; see [Berger and Moerdijk 2003; Fresse 2009].

Proof. The proof is based on the third definition Homdg Coop.P ¡; B EndA/ of the
Rosetta stone together with a morphism of dg cooperads ‰ W B EndA! B EndH ,
described by

Homdg Coop.P ¡; B EndA/
‰�
��! Homdg Coop.P ¡; B EndH /;

and taking an initial structure � to the transferred structure �D‰ ı �. �
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Lemma 23 [Van der Laan 2003, Theorem 5:2]. Let .H; dH / be a homotopy
retract of .A; dA/. The unique morphism of cooperads that extends the morphism
 W T c.sEndA/! EndH , namely

,

is a morphism of dg cooperads ‰ W B EndA ! B EndH between the cobar
constructions.

Explicitly, under the identification Tw.P ¡; EndA/ŠHomdg Coop.P ¡; B EndA/,
if � W P ¡! EndA denotes the initial P1-algebra on A, then the transferred P1-
algebra � W P ¡! EndH on H is equal to the composite

P ¡
�P¡
���! T c.P ¡/

T c.s�/
�����! T c.sEndA/

 
�! EndH ;

.type of algebra/ .initial structure/ .homotopy data/

where the first map �P¡ W P ¡! T c.P ¡/ is given by all the possible iterations
of the partial decomposition maps of the cooperad P ¡. This composite is made
up of 3 independent terms corresponding respectively to the type of algebraic
structure considered, to the initial algebra structure, and to the homotopy data.

Examples. ˘ In the example of the ns operad As, its Koszul dual cooperad is
the linear dual As�, up to suspension. So, the full decomposition map �As� W
As�! T c.As�/ produces all the planar trees out of any corolla:

The second map labels their vertices with the initial operations f�ngn�2 according
to the arity. The third map labels the inputs by i , the internal edges by h, and
the root by p. Finally, we get the formula given in Theorem 4.

˘ The Koszul dual cooperad Lie¡
D Com� of the operad Lie is the linear dual

of Com, up to suspension. So, the full decomposition map �Com� W Com� !
T c.Com�/ splits any corolla into the sum of all rooted trees. If

f`n W A
˝n
! Agn�2
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stands for the initial L1-algebra structure on A, then the transferred L1-algebra
structure fln W H˝n!H gn�2 is equal to

ln D
X
t2RTn

˙p t.`; h/ i˝n;

where the sum runs over rooted trees t with n leaves and where the notation
t .`; h/ stands for the n-multilinear operation on A defined by the composition
scheme t with vertices labeled by the operations `k and the internal edges labeled
by h.

˘Recall that aC1-algebra is anA1-algebra whose structure maps�n WA˝n!A

vanish on the sum of all .p; q/-shuffles for pC q D n. Using the morphism of
cooperads Ass¡

! Com¡ and the aforementioned boxed formula, we leave it to
the reader to prove that the planar tree formula for the transfer of A1-algebra
structures applies to C1-algebras as well. See [Cheng and Getzler 2008] for a
proof by direct computations.

˘ The data of a dg D-module is equivalent to the data of a bicomplex .A; d; ı/,
that is a module equipped with two anticommuting square-zero unary operators.
Considering the homotopy retract .H; dH / WD .H�.A; d/; 0/ of .A; d/, the trans-
ferred D1-module structure fdn WH !H gn�1 is a lifted version of the spectral
sequence associated to the bicomplex .A; d; ı/. Indeed, one can easily see that
the formula for the transferred structure

dn WD ˙p ı h ı h � � � ı h ı„ ƒ‚ …
n times ı

i

corresponds to the diagram-chasing formula [Bott and Tu 1982, Section 14]
giving the higher differentials of the spectral sequence. Such a formula goes
back it least to [Shih 1962].

˘ The great advantage with this conceptual presentation is that one can prove the
HTT for Koszul properads as well, using the very same arguments. The bar and
cobar constructions were extended to the level of properads in [Vallette 2007].
The only missing piece is a Van der Laan type morphism for graphs with genus
instead of trees. Such a morphism is given in [Vallette � 2014]. This settles the
HTT for homotopy (involutive) Lie bialgebras and for homotopy (involutive)
Frobenius bialgebras, for instance.

The quasiismorphism i WH �!� A extends to an1-quasiisomorphism Q{ WH � � A

defined by the same formula as the one giving the transferred structure but
replacing the map p labeling the root by the homotopy h.

Remark. The homotopy transfer theorem should not be confused with the
homological perturbation lemma. One can prove the HTT with it; see [Berglund
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2009]. The other way round, the HTT applied to the algebra of dual numbers
gives the perturbation lemma.

4.4. Homotopy theory of P1-algebras.

Theorem 24 (fundamental theorem of1-quasiisomorphisms [Loday and Vallette
2012]). If there exists an 1-quasiisomorphism A � � B between two P1-
algebras, then there exists an 1-quasiisomorphism in the opposite direction

B � � A, which is the inverse of H.A/
Š
�!H.B/ on the level on holomogy.

This is the main property of1-quasiisomorphisms, which does not hold for
quasiisomorphisms of dg P-algebras. These two notions of quasiisomorphisms
are related by the following property: there exists a zig-zag of quasiisomorphisms
of dg P-algebras if and only there exists a direct1-quasiisomorphism

9 A �� � �!� � �� � � � � � �!� B ” 9 A � � B:

Definition (homotopy equivalence). Two dg P-algebras (resp. two P1-algebras)
are homotopy equivalent if they are related by a zig-zag of quasiisomorphisms
of dg P-algebras (resp. by an1-quasiisomorphism).

The underlying homology groups H.A/ of any dg P-algebra A carry a natural
P-algebra structure. Moreover, the homotopy transfer theorem 22 allows us to
endow H.A/ with a P1-algebra structure, with trivial differential, and which
extends this induced P-algebra structure.

Definition (operadic Massey products). We call operadic Massey products the
operations making up this transferred P1-algebra structure on the homology
groups H.A/.

Definition (formality). A dg P-algebra .A; d/ is called formal if it is homotopy
equivalent to the P-algebra H.A/ equipped with the induced structure:

.A; d/ �� � �!� � �� � � � � � �!� .H.A/; 0/:

Proposition 25. If the higher operadic Massey products vanish, then the dg
P-algebra is formal.

Proof. The proof is a corollary of the HTT, Theorem 22. �

In other words, when the higher operadic Massey products vanish, the homol-
ogy P-algebra H.A/ has the same homotopy type as the initial dg P-algebra A.
To study the general case, we will need the following result.

Proposition 26 (rectification property [Dolgushev et al. 2007]). Any P1-algebra
A admits a dg P-algebra, denoted Rect.A/, which is1-quasiisomorphic to it

A � � Rect.A/:



ALGEBRA + HOMOTOPY = OPERAD 279

The rectification property together with the HTT provide us with two 1-
quasiisomorphisms

A H.A/
�oo � // Rect.A/ ;

where H.A/ is considered as a P1-algebra equipped with the operadic Massey
products. Therefore, the data of the operadic Massey products on the homology
groups allows us to recover the homotopy type of the initial dg P-algebra. So
the Massey products faithfully encode the homotopy type of A.

In the homotopy class of any P1-algebra .A; d/, there is a P1-algebraH.A/
with trivial differential, by the HTT, and there is a “strict” dg P-algebra Rect.A/,
by the Rectification property. In the first case, the underlying space is rather small
but the algebraic structure is more complex. In the latter case, the underlying
space is pretty big (one has to fatten A to get Rect.A/) but the algebraic structure
is simpler. We informally call this phenomenon the Heisenberg uncertainty
principle of homotopical algebra: in general, homotopy classes of P1-algebras
cannot be represented by two “small” data, space and structure, at the same time.

One can define a suitable notion of1-homotopy, denoted by �h, between
1-morphisms, which allows us to state the following result.

Theorem 27 (homotopy category [Vallette 2012]). The following categories are
equivalent:

Ho.dg P-alg/ Š 1�P1�alg=�h Š 1-dg P-alg=�h :

Proof. The first equivalence is proved by endowing the category of dg P ¡-
coalgebras with a model category structure. The last equivalence with the
category of dg P-algebras equipped with the 1-morphisms is given by the
Rectification property. �

4.5. Applications. We conclude with a nonexhaustive, but not so short, list of
fields where the aforementioned operadic homotopical algebra is used.

Algebra.

˘ Chevalley–Eilenberg cohomology of Lie algebras. The cohomology groups of
a Lie algebra g, with coefficients in S.g/ and the adjoint representation, carry
a homotopy BV -algebra structure [Drummond-Cole and Vallette 2013]. The
cohomology of the Lie algebra L1 of polynomial vector fields over the line K1

is a C1-algebra generated by H 1
CE .L1/ [Millionshchikov 2009].

˘ Bar construction. The bar construction for A1-algebras carries a natural
commutative BV1-algebra structure [Terilla et al. 2011].
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˘ Vertex algebras. The study of vertex algebras [Borcherds 1986] yields to
BV-algebras. Lian and Zuckerman [1993] conjectured that their structure of
BV-algebra on the homology groups of a Topological Vertex Operator Algebra
lifts to a homotopy BV-algebra structure on the TVOA itself. This was proved,
with explicit formulae, in [Gálvez-Carrillo et al. 2012].

˘ (Cyclic) Deligne conjecture. The (cyclic) Deligne conjecture states that the
(BV) Gersenhaber algebra structure on the Hochschild cohomology groups of an
(cyclic unital) associative algebra can be lifted to a homotopy (BV) Gersenhaber
algebra structure on the cochain level. This conjecture received several proofs
in [Tamarkin 1998; Voronov 2000; Kontsevich and Soibelman 2000; McClure
and Smith 2002; Berger and Fresse 2004; Kaufmann 2008; 2007; Tradler and
Zeinalian 2006; Costello 2007; Kontsevich and Soibelman 2009].

Deformation theory, quantum algebra, noncommutative geometry.

˘ Deformation-quantization of Poisson manifolds. The first proof of the defor-
mation-quantization of Poisson manifolds, given by Maxim Kontsevich [2003]
(see also [Weinstein 1995]), relies on an explicit L1-quasiisomorphism to prove
a formality result.

˘ Drinfeld associators, Grothendieck–Teichmüller group. The second proof of
the deformation-quantization of Poisson manifolds, given by Dimitry Tamarkin
[1998], relies on the homotopy properties of G1-algebras. It relies on the
obstruction theory; so it is less explicit than Kontsevich’s proof. It however
unveils the links with the Drinfeld associators and the GT groups.

˘ Cyclic homology. The cyclic homology of (unital) associative algebras can be
computed using various bicomplexes; see [Loday 1998]. This result can be made
more precise using the HTT for mixed complexes; see [Kassel 1990] where all
these bicomplexes are shown to be1-quasiisomorphic.

Algebraic topology.

˘ Massey products. The Massey products on the cohomology groups of a topo-
logical space are related to the operad A1; see Section 1.4.

˘Homotopy groups of spheres. The second page of the Adams spectral sequence
which computes the homotopy groups of spheres is equal to the homology of
the ƒ algebra, which is the Koszul dual dg algebra of the Steenrod algebra; see
[Bousfield et al. 1966].

˘ Spectral sequences. We have seen in Section 4.3 that spectral sequences
actually come from the HTT applied to the algebra of dual numbers. The
advantage of this point of view on bicomplexes versus spectral sequences, is
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that the HTT can be applied to bicomplexes equipped with a deformation retract
whose boundary map is not necessarily trivial. For instance, the cyclic bicomplex
of a unital associative algebra, which involves the boundary maps b; b0 and the
cyclic operator [Loday and Quillen 1984; Loday 1998], admits a deformation
retract made up of the columns involving only b. Applying the HTT to it gives
automatically Connes’ boundary map B . So we recover the fact that, in cyclic ho-
mology theory, the .b; B/-bicomplex is quasiisomorphic to the cyclic bicomplex.

˘ Iteration of the bar construction. The method proposed by Benoit Fresse
[2010] to iterate the bar construction for E1-algebras relies on the HTT for a
cofibrant E1-operad. (An E1-algebra is a homotopy version of a commuative
algebra, where both the associativity relation and the symmetry property are
relaxed up to higher homotopies).

˘ Rational homotopy theory. Minimal models in Dennis Sullivan’s approach
[1977] to rational homotopy theory are quasifree commutative algebras on the
rational homotopy groups of topological spaces endowed with anL1-(co)algebra
structure. In Dan Quillen’s approach to RHT [1969], the minimal models are
quasifree Lie algebras generated by the cohomology groups of the space endowed
with a C1-(co)algebra structure.

˘ String topology. String topology is full of higher structures, to name but a few:
Batalin–Vilkovisky algebra in loop homology [Chas and Sullivan 1999; Cohen
and Voronov 2006] and (homotopy) involutive Lie bialgebra in (equivariant)
string homology [Chas and Sullivan 2004].

Differential geometry.

˘ Lie algebroids. The structure of Courant algebroids was shown to induce a
structure of homotopy Lie algebra by Dmitry Roytenberg and Alan Weinstein
[1998].

˘ Kähler manifolds. The dg commutative algebra of differential forms of a
Kähler manifold is shown to be formal in [Deligne et al. 1975]. It was also
proved (loc. cit.) that this is equivalent to the uniform vanishing of the higher
Massey products.

˘ Lagrangian submanifolds, Floer homology, symplectic field theory. Structures
of A1-algebras [Fukaya 2002], uA1-algebras [Fukaya et al. 2009a; 2009b] and
BiLie˘1-algebras [Eliashberg et al. 2000; Cieliebak et al. � 2014] play a crucial
role in these fields.

˘ F-manifold, Nijenhuis structure and Poisson manifold. Sergei Merkulov [2004;
2005; 2006a] developed a programme called operadic profiles, which establishes
a new link between differential geometry and higher algebra. He thereby describes
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several differential geometric structures (Hertling–Manin, Nijenhuis, and Poisson)
in terms of homotopy algebras, i.e. algebras over operadic Koszul resolutions.

˘ Poincaré duality. The study of the Poincaré duality of oriented closed mani-
folds is related to the homotopy (co)unital Frobenius bialgebra structure [Wilson
2007; Hirsh and Millès 2012; Miller 2011] on the differential forms of the
manifold.

˘ Fluid mechanics. Dennis Sullivan [2011] proposed a programme to solve the
Euler and Navier–Stokes equations, which describe fluid motion, using the HTT
for BV1-algebras.

Algebraic geometry.

˘Moduli spaces of algebraic curves Mg;n and NMg;n, Gromov–Witten invari-
ants. The two homology operads H�. NM0;nC1/ and H�.M0;nC1/ are Koszul
dual to each other; see [Getzler 1995].

˘ Frobenius manifolds, quantum cohomology. The spaceH �.M0;nC1/ provides
the generators of the minimal model (quasifree resolution without internal differ-
ential) of the operad BV ; see [Drummond-Cole and Vallette 2013]. This allows
us to define the notion of a homotopy Frobenius manifold. Using the HHT for Lie
algebras, S. Barannikov and M. Kontsevich [1998], and Y. I. Manin [1999] proved
that the underlying homology groups of some dg BV-algebras carry a Frobenius
manifold structure, i.e. an algebra over H�. NM0;nC1/. Using the aforementioned
minimal model for BV and the HTT for homotopy BV algebras, we endowed
in [Drummond-Cole and Vallette 2013] the homology groups with a homotopy
Frobenius manifold structure, i.e. an algebra parametrized by H �.M0;nC1/,
extending the Barannikov–Kontsevich–Manin structure; see loc. cit. This latter
structure keeps faithfully track of the homotopy type of the initial dg BV -algebra.

˘Mirror symmetry conjecture. The Mirror Symmetry conjecture [Kontsevich
1995] claims that the Fukaya “category” of Lagrangian submanifolds of a Calabi–
Yau manifold M (A-side) should be equivalent to the bounded derived category
of coherent sheaves on a dual Calabi–Yau manifold zM (B-side). The Fukaya
“category” is actually an A1-category. The relevant algebraic structure on the B-
side is the homotopy Frobenius manifold stated in the previous point, where one
starts for the dg BV-algebra of the Dolbeault cochain complex of the Calabi–Yau
manifold zM.

Mathematical physics.

˘ Feynman diagrams, Batalin–Vilkovisky formalism, renormalization theory.
One of the highlights of this operadic homotopy theory lies in the following result



ALGEBRA + HOMOTOPY = OPERAD 283

by Sergey Merkulov [2010]. He proved that the Batalin–Vilkovisky formalism
is equivalent to the HTT for unimodular Lie bialgebras. In other words, the
classical Feynman diagrams are exactly the graphs appearing in the HTT formula
for the wheeled properad encoding unimodular Lie bialgebras.

˘ BRST cohomology. The BRST cohomology carries a BV1-algebra structure
[Gálvez-Carrillo et al. 2012].

˘ Field theories. The various types of fields theories (Topological Quantum
Field Theory [Atiyah 1988], Conformal Field Theory [Segal 2004], String Field
Theories [Witten and Zwiebach 1992; Zwiebach 1993], etc.) yield to various
types of homotopy structures ( L1 [Fulp et al. 2002], uFrob1 [Hirsh and Millès
2012], OCHA [Kajiura and Stasheff 2006], BiLie˘1 [Muenster and Sachs
2011], etc.).

Computer science.

˘ Rewriting system. The rewriting method of Section 3.5 is strongly related
to the notion of rewriting systems; see [Guiraud and Malbos 2009; 2011] for
instance.

Conclusion

Open questions. Here are a few open and interesting questions in this field of
research.

(1) Are the Koszul dual properads Frob and BiLie˘, encoding respectively
Frobenius bialgebras and involutive Lie bialgebras, Koszul?

(2) There are 4 functors making up the commutative diagram

modular operads //

��

properads

��
cyclic operads // operads:

It was shown in [Getzler 1995] that the two graded operads H�. NM0;n/

and H�.M0;n/ are Koszul dual operads and Koszul operads. We conjec-
ture that the two full genera properads associated to the modular operads
H�. NMg;nC1/ and H�.Mg;nC1/ are Koszul dual properads and Koszul
properads.

(3) Develop the Koszul duality for operads in characteristic p.
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Further reading. At this point, the interested reader is invited to pursue its
journey in operad theory and homotopical algebra, with [Loday and Vallette
2012].

The various answers to the exercises proposed here can be found in this
reference.
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