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Morphisms of CohFT algebras and
quantization of the Kirwan map

KHOA LU NGUYEN, CHRIS WOODWARD AND FABIAN ZILTENER

We introduce a notion of morphism of CohFT algebras, based on the analogy
with A∞ morphisms. We outline the construction of a “quantization” of
the classical Kirwan morphism to a morphism of CohFT algebras from the
equivariant quantum cohomology of a G-variety to the quantum cohomology
of its geometric invariant theory or symplectic quotient, and an example
relating to the orbifold quantum cohomology of a compact toric orbifold.
Finally we identify the space of Cartier divisors in the moduli space of scaled
marked curves; these appear in the splitting axiom.
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1. Introduction

In order to formalize the algebraic structure of Gromov–Witten theory Kontsevich
and Manin introduced a notion of cohomological field theory (CohFT); see
[Manin 1999, Section IV]. The correlators of such a theory depend on the choice
of cohomological classes on the moduli space of stable marked curves and satisfy
a splitting axiom for each boundary divisor. In genus zero the moduli space
of stable marked curves may be viewed as the complexification of Stasheff’s
associahedron from [Stasheff 1970], and the notion of CohFT may be related to
the notion of A∞-algebra: dualizing one of the factors gives rise to a collection
of multilinear maps that we call a CohFT algebra. The full CohFT is related to
the CohFT algebra in the same way that a Frobenius algebra is related to the
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underlying algebra. Recall that Dubrovin [1996] constructed from any CohFT a
Frobenius manifold, which is a manifold with a family of multiplications on its
tangent spaces together with some additional data.

Here we introduce a notion of morphism of CohFT algebras which is a “closed
string” analog of a morphism of A∞-algebras. The additional data in the structure
maps is the choice of cohomological classes on moduli space of stable scaled
marked lines introduced in [Ziltener 2006]. This space was studied in [Ma’u
and Woodward 2010] and identified with the complexification of Stasheff’s
multiplihedron [1970] appearing in the definition of A∞ map. The splitting
axiom for a morphism of CohFT algebras gives a relation on the structure maps
for each divisor relation. Any morphism of CohFT algebras has the property that
the linearization at any point is an algebra morphism in the usual sense. This fits
in well with the language of [Hertling and Manin 1999] of F-manifolds.

The definition of morphism of CohFT algebra is motivated by an attempt to
extend the mirror theorems of Givental [1998], Lian, Liu and Yau [1997] and
others beyond the case of semipositive toric quotients, as has also been discussed
by many authors, for example, Iritani [2008]. In the second part of the paper we
describe a quantum Kirwan morphism of CohFT algebras from the equivariant
quantum cohomology QHG(X) of a smooth polarized projective G-variety X to
the (possibly orbifold) quantum cohomology QH(X//G) of the symplectic/git
quotient X//G. The existence of this morphism depends on results of the last
two authors and Venugopalan on existence of virtual fundamental classes; see
[Woodward 2012]. Morphisms of CohFT algebras provide an “algebraic home”
for the counts of “vortex bubbles” that first appeared in the study by Gaio and
Salamon [2005] of the relationship between gauged Gromov–Witten invariants of
a G-variety and the Gromov–Witten invariants of the quotient X//G [Woodward
2012]. Applying the quantum Kirwan morphism to the special case of quotients
of vector spaces by tori, one obtains a Batyrev-style presentation of the (possibly
orbifold) quantum cohomology of a toric Deligne–Mumford stack at a special
point; this reproduces partial results by Coates, Corti, Lee, and Tseng [Coates
et al. 2009]. We discuss several conjectures (quantum Kirwan surjectivity and
quantum reduction in stages) which arise naturally in this context. In the last
part of the paper, we describe which combinations of boundary divisors in the
moduli space of stable scaled lines are Cartier, that is, have dual cohomology
classes.

2. Morphisms of CohFT algebras

In this section we describe the definition of morphisms of CohFT algebras. Let
Mn denote the Grothendieck–Knudsen moduli space of isomorphism classes of
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genus zero n-marked stable curves [Knudsen 1983], which is a smooth projective
variety of dimension dim(Mn)= n− 3.

Remark 2.1 (Boundary divisors for the Grothendieck–Knudsen space). The
boundary of Mn consists of the following divisors: for each splitting {1, . . . , n}=
I1 ∪ I2 with |I1|, |I2| ≥ 2 a divisor

ιI1∪I2
: DI1∪I2 → Mn

corresponding to the formation of a separating node, splitting the curve into
irreducible components with markings I1, I2. The divisor DI1∪I2 is isomorphic
to M |I1|+1×M |I2|+1. Let

δI1∪I2 ∈ H 2(Mn)

denote its dual cohomology class. For any β ∈ H(Mn), let

ι∗I1∪I2
β =

∑
j

β1, j ⊗β2, j (1)

denote the Künneth decomposition of its restriction to DI1∪I2 .

Definition 2.2 (CohFT algebras). An (even, genus zero) cohomological field
theory algebra over a Q-ring 3 is a datum (V, (µn)n≥2) where V is a 3-module
and (µn)n≥2 is a collection of multilinear composition maps

µn
: V n
× H(Mn+1,3)→ V

such that each µn is invariant under the natural action of the symmetric group
Sn and the maps (µn)n≥2 satisfy a splitting axiom: for each partition I1 ∪ I2 =

{1, . . . , n},

µn(v1, . . . , vn;β ∧ δI1∪I2)=
∑

j

µ|I2|+1(µ|I1|(vi , i ∈ I1;β1, j ), vi , i ∈ I2;β2, j ),

where β1, j , β2, j are as in (1).

Remark 2.3. It would be more natural to use tensor products in the above
formula but the use of symbols ⊗ instead of commas , makes the formulas
substantially longer.

Remark 2.4 (Filtered CohFT algebras). In our applications, 3 will be a filtered
Q-ring by which we mean a union of decreasing rings 3a, a ∈ R:

3=
⋃

a∈R

3a, 3a ⊃3b for all a < b,
⋂

a∈R

3a = {0}.

A filtered CohFT algebra is a CohFT algebra V with a filtration (Va)a∈R compat-
ible with the3-module structure, that is, such that3a Vb ⊂ Va+b, for all a, b ∈R,
and such that each structure map µn maps V n

a × H(M0,n) to Va , for all a ∈ R.
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Remark 2.5. (a) (Comparison with A∞-algebras). The collection of composition
maps (µn)n≥2 (which are termed in [Manin 1999] Comm∞-structures) may be
viewed as “complex analogs” of the A∞ structure maps of Stasheff, in the sense
that the relevant moduli spaces have been “complexified”.

(b) (Relations via divisor equivalences). The various relations on the divisors in
Mn give rise to relations on the maps µn . In particular the relation [D{0,3}∪{1,2}]=
[D{0,1}∪{2,3}] in H 2(M4) implies that µ2

: V × V → V is associative.

The notion of morphism of CohFT algebras is based on the geometry of the
complexified multiplihedron Mn,1(A) introduced in [Ziltener 2006] and studied
further in [Ma’u and Woodward 2010].

Definition 2.6 (Scalings on smooth curves). (a) A nondegenerate scaling on
a smooth genus zero complex projective curve C with root marking z0 is a
meromorphic one-form λ : C→ T∨C with the property that λ has a single pole
of order two at z0, so that λ equips C −{z0} with the structure of an affine line.
Denote by 6(C, z0) the space of scalings on C with pole at z0, and by 6(C, z0)

the compactification 6(C, z0)=6(C, z0)∪ {0,∞}.

(b) An n-marked scaled line is a smooth projective curve of genus zero equipped
with a nondegenerate scaling λ ∈ 6(C, z0) and a collection z1, . . . , zn ∈ C of
points distinct from each other and from the root marking z0.

Let Mn,1(A) denote the moduli space of isomorphism classes of n-marked
scaled lines. We may view Mn,1(A) as the moduli space of isomorphism classes
of n-markings on an affine line A, where two sets of markings are isomorphic if
they are related by translation. Mn,1(A) admits a compactification by allowing
nodal curves with possible degenerate scalings as follows.

Definition 2.7. (a) (Dualizing sheaf and its projectivization). Recall from e.g.
[Arbarello et al. 2011, p. 91] that if C is a genus zero nodal curve then the
dualizing sheaf ωC on C is locally free of rank one, that is, a line bundle. Explic-
itly, if C̃ denotes the normalization of C (the disjoint union of the irreducible
components of C) with nodal points {{w+1 , w

−

1 }, . . . , {w
+

k , w
−

k }} then ωC is the
sheaf of sections of ωC̃ := T∨C̃ whose residues at the points w+j , w

−

j sum to
zero, for j = 1, . . . , k. Denote by P(ωC⊕C) the fiber bundle obtained by adding
in a section at infinity.

(b) (Scalings on nodal curves). Let C be a connected projective nodal curve of
arithmetic genus zero. A scaling on C is a section λ : C → P(ωC ⊕C) such
that the restriction of λ to any irreducible component is a (possibly degenerate)
scaling as in Definition 2.6.

(c) (Scaled affine lines). A nodal n-marked scaled line consists of
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(i) a connected projective nodal curve C of arithmetic genus zero,

(ii) a scaling λ : C→ P(ωC ⊕C), and

(iii) a collection of markings z0, . . . , zn ∈ C distinct from the nodes

such that the following monotonicity conditions are satisfied:

(i) For each i = 1, . . . , n, there is exactly one irreducible component of C+,i
of C on the path of irreducible components between z0 and zi on which λ
is finite and nonzero, with double pole at the node which disconnects the
component from the root marking z0.

(ii) The irreducible components other than C+,i on the path of irreducible
components between zi and z0 have either λ= 0 (if they can be connected
to zi without passing through C+,i ) or λ=∞ (if they are connected to z0

without passing through C+,i ).

A nodal marked scaled affine line is stable if each irreducible component with
nondegenerate scaling has at least two special points, and each irreducible
component with degenerate scaling has at least three special points.

(d) (Combinatorial types of scaled affine lines). The combinatorial type of a nodal
scaled affine line is the rooted colored tree 0 = (V(0),E(0)) whose vertices are
the irreducible components of C , edges are the nodes and markings, equipped
with a bijection from the set of semiinfinite edges E∞(0) to {0, . . . , n} given by
the markings, and a subset of colored vertices V+(0)⊂ V(0) corresponding to
irreducible components with nondegenerate scalings. This ends the definition.

Example 2.8. See Figure 1 for an example of a nodal scaled affine line, where
irreducible components with λ= 0 resp. λ finite and nonzero resp. λ is infinite
are shown with light resp. medium resp. dark shading. The example shown is
not stable, because several of the lightly shaded components and darkly shaded
components have less than three special points.

z0

z1

z2

z3

z4
z5

Figure 1. An nodal scaled line.
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z0z0

z1 z2

z1 z2

z0

z1 z2

z0

z1 z2

Figure 2. Left: two markings converging. Right: two markings diverging.

Remark 2.9 (Affine structures on the components with nondegenerate scalings).
The monotonicity condition implies that the restriction of λ to any irreducible
component Ci,+ has a unique pole, hence a unique double pole at the nodal point
ẑi connecting Ci,+ with the component containing z0, and so defines an affine
structure on the complement Ci,+− ẑi . The other components have no canonical
affine structures.

Let Mn,1,0(A) resp. Mn,1(A) denote the moduli space of isomorphism classes
of stable scaled n-marked affine lines of type 0 resp. the union over combinatorial
types. We call Mn,1(A) the complexified multiplihedron.

Proposition 2.10 [Ma’u and Woodward 2010]. The spaces Mn,1(A) admit the
structure of quasiprojective resp. projective varieties of dimension

dim(Mn,1,0(A))= n−2−|E<∞(0)|+|V+(0)|, dim(Mn,1(A))= n−1. (2)

The space Mn,1(A)was first studied in [Ziltener 2006] in the context of gauged
Gromov–Witten theory on the affine line.

Example 2.11 (Second complexified multiplihedron). The moduli space Mn,1(A)

in the first nontrivial case n = 2 admits an isomorphism

M2,1(A)→ P, [z1, z2] 7→ z1− z2 (3)

(here P is the projective line) with two distinguished points given by nodal scaled
affine lines, appearing in the limit where the two markings become infinitely
close or far apart; see Figure 2. Here [z1, z2] ∈ M2,1(A) is a point in the open
stratum, given by markings at z1, z2 modulo translation only on A.

Remark 2.12 (Embedding via forgetful morphisms). More generally, for ar-
bitrary n there exists for any choice {i, j} ⊂ {1, . . . , n} of subset of order 2 a
forgetful morphism

fi, j : Mn,1(A)→ M2,1(A)

forgetting the markings other than i, j and collapsing all unstable irreducible
components, and for any choice {i, j, k, l} ⊂ {0, . . . , n} of subset of order 4 a
forgetful morphism

fi, j,k,l : Mn,1(A)→ M4
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given by forgetting the scaling and all markings except i, j, k, l, and collapsing
all unstable irreducible components. The product of forgetful morphisms defines
an embedding into a product of projective lines.

The variety Mn,1(A) is not smooth, but rather has toric singularities; see
Section 4. The boundary divisors are the closures of strata Mn,1,0 of codimension
one.

Remark 2.13 (Description of the boundary divisors of the complexified multipli-
hedron). From the dimension formula (2) one sees that there are two types of
boundary divisors. First, for any I ⊂ {1, . . . , n} with |I | ≥ 2 we have a divisor

ιI : DI → Mn,1(A)

corresponding to the formation of a single bubble containing the markings I .
This divisor admits a gluing isomorphism

DI → M |I |+1×Mn−|I |+1,1(A). (4)

Call these divisors of type I. Second, for any unordered partition I1 ∪ . . .∪ Ir

of {1, . . . , n} with r ≥ 2 we have a divisor DI1,...,Ir corresponding to the forma-
tion of r bubbles with markings I1, . . . , Ir , attached to a remaining irreducible
component with infinite scaling. This divisor admits a gluing isomorphism

DI1,...,Ir
∼=

( r∏
i=1

M |Ii |,1(A)

)
×Mr+1. (5)

Call these divisors of type II. Note that the divisors of type I and type II roughly
correspond to the terms in the definition of A∞ functor.

Recall that a Weil divisor on a normal scheme X is a formal, locally finite
sum of codimension one subvarieties, while a Cartier divisor is a Weil divisor
given as the zero set of a meromorphic section of a line bundle with multiplicities
given by the order of vanishing of the section [Hartshorne 1977, Remark 6.11.2].
For smooth varieties, any Weil divisor is Cartier. Since Mn,1(A) is not smooth,
Weil divisors are not necessarily Cartier, in particular, a Weil divisor may not
admit a dual cohomology class of degree 2. That is, for a Weil divisor

D =
∑

I

n I [DI ] +
∑

I1t···tIr={1,...,n}

n I1,...,Ir [DI1,...,Ir ], (6)

there may or may not exist a class δ ∈ H 2(Mn,1(A)) that satisfies

〈β, [D]〉 = 〈β ∧ δ, [Mn,1(A)]〉.

Let (V, (µn
V )n≥2) and (W, (µn

W )n≥2) be CohFT algebras over a Q-ring 3.
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Definition 2.14 (Morphisms of CohFT algebras). A morphism of CohFT alge-
bras from V to W is a collection of Sn-invariant multilinear maps

φn
: V n
× H(Mn,1(A))→W, n ≥ 0,

such that for any Cartier divisor D of the form (6) with dual class δ∈H 2(Mn,1(A)),
any v ∈ V n and any β ∈ H(Mn,1(A)),

φn(v, β ∧ δ)=
∑

I

n Iφ
n−|I |+1(µ|I |V (vi , i ∈ I ; · ), v j , j /∈ I ; ·

)
(ι∗Iβ) (7)

+

∑
r≤s

I1,...,Ir

n I1,...,Ir

(s− r)!

×µs
W

(
φ|I1|(vi ,i ∈ I1;·),...,φ

|Ir |(vi ,i ∈ Ir ;·),φ
0(1),...,φ0(1);·

)
(ι∗I1,...,Ir

β)

where · indicates insertion of the Künneth components of ι∗Iβ, ι∗I1,...,Ir
β, using the

homeomorphisms (4), (5) and the sum on the right-hand side is, by assumption,
finite. The element φ0(1) ∈ W is the curvature of the morphism (φn)n≥0, and
(φn)n≥0 is flat if the curvature vanishes. A morphism of filtered CohFT algebras
V,W is a collection of maps φn as above such that each φn preserves the
filtrations in the sense that φn maps V n

a × H(Mn,1(A)) to Wa and (7) is finite
modulo Wa for any a ∈ R.

Example 2.15. M2,1(A) ∼= P and so every Weil divisor is Cartier and any
two prime Weil divisors are linearly equivalent. In particular, the equivalence
[D{1,2}] = [D{1},{2}] holds in H 2(M2,1(A),Q)=Q. Hence if

(φn)n≥0 : (V, (µn
V )n≥2)→ (W, (µn

W )n≥2)

is a flat morphism of CohFT algebras then φ1
: V → W is a homomorphism,

φ1
◦µ2

V = µ
2
W ◦ (φ

1
×φ1).

Recall that the notion of CohFT may be reformulated as a Frobenius manifold
structure of [Dubrovin 1996]. Such a structure consists of a datum (V, g, F, 1, e)
of an affine manifold V , a metric g on the tangent spaces, a potential F whose
third derivatives provide the tangent spaces TvV with associative multiplications
?v : T 2

v V → TvV , a unity vector field 1 and an Euler vector field e providing a
grading. Any CohFT (V, (µn)n≥2) defines a formal Frobenius manifold [Manin
1999] with formally associative products

?v : T 2
v V → TvV, (w1, w2) 7→

∑
n≥0

µn+2(w1, w2, v, . . . , v)/n!. (8)

Formal associativity means that the Taylor coefficients in the expansion of

(w1 ?v w2) ?v w3−w1 ?v (w2 ?v w3)
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around v = 0 vanish to all orders for any w1, w2, w3 ∈ TvV ; in good cases one
has convergence of the corresponding infinite sums. Later, a weaker notion of
F-manifold was introduced in [Hertling and Manin 1999], which consists of
a pair (V, ◦) where ◦ is a family of multiplications on the tangent spaces TvV
satisfying a certain axiom. In other words, one forgets the data g, 1, e. This
weaker notion is compatible with the notion of morphism of CohFT algebras:

Proposition 2.16 (Algebra homomorphisms on tangent spaces). Any morphism
of CohFT algebras (φn)n≥0 from V to W defines a formal map

φ : V →W, v 7→
∑
n≥0

1
n!
φn(v, . . . , v; 1)

with the property that for any v ∈ V the linearization Dvφ : TvV → Tφ(v)W is a
?-homomorphism in the sense that

Dvφ(w1) ?φ(v) Dvφ(w2)= Dvφ(w1 ?v w2) for all w1, w2 ∈ TvV . (9)

By a formal map we mean a map from a formal neighborhood of 0 in V to a
formal neighborhood of φ(0) in W . Equation (9) holds in the sense of Taylor
expansion around v = 0 to all order.

Proof. Consider the divisor relation D{1,2} ∼ D{1},{2} on M2,1(A). Its pullback
to Mn,1(A) is the relation∑

I131, I232,
I3,...,Ir

DI1,I2,...,Ir ∼

∑
I⊃{1,2}

DI , (10)

where the first sum is over unordered partitions I1, . . . , Ir with 1∈ I1, 2∈ I2 and
each I j , j = 1, . . . , r nonempty, and the second is over subsets I ⊂ {1, . . . , n}
with {1, 2} ⊂ I . Indeed, the map (3) composes with the forgetful map to give a
rational function

f2,1 : Mn,1(A)→ M2,1(A)∼= P.

For n = 2, this map identifies D{1,2}→ {0}, D{1},{2}→ {∞}. For arbitrary n,
one checks using the charts in [Ma’u and Woodward 2010] that the order of
vanishing of f2,1 on DI is 1 if {1, 2} ⊂ I and 0 otherwise, and that the order
of vanishing of f2,1 on DI1,...,Ir is −1 if I1, I2 separate 1, 2, and is 0 otherwise.
Since the partitions are unordered, if I1, I2 separate 1, 2 we may assume that
1 ∈ I1 and 2 ∈ I2. Note that the number of ways of choosing the partition on the
left-hand side of (10) with sizes i1, . . . , ir is(

n−2
i1−1 i2−1 i3 . . . ir

)
.
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We compute

Dvφ(w1 ?v w2)

=

∑
n,i

1
(i − 2)! (n− i)!

φn−i+1(µi
V (w1, w2, v, . . . , v; 1), v, . . . , v; 1

)
=

∑
n,I

((n− 2)!)−1φn−|I |+1(µ|I |V (w1, w2, v, . . . , v; 1), v, . . . , v; 1
)

=

∑
I131,I232,I3,...,Ir

(
(n− 2)! #{ j | I j =∅}!

)−1
µr

W
(
φ|I1|(w1, v, . . . , v; 1),

φ|I2|(w2, v, . . . , v; 1), φ|I3|(v, . . . , v; 1), . . . , φ|Ir |(v, . . . , v; 1); 1
)

=

∑
i1,i2≥1,i3...,ir≥0

1
(i1− 1)! (i2− 1)! i3! · · · ir ! (r − 2)!

µr
W
(
φi1(w1, v, . . . , v; 1),

φi2(w2, v, . . . , v; 1), φi3(v, . . . , v; 1), . . . , φir (v, . . . , v; 1); 1
)

=

∑
r

1
(r − 2)!

µr
W
(
Dvφ(w1), Dvφ(w2), φ(v), . . . , φ(v); 1

)
= Dvφ(w1) ?φ(v) Dvφ(w2),

where the right-hand side is assumed to be a finite sum (modulo any Wa , for a
morphism of filtered CohFT algebras). Here the first equality is by definition
of φ, ?v and the second replaces the sum over i with the sum over subsets
I containing 1, 2. The third follows from the splitting axiom (7), where the
elements of the partition I1, . . . , Ir may be empty. The fourth equality replaces
the sum over unordered partitions I1, . . . , Ir with I1 3 1, I2 3 2 with the sum
over their sizes i1, . . . , ir , with the additional factorial (r − 2)! arising from
the possible orderings of the subsets I3, . . . , Ir . The fifth equality follows by
definition of φ,µW , and the last equality follows by definition of ?φ(v). �

Remark 2.17. It would be interesting to characterize which ?-morphisms arise
from morphisms of CohFT algebras. This would require a study of the coho-
mology ring of Mn,1(A) along the lines of [Keel 1992] for the moduli space of
stable marked genus zero curves; this paper is essentially a partial study of the
second cohomology group only. The most naive possibility would be an analog
of Keel’s result [1992], namely that H(Mn,1(A)) is generated by the classes of
the Cartier boundary divisors modulo the relations given by the preimages of
D{1}{2}− D{1,2} under the forgetful morphism fi j : Mn,1(A)→ M2,1(A), as i, j
range over distinct elements of {1, . . . , n}, and the products D′D′′, if D′ and D′′

are disjoint Cartier divisors.
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3. Quantum Kirwan morphism

In this section we describe the motivating example for the theory of morphisms of
CohFT algebras in the previous section, the quantum Kirwan morphism. Let G
be a compact Lie group, GC its complexification, and X be a smooth projective
GC-variety equipped with a polarization (ample G-line bundle) such that G
acts locally freely on the semistable locus. The classical Kirwan morphism
HG(X)→ H(X//G) is surjective, by [Kirwan 1984]. Computing the kernel of
the Kirwan morphism therefore gives a presentation of the cohomology ring
of the quotient X//G. Let QHG(X) resp. QH(X//G) denote the corresponding
quantum cohomologies defined over the universal Novikov field. Each has the
structure of a CohFT algebra, with products given by suitable counts of genus
zero stable maps. The quantum version of the Kirwan morphism is a morphism
of CohFT algebras

Qκ : QHG(X)→ QH(X//G).

The virtual fundamental cycles are constructed algebraically in [Woodward 2012].
We describe first the symplectic approach.

From the symplectic point of view the quantum Kirwan morphism is defined
by a count of affine vortices introduced in [Ziltener 2006; 2013]. There is also an
algebrogeometric interpretation, as a count of certain morphisms to the quotient
stack X/GC, that we present later. Let g denote the Lie algebra of G, and let
8 : X→ g∨ be a moment map for the action of G on X arising from a unitary
connection on the polarization. For any connection A ∈ �1(A, g), we denote
by FA ∈�

2(A, g) its curvature. We assume that g is equipped with an invariant
metric inducing an identification g→ g∨.

Definition 3.1 (Affine symplectic vortices). An n-marked affine symplectic vor-
tex to X is a datum (A, u, z), where A ∈�1(A, g) is a connection on the trivial
bundle, u : A → X is a holomorphic with respect to the complex structure
determined by A, z = (z1, . . . , zn) ∈ An is a collection of distinct points, and

FA+ u∗8 VolA = 0.

Here VolA = i
2 dz ∧ dz̄ is the standard real area form on A.

An isomorphism of marked symplectic vortices (A j , u j , z j ), j = 0, 1 is an
automorphism of the trivial bundle φ : A×G→ A×G such that φ∗A1 = A0

and φ∗u1 = u0 (thinking of u0, u1 as sections of the associated X -bundle) such
that φ covers a translation on the base, that is, there exists a τ ∈ C such that
π ◦φ(z, g)= z+ τ for all z, g ∈ A×G, and zi,1 = zi,0+ τ for i = 1, . . . , n.
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The energy of a vortex (A, u, z) is given by

E(A, u)=
1
2

∫
A

(
‖dAu‖2+‖FA‖

2
+‖u∗8‖2

)
VolA . (11)

This ends the definition.

Let MG
n,1(A, X) denote the moduli space of isomorphism classes of finite en-

ergy n-marked vortices on A with values in X . The following Hitchin–Kobayashi
correspondence gives an algebrogeometric description of the moduli space of
affine vortices. Its proof appears in [Venugopalan 2012; Xu 2012; Venugopalan
and Woodward 2013]. By definition [Deligne and Mumford 1969] a morphism
u from the projective line P to the quotient stack X/GC consists of a GC-bundle
P→ P together with a section P→ P ×GC

X . By the git quotient X//GC we
mean the stack-theoretic quotient of the semistable locus by the group action;
if stable = semistable then X//GC has for coarse moduli space the projective
variety considered in [Mumford et al. 1994].

Theorem 3.2 (Classification of affine vortices). Suppose that X is a smooth
polarized projective GC-variety such that GC acts freely on the semistable locus
of X. There is a bijection between isomorphism classes of finite energy affine
vortices and isomorphism classes of morphisms u from the projective line P to the
quotient stack X/GC such that u(∞) lies in the semistable locus X//GC⊂ X/GC.

The moduli space MG
n,1(A, X) admits a compactification MG

n,1(A, X) allowing
nodal scaled lines as the domain:

Definition 3.3 (Affine scaled gauged maps). An affine marked nodal scaled
gauged map to X is a marked nodal scaled line (C, λ, z) together with a morphism
u : C→ X/GC satisfying these conditions:

(a) (Semistable bundle where the scaling is zero). For each irreducible compo-
nent Ci with zero scaling (λ|Ci = 0), the G-bundle on Ci is semistable, hence
trivializable.

(b) (Semistable point where the scaling is infinite). For each z ∈C with λ(z)=∞,
the image u(z) lies in the semistable locus X//GC.

A nodal scaled morphism is stable if it has no infinitesimal automorphisms,
or equivalently, if each irreducible component on which u is trivial has at least
three special points, or two special points and nondegenerate scaling. This ends
the definition.

Remark 3.4. (a) (Evaluation and forgetful morphisms). Let MG
n,1(A, X) denote

the moduli space of isomorphism classes of stable nodal scaled maps to X .
MG

n,1(A, X) admits an evaluation map at the markings, and if the action of G
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on the semistable locus is free, an additional evaluation map at infinity to X//G
[Ziltener 2006; 2013]:

ev× ev∞ : MG
n,1(A, X)→ (X/GC)

n
× X//GC.

For n > 0, there is a forgetful morphism to the moduli space of scaled lines,

f : MG
n,1(A, X)→ MG

n,1(A).

(b) (The locally free case). When G acts only locally freely on the semistable
locus in X , the quotient X//G is an orbifold or smooth Deligne–Mumford stack.
The Hitchin–Kobayashi correspondence in this case relates affine vortices to
representable morphisms of a weighted projective line P(1, r)→ X/GC for
some r > 0 such that∞ maps to the semistable locus, so that the evaluation map
at infinity

ev∞ : MG
n,1(A, X)→ I X//GC

takes values in the rigidified inertia stack

I X//GC
:=

⋃
r≥1

Homrep(P(r), X//GC)/P(r)

of representable morphisms from P(r)= BZr to X//GC modulo P(r), for some
integer r ≥ 1. See [Abramovich et al. 2011] and [Abramovich et al. 2008] for
more on the definition of I X//G .

The quantum Kirwan map is defined by virtual integration over the moduli
space of affine vortices introduced in the previous subsection. Existence and
axiomatic properties of virtual fundamental classes for the case of smooth pro-
jective varieties as target using the Behrend–Fantechi machinery [Behrend and
Fantechi 1997] are proved in [Woodward 2012]. Some results in the direction of
establishing the existence of fundamental classes for target compact Hamiltonian
actions were taken in [Ziltener 2013]. Here we review the case of algebraic
target.

Definition 3.5. (a) (Novikov field). Given a smooth projective GC-variety X
and an equivariant symplectic class [ωG] ∈ H G

2 (X) define the Novikov field 3G
X

for X as the set of all maps λ : H G
2 (X) := H G

2 (X,Q)→Q such that for every
constant c, the set of classes{

d ∈ H G
2 (X,Q), 〈[ω], d〉 ≤ c

}
on which λ is nonvanishing is finite. The delta function at d is denoted qd .
Addition is defined in the usual way and multiplication is convolution, so that
qd1qd2 = qd1+d2 .
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(b) (Equivariant quantum cohomology). Define as vector spaces

QH G(X,Q) := H G(X,Q)⊗3G
X .

Let QH(X//G) denote the quantum cohomology defined over the Novikov field
3G

X , that is,
QH(X//G) := H(I X//G,Q)⊗3G

X .

(c) (Quantum Kirwan morphism). For each n ≥ 0 define a map

Qκn
: QHG(X)n × H(Mn,1(A))→ QH(X//G)

as follows. For α ∈ HG(X)n, β ∈ H∗(Mn,1(A)) let

(Qκn(α, β), α∞)=
∑

d∈H G
2 (X,Q)

qd
∫

MG
n,1(A,X,d)

ev∗ α ∪ f ∗β ∪ ev∗
∞
α∞

using Poincaré duality; the pairing on the left is given by cup product and
contraction with the fundamental class of X//G.

Theorem 3.6 (Quantum Kirwan morphism [Woodward 2012]). Suppose that X
is a smooth polarized projective G-variety such that GC acts locally freely on
the semistable locus of X. The collection (Qκn)n≥0 is a morphism of CohFT
algebras from QHG(X) to QH(X//G). If X is G-Fano in the sense that cG

1 is
positive on all rational curves to the quotient stack X/GC, then the curvature
Qκ0 vanishes, so (Qκn)n>0 is a flat morphism of CohFT algebras.

In order to compute presentations of the quantum cohomology of X//G one
would like to know that the quantum analog of Kirwan’s surjectivity theorem,
namely that the linearization of map QHG(X)→ QH(X//G) at a generic point
is surjective. In the case of free quotients X//G, the conjecture follows from
Kirwan’s theorem and linearity over the Novikov ring, using a filtration argument.

Next we describe the quantum Kirwan map in the case that G is a torus acting
on a vector space X , so that X//G is a toric orbifold. We sketch a proof that the
kernel of the linearization of the quantum Kirwan map is Batyrev’s quantization
of the Stanley–Reisner ideal associated to the toric fan. This reproduces for
example the presentation of the quantum cohomology of weighted projective
planes described in [Coates et al. 2009]. See also [Cheong et al. 2014; 2013].

Example 3.7 (Weighted projective line P(2, 3) [Gonzalez and Woodward 2012]).
Let C2 resp. C3 denote the weight space for GC = C× with weight 2 resp. 3 so
that X =C2⊕C3 and X//G=P(2, 3). Let θ1 resp. θ2 resp. θ3 resp. θ2

3 denote the
generator of the component of QH(X//G)∼= H(I X//G)⊗3

G
X with trivial isotropy

resp. Z2 isotropy resp. corresponding to exp(±2π i/3) ∈ Z3. Let ξ ∈ H 2
G(X)
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denote the integral generator corresponding to the representation with weight 1.
Then we have the following table for Qκ1(ξ k):

k 0 1 2 3 4 5

Qκ1(ξ k) 1 θ1 q1/3θ3/6 q1/2θ2/18 q2/3θ2
3 /36 q/108

(12)

Indeed, under the identification H G
2 (X,Q)∼=Q so that H G

2 (X,Z)∼= Z, we see
from Theorem 3.2 that

MG
1,1(A, X, 0)= {(a0, b0) 6= 0}/GC

∼= P(2, 3)

MG
1,1
(
A, X, 1

3

)
= {(a0, b1z+ b0), b1 6= 0}/GC

∼= C2/Z3

MG
1,1
(
A, X, 1

2

)
= {(a1z+ a0, b1z+ b0), a1 6= 0}/GC

∼= C3/Z2

MG
1,1
(
A, X, 2

3

)
= {(a1z+ a0, b2z2

+ b1z+ b0), b2 6= 0}/GC
∼= C4/Z3

MG
1,1(A, X, 1)= {(a2z2

+ a1z+ a0, b3z3
+ b2z2

+ b1z+ b0), (a2, b3) 6= 0}/GC

The map
σ : MG,fr

1,1 (A, X, 1/3)→ C2⊕C3, u 7→ u(0)

defines a section with a single transverse zero, leading to the integral∫
MG

1,1(A,X,1/3)
ev∗1 6ξ 2

=

∫
MG

1,1(A,X,1/3)
ev∗1 Eul(C2⊕C3)= 1/3.

The pairing on the sector H(pt /Z3)⊗3
G
X in QH(P(2, 3)) is defined by con-

traction with the orbifold fundamental class, that is, [pt]/3, which cancels the
factor of 1/3 in the integral above yielding the k = 3 column. (Put another way,
Qκ1(6ξ

2) is the push-forward under MG
1,1(A, X, 1/3) → pt/Z3, whose fiber

is C2 ⊕ C3.) The other integrals are similar. From (12) one sees that Qκ1 is
surjective with kernel ξ 5

− q/108. Hence

QH(P(2, 3))=3G
X [ξ ]/(ξ

5
− q/108),

where 3G
X is the Novikov field of fractional powers of a single formal variable q .

Note that the quantum Kirwan map is not surjective in this case without inverting
q , that is, over the Novikov ring instead of the Novikov field, and that although
the Novikov field involves fractional powers of q , the relations have only integer
powers.

More generally, let X be a vector space and G a torus acting freely so that X//G
is a proper Deligne–Mumford toric stack (orbifold). We identify G = U (1)k

and let ρ1, . . . , ρk ∈ g
∨ denote the weights of the action on X with dim(X)= k.

We also identify H G
2 (X,Z) with the coweight lattice gZ = exp−1(1) in the Lie

algebra g.
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Definition 3.8 (Quantum Stanley–Reisner ideal). Let QSRG(X)⊂ QHG(X) be
the quantum Stanley–Reisner ideal, generated by the elements for d ∈ H G

2 (X,Z)∏
ρ j (d)≥0

ρ
ρ j (d)
j − qd

∏
ρ j (d)<0

ρ
−ρ j (d)
j .

Batyrev [1993] in the case of smooth toric varieties conjectured that the
quantum cohomology QH(X//G) has a presentation

QH G(X)/QSRG(X)∼= QH(X//G). (13)

This conjecture was proved for semipositive toric varieties in [Givental 1996; Cox
and Katz 1999], and is false in general as pointed out in [Spielberg 1999], at least
for the obvious generators. Iritani [2008] proved that any smooth projective toric
variety has quantum cohomology canonically isomorphic to the Batyrev ring
QHG(X)/QSRG(X), using corrected generators. Coates et al. [2009] generalized
the presentation to the case of weighted projective spaces.

Example 3.9. If GC = C× acts on X = C2 with weights a, b ∈ Z so that
X//G is the weighted projective line P(a, b) then the quantum Stanley–Reisner
ideal is generated by (aξ)a(bξ)b− q. Then with our conventions the quantum
cohomology of P(a, b) has generators ξ and fractional powers of q, the single
relation is (aξ)a(bξ)b = q; compare [Coates et al. 2009].

Theorem 3.10 (Orbifold Batyrev conjecture [Gonzalez and Woodward 2012]).
After suitable completion, the linearization D0 Qκ is surjective and the kernel of
D0 Qκ is the quantum Stanley–Reisner ideal QSRG(X), so that

TQκ(0)QH(X//G)∼= T0 QH G(X)/QSRG(X).

We give a partial proof by showing that for any d ∈ H G
2 (X,Z),∫

[MG
1 (A,X,d)]

Eul(⊕ j C
ρ j (d)
ρ j )∪ ev∗

∞
[pt] = 1. (14)

Let
σ : MG

1 (A, X, d)→
∏

ρ j (d)≥0

C
max(0,ρ j (d))
ρ j ,

(u, z) 7→
(
u(k)j (z)

)
k=1,...,ρ j (d), j=1,...,N

(15)

denote the map constructed from the derivatives of the evaluation map at the
marking z1. The map σ gives a transverse section with a single zero on the locus
ev−1
∞
(pt) ⊂ MG

1,1(A, X, d) and the remaining factor Eul(⊕ j C
min(0,ρ j (d))
ρ j ) is the

obstruction bundle.
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We claim that σ is nonvanishing on the boundary strata. Let (C, λ, z, u) be a
stable scaled map with reducible domain, and let d ′ 6= d denote the homology
class of the irreducible component containing z1. Since at least two irreducible
components have positive energy, ([ωG], d ′) < ([ωG], d). By assumption X//G
is nonempty, which implies that the symplectic class [ωG] can be written as
a positive combination of the weights ρ j . Hence ρ j (d ′) < ρ j (d) for at least
one j . Furthermore, among j such that ρ j (d ′) < ρ j (d) there must exist at least
one such that u j is nonzero. Indeed the sum of Cρ j with ρ j (d ′− d)≥ 0 is part
of the unstable locus in X , and so no morphism u with only those irreducible
components nonzero can be generically semistable. The ρ j (d ′)+ 1-st derivative
of u j is then a nonzero constant, so σ(u) 6= 0. Equation (14) follows.

Composition of morphisms of CohFT algebras and reduction in stages. Fi-
nally we describe a notion of composition of morphisms of CohFT algebras. This
will make CohFT algebras into an infinity-category, whose higher morphisms are
commutative simplices of CohFT algebras. This composition plays a natural role
in the quantum reduction with stages conjecture relating the quantum Kirwan
maps for G/K and K with that for G, when K ⊂ G is a normal subgroup. The
definition of composition of morphisms of CohFT algebras involves a moduli
space of s-scaled n-marked affine lines defined as follows.

Definition 3.11 (Multiply scaled curves). An s-scaled, n-marked curve is a
datum (C, z, λ) where (C, z) nodal marked curve and λ = (λ1, . . . , λs) is an
s-tuple of scalings as in Definition 2.7 and in addition satisfying the following
balanced condition:

For each irreducible component Ci of C and any two scalings λ j , λk not
both 0 or both∞, the ratio (λ j |Ci )/(λk |Ci )∈P is independent of the choice
of Ci .

An s-scaled, n-marked line C is stable if each irreducible component with at
least one nondegenerate scaling has at least two marked or nodal points, and
each irreducible component with all degenerate scalings has at least three marked
or nodal points. The combinatorial type of an s-scaled, n-marked affine line
C is the tree whose vertices V(0) correspond to irreducible components, finite
edges E<∞(0) to nodes, and equipped with a labeling of the semiinfinite edges
E∞(0) by {0, . . . , n}, and distinguished subsets Vi (C)⊂ V(C) corresponding
to irreducible components on which the i-th scaling λi is finite, satisfying com-
binatorial versions of the monotone and balanced conditions which we leave to
the reader to write out. This ends the definition.

Remark 3.12 (More explanation of the balanced condition). (a) On any ir-
reducible component Ci of C on which λ j , λk are both nonzero and finite,
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λ j , λk both have a double pole at the same point and so have constant ratio
(λ j |Ci )/(λk |Ci ).

(b) The balanced condition is equivalent to the condition that for each marking
zi , if C+i, j denotes the unique component between z0 and zi on which λ j is
finite, then one of the three possibilities holds: C+i, j = C+i,k for all i and the ratio
(λ j |C+i, j )/(λk |C+i,k) is independent of i ; or C+i, j is closer (in the sense of trees) to
z0 than C+i,k for all i ; or C+i,k is closer to z0 than C+i, j for all i .

Let Mn,s(A) denote the moduli space of isomorphism classes of stable s-
scaled, n-marked curves.

Remark 3.13 (Boundary divisors of the moduli of multiply scaled lines). The
boundary of Mn,s(A) can be described as follows.

(a) For any subset I ⊂ {1, . . . n} of order at least two there is a divisor

ιI : DI → Mn,s(A)

and an isomorphism

ϕI : DI → M |I |+1×Mn−|I |+1,s(A)

corresponding to the formation of a bubble containing the markings zi , i ∈ I
with zero scaling on that bubble, and all scalings zero on that bubble.

(b) For any unordered partition I1 t · · · t Ir of {1, . . . , n} of order at least two
with each I j nonempty and nonempty subset J ⊂ {1, . . . , s} there is a divisor

ιI1,...,Ir ,J : DI1,...,Ir ,J → Mn,s(A)

with an isomorphism

ϕI1,...,Ir ,J : DI1,...,Ir ,J → Mr+1,s−|J |(A)×
r∏

i=1
M |Ii |+1,|J |(A)

corresponding to the formation of r bubbles containing markings I j , j = 1, . . . , r
with the scalings j ∈ J becoming finite on those bubbles and infinite on the
component containing z0, or, if J = {1, . . . , s},

ϕI1,...,Ir ,J : DI1,...,Ir ,J → Mr+1×
r∏

i=1
M |Ii |+1,s(A).

The union of these divisors is the boundary of Mn,s :

∂Mn,s(A)=
⋃

I⊂{1,...n}
DI ∪

⋃
I1,...,Ir ,J

DI1,...,Ir ,J .
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Definition 3.14 (Composition of morphisms of CohFT algebras). Let U0,U1,U2

be CohFT algebras. Given morphisms

φ01 :U0→U1, φ12 :U1→U2, φ02 :U0→U2,

we say that φ02 is the composition of φ01, φ12 if the map

φ02 ◦ ι1 :U
n
0 × H(Mn,2(A))→U2

given by composing φ02 with the natural restriction map

H(Mn,2(A))→ H(Mn,1(A))

agrees with the map (φ12◦φ01)
n
:U n

0×H(Mn,2(A))→U2 taking (α1, . . . , αn, β)

to ∑
r≤s

I1t···tIr={1,...,n}

1
(s− r)!

×φs
12

(
φ
|I1|
01 (αi ,i ∈ I1;·),...,φ

|Ir |

01 (αi ,i ∈ Ir ;·),φ
0
01(1),...,φ

0
01(1);·

)
(ι∗I1,...,Ir

β),

(16)

where the dots indicate insertion of the Künneth components of ι∗I1,...,Ir
(β) with

respect to the Künneth decompositions, and is well-defined if it involves only
finite sums on the right-hand side (modulo U0,a for any a ∈ R if all CohFT
algebras are filtered). We call the resulting diagram a commutative triangle of
CohFT. Similarly one can define commutative simplices of CohFT algebras of
higher dimension.

We now define a moduli space of multiply scaled gauged maps that “lives
above” Mn,s(A). Consider a chain of normal subgroups G=G0⊃G1⊃ . . .⊃Gs .
Since G j is normal and compact, g splits as a sum g= g j ⊕ g′j , so there exists a
subgroup G ′j ⊂ G so that G j ×G ′j → G is a finite cover. Let X be a smooth
projective GC-variety.

Definition 3.15 (Multiply scaled affine gauged maps). An s-scaled, n-marked
stable affine gauged map on the affine line A with values in X is an s-scaled, n-
marked nodal curve C equipped with a morphism u from C to the quotient stack
X/GC such that, for each j = 1, . . . , s, the following conditions are satisfied:

(a) (G ′j,C-bundle where λ j is zero) On the irreducible components where λ j

vanishes, the GC-bundle defined by the composition of u with X/GC→ B(GC)

is induced from a G ′j,C-bundle.

(b) (G j,C-stable point where λ j is infinite) If λ j (z) =∞, then u(z) lies in the
semistable locus for the action of G j,C. An s-scaled nodal affine gauged map is
semistable if each irreducible component with some nondegenerate scalings has
at least two special points, and each bubble with all degenerate scalings has at
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least three special points. A multiply scaled affine gauged map is stable if it has
finite automorphism group.

Let MG
n,s(A, X) denote the moduli space of isomorphism classes of stable

s-scaled, n-marked affine gauged maps on C with values in X .

Remark 3.16. The divisor relations on Mn,s(A) naturally induce divisor rela-
tions on MG

n,s(A, X). In particular, M1,2(A) is a projective line, and the linear
equivalence between D{1},{1}, the divisor where the first scaling has become
infinite, and the subspace M1,1(A) where the two scalings have become equal
induces an equivalence in homology in MG

n,2(A, X) between MG
n,1(A, X) (embed-

ded as the subspace where the scalings are equal) and the union of the preimages
of the divisors D[I1,...,Ir ],{1}.

Remark 3.17 (Equivariant quantum Kirwan morphism). The quantum Kirwan
morphism has the following equivariant generalization. If the action of G extends
to an action of a group K containing G as a normal subgroup, then the quotient
group K/G acts on the moduli space MG

n,1(A, X) and one obtains a morphism

ev× ev∞ : MG
n,1(A, X)/(K/G)C→ (X/KC)

n
× (X//G)/(K/G)C.

Pairing with the virtual fundamental class defines a map

QHK (X,Q)n × H(Mn,1(A),Q)→ QHG/K (X//G,Q).

After extending the coefficient ring of QHK/G(X//G) from 3G
X to 3K/G

X//G one
expects this to define a morphism of CohFT algebras

(Qκn
K ,G)n≥0 : QHK (X)→ QHK/G(X//G). (17)

Consider the equivariant quantum Kirwan morphisms

(Qκn
K ,G)n≥0 : QHK (X)→ QHK/G(X//G),

(Qκn
K/G)n≥0 : QHK/G(X//G)→ QH(X//K ),

defined in (17). The linear equivalence in Remark 3.16 leads naturally to:

Conjecture 3.18 (Quantum reduction in stages). Suppose that X, K ,G are as
above, and the symplectic quotients by K and G are locally free. Then there is a
commutative triangle of CohFT algebras

QHK (X) QH(X//K )

QHK/G(X//G)

HH
HHHj

-

�
��

��*
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In particular, there is an equality of formal, nonlinear maps

QκK/G ◦ QκG,K = QκK .

More generally, given a chain G = G0 ⊃ G1 ⊃ . . .Gs as above, one should
obtain a commutative simplex of CohFT algebras. We leave it to the reader to
formulate the precise conjecture.

4. Local description of boundary divisors

In this section and the next we give a precise description of the group of invariant
Cartier divisors on the moduli space of scaled lines Mn,1(A). We begin with a
review of the local description of Mn,1(A) given in [Ma’u and Woodward 2010].

Definition 4.1 (Colored trees). A colored tree 0 is a finite tree consisting of a
set of vertices

V(0)= {v1, . . . , vm},

a set of (finite and semiinfinite) edges

E(0)= E<∞(0)∪E∞(0), |E∞(0)| = n+ 1,

and a subset of colored vertices

V+(0)⊂ V(0),

such that the following condition is satisfied:

(Monotonicity condition). Any non-self-crossing path in 0 from the root edge
e0 to any other semiinfinite edge ei , i > 0 crosses exactly one colored vertex
v ∈ V+(0). The tree 0 is stable if every colored vertex has valence at least 2
and every uncolored vertex has valence at least 3.

We say that a vertex is above the colored vertices if it can be connected to the
root edge without crossing a colored vertex. Let V∞(0) be the set of vertices
above the colored vertices. For any v ∈ V∞(0), let V+(v) be the set of colored
vertices v′ ∈ V+(0) that are below v, that is, connected by paths in 0 that move
away from the root.

Definition 4.2 (Balanced labelings). A map ϕ : E<∞(0)→ C is balanced if for
all v ∈ V∞(0) and v′ ∈ V+(v), the product∏

e∈γ (v,v′)

ϕ(e)

over edges e in the non-self-crossing path γ (v, v′) from v to v′ is independent of



152 KHOA LU NGUYEN, CHRIS WOODWARD AND FABIAN ZILTENER

e2

e3 e4 e5 e6

e1

Figure 3. A colored tree.

the choice of a colored vertex v′. Let V (0) denote the set of balanced labelings:

V (0) := {ϕ : E<∞(0)→ C |ϕ is balanced}. (18)

The subset
T (0) := V (0)∩Map(E<∞(0),C×)

of points with nonzero labels is the kernel of the homomorphism

Map(E<∞(0),C×)→Map(V∞(0),C×)

given by taking the product of labels from the given vertex to the colored vertex
above it, and is therefore an algebraic torus.

Example 4.3. The tree 0 in Figure 3 is a balanced colored tree with n = 4 and
g = 3. The space of balanced labelings is

V (0)=
{
(x1, . . . , x6) ∈ C6

| x1x3 = x1x4 = x2x5 = x2x6, x3 = x4, x5 = x6
}
,

and admits an action of the torus

T (0)=
{
(x1, . . . , x6) ∈ V (0) | xi 6= 0

}
' (C∗)3.

Proposition 4.4 (Local structure of the moduli space of scaled lines [Ma’u and
Woodward 2010]). There is an isomorphism of a Zariski open neighborhood of
Mn,1,0 in Mn,1,0×V (0) with a Zariski open neighborhood of Mn,1,0 in Mn,1(A).

We comment briefly on the proof. Given a stable scaled line, one can remove
small disks around the nodes and glue together annuli using a map z 7→ ϕ(e)/z to
produce a curve with fewer nodes, where ϕ(e) is the gluing parameter associated
to the node. In the case of the genus zero curves, the local coordinates used to
produce the disks are essentially canonical, and the balanced condition guarantees
that the scalings on the resulting curve are well-defined.

Recall that normal affine toric varieties are classified by finitely generated
cones [Danilov 1978; Fulton 1993].
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Definition 4.5 (Affine toric variety associated to a cone). Let VZ⊂ V be a lattice,
and C ⊂ V a strictly convex rational cone. The affine toric variety corresponding
to the cone C is the spectrum V (C) of the ring R(C∨) corresponding to the
semigroup C∨ ∩ V∨Z , that is, the ring generated by symbols fµ for µ ∈ C∨ ∩ V∨Z
modulo the ideal generated by relations∑

i

niµi =
∑

j

m jµ j =⇒
∏

i

f ni
µi
=

∏
j

f m j
µ j . (19)

Any normal affine toric variety is of the form V (C) for some cone C , obtained
from X by letting C∨ be the cone generated by the weights of the action of T
on the coordinate ring and C the dual cone of C∨.

We wish to show that the space V (0) of balanced labelings (18) is the toric
variety associated to some cone C(0). Note that the part of 0 separated by the
colored vertices from the root of 0 trivially affects V (0) by adding additional
independent variables. Hence, for the rest of this section, it suffices to assume
that the colored tree 0 does not contain any vertex below any colored vertex. Let
ε1, . . . , εn be a basis of t, and ε∨1 , . . . , ε

∨
n the dual basis of t∨. Define a labeling

w : E<∞(0)→ t∨

recursively as follows.

Definition 4.6 (Principal subtree and branch). We say that a subtree 0′ ⊂ 0 is a
principal subtree if it is a component of the tree obtained by removing the vertex
adjacent to the root edge. The edge adjacent to the root edge of 0′ is called a
principal branch of 0.

Let 01, . . . , 0p be the principal subtrees of 0 and d1, . . . , dp the principal
branches.

Example 4.7. For the example in Figure 3, there are two principal subtrees, with
principal branches e1, e2.

Definition 4.8 (Sum of labels). Given a labeling w denote by s(0,w) the sum
of the labels of the edges of a non-self-crossing path from the principal vertex to
a colored vertex; a priori this depends on the choice of path but each labeling
we construct will have the property that s(0,w) is independent of the choice of
path.

Definition 4.9 (Labelling of edges of a colored tree by weights). Let 0′ be a
subtree of 0.

(Case 1) 0′ is a tree with one noncolored vertex vi . Label the edges below the
vertex vi by ε∨i , that is, define w(e)= ε∨i for every edge e of 0′.
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ε∨1 ε∨2
ε∨2

ε∨3 + ε
∨

2

ε∨1

ε∨3 + ε
∨

1

Figure 4. An example of a labeling.

(Case 2) 0′ has g > 1 noncolored vertices. By induction, assume that we have
equipped the edges of the principal subtrees 0′1, . . . , 0

′
p of 0′ with labelings wi .

We have thus labeled all the edges of 0 except for the principal branches; we
denote si := s(0′i , wi ). Define

s = s(0′)= ε∨g + s1+ · · ·+ sp. (20)

Label the principal branch di ∈ E<∞(0′) with

w(di )= s− si = ε
∨

g +
∑
j 6=i

s j . (21)

By induction all the edges e of 0 become labeled by weights w(e).

Example 4.10. Figure 4 illustrates the labels of the edges of 0 from Example 4.3.
If we denote the left and right principal branches by d1 and d2 respectively, then
s1 = ε

∨

1 , s2 = ε
∨

2 , s = ε∨3 + ε
∨

2 + ε
∨

1 .

Lemma 4.11. s = s(0,w) is the sum of the labels of the edges of a non-self-
crossing path from the principal vertex vg to a colored vertex and s is independent
of the path chosen.

Proof. By (21) the sum over a path through 0i is si +w(di )= s, for any i . �

Let C(0)∨ be the convex cone generated by the labels above,

C(0)∨ = hullQ≥0 {w(e) | e ∈ E<∞(0)}

= hullQ≥0

p⋃
j=1

C(0 j )
∨
∪ {w(ei ) | 1≤ i ≤ p},

and let C(0) denote the dual cone of C(0)∨.

Theorem 4.12 (Explicit description of the cone associated to balanced labelings).
The variety V (0) is the toric variety associated to C(0) in the sense of Definition
4.5; in particular, V (0) is normal.
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The proof will be given after the following lemma.

Definition 4.13 (Equivalence of sets of edges). Suppose E ′, E ′′ are two disjoint
subsets of E(0). We write E ′ ∼ E ′′ if there exists a vertex and two non-self-
crossing paths γ1 and γ2 from that vertex to some two colored vertices so that
E ′ and E ′′ respectively contain exactly the edges of the paths γ1 and γ2.

Example 4.14. The set E ′={e1, e3} is equivalent to E ′′={e2, e6} in Example 4.3.

Lemma 4.15. Suppose E ′ and E ′′ are two disjoint multisets of elements of E(0).
Then ∑

e′∈E ′
w(e′)=

∑
e′′∈E ′′

w(e′′) (22)

if and only if E ′ and E ′′ can be partitioned into disjoint unions of {E ′1, . . . , E ′r }
and {E ′′1 , . . . , E ′′r } where E ′l ∼ E ′′l for 1≤ l ≤ r .

Example 4.16. In Example 4.3, let E ′ = {3e1, 2e3, e4, e5} and E ′′ = {3e2, 4e6}

which satisfy (22). We can write

E ′1 = {e1, e3} ∼ E ′′1 = {e2, e6}, E ′3 = {e1, e4} ∼ E ′′3 = {e2, e6},

E ′2 = {e1, e3} ∼ E ′′2 = {e2, e6}, E ′4 = {e5} ∼ E ′′4 = {e6}.

Proof of Lemma 4.15. One direction of the implication, that the equality (22)
holds if E ′ and E ′′ can be partitioned, is immediate from the definitions. We
only need to show the other direction. As before, it suffices to consider the
case that there are no noncolored vertices below the colored vertices. When
the number of noncolored vertices is 1, the statement of the lemma is trivial.
Assume the proposition holds for any tree with number of vertices less than
g. Consider a tree 0 with g noncolored vertices. Denote by n1, . . . , n p and
m1, . . . ,m p the multiplicities of the principal branches e1, . . . , ep in E ′ and E ′′.
Since E ′ ∩ E ′′ =∅, we have ni mi = 0 for all i . Equation (22) and the fact that
ε∨g appears only on the edges adjacent to the root edge implies

p∑
i=1

ni =

p∑
i=1

mi . (23)

Similarly, the fact that the labels from each principal branch are independent
implies that

−ni si +
∑

e′∈E ′∩E<∞(0i )

w(e′)=−mi si +
∑

e′′∈E ′′∩E<∞(0i )

w(e′′),

for every 1 ≤ i ≤ p. For a fixed i , without loss of generality, we can assume
mi = 0. Then ∑

e′∈E ′∩0i

w(e′)= ni si +
∑

e′′∈E ′′∩0i

w(e′′).
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Noting that si is the sum of labels over a non-self-crossing path from vi to a
colored vertex, we may replace E ′i = E ′ ∩ E<∞(0i ) with an equivalent set
which contains ni copies E ′ij , j = 1, . . . , ni of the edges in such a path. For
each j = 1, . . . , ni , the complement of E ′ij in E ′i has the same sum of labels as
E ′′i = E ′′ ∩E<∞(0i ), so by the inductive hypothesis there exists a partition of
E ′ ∩ E<∞(0i ) and E ′′ ∩ E<∞(0i ) into {E ′i1 , . . . , E ′ir ′i

} and {E ′′i1 , . . . , E ′′ir ′′i
} such

that for 1≤ j ≤ ni , E ′ij are equal and for ni + 1≤ j ≤ ri ,

E ′ij ∼ E ′′ij . (24)

Since E ′ contains ni principal branches di , we can add one edge di in each E ′ij
for every 1≤ j ≤ ni . Hence, after the modification, each set E ′ij contains exactly
all the edges of a path from the root of 0 to a colored vertex in 0i . Applying
the same process for each 1≤ i ≤ p, by the first equality in (23) and by (24), we
can partition E ′ and E ′′ into {E ′1, . . . , E ′r } and {E ′′1 , . . . , E ′′r } such that E ′i ∼ E ′′i
for every 1≤ i ≤ r . �

Proof of Theorem 4.12. We must show that the balanced relations for V (0)
in Definition 4.2 are exactly those in the definition of the affine toric variety
associated to C(0) in (19). So suppose that E ′ = {n1e1, . . . , nN eN } and E ′′ =
{m1e1, . . . ,m N eN } are such that

∑
niw(ei ) =

∑
m jw(e j ), and so define a

relation as in (19). Lemma 4.15 yields that E ′ and E ′′ can be partitioned into
E ′1, . . . , E ′r , E ′′1 , . . . , E ′′r so that E ′i ∼ E ′′i for 1≤ i ≤ r . But these are exactly the
balanced relations in Definition 4.2. �

It follows from the theorem that the cone C(0) corresponding to the toric
variety V (0) is the cone dual to the Q≥0-span of C(0)∨. Next we find a minimal
set G(0) of generators of C(0) by an inductive argument on the number of
noncolored vertices g of 0.

Definition 4.17 (Generators of the cone associated to balanced labelings). Define
G(0) inductively as follows for subtrees 0′ ⊂ 0:

(a) If g(0′)= 1 with vertex vi , then G(0′)= εi .

(b) If g > 1, then

G(0′)= {εg + n1(v1− εg)+ · · ·+ n p(vp − εg)| vi ∈ G(0′i ), ni ∈ {0, 1}}.

Note that the elements in G(0) are in the lattice Zg spanned by the vectors
ε1, . . . , εg.

Theorem 4.18. G(0) is a minimal set of generators of C(0).
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Example 4.19. The tree 0 in Figure 3 can be split into two principal subtrees
01 and 02. Since G(01)= {ε1} and G(02)= {ε2}, we obtain

G(0)= {ε1, ε2, ε3, ε1+ ε2− ε3}.

The cone generated by {ε1, ε2, ε3, ε1+ ε2− ε3} is the cone C(0) corresponding
to the toric variety V (0).

Denote by C̃(0) the g-dimensional cone spanned by the vectors in G(0). To
prove Theorem 4.18 we must show that C(0)= C̃(0).

Lemma 4.20. For s as in (20), for every v ∈ G(0), 〈s, v〉 = 1.

Proof. This follows by induction on the number of vertices from the observation
that 〈s, v〉 = 1+

∑p
i=1 ni (〈si , vi 〉− 1). �

Proof of Theorem 4.18. We show C̃(0)⊂ C(0) by induction on the number g
of noncolored vertices. The case g = 1 is obvious. Suppose the claim is true
for all colored trees with less than g vertices. Let v ∈ G(0) with coefficients
ni , i = 1, . . . , p and w ∈ C(0)∨. If v ∈ G(0i ) then 〈w, v〉 = ni 〈w, vi 〉 and the
claim follows by the inductive hypothesis. Otherwise, since C(0)∨ is spanned
by w(e), e ∈ E<∞(0), we may assume that w = w(ei ) for some 1≤ i ≤ p. By
Lemma 4.20,

〈w, v〉 = 〈s− si , v〉 = 〈s, vi 〉− ni 〈si , vi 〉 = 1− ni .

Hence 〈w, v〉 ≥ 0. Since this holds for all v,w, we have C̃(0)⊂ C(0).
Conversely, given v ∈ C(0), we claim that v is a nonnegative linear combi-

nation of elements in G(0). For g = 1, the claim is trivial. Assume the claim
is true for all trees with less than g noncolored vertices. Let 0 be a tree with
g vertices and v ∈ C(0). In particular, v pairs nonnegatively with the weights
w(e), e ∈ E<∞(0i ) so by the inductive hypothesis we can write v as a sum

v =−cgεg +

p∑
i=1

∑
v∈G(0i )

λ(i)v v,

where λ(i)v ≥ 0. If cg ≤ 0 then the claim follows since εg ∈ G(0). If cg > 0, let

λi :=
∑

v∈G(0i )

λ(i)v .

We remark by Lemma 4.20,

0≤ 〈w(ei ), v〉 = −cg +
∑
j 6=i

λ j . (25)

To write v as a nonnegative linear combination of elements in G(0), we proceed
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as follows. Without loss of generality, suppose that λp is the minimum of
{λ j 6= 0}, that is, the smallest positive λ j , j = 1, . . . , p. Split each sum as∑

v∈G(0i )

λ(i)v v =
∑

v∈G(0i )

γ (i)v v+
∑

v∈G(0i )

δ(i)v v,

where γ (i)v , δ
(i)
v ≥ 0, γ (i)v + δ

(i)
v = λ

(i)
v and

∑
v∈G(0i )

δ
(i)
v = λp. We can write v as the

sum of

−(p− 1)λpεg +

p−1∑
i=1

( ∑
v∈G(0i )

δ(i)v v

)
+

∑
v∈G(0p)

λ(p)v v (26)

and

−c′gεg +

p−1∑
i=1

∑
v∈G(0i )

γ (i)v v, (27)

where
−c′g =−cg + (p− 1)λp. (28)

Since ∑
v∈G(0i )

δ(i)v =
∑

v∈G(0p)

λ(p)v = λp,

the expression (26) is a nonnegative linear combination of elements of G(0).
If −c′g ≥ 0, the expression (27) is already a nonnegative linear combination of
elements of G(0) and we are done. Otherwise, consider the smaller tree 0′

obtained from 0 by removing 0p and observe that (27) lies in C(0′). Indeed, by
definition, we know γ

(i)
v ≥ 0 and therefore it is sufficient to check that

−c′g +
p−1∑
j 6=i
j=1

γ j ≥ 0.

However, by the definition and Equation (25) we have

−c′g +
p−1∑
j 6=i
j=1

γ j =−cg + (p− 1)λp +

p−1∑
j 6=i
j=1

(λ j − λp)=−cg +

p∑
j=1
j 6=i

λi ≥ 0.

Thus, the expression (27) is in C(0′). By the inductive hypothesis, (27) is a
nonnegative linear combination of elements of G(0′). Hence v is a nonnegative
linear combination of elements in G(0). Thus C(0) ⊂ C̃(0) and therefore,
C(0)= C̃(0).

We argue by induction that G(0) is a minimal set of generators of C̃(0)
and C̃(0) is nondegenerate, i.e no positive linear combinations of vectors in
the cone are 0. It is easy to check the claim when g(0) = 1. Given a tree
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0 with g(0) noncolored vertices and G(0i ) the constructed minimal set of
generators for each nondegenerate cone C̃(0i ), suppose v∈G(0) is a nonnegative
linear combination of other elements in G(0). By the induction hypothesis, the
projection of v onto the space spanned by G(0i ) is 0 for each i and thus by
the nondegeneracy induction hypothesis, it follows that v = 0. Now, suppose
that a positive linear combination of some elements in G(0) is 0. In particular,
its projections onto the space spanned by G(0i ) are 0 for each i and hence by
the nondegeneracy induction hypothesis, it follows that all the elements in the
combination are 0. Therefore, G(0) is a minimal set of generators of C̃(0) and
C̃(0) is nondegenerate, concluding the theorem. �

By the description of the cone, the dimension of V (0) equals the number of
noncolored vertices g above the colored vertices plus the number of finite edges
below the colored vertices. On the other hand, by the balanced condition in 4.2,

dim(V (0))= dim(T (0))= |E<∞(0)| − |V+(0)| + 1.

The two formulas are easily seen to be equivalent, by considering the map from
vertices to edges given by taking the adjacent edge in the direction of the root
edge. We also have a formula for the number of rays in C(0), which follows
immediately from Theorem 4.18:

Corollary 4.21. If the number of one-dimensional faces of C(0i ) is ri for 1≤ i ≤
p, then the number of one-dimensional faces of C(0) is r = (r1+ 1) . . . (rp+ 1).

Next we describe the Weil and Cartier divisors in the local toric charts. Recall
the description of invariant Weil divisors of an affine toric variety V (C) with
cone C (see [Fulton 1993] or, in the more general setting of spherical varieties,
[Brion 1989]):

Proposition 4.22. (a) (Classification of invariant Weil divisors). There is a
bijection between invariant prime Weil divisors of V (C) and the one-dimensional
faces of C.

(b) (Classification of invariant Cartier divisors). There is a bijection between
invariant Cartier divisors on V (C) and linear functions on C taking integer
values on the intersection C ∩ VZ.

We sketch the construction of the bijections. For the classification of invariant
Weil divisors, any one-dimensional face C1 of C corresponds to a codimension-
one face C∨1 of C∨. The projection of semigroup rings R(C∨)→ R(C∨1 ) defines
an inclusion of the corresponding affine toric varieties V (C1)→ V (C). For the
classification of Cartier divisors, recall that a Weil divisor is Cartier if it is the
zero set of a section of a line bundle. On a normal affine toric variety, any line
bundle is trivial and any invariant Cartier divisor is defined by a function that
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is semi-invariant under the torus action. Such functions correspond to lattice
points λ ∈ V∨Z , where the corresponding function is regular if λ ∈ C∨ ⊂ V∨Z .
If v ∈ C is any vector generating an extremal ray, then the order of vanishing
of λ on the divisor D(v) ⊂ V (C) corresponding to v is λ(v). Thus one sees
that a combination

∑
nvD(v) of invariant Weil divisors is Cartier iff there is

an element λ ∈ C∨ such that λ(v) = nv for such v ∈ C . More generally, for a
not-necessarily affine toric variety, an invariant Weil divisor is Cartier if there
exists a piecewise linear function on the fan whose values on the rays are the
multiplicities of the invariant prime Weil divisors.

We now specialize to the case of the toric variety V (0) associated to the cone
C(0) with generators G(0) identified in the previous section. We identify the
invariant prime Weil divisors of V (0) as follows.

Definition 4.23 (Minimally complete edge sets). A subset E ⊂ E<∞(0) is
minimally complete if each non-self-crossing path from vg to a colored vertex
contains exactly one edge in E .

Denote by Emc(0) the set of minimally complete subsets E ⊂ E<∞(0).

Example 4.24. The minimally complete subsets of E(0), where 0 is the tree in
Figure 3, are {e1, e2}, {e1, e5, e6}, {e2, e3, e4}, {e3, e4, e5, e6}.

Proposition 4.25. If the number of minimally complete subsets of E<∞(0i ) is ri ,
the number of minimally complete subsets of E<∞(0) is r = (r1+1) . . . (rp+1).

Proof. Let d1, . . . , dp denote the edges adjacent to the root edge. Each minimally
complete set either contains di , or induces a minimally complete set in the
principal branch 0i , for each i = 1, . . . , p. The claim follows. �

From Corollary 4.21 and Proposition 4.25, we obtain

Corollary 4.26. The number of one-dimensional faces of C(0) equals the num-
ber of minimally complete subsets of E<∞(0).

We can now describe the set of invariant Weil divisors of V (0) as follows.

Proposition 4.27. There is a bijection between the set of invariant prime Weil
divisors and the set Emc(0). More explicitly, each prime invariant Weil divisor
has the form

DE := {(x1, . . . , xN ) ∈ V (0) | xi = 0 for all ei ∈ E}

for some minimally complete subset E.
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Proof. Given a minimally complete edge set E ⊂ E<∞(0), for each principal
subtree 0i of 0, either xdi = 0 or DE induces a minimally complete subset
Ei ∈D(0i ). By induction on the number of noncolored vertices, the dimension
of DE is g(01)+ · · · + g(0p) = g − 1. Thus DE is a subvariety of V (0) of
codimension 1. Since V (0) is the closure of T (0), the subvariety DE is the
closure of the orbit DE∩T (0) and so a prime Weil divisor. From Proposition 4.22
and Corollary 4.26, the number of prime Weil divisors equals the number of
one-dimensional faces of C(0) which equals the number of minimally complete
subset of E<∞(0). Therefore the invariant prime Weil divisors of V (0) are
exactly all DE , where E ⊂ E(0) is minimally complete. �

We now describe inductively the correspondence between the rays of C(0)
and elements in Emc(0). Let D= DE be a Weil divisor as above. Unless edi ∈ E ,
the principal subtree 0i has an induced Weil divisor DEi ⊂ V (0i ). Suppose
that the one-dimensional face of C(0i ) corresponding to the Weil divisor DEi is
generated by vi ∈ G(0i )⊂ G(0). Let

I (E)= {i | edi /∈ E, 1≤ i ≤ p}.

Proposition 4.28. Let E ∈ Emc(0). The one-dimensional face of C(0) corre-
sponding to the Weil divisor DE ⊂ V (0) is generated by

vE = εg +
∑

i∈I (E)

(vi − εg). (29)

Proof. We must show that vE is nonzero exactly on the weights w(e) for e ∈ E .
This is automatically true by the inductive hypothesis for the edges except for
the principal branches, that is, if e ∈ E<∞(0i ) then 〈vE , w(e)〉 = 〈vi , w(e)〉 6= 0
iff e ∈ Ei . For the principal branches, the claim follows from Lemma 4.20. �

Next we identify the invariant Cartier divisors in V (0). For each vertex vk

of 0, denote by 0k the subtree below vk in 0 and which contains the edge right
above vk as its distinguished root. That is, 0k is the connected component of
0−{vk} not containing the root edge. We define

Dk = {DE | E ∈ Emc(0), E ∩E<∞(0k) 6=∅}, Dk =
∑

D∈Dk

D.

Hence if DE ∈ Dk , E does not contain edges of 0 which are above vk .

Proposition 4.29. The group of invariant Cartier divisors is generated by the
elements D1, . . . , Dg.

Example 4.30. The group of invariant Cartier divisors of V (0), where 0 is the
tree in Figure 3, is generated by{

D{1,2}+D{1,5,6}+D{2,3,4}+D{3,4,5,6}, D{2,3,4}+D{3,4,5,6}, D{1,5,6}+D{3,4,5,6}
}
.
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Thus n{1,2}D{1,2}+n{3,4,5,6}D{3,4,5,6}+n{1,5,6}D{1,5,6}+n{2,3,4}D{2,3,4} is a Cartier
divisor if and only if n{1,2}+ n{3,4,5,6} = n{1,5,6}+ n{2,3,4}.

Proof of Proposition 4.29. We first check that Dk is a Cartier divisor. Recall
the notation in (20), sk = s(0k) ∈ t

∨

Z for each vertex vk . Note that sk satisfies
〈sk, vE 〉 = 1 if E ∈Dk and 〈sk, vE 〉 = 0 otherwise. Indeed, for each E ∈Dk , DE

defines another Cartier divisor DEk in the toric variety corresponding to 0k and
by Lemma 4.20, we have 〈sk, vEk 〉 = 1. This implies 〈sk, vE 〉 = 1. On the other
hand, if E /∈ Dk , then E does not contain any edges in 0k . Thus, 〈sk, vE 〉 = 0.
Hence Dk is a Cartier divisor.

Next we check that Dk, k = 1, . . . , g generate the group of invariant Cartier
divisors. Note that sk = εk

∨ mod ε∨1 , . . . , ε
∨

k−1. It follows by an inductive
argument that s1, . . . , sg generate t∨Z so that D1, . . . , Dg generate the group of
Cartier divisors of V (0). �

We have the following description of the group of invariant Cartier divisors
of V (0). Let w be the number of prime Weil invariant divisors of V (0).

Theorem 4.31.
∑

D nD D is a Cartier divisor of V (0) if and only if∑
D

m DnD = 0

for every (m D)D ∈Zw that satisfies
∑

E :e∈E m DE = 0 for every edge e∈E<∞(0).

Proof. The group of Cartier boundary divisors of V (0) forms a sublattice of the
group of Weil boundary divisors Zw, isomorphic to the weight lattice t∨Z

∼= Zg.
Suppose (m D)D ∈ Zw satisfies the condition in the theorem,∑

E :e∈E

m DE = 0, for all e ∈ E<∞(0).

Consider a non-self-crossing path γ from a vertex vk to a colored vertex. By
summing over edges of γ , we obtain∑

D∈Dk

m D =
∑
e∈γ

∑
E :e∈E

m DE = 0.

Thus, if
∑

D nD D is a Cartier divisor, then D is a combination of D1, . . . , Dg

and so
∑

D m DnD=0. On the other hand, the set of (m D)D ∈Zw that satisfies the
condition in the theorem forms a sublattice with dimension at least w− g, since
the conditions are linearly independent. Therefore, the space of nD satisfying
the condition in the Theorem form a lattice of dimension g, which is the same
as that of the space of Cartier boundary divisors. This shows that the two spaces
are the same, up to torsion.
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To show that the lattices are in fact the same, suppose that (nD)D ∈Zw satisfies
the condition in the theorem. By the previous paragraph,

∑
D

nD D =
1
s

g∑
i=1

ri Di

for some integers ri and s such that s > 0. It is suffices now to show that s|ri for
every 1≤ i ≤ g. To see this, note that

∑
D

nD D =
1
s

( g∑
i=1

(
ri

∑
D∈Di

D
))
=

1
s

(∑
D

( ∑
i :D∈Di

ri

)
D
)
.

Thus

nD =
1
s

∑
i :D∈Di

ri .

For the principal vertex vg, define D0
= DE where E = {d1, . . . , dp}. More

generally, for any vertex vk , let γk be the down-path from vg to vk , and let Dk

to be the divisor Dk
= DE where E is the set of edges immediately below the

vertices in γk . Then

nDk =
1
s

∑
vi∈γk

ri ∈ Z. (30)

Since nD1 ∈ Z, we obtain s|r1, and similarly for any vertices adjacent to the
semiinfinite edges besides the root edge. Induction on the length of the path γk

gives s|rk . �

One can reformulate the result of Theorem 4.31 as follows. Given an element
E ∈ Emc(0), the set of colored vertices V+(0) is partitioned by the subsets of
colored vertices below e ∈ E . Denote by Par(0) the set of such partitions of
V+(0). Also, define P(0) the power set of V+(0).

Example 4.32. The invariant prime Weil divisors of V (0) from Example 4.3
are D{1,2}, D{1,5,6}, D{2,3,4}, D{3,4,5,6}, corresponding to the partitions{
{1, 2}, {3, 4}

}
,
{
{1, 2}, {3}, {4}

}
,
{
{1}, {2}, {3, 4}

}
,
{
{1}, {2}, {3}, {4}

}
of the labels of the markings {1, 2, 3, 4}.

Corollary 4.33. A sum ∑
{I1,...,Ir }∈Par(0)

n I1,...,Ir DI1,...,Ir

is a Cartier divisor of V (0) if and only if (n I1,...,Ir ){I1,...,Ir }∈Par(0) is in the orthog-
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onal complement of the kernel of t0, where

t0 : ZPar(0)
→ ZP(0), (t0(m))(S)=

∑
S∈{I1,...,Ir }

m I1,...,Ir .

5. Global description of boundary divisors

In this section we give a criterion for a boundary divisor in the moduli space of
scaled lines Mn,1(A) to be Cartier. By the local description of the moduli space
in Section 4, any divisor of type I is Cartier, so it suffices to consider divisors
of type II. To describe the answer, let I = {1, . . . , n}, let Par(I ) be the set of
nontrivial partitions of I , and P(I ) the power set of nonempty subsets of I . We
identify the set of prime Weil boundary divisors of type I with the subset of
elements of P(I ) of size at least two, and the prime Weil boundary divisors of
type II with Par(I ). Thus in particular the space of Weil boundary divisors of
type II becomes identified with ZPar(I ), by the map{∑

P

l(P)DP

}
→ ZPar(I ),

∑
P

l(P)DP 7→ l.

Let Z(I ) denote the natural incidence relation,

Z(I )= {(S, P) ∈ P(I )×Par(I ) | S ∈ P}.

We have a natural map from the space of functions on Par(I ) to functions on
P(I ) given by pullback and push-forward:

t : ZPar(I )
→ ZP(I ), (t (h))(S)=

∑
S∈P

h(P). (31)

A relation on the group of Cartier boundary divisors is a collection of coefficients
{m I1,...,Ir } ∈ ZPar({1,...,n}) such that

∑
I1,...,Ir

m I1,...,Ir lI1,...,Ir = 0 for every Cartier
divisor D =

∑
I1,...,Ir

lI1,...,Ir DI1,...,Ir . The space of relations forms a subgroup
of ZPar(I ).

Theorem 5.1 (Relations on Cartier boundary divisors). The group of relations
on the group of Cartier boundary divisors of type II is the kernel of t .

Example 5.2. For n = 2 there are two boundary divisors, and there is only the
zero relation. For n = 3 there are eight boundary divisors, and there is only the
zero relation. For n = 4 there are |P({1, 2, 3, 4})|− 4= 11 boundary divisors of
type I, and |Par({1, 2, 3, 4})| = 1+ 6+ 3+ 4= 14 boundary divisors of type II.
A divisor

D =
∑

lI1,...,Ir DI1,...,Ir
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is Cartier only if the three relations (as i, j, k, l vary)

l{i, j},{k},{l}+ l{i},{ j},{k,l}− l{i, j},{k,l}− l{i},{ j},{k},{l} (32)

hold. Thus the space of Cartier boundary divisors of type II is an 11-dimensional
subspace of the space of the 14-dimension space of Weil boundary divisors of
type II.

Definition 5.3 (Compatible subsets and partitions with a tree). (a) A tree 0 is
simple if it has a single vertex.

(b) For each partition {I1, . . . , Ir } of I = {1, . . . , n}, define the tree 0I1,...,Ir

as follows: 0I1,...,Ir has r principal subtrees which are respectively the simple
colored trees 0 j , j = 1, . . . , r whose semiinfinite edges labeled by i ∈ I j .

(c) For each subset I ⊂ {1, . . . , n}, let 0I denote the colored tree with a single
colored vertex and a single noncolored vertex with semiinfinite edges labeled by
i ∈ I .

(d) Given v, ṽ ∈ Vert(0), we write vE ṽ if there is an edge connecting v and ṽ.
A tree homomorphism f : Vert(0)→ Vert(0′) is a map that maps the vertices
and edges of 0 to the vertices and edges of 0′ respectively and satisfies:

(i) f maps the principal vertex vg of 0 to the principal vertex v′0 of 0′.

(ii) If v, ṽ ∈ Vert(0) satisfies vE ṽ, then either f (v)E f (ṽ) or f (v)= f (ṽ).

(iii) f maps the colored vertices of 0 to the colored vertices of 0′.

(e) A subset I ⊂ {1, . . . n} is compatible with 0 if there exists a tree homomor-
phism 0→ 0I .

(f) A partition {I1, . . . , Ir } of {1, . . . , n} is compatible with 0 if there exists a
tree homomorphism f : 0→ 0I1,...,Ir .

See Figure 5 for the trees 0I1,...,Ir and 0I . Denote by Par(0) the set of
compatible partitions of {1, . . . , n}, and by P(0) the set of compatible subsets
of {1, . . . , n}.

Proposition 5.4. There is a canonical bijection between the set of minimally
complete subsets of E<∞(0) and the set of compatible partitions Par(0).

Example 5.5. For the tree 0 in Figure 3, the correspondence between the mini-
mally complete subsets of E<∞(0) and the compatible partitions of {1, . . . , n}
is

{e1, e2} ←→ {1, 2}, {3, 4}, {e1, e5, e6} ←→ {1, 2}, {3}, {4}

{e2, e3, e4} ←→ {1}, {2}, {3, 4}, {e3, e4, e5, e6} ←→ {1}, {2}, {3}, {4}.
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I1 I2 I3

I

0I0I1,...,Ir

Figure 5. The trees 0I and 0I1,...,Ir .

Proof. Given a minimally complete subset E , we obtain a partition by removing
the edges in E and considering the partition of the semiinfinite edges induced by
the decomposition into connected components; that is, two semiinfinite edges
are in the same set in the partition if they can be connected by a path in the
complement of E . There is a morphism of trees 0→0I1,...,Ir given by collapsing
each connected component of 0− E to a point, which shows that the partition is
compatible. Conversely, given a compatible partition, consider the corresponding
morphism of trees 0 → 0I1,...,Ir and let E denote the subset of edges of 0
that are not collapsed under the morphism. Since the finite edges of 0I1,...,Ir

form a minimally complete subset of E<∞(0I1,...,Ir ), the set E is also minimally
complete. The reader may check that these two maps of sets are inverses. �

From Proposition 5.4 we obtain a bijective correspondence between compatible
partitions and the prime invariant Weil divisors of V (0). For each compatible
partition {I1, . . . , Ir } ∈ Par(0), denote by DI1,...,Ir the corresponding invariant
prime Weil divisor of V (0).

Lemma 5.6 (Four-term relation). Suppose that {I1, . . . , Ir } is a partition with at
least two elements of size at least two. Then there exists a colored tree 0 so that
{I1, . . . , Ir } ∈ Par(0), and a relation m ∈ Ker t0 so that

(a) m({I1, . . . , Ir })= 1.

(b) For any partition {J1, . . . , Jr ′) ∈ Par(0) distinct from {I1, . . . , Ir }, we have
m({J1, . . . , Jr ′})= 0 unless r ′ > r .

Proof. Without loss of generality suppose that |I1|, |I2| are both at least 2, and so
admit partitions I1 = I ′1 ∪ I ′′1 , I2 = I ′2 ∪ I ′′2 . Let 0 be the tree with r + 2 colored
vertices, as in Figure 6. Then the sum of delta functions

δI ′1,I
′′

1 ,I
′

2,I
′′

2 ,I3,...,Ir − δI1,I ′2,I
′′

2 ,I3,...,Ir − δI ′1,I
′′

1 ,I2,I3,...,Ir + δI1,I2,I3,...,Ir ∈ Ker t0
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I3 Ir

I ′′2I ′2I ′′1I ′1

Figure 6. The tree 0 compatible with the four-term relation.

is a relation since each subset in each partition occurs an equal number of times
with opposite signs. �

Lemma 5.7. Let m ∈ Ker(t) be a relation and r ∈ {1, . . . , n− 1}. Assume that
m vanishes on every partition of length less than r. Then m vanishes on every
partition that consists of r − 1 singletons and a set of size n− r + 1. If r = n− 1
then m is constantly equal to zero.

Proof. To prove the first assertion, let S be a set of size n− r + 1. We denote
by P the unique partition consisting of S and r − 1 singletons. Every partition
containing S, other than P , has length less than r . Hence by assumption, m
vanishes on such a partition. Using the hypothesis tm = 0 and the definition (31)
of t , it follows that m(P)= 0. The first assertion follows.

To prove the second assertion, consider the case r = n− 1. Every partition
of length n− 1 consists of n− 2 singletons and one set of size two. By the first
assertion, m vanishes on every such partition. Since by hypothesis m vanishes
on every partition of length less than n − 1, it follows that m vanishes on all
partitions, except possibly on {{1}, . . . , {n}}. However, since tm = 0, equality
(31) with S = {1} implies that m vanishes on this partition, as well. This proves
the second assertion. �

Proof of Theorem 5.1. A Weil divisor is Cartier if and only if its restriction to
every affine Zariski open subset is Cartier. Hence it suffices to check if a divisor

D =
∑

lI1,...,Ir DI1,...,Ir

is Cartier in every chart in Proposition 4.4. Note that each DI1,...,Ir corresponds
to a nonempty Weil boundary divisor in V (0) iff {I1, . . . , Ir } ∈ Par(0). A
criterion for a Weil boundary divisor in V (0) to be Cartier is given above in
Corollary 4.33. There is a natural embedding π0 of Ker t0, as in 4.33, in Ker t
which preserves m I1,...,Ir if {I1, . . . , Ir } ∈ Par(0) and maps the other m I1,...,Ir ,
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where {I1, . . . , Ir } /∈ Par(0), to 0. The image of π0 is a subspace of Ker t and
D is a Cartier divisor of V (0) if and only if (lI1,...,Ir ) ∈ cokerπ0 . Hence, D is a
Cartier divisor of all V (0) if and only if (lI1,...,Ir ) is in the orthogonal complement
of the image π0 in ZPar(I ) for all 0. Thus, it suffices to show that

Ker t ⊂ hullZ imageπ0. (33)

For this let m ∈ Ker t be a relation. Assume that m is nonzero on some partition
of length ≤ n− 2, and let {I1, . . . , Ir } a partition of minimal length, on which
m is nonzero. It follows from Lemma 5.7 that {I1, . . . , Ir } contains at least two
sets of size at least two. Hence by Lemma 5.6 there exists a colored tree 0 such
that {I1, . . . , Ir } ∈ Par(0), and a relation m′ ∈ Ker t0 that attains the value 1 on
{I1, . . . , Ir } and vanishes on all other partitions of length at most r . The relation
m−m I1,...,Ir m′ is nonzero on fewer partitions of length r than m. Continuing in
this way we obtain a relation which vanishes on all partitions of length less than
n− 1. By the second statement in Lemma 5.7, any such relation must be zero.
It follows that m is a linear combination of elements of ker t0, where 0 ranges
over all colored trees. This proves the inclusion (33) and completes the proof of
Theorem 5.1. �
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