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Peeking at partizan misère quotients
MEGHAN R. ALLEN

1. Introduction

In two-player combinatorial games, the last player to move either wins (normal
play) or loses (misère play). Traditionally, normal play games have garnered
more attention due to the group structure which arises on such games. Less
work has been done with games played under the misère play convention, Just
as in normal play, misère games can be placed in equivalence classes, where two
games G and H are equivalent if the outcome class of G+ K is the same as the
outcome class of H+K for all games K . However, Conway showed that, unlike
in normal play, these misère equivalence classes are sparsely populated, making
the analysis of misère games under such equivalence classes far less useful than
their normal play counterparts [ONAG]. Even though these equivalence classes
are sparse, Conway developed a method, called genus theory, for analyzing
impartial games played under the misère play convention [Allen 2006; WW;
ONAG]. For years, this was the only universal tool available for those studying
misère games.

In [Plambeck 2009; 2005; Plambeck and Siegel 2008; Siegel 2006; 2015b],
many results regarding impartial misère games have been achieved. These results
were obtained by taking a game, restricting the universe in which that game was
played, and obtaining its misère quotient. However, while, as Siegel [2015a]
says “a partizan generalization exists”, few results have been obtained regarding
the structure of the misère quotients which arise from partizan games.

For a game G = {GL | G R}, we define G = {G R | GL}. Those familiar with
normal play will notice that under the normal play convention rather than G, we
would generally write −G. In normal play, this nomenclature is quite sensible
as G+ (−G)= 0 [Albert et al. 2007], giving us the Tweedledum–Tweedledee
principle; the second player can always win the game G+ (−G) by mimicking
the move of the first player, but in the other component. However, in misère play,
not only does the Tweedledum–Tweedledee strategy often fail, G + G is not
necessarily equivalent to 0. For example, ∗2+∗2 = ∗2+∗2 is not equivalent to
0 [Allen 2006; WW]. However, having the property that G+G is equivalent to
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0 is much desired, as it gives a link to which partizan misère games may behave
like their normal counterparts.

To this end, this paper shows that

(1) ∗+∗ is indistinguishable from 0 in the universe of all-small games, and

(2) there exists a set of games with the property that G+G is always equivalent
to 0 relative to all-small games.

Using these results, the misère quotients of two nontrivial partizan examples are
calculated. One such example has cardinality nine, a cardinality not found within
impartial misère quotients [Plambeck and Siegel 2008]. As well, the partially
ordered outcome set of one this example is given. This paper concludes with
a list of six open problems of varying depth and scope in the area of partizan
misère quotients.

While some elementary definitions are reviewed, this paper assumes the reader
has a basic familiarity with the impartial misère quotient construction developed
by Plambeck and Siegel.

2. Indistinguishability

This section contains a brief review of the indistinguishability definitions devel-
oped by Plambeck and Siegel.

Let G be a game (impartial or partizan). Then we use o−(G) to denote the
misère play outcome of G, keeping the minus sign so as to not forget that we
are dealing with misère play games rather than normal play ones.

We say that a set of games ϒ is closed if it is

(1) closed under addition, i.e., if G, H ∈ ϒ , then G+ H ∈ ϒ , and

(2) option closed, i.e., if G ∈ ϒ , then every option of G is also in ϒ .

Frequently, the set of games over which we want to work is not closed. As such,
we are required to take the closure of the set where for ϒ a set of games, c` (ϒ)

is the smallest closed set such that ϒ ⊆ c` (ϒ).
Suppose ϒ to be a closed set of games with G, H ∈ ϒ . Then G and H are

indistinguishable over ϒ if

o−(G+ K )= o−(H + K ) for all K ∈ ϒ,

and we write
G ≡ H (mod ϒ).

Indistinguishability (mod ϒ) is both an equivalence relation compatible with
addition, and so, ϒ�≡ϒ

is well-defined and forms a monoid [Plambeck and
Siegel 2008], which is the misère quotient of ϒ . We denote this monoid by
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Q(ϒ). Moreover, Q(ϒ) is partitioned into four disjoint outcome sets, N , P,
L , and R, meaning Next, Previous, Left, and Right respectively, where, for
example, [G]≡ϒ

∈N if and only if o−(G)=N .
For a more detailed discussion of misère quotients, their development, and

results on the monoid structures obtained, this paper refers the reader to the work
of Plambeck and Siegel, most notably [Plambeck 2009; 2008; Plambeck 2005;
Siegel 2015b; 2006].

3. All-small games and ∗+∗

Suppose that ϒ is a closed set of impartial games with ∗ ∈ϒ . Then we have the
following result:

Proposition 3.1. ∗+∗ ≡ 0 (mod ϒ) [WW].

However, if ϒ contains certain partizan games, Proposition 3.1 fails.

Proposition 3.2. Let 1={0|·} and suppose 1, ∗∈ϒ , a closed set of games. Then
∗+∗ 6≡ 0 (mod ϒ).

Proof. It is easy to show that while o−(1) = R, Left can force a win if Right
moves first in 1+∗+∗. �

Thus, while we cannot extend Proposition 3.1 to all partizan games, we can
extend the result to all-small games, as shown in the following theorem.

Theorem 3.3. Let ϒ be a closed set of all-small games with ∗ ∈ ϒ . Then
∗+∗ ≡ 0 (mod ϒ).

The proof of this theorem extends that of a similar result for impartial games
given in [Siegel 2006].

Proof. Take G ∈ϒ . We want o−(G+∗+∗)= o−(G). Proceed by induction on
the options of G.

We know that o−(0)=N , and o−(∗+∗)=N , so the base case holds.
Now suppose true for all options of G and consider G.
Since G is nonzero and all-small, Left must have a move from G. Suppose

Left wins moving first in G. Then Left wins moving first in G+∗+∗ by moving
to GL +∗+∗, where GL is a winning position for Left moving second. Since
GL is an option of G, by induction, o−(GL +∗+∗)= o−(GL). Therefore Left
wins moving second in GL +∗+∗, and so Left wins moving first in G+∗+∗.

Suppose Left wins moving second in G. Right has two possible starting moves
in G +∗+∗. Ge may move to either G R +∗+∗ or to G +∗. Suppose Right
moves to G R+∗+∗. By induction, o−(G R+∗+∗)= o−(G R), where Left has
a winning move moving first in G R . Thus Left has a winning move moving first
in G R+∗+∗, and so, this is not a good opening move for Right. If Right moves
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to G+∗, then Left responds with G, leaving Right to make the next move in G,
and so Left wins.

Therefore, if Left moving first (or second) wins G, then Left moving first (or
second) wins G+∗+∗. A symmetric argument works for Right.

Therefore o−(G)=o−(G+∗+∗), and so ∗+∗≡0 (mod ϒ) when ϒ contains
only all-small games. �

Corollary 3.4. Let ϒ be the set of all all-small games. Then ∗+∗≡ 0 (mod ϒ).

Proof. The set of all all-small games is closed. Thus the result follows from
Theorem 3.3. �

The importance of this result is two-fold. Not only does it extend a result for
impartial games, it also allows us to reduce misère monoid calculations when
examining closed sets of all-small games, as we need only consider positions
which contain at most one ∗.

4. Conjugation and equivalence with 0

As reviewed in the introduction, G+G is not necessarily equivalent to 0 for G
played under the misère convention. However, this does raise an interesting area
of investigation. For what G is it true that G +G ≡ 0 (mod c`(G, G))? This
section gives an infinite set of games for which this is true.

Definition 4.1. Let G be a game. Then G is a binary game if at any point, a
player has either no moves available or exactly one move available.

Definition 4.2. A position G is called abn if

(1) G is all-small,

(2) G is binary,

(3) each alternating path in the game tree of G is of length n or less.

Consider the games given in Figure 1. Then ∗ is ab1, G1, G2, and G3 are ab2,
and H1 and H2 are ab4.

Note that if G is abn, then G is abm for all m > n. Also note that if G is abn,
then all of G’s options are also abn.

∗ G G G H H∗ G1 G− 2 G3 H1 H2

Figure 1. The games ∗, G1, G2, G3, H1, and H2.



PEEKING AT PARTIZAN MISÈRE QUOTIENTS 5
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Figure 2. Left wins G+G moving first if G is ab3 and GL RL = 0.

We restrict ourselves first to examining games which are ab3. We will show
that if G is ab3, then G+G ≡ 0 (mod c`(G, G)). We first require the following
proposition.

Proposition 4.3. Let G be ab3. Then o−(G+G)=N .

Proof. Proceed by induction on the birthday of G.
Suppose G = 0. Then o−(0+ 0)= o−(0)=N , as required.
Suppose true for all K which are ab3 and which have smaller birthday than

G. Consider G.
Suppose GL = 0. Then G R = 0. Left moves first in G+G to GL +G = G.

Right’s only response is to G R = 0, and so Left wins.
Now suppose GL RL = 0. Then G RL R = 0. Figure 2 shows how Left moving

first can win G+G, noting that GL =G R , and that the birthday of GL is strictly
less than the birthday of G, so o−(GL +G R)=N by induction.

Suppose that GL R = 0. Then G RL = 0. If G R = 0 or G RL R = 0, then
repeat one of the above arguments to get that Left wins moving first in G+G.
Otherwise, suppose that G RL = 0. Figure 3 shows how Left moving first can
win G+G.

A symmetric argument shows how Right wins moving first in G+G, and so
the result holds. �

We can now prove our main result.
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GCG

GLCG

GLCGR
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GLR D0

GLR CG DG
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GLR D0

Figure 3. Left wins G+G moving first if G is ab3 and GL R = G RL = 0.

Theorem 4.4. Suppose G is ab3 and let ϒ be the set of all all-small games. Then
G+G ≡ 0 (mod ϒ).

Proof. This proof is very similar to that of Theorem 3.3.
Proceed by induction on the birthday of G.
Suppose G = 0. Then clearly 0+ 0≡ 0 (mod ϒ).
Suppose true for all L which are ab3 and which have smaller birthdays than

G. Consider G +G. We want for any all-small H , o−(H)= o−(H +G +G).
Proceed by induction on H .

Suppose H = 0. Then o−(0)=N , and, by Proposition 4.3, o−(G+G)=N .
This shows the base case for the induction on H .

Now suppose o−(K )= o−(K+G+G) for all all-small K with lesser birthday
than that of H .

Since H is all-small and nonzero, we know that some H L must exist. Suppose
Left moving to H L is a winning move for Left moving first in H . Claim that
Left can win moving first in H +G+G with the move H L +G+G. Since the
birthday of H L is strictly less than the birthday of H , have o−(H L +G+G)=
o−(H L). Since Left wins moving first in H , this means o−(H)=P or L , so
o−(H L +G+G)=N or L , so Left wins moving first in H +G+G.

Suppose Left wins moving second in H . Consider Right’s three possible first
moves in H +G+G, given in Figure 4. Suppose Right makes the first move to
H R +G+G. Since Left wins moving second in H , this gives o−(H R)=N or
L . Since the birthday of H R is strictly less than the birthday of H , by induction,
o−(H R+G+G)=N or L , so Left wins H+G+G moving second if Right’s
first move is to H R +G+G.

Suppose Right makes the first move to H + G R + G. Left responds by
moving to H + G R + GL . Since G R = GL and G R is ab3, by induction,
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GCG

H R CGCG H CGR CG H CGCGR

Figure 4. Right’s possible opening moves in H +G+G.

o−(H+G R+GL)= o−(H). Since Left wins moving second in H , by induction,
Left wins moving second in H +G R +G. Similarly, if Right’s first move is to
H +G+G R , then Left will also win.

Therefore, if Left moving first (or second) wins H , then Left moving first (or
second) wins H +G+G. A symmetric argument works for Right.

Therefore o−(H)= o−(H +G+G), and so G+G ≡ 0 (mod ϒ). �

Corollary 4.5. Let ϒ be a closed set of all-small games, not necessarily all
all-small games. Suppose G is ab3. Then G+Gb ≡ 0 (mod c` (ϒ)).

Proposition 4.3, Theorem 4.4, and Corollary 4.5 are surprising results. The
proposition gives pairs of games (G, G) in which we always know the outcome
class of their sum under the misère play convention. Other than for tame games,
impartial games whose misère quotients are the same as that of sums of Nim
heaps, very little is known about how to deal with disjunctive sum of misère
games. See [Allen 2006] and [ONAG] for a discussion on the sums of tame
games, and [Mesdal and Ottaway 2007] for a discussion on some difficulties
arising with the disjunctive sum on arbitrary misère games. Theorem 4.4 parallels
the result discussed at the beginning of this section, namely that under normal
play, G+ (−G) always equals 0.

A natural question is how far can Theorem 4.4 be extended? Some simple
leg work shows that, for H2 given in Figure 1, o−(H2 + H2 ) = P, and so
H2+H2 6≡ 0 (mod c`(H2, H 2)). Hence, Theorem 4.4 does not extend to all abn
games for n ≥ 4. However, it would still be worth investigating for which abn
games with n ≥ 4 have the result given in Theorem 4.4.

5. Two examples of partizan misère quotients

Consider the game ↓= {∗ | 0}. In this section, we will calculate Q(c` (↓)) and
Q(c`(↓,↓)).
5.1. The partizan misère quotient of c` (↓). The positions in c` (↓) are 0, ∗,
and ↓. Since ↓ is all-small, Theorem 3.3 gives that ∗+∗≡ 0 (mod c` (↓)). Thus,
every position in c` (↓) is indistinguishable from one of the form m ↓ or ∗+m ↓,
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where m ↓ denotes the disjunctive sum of m copies of ↓. A bit of work [Allen
2009] gives the following for the outcome classes of the positions n∗+m ↓:

m = 0 m = 1 m = 2 m = 3 m ≥ 4

n ≡ 0 N L P R R

n ≡ 1 P N N N R

Moreover, we can see that

(1) 4 ↓≡ u ↓ (mod c` (↓)) for any u ≥ 4,

(2) 4 ↓≡ ∗+ u ↓ (mod c` (↓)) for any u ≥ 4.

Enumerating the elements then gives us:

0, ∗, ↓, 2 ↓, 3 ↓, 4 ↓, ∗+ ↓, ∗+ 2 ↓, ∗+ 3 ↓,
all of which are pairwise distinguishable. Note that if o−(G) 6= o−(H), then the
two elements are distinguished by 0. Table 1 shows the distinguishing elements
in c` (↓) when o−(G)= o−(H).

With the mappings

0 7→ 1, ∗ 7→ a, ↓7→ d,

the following monoid is achieved:

Q(c` (↓))= 〈1, a, d | a2 = 1, d4 = d5 = ad4〉,
N = {1, ad, ad2, ad3},
P = {a, d2},
L = {d},
R = {d3, d4},

Position 1 Position 2 distinguishing element

0 ∗+ ↓ ∗
0 ∗+ 2 ↓ ↓
0 ∗+ 3 ↓ ↓

∗+ ↓ ∗+ 2 ↓ ∗
∗+ ↓ ∗+ 3 ↓ ∗
∗+ 2 ↓ ∗+ 3 ↓ ∗

∗ 2 ↓ 2 ↓
3 ↓ 4 ↓ ∗

Table 1. Positions of c` (↓) and the elements which distinguish them.
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Figure 5. Outcome class partial order.
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1

Figure 6. The partially ordered set of Q(c` (↓)).

with the additive notation in c` (↓) becoming multiplicative notation in Q(c` (↓)).
This example demonstrates an important difference between partizan and

impartial misère quotients. In impartial games, every finite indistinguishability
quotient has either cardinality one or is of even cardinality [Plambeck and Siegel
2008]. Contrast this with the cardinality of Q(c` (↓)), which is nine.

Another possible area for investigation regarding partizan misère quotients is
on the partial order of the elements. Recall that, under monoid multiplicative
notation,

x ≥ y if o−(xz)≥ o−(yz) for all monoid elements z,

and that, in terms of outcomes, the outcome lattice is given in Figure 5.
The partially ordered set of Q(c` (↓)) is given in Figure 6. However, while

these sets can be calculated, no general results on such partially ordered sets
have been obtained.

5.2. The partizan misère quotient of c` (↓,↑). Note that ↓= {0 | ∗} =↑. Thus
Q(c`(↓,↓))=Q(c` (↓,↑)).
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We will now calculate Q(c` (↓,↑)). Since c` (↓,↑) is a set of all-small
games, we can apply Theorem 3.3. Since ↓ is ab2, and hence ab3, we can apply
Corollary 4.5. Combining these two results, we get that all positions in c` (↓,↑)
are indistinguishable from one of the following:

0, ∗, m ↓, ` ↑, ∗+m ↓, or ∗+` ↑ .

Moreover, it can be shown that any two positions of the above form are distin-
guishable ([Allen 2009]).

With the mappings

0 7→ 1, a 7→ a, ↓7→ d, ↑7→ u,

the following monoid is achieved:

Q(c` (↓,↑))=
〈
1, a, d, u

∣∣ a2 = 1, dmun =
{dm−n if m > n,

un−m if m ≤ n,

〉
,

N = {1, ad, ad2, ad3, au, au2, au3},
P = {a, d2, u2},
L = {d, u3, u4, u5, . . . , au4, au5, au6 · · · },
R = {u, d3, d4, d5, . . . , ad4, ad5, ad6, . . . },

with the additive notation in c` (↓,↑) having become multiplicative notation
in Q(c` (↓,↑)) (the outcome class calculations can be seen in [Allen 2009]).
Notice that Q(c` (↓,↑)) is an infinite monoid. Thus, as in the impartial case,
infinite misère monoids exist.

The partially ordered set of this monoid is particularly unpleasant, but is
calculated in full in [Allen 2009].

It should also be noted that if we consider the misère monoid simply as a
monoid without the outcome tetrapartitions, than it is isomorphic to the group
Z2⊕Z, just as in normal play.

6. Conclusion

Theorems 3.3 and 4.4 give a good starting base for further investigation of
partizan misère quotients. While, as Theorem 3.3 shows, all-small games share
some results with impartial games, the misère quotient of c` (↓), which has
nine elements, shows that even restricting ourselves to all-small games can
yield results which do not appear for impartial misère quotients. This paper
concludes with some possibilities for further research in the area of partizan
misère quotients:
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(1) For what n ∈ N does there exist games (or sets of games) G such that the
cardinality of Q(G) is n?

(2) For what games G is it true that Q(G) is infinite?

(3) How can we extend Theorem 4.4 to other sets of partizan games?

(4) What properties of impartial misère quotients always hold for partizan
misère quotients? Are there properties of impartial misère quotients which
never hold for partizan misère quotients or vice versa?

(5) What can we say about the partially ordered sets that arise under the partizan
misère quotient construction?

(6) Joyal [1977] constructed a category out of normal play games under disjunc-
tive sum. The objects of his category were normal play games G, where
there exists an arrow G → H if Left moving second can win the game
H + (−G). That this entity satisfied the further conditions required to form
a category relied heavily on the use of the fact that G+(−G) is equivalent to
0 and the Tweedledum–Tweedledee principle to show both the existence of
an identity and compositions. In 2010, Cockett, Cruttwell, and Saff used this
idea to define a combinatorial game category, that is a category with extra
axioms which make it behave like Joyal’s category of normal play games
[Cockett et al. 2010]. However, these combinatorial game categories are
very normal play focused and investigation must be undertaken to determine
how, or even if, such work can be applied to the misère case.
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