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Toppling Conjectures

ALEX FINK, RICHARD NOWAKOWSKI,

AARON SIEGEL AND DAVID WOLFE

Positions of the game of TOPPLING DOMINOES exhibit many familiar combi-

natorial game theory values, often arranged in unusual and striking patterns.

We show that for any given dyadic rational x , there is a unique TOPPLING

DOMINOES position G equal to x , and that G is necessarily a palindrome.

We also exhibit positions of value �x for each x > 0. We show that for

each integer m ≥ 0, there are exactly m distinct LR-TOPPLING DOMINOES

positions of value ∗m (modulo a trivial symmetry). Lastly, every infinitesimal

TOPPLING DOMINOES position has atomic weight 0, 1 or −1.

1. Introduction

TOPPLING DOMINOES, introduced by Albert, Nowakowski and Wolfe [1], is a

combinatorial game played with a row of dominoes, such as the one pictured in

Figure 1. Here each domino is colored blue or red (black or white, respectively,

when color printing is unavailable). On his turn, Left selects any bLue (black)

domino and topples it either east or west (his choice). This removes the toppled

domino from the game, together with all other dominoes in the chosen direction.

Likewise, Right’s options are to topple Red (white) dominoes east or west. For

example, the Left options of are

A = , B = , C = , D = .

Here A and B result from toppling the westmost domino respectively west or

Figure 1. A typical TOPPLING DOMINOES position.
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Figure 2. Some familiar combinatorial game values that arise in TOP-

PLING DOMINOES.

east, while C and D result from toppling the eastern black domino respectively

west or east.

Positions in TOPPLING DOMINOES might also include grEen (gray) domi-

noes, which Either player may topple. Positions consisting entirely of black

and white dominoes, such as the example above, are sometimes called LR-

TOPPLING DOMINOES positions.

The reader might wish to verify some of the sample values in Figure 2. (Ex-

ercise: what is the value of Figure 1?)

The principal results of this paper are the following four theorems.

• For each number x , there is exactly one TOPPLING DOMINOES position G

equal to x . Furthermore, G is necessarily a palindrome. The proof involves

constructing a new LR-TOPPLING DOMINOES position f (G) with value

1:G and applying this construction recursively.

• For each number x > 0, there exists a TOPPLING DOMINOES position G

equal to �x . It is not known whether G is unique.

• For each integer m ≥ 0, there are exactly m distinct LR-TOPPLING DOMI-

NOES positions of value ∗m (modulo east/west symmetry).

• Every infinitesimal TOPPLING DOMINOES position has atomic weight 0, 1

or −1.

In Section 2, we introduce some basic facts and strategies for TOPPLING DOM-

INOES. The three main results are proved in Sections 3, 4 and 5, as Theorems 16,

21 and 29, respectively. Finally, in Section 6 we note that every infinitesimal

TOPPLING DOMINOES position necessarily has atomic weight 0, 1 or −1.
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We adopt the following notational conventions:

L a single Left (black) domino

R a single Right (white) domino

E a single domino for Either (gray)

x, y, z an arbitrary string of dominoes

Familiarity with combinatorial game theory is assumed; the necessary back-

ground may be found in a standard reference such as [1] or [2].

2. Preliminaries

The following easy result is very useful.

Lemma 1. A TOPPLING DOMINOES position’s outcome class is completely de-

termined by its end dominoes:

• The empty string has value 0 (and is the unique position of value 0);

• L > 0, and LxL > 0 for any string x;

• R > 0, and Rx R > 0 for any string x;

• Lx R 6? 0 and RxL 6? 0 for any string x.

Proof. From LxL , any opening move for Right annihilates at most one of the

two endpoints, and hence reverts to 0. Finally, from Lx R (or RxL) both players

have moves to 0. ˜

The next results shed light on some simple winning strategies.

Lemma 2. For any string x, every Left move from LxL to some L yR or L yE

is reversible through 0.

Proof. In particular, LxL > 0, and so Left’s move to L yR or L yE reverses

through Right’s response toppling the remaining dominoes. ˜

Lemma 3 (sandwich lemma). Let G be a TOPPLING DOMINOES position, and

suppose GL is obtained from G by toppling east (resp. west). Suppose that GL R

is obtained from GL by toppling in the same direction. Then GL R

 G.

Proof. Assume (by symmetry) both moves toppled east. Write x = GL R , so that

GL = x y for some y and G = x yz for some z. Note that x = GL R is available

directly as a Right option of G, so that GL R = G R

 G. ˜

The importance of Lemma 3 is that in any difference G − H = 0, if Left

moves to any GL − H , then Right’s winning response cannot be to topple in the

same direction in G.

Lemma 4. For any x, Lx > x.
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Proof. In Lx−x Left can win by moving to x−x. When Right moves first, Left

plays the corresponding move in the other component leaving either y − y = 0

or L y − y which, by induction, is positive. ˜

Corollary 5. Within any block of adjacent blue dominoes, the two moves that

topple an end domino away from the block dominate all other moves within the

block.

3. Uniqueness of numbers

In this section, we show that for every number x there is a unique TOPPLING

DOMINOES position G = x . The ordinal sum defined in [2; 3] plays a central

role in this analysis. We recall the definition here.

Definition 6. Let G and H be combinatorial games. The ordinal sum of G and

H , denoted G :H , is defined recusively by

G :H =
{

GL, G :H L
∣

∣ G R, G :H R
}

.

Intuitively, we may think of the ordinal sum as a modified disjunctive sum in

which any move on G annihilates the entire component H .

The special case 1 :G =
{

0, 1:GL
∣

∣ 1:G R
}

has particular importance in our

analysis, owing to the following classical theorem.

Fact 7 (Berlekamp–Conway–Guy). Let x > 0 be a number. Then x = 1 : y for

some simpler number y.

Corollary 8. The set of numbers is generated from {0} by the transformations

x 7→ −x , x 7→ 1:x.

With these facts in hand, the outline of our argument becomes clear. We

will associate to each TOPPLING DOMINOES position G a new position f (G)

of value 1 : G. Since there is a trivial transformation G 7→ −G (replace blue

dominoes with red ones and vice versa), we immediately obtain all numbers.

We then show that every positive number G is necessarily of the form f (H) for

some H , after which a simple inductive argument establishes uniqueness.

For completeness, we include a proof of Fact 7 here. The theorem was orig-

inally proved in the context of BLUE-RED HACKENBUSH strings, where it was

used to show that every such string encodes a unique number [2].

Proof of Fact 7. It is easily seen that 1 :n = n + 1 and 1 :−n = 2−n , both of

which satisfy the simplicity conclusion, so assume x =
{

x L
∣

∣ x R
}

in simplest

form, with x R > x L > 0. By induction, x L = 1 : yL and x R = 1 : y R for some

yL, y R. Put y =
{

yL
∣

∣ y R
}

. Then

1:y =
{

0, 1:yL
∣

∣ 1:y R
}

=
{

0, x L
∣

∣ x R
}

= x,
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since 0 is dominated by x L . By induction we may assume that yL and y R are

simpler than x L and x R , respectively, whence y is simpler than x . ˜

With this machinery in hand, we now introduce our transformation f .

Definition 9. Let f be the morphism of strings such that, for a TOPPLING

DOMINOES string x, f (x) is obtained by inserting one additional L in ev-

ery maximal substring of Ls in x, including empty substrings. For example,

f (R RL L RL) = L RL RL L L RL L .

Equivalently, f can be described by the following transformation, where ∧

denotes the “start of string” marker for x:

∧ → ∧L

L → L

R → RL

E → E L

Theorem 10. For any TOPPLING DOMINOES position G, we have f (G) = 1:G.

Proof. Let H =
{

0, f (GL)
∣

∣ f (G R)
}

. It suffices to show that f (G) = H , for

then the theorem follows by induction.

Step 1: We first show that every Left (resp. Right) option of H is a Left (resp.

Right) option of f (G). Consider a typical G R . We may write G = x R y (or

G = x E y) with G R = x or y. By definition of f , we have f (G) = f (x)R f ( y)

(or f (x)E f ( y)), so f (x) and f ( y) are necessarily Right options of f (G).

Likewise, for any GL we may write G = xL y (or G = x E y) with GL = x

or y. If G = x E y, then the argument is identical to the G R case. If G = xL y,

then f (G) = f (x) f ( y), so f (x) and f ( y) are necessarily Left options of f (G)

(note that both f (x) and f ( y) have blue dominoes on both ends).

Finally, f (G) has a move to 0, since it necessarily has a blue domino on the

west end.

Step 2: To complete the proof, we show that for every option of T of f (G),

either T is an option of H , or T reverses through 0.

First of all, inspection of Definition 9 reveals that every Right option of f (G)

is obtained as in Step 1, since every red (resp. green) domino in f (G) arises as

the image of a red (resp. green) domino in G.

However, there are additional Left options T = f (G)L that are not of the form

0 or f (GL). In particular, they are those that expose a red or green domino, but

these moves reverse out through Right’s moves to 0, since 0 < f (G). ˜

Corollary 11. For every number x , there is a TOPPLING DOMINOES position

G = x.

Proof. Theorem 10 yields the mapping G 7→ 1 :G, so this result follows from

Corollary 8. ˜
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We now prove uniqueness. A few more lemmas are needed.

Lemma 12. Let G be an LR-TOPPLING DOMINOES position with G > 0. If G

does not contain R R as a substring, then there exists a TOPPLING DOMINOES

position H such that G = f (H).

Proof. H is obtained by removing a single L from every maximal substring of

Ls in G. ˜

Lemma 13. 1:H ≥ 1:K if and only if H ≥ K .

Proof. When playing 1:H −1:K , a move on the base 1 taking a component to 0

can never be winning unless the other component is already 0. Hence, winning

play on 1:H −1:K is tantamount to play on H − K until the last two moves. ˜

Lemma 14. If a TOPPLING DOMINOES position G has consecutive non-blue

dominoes, then G is not a number.

Proof. Suppose (for contradiction) that G = Lx AB yL is a number where A and

B are non-blue dominoes. Consider Right’s move to G R = Lx A. Since G R

G,

Left must have a winning move on G R − G. Since −G is a number and G R is

not, Left must have a winning move on the G R component. By Lemma 3, this

move must be to topple west on Lx A, to a position of the form z A − G. But

then Right has a response to −G < 0, a contradiction. ˜

Lemma 15. Let G be a TOPPLING DOMINOES position. If G is a number and

G > 0, then G ∼= f (H) for some H.

Proof. It follows from the lemma that G is in the image of f . ˜

Theorem 16. Let G and G ′ be TOPPLING DOMINOES positions, and suppose

that G = G ′ = x , a number. Then G ∼= G ′.

Proof. For x = 0 this is just Lemma 1. We proceed by induction on x .

First suppose x > 0. By the previous lemma, we have G = f (H) and G ′ =

f (H ′) for some H, H ′, so by Theorem 10, G = 1:H and G ′ = 1:H ′. Now we

know that x = 1:y for some number y simpler than x . By Lemma 13, we have

H = H ′ = y, so by induction H ∼= H ′. Therefore G ∼= G ′.

The case x < 0 is symmetric. ˜

Corollary 17. All TOPPLING DOMINOES positions that are numbers are palin-

dromes.

Proof. If G ′ is the reversal of G, then certainly G ′ = G, so by Theorem 16 we

have G ′ ∼= G. ˜
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4. Tinies

The main result of this section is the construction of �x and 	x . We present the

main theorem here, but defer its proof until the end of the section.

Theorem 18. Let x be the TOPPLING DOMINOES position of value x , where

x ≥ 0 is a number. The position RLxL R has value 	x .

The proof of the theorem naturally entails showing that the games xL R +

{0 | −x} and RLxL R + �x are second player wins. In the arguments, Left

sometimes moves twice in the TOPPLING DOMINOES component to some x
L L ,

and we will need to show this is bad for Left:

Lemma 19. Let x be a TOPPLING DOMINOES number (possibly negative). Let

x
′ be a position reachable from x by one or more Left moves. Then x

′ < x.

Proof. Recall that x consists only of L and R. Furthermore, if x > 0, Lemma 14

tells us x never has consecutive R’s and begins and ends in an L .

As usual, consider the difference game x − x
′, and consider the case when

x > 0. If x
′ begins and/or ends in R, Left wins: Left’s primary plan is to first

move −x
′ to 0, and then move x to 0. Right cannot thwart this plan except

possibly by making a first move which eliminates the only L end of −x
′, but

Left has a good response to this opening by the next case.

In case x
′ begins and ends in L , then x

′ is in the image of f (Definition 9),

and we can rewrite x = 1:y and x
′ = 1:y′. Furthermore, since x

′ begins and ends

in an L , observe that y
′ is reachable from x

′ by Left moves. So, by induction

and Lemma 13, y
′ < y and we have x

′ < x.

Finally, if x < 0, x
′ must begin and end in R, and we can rewrite x − x

′ as

(−1: y) − (−1: y
′) and use induction as above. ˜

Lemma 20. If x is a TOPPLING DOMINOES number x > 0, then

xL R = {x | 0}.

Proof. Consider play on

xL R +{0 | −x}.

If the first player moves in one component, the second player almost always

moves in the other component; the only exception is when Right topples west

in the first component wherein Left topples the rightmost L R, leaving x
R +

{0 | −x}. Right’s move to x
R −x loses by Lemma 19 while when Right topples,

Left can move to x
R R + 0 > 0 since x

R R ends in Ls.

When the second player does respond to the first player’s move in the other

component, typically this leaves either 0 + 0 or x − x to win. However, when

Right is the first player and topples east, Left leaves games of the form x
R + 0

where x
R > 0 (since x never has consecutive Rs). When Left makes an initial
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move toppling a domino east, Right leaves x
L − x < 0 by Lemma 19. When

Left makes an initial move toppling west, Right again leaves x
R L R−x or R−x .

The latter is clearly negative, while in the former Left’s only hope is to topple

east, but that leaves x
R R − x < 0 by Lemma 19. ˜

Theorem 21. If x is a positive TOPPLING DOMINOES number x > 0, then

RLxL R =	x =
{

x | 0
∣

∣

∣

∣ 0
}

.

Proof. Consider play on

RLxL R +�x = RLxL R +
{

0
∣

∣

∣

∣ 0 | −x
}

.

All moves outside those in x have natural winning responses. When Right moves

in x or topples an end R only, Left immediately responds to 0 +�x > 0. The

remaining case is Left’s move to some x
L L R +�x whence Right can play to

x
L L R +{0 | −x}.

If Left now plays the second component to 0, Right can move the first component

to 0. If, on the other hand, Left plays in the first component, Right replies in the

second component leaving either x
L L − x which Right wins by Lemma 19, or

R − x which Right wins trivially. ˜

Conjecture 22. RLxL R is the unique TOPPLING DOMINOES position of value

	x , where x > 0 is a number.

This has been confirmed for TOPPLING DOMINOES strings of length up to 15.

5. Nimbers

In the sequel, we use x
a to mean the block of dominoes represented by x re-

peated a times.

Unlike dyadic rationals, nimbers have more than one representation; in LR-

TOPPLING DOMINOES, ∗m has m representations, or 2m counting reversals. The

shortest representation is given by the following lemma.

Lemma 23. For any non-negative integer m, (L R)m = ∗m.

Proof. The right followers of the form (L R)k L are positive and therefore domi-

nated, while the ones of the form (L R)k are, by induction, ∗k. ˜

One position recurs as a Right follower in the arguments to come, and so we

highlight it as a losing move for Right:

Lemma 24. Let x be a TOPPLING DOMINOES position. Then LxL +∗m 
 0.

Proof. The sum LxL +∗m is a positive game added to a game equal to or fuzzy

with 0. ˜
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The main theorem of the section is that the following lemma describes the

only forms of ∗m, and the proof of this fact will take the bulk of this section.

Lemma 25. The position (L R)a(RL)m(L R)a = ∗m, for 0 ≤ a < m.

Proof. The proof is routine. First, let G = (L R)a(RL)m(L R)a with a < m. We

show that G + ∗m = 0. By the symmetry of G we need only consider Right

going first.

If Right plays in G, all moves, except one, which topple east leave both ends

L and lose by Lemma 24. The exception is the move to (L R)a + ∗m whence

Left responds to (L R)a +∗a = 0.

When Right topples west, Left mirrors moves in the initial block (L R)a by

moving symmetrically in the final block. Right’s moves in the final block leave

(L R)a′

+∗m for a′ < m and lose. Lastly, if Right topples west from the middle

block (RL)m , Right can remove the latter block leaving a position of the form

(L R)m′

L +∗m = 1/2m′

+∗m > 0.

If Right plays in the second component of G + ∗m to some G + ∗m′, there

are two cases. If m′ ≤ a, Left plays to (L R)m′

+ ∗m′ = 0. If m′ > a, Left

plays to (L R)a(RL)m +∗m′. From here, each of Right’s plays is easily seen as

losing, for Right cannot leave a position of the form Lx L + ∗k, yet moves to

(L R)a +∗m′ = ∗a +∗m′ and to (RL)m +∗m′ = ∗m +∗m′ also lose. ˜

For the remainder of this section, let G =∗m be an LR-TOPPLING DOMINOES

position. By Lemma 1, G cannot have Ls at both ends and so by symmetry we

may assume G = Lx R.

Lemma 26. G = ∗m contains no substring of the form L L(RL)n L.

Proof. Say G = xL L(RL)n L y. From G+∗m Left can move to xL L(RL)n+∗m.

By Lemma 3 if Right has a winning move in xL L(RL)n, it must be to topple

a domino west. In these cases, then Left either has a move to or is left with a

position of the form L(RL) j +∗m for some j , which is 1/2 j +∗m > 0. If Right

moves on the ∗m then Left moves to L(RL)n +∗k > 0. ˜

The last lemma, and the symmetric one with L and R interchanged, is used

to prove:

Lemma 27. G = ∗m is of the form (L R)a1(RL)a2(L R)a3 · · · (L R)an (or its re-

verse) for some n ≥ 1 odd and a1, . . . , an ≥ 0.

Proof. By the previous lemma, G has no two instances of R R which aren’t

separated by an L L , and in particular no R R R (and the same holds with the roles

of L and R reversed). Yet G cannot begin (L R)a L L . . . (nor end . . . R R(L R)a)

for Left’s move to (L R)a L = 1/2a is too strong. So if there are any pairs of

consecutive like dominoes, these must alternate between R R and L L , beginning
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with R R and ending with L L . The form claimed in the lemma is the only

possibility remaining. ˜

Lemma 28. G = ∗m is of the form (L R)a(RL)m(L R)a (or its reverse) for

a < m.

Proof. The previous lemma has G of one of the forms

(L R)a or (L R)a(RL)b(L R)c
x

for some string x either empty or starting in R. The first form is fine; in the

second we must show that x = 0, that a = c and that b > a.

Since Left has moves from G to 0, ∗, . . . , ∗(a − 1), and Right has a move to

∗a, we have m > a. Moreover, Left has a move to (L R)a(RL)b, from which

Right must respond to either (L R)a or (RL)b (since Right will lose if she leaves

a double-Left-ended string). Since m >a, Right’s move to (L R)a +∗m is losing,

so necessarily (RL)b +∗m <= 0. Therefore b = m > a.

Next consider c. We can’t have c > a since then Left would have a move

from G to (L R)a(RL)m(L R)a , which we know is equal to ∗m. Suppose instead

c < a. Then Right can move from G to (L R)c(RL)m(L R)c
x. If x = 0 this wins

immediately. Otherwise, consider Left’s responses. Toppling to the west must

lose, since all such moves are available to Left directly from G + ∗m. If Left

topples east from within x, then Right can revert to (L R)c(RL)m(L R)c which is

equal to ∗m. Finally, if Left topples east annihilating x, then Left’s move must a

priori be losing, since it’s also available from (L R)c(RL)m(L R)c +∗m, which

is equal to 0. Therefore Right’s move from G to (L R)c(RL)m(L R)c
x+∗m was

a winning move, a contradiction.

This shows that c = a. Finally, this implies x = 0, since otherwise Right

could win by simply annihilating x. ˜

Theorem 29. The LR-TOPPLING DOMINOES position G = ∗m if and only if it

is of the form (L R)a(RL)m(L R)a for 0 ≤ a < m.

Proof. The last lemma combined with Lemma 25 proves the theorem. ˜

6. Atomic weights

In [1, p. 202], it is proved that any TOPPLING DOMINOES position with two gray

ends is an infinitesimal with atomic weight 0, 1, or −1. In this section we gen-

eralize the result to include all TOPPLING DOMINOES infinitesimals, including

those that end in L or R.

Lemma 30. If G is an infinitesimal TOPPLING DOMINOES position beginning

in L , then it must be of the form (L R)n or (L R)n E x or (L R)n Rx.
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Proof. If G is not of one of the above forms, fix G and rewrite it as (L R)m L y

where m is maximal. The string y cannot begin in R, for then G would either

be one of the above forms or m would not be maximal. So y is either empty,

in which case G equals some (L R)m L = 1/2n , or Left can move to (L R)m L ,

contradicting that G is infinitesimal. ˜

Lemma 31. If G is an infinitesimal TOPPLING DOMINOES position, then the

first player has a move to a nimber. Furthermore, if the first player moves to any

non-nimber, the second player can respond to a nimber.

Proof. The proof is clear from the forms of G given by the last lemma. We first

observe that the first player can move to a nimber. If G begins with an L , Left

can move to 0, while Right can move to some (L R)n = ∗n. If G begins with an

E , either player can move to 0.

We now show that if the first player moves to a non-nimber, the second player

can respond to a nimber. Without loss of generality, the first player topples east.

When G begins with an E , the second player has a move to 0, and when G

begins with an L , Left moving second has a move to 0. In the remaining case,

G begins in L , and Left moved first toppling east. If Left’s move was to some

initial (L R)m , then that already equals ∗m. If, on the other hand, the move is to

some (L R)n E x
′ or (L R)n Rx

′, then Right can move to (L R)n = ∗n. ˜

Theorem 32. All infinitesimal TOPPLING DOMINOES positions have atomic

weight −1, 0, or 1.

Proof. The proof is identical to that found in [1, pp. 202–203], and so we only

provide a brief sketch here. Let G be an infinitesimal. The last lemma shows

that G is of the form

{

0, {? | 0}, . . .
∣

∣ 0, {0 |?}, . . .
}

where the 0s are nimbers, and therefore have atomic weight 0. If each ? were

all-small, then the rule for recursively computing atomic weights given by [1,

p. 199] or [2] would yield at atomic weight of −1, 0, or 1. But if the ? are

not all-small, we can replace each positive number stop in G with �, and each

negative number with �, arriving at a new game G ′. Observe that G + H has

the same outcome as G ′ + H for H ∈ {⇑�, ↑�,�, ↓�, ⇓�}, and so G has

the same atomic weight as G ′ in {−1, 0, 1}. ˜

7. Conjectures

We end with a few conjectures. This first one would prove that green (gray)

dominoes can introduce new values:
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Conjecture 33. The value

= {1 | 0 , {0 | −1}}

does not appear in LR-TOPPLING DOMINOES.

Conjecture 34. For all TOPPLING DOMINOES positions x and y, xL y > x y.

(Proving xL y ≥ x y is trivial.)

Conjecture 35. In LR-TOPPLING DOMINOES, if G is a palindrome then G’s

value appears uniquely.

Next, here are a few conjectures that generalize the construction of �x . In

what follows, a ≥ b ≥ c ≥ d are numbers (as are x , x L , and x R), and are the

toppling dominoes positions given by the construction of Section 3.

Theorem 36. If x ={x L | x R} is a number in canonical form, x is given uniquely

by the TOPPLING DOMINOES position x L L Rx R .

Conjecture 37. The game {a | b} is given (uniquely) by the TOPPLING DOMI-

NOES position aL Rb.

Conjecture 38. The game {a || b | c} is given (uniquely) by the TOPPLING DOMI-

NOES position aL RcRLb.

Conjecture 39. The game {a | b || c | d} is given (uniquely) by the TOPPLING

DOMINOES position bRLaL Rd RLc.

Conjecture 40. Some games do not occur in TOPPLING DOMINOES. (By way

of comparison, HACKENBUSH contains no hot games.)
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