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Harnessing the unwieldy MEX function
AVIEZRI S. FRAENKEL AND UDI PELED

A pair of integer sequences that split Z>0 is often — especially in the context
of combinatorial game theory — defined recursively by

an =mex{ai , ai : 0≤ i < n}, bn = an + cn (n ≥ 0),

where mex (Minimum EXcludant) of a subset S of nonnegative integers is the
smallest nonnegative integer not in S, and c : Z≥0→ Z≥0. Given x, y ∈ Z>0, a
typical problem is to decide whether x = an , y = bn . For general functions
c, the best algorithm for this decision problem was until now exponential in
the input size �(log x + log y). We prove constructively that the problem is
actually polynomial for the wide class of approximately linear functions cn .
This solves constructively and efficiently the complexity question of a number
of previously analyzed take-away games of various authors.

1. Introduction

This paper is about the complexity of combinatorial games. Its main contribution
is showing constructively that a large class of games whose complexity was
hitherto unknown and its best winning strategy was exponential, is actually
solvable in polynomial time.

For many take-away games on two piles, the set of losing positions {(an, bn)}
(n ≥ 0), also called P-positions, is given by recursive formulas of the form:{

an =mex{ai , bi : 0≤ i < n},
bn = an + cn, n ≥ 0,

(1)

where mex (Minimum EXcludant) of a subset S of nonnegative integers is the
smallest nonnegative integer not in S. The mex definition implies that sequences
{an}, {bn} (n ≥ 1) of the form (1), for c : Z≥0 → Z≥0, are complementary
sequences [Fraenkel 1982]. Later on we define precisely the notions alluded to
here informally.

A case in point is Wythoff’s game, played on two piles of tokens of sizes (x, y),
where we may assume 0≤ x ≤ y. The two players play alternately. There are two
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types of moves: (i) taking any positive number of tokens from a single pile (Nim
rule), or (ii) removing the same number of tokens from both piles (Wythoff rule).
In this and all games considered here, the first player unable to move (because the
position is (0, 0)) loses and the opponent wins. Its P-positions are {(an, bn)}, n≥
0, where an, bn are given by (1) with cn = n [Fraenkel 1982]. Given a game
position (x, y), to decide whether (x, y)= (an, bn) requires the computation of
a0, b0, a1, . . . , bk−1, ak , where k is the largest index such that ak ≤ x . This is an
exponential computation, since the input size is O(log x + log y).

For Wythoff’s game, however, there is an explicit formula for the P-positions,
namely, an = bnϕc, bn = bnϕ2

c, where ϕ = (1+
√

5)/2 is the golden section
[Fraenkel 1982]. Using this formula it is possible to efficiently compute an ,
bn for any n, and more importantly, to decide efficiently (in polynomial time)
whether a given position (x, y) of Wythoff’s game is a P-position. Another
efficient winning strategy is based on the Fibonacci numeration system. There is
a generalization of Wythoff’s game where the Wythoff move is relaxed: one can
take k>0 from one pile and `>0 from the other, provided |k−`|< p, where p is
a fixed positive integer parameter (p= 1 is Wythoff’s game). The P-positions of
this p-Wythoff game are given by (1) for cn = pn [Fraenkel 1982]. Also for this
case there is an explicit formula of its P-positions: an = bnαc, bn = bnβc, where
α= 1− p/2+

√
1+ (p/2)2, β =α+ p, leading to an efficient computation of an ,

bn [Fraenkel 1982]. For a recent and comprehensive survey on the complexity
of combinatorial games see [Demaine and Hearn 2009]. Previous surveys are
in [Demaine 2001; Fraenkel 2000; 2004a]. There is an extensive literature on
Wythoff’s game; here we just cite two of them: [Wythoff 1906; Fraenkel 1982].

For other functions c, the present state of affairs is that ad hoc methods have
to be devised for each c in order to try and decide whether an efficient winning
strategy exists. For example, for cn = (s − 1)an + pn where s, p ∈ Z>0, it
was shown in [Fraenkel 1998] that for s > 1, there are no α, β, γ , δ such that
an = bnα + γ c, bn = bnβ + δc. However, in this case a polynomial winning
strategy can still be recovered by means of an exotic numeration system. If c
is not an integer, no efficient strategy is known in general. A case in point is a
game considered in [Duchêne and Gravier 2009], where cn = 2bn/4c. For the
case where c is a special algebraic number, it was recently shown in [Duchêne
and Rigo 2010] that an efficient winning strategy exists. But for most cases,
nothing is known about the efficiency of winning.

In conclusion, the present state of affairs is that for each function c, the
corresponding game has to be analyzed and ad hoc methods have to be devised
which might or might not produce an efficient strategy.

The main impact of the present paper is the formulation of a constructive
recursive algorithm showing that the strategy is efficient for every approximately
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linear function cn , in particular functions of the form cn = kbθnc, where k ∈Z>0,
θ ∈ R>0. This solves take-away games considered previously where the com-
plexity analysis was left open, such as in [Fraenkel 2004b; Hegarty and Larsson
2006; Duchêne and Gravier 2009]. We also prove several approximation results
for certain sequences, of independent interest, which we use for formulating our
recursive algorithm.

Many complementary sequences are listed in Sloane’s online encyclopedia
of integer sequences. They play a prominent role not only in the theory of
combinatorial games, but also in combinatorics of words and spectra of numbers
investigations. See [Kimberling 2007] for a survey and also [Kimberling 2008].

In the next section we formalize some of the notions and tools which will be
used in the sequel. In particular, we define the notion of approximate linearity.
In Section 3, which is the main technical section, we explore complementary
sequences by proving Theorem 3.2, which gives a basic yet important inequality
about complementary sequences. This is followed by Theorem 3.4, which estab-
lishes an important combinatorial equivalence concerning increasing sequences.
Both of these results are then used to prove the fundamental Bounded Additivity
Theorem 3.5. It enables one to wed together complementarity and approximate
linearity in Section 4, with the aid of Fekete’s lemma [1923], leading to our
main result, the Approximate Linearity Theorem 4.3. This result then leads, in
Section 5, to the efficient algorithm, together with an example and its complexity
analysis. In Section 6 we wrap-up with a conclusion.

2. Formalizations

Definition 2.1 (P- and N-positions). (i) A position from which the player
moving first has a winning strategy is called an N-position (Next player
to move wins). A position from which the player moving second has a
winning strategy is called a P-position (Previous player to move wins).

(ii) A take-away game is played on a collection of piles of finitely many tokens.
A move consists of selecting a pile and removing from it any positive number
of tokens.

Note that player I, starting from a P-position, is doomed to lose the game,
assuming player II plays optimally. Hence to find optimal strategies, it suffices
to characterize the P-positions, and this characterization should be as simple as
possible computationally. One might go about characterizing the N-positions
instead, but it’s more economical to characterize the P-positions, since they
are rare. Intuitively, this follows from the fact that a position is a P-position
if and only if all its direct followers are N-positions, whereas a position is an
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N-position if and only if it has a direct P-position follower. Formally, this has
been proved in [Singmaster 1981]; see also [Singmaster 1982].

Definition 2.2 (Minimal EXcludant). Let S ( Z≥0. Then

mex(S) :=min(Z≥0 \ S).

Notice that by the mex definition, the sets {an}n≥1, {bn}n≥1 in (1) partition the
positive integers into two disjoint sets whenever cn ≥ 1 (n ≥ 1) [Fraenkel 1982].
The mex function appears frequently in the study of combinatorial games, hence
it is important to understand its behavior and influence on the sequences which
it defines.

The game of q-Blocking p-Wythoff’s Nim (p, q ≥ 1 integer constants) was
defined by Hegarty and Larsson [2006]. It is p-Wythoff mentioned earlier, with
an additional “Muller twist” (see [Smith and Stănică 2002]), namely, if the current
position is (k, `), then, before the next move is made, the previous player is
allowed to choose up to (q−1) distinct positive integers t1, . . . , tq−1 ≤min{k, l}
and prevent the next player from moving to any position (k− ti , `− ti ). They
proved that its P-positions are given by (1) with cn = pbn/qc (n≥ 0). Alas, by a
result in [Boshernitzan and Fraenkel 1981], there is no representation of the type
bnα+βc for either of the sequences an , bn in the general case of positive integers
p, q. No numeration system seems to help, so there appears to be no efficient
method for computing the sequences. This game was one of the motivations for
the current work.

Duchêne and Gravier [2009] analyzed the following 2-pile extension of
Wythoff’s game: remove any number of tokens from a single pile, or remove
the same positive even number of tokens from both piles. They proved that
the P-positions (an, bn) are given by an = Fn , b4n = G4n , b4n+1 = G4n+1,
b4n+2=G4n+3, b4n+3=G4n+2 for all n≥ 0, where Fn =mex{Pi , Qi : 0≤ i < n},
Gn = Fn + 2bn/4c for all n ≥ 0. So Fn , Gn have the same values as an , bn

respectively of q-Blocking p-Wythoff for the special case p = 2, q = 4. In
fact, the Duchêne and Gravier game was one of our original motivations for
investigating sequences of this type. Both of the last mentioned games can be
solved polynomially by our method.

Definition 2.3 (approximate linearity). We call the sequence A approximately
linear if there exist constants α, u1, u2 ∈ R such that

u1 ≤ an − nα ≤ u2 for all n ≥ 0.

We say that u1, u2 are approximation bounds, and α is the linearity rate.

Remark. Notice that α is unique since lim
n→∞

an/n = α, but u1, u2 are not.
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Though there is no known explicit formula for general sequences {an}, {bn}

of (1), it was conjectured that for the special case cn = pbn/qc they can be
approximated by linear sequences, namely that an − nα is bounded for some
constant α, and similarly for bn . Our first result of this work was proving that
indeed this approximation holds, by finding bounds depending on p, q . Hegarty
[2009] independently proved the same approximation for the special case p = 1.
We then generalized our result to the case where c is any approximately linear
function.

After approximating an , bn , there still remained the problem of efficiently
computing the sequences, which, without an explicit formula, seemed impossible.
We should mention that more often than not, for a general function cn , there
is no efficient algorithm for computing the elements of the sequences defined
by (1) and deciding whether an arbitrary number belongs to it. The best known
algorithms are exponential.

But quite surprisingly, after deepening our understanding of partitions created
by the mex function, we indeed found an efficient algorithm. This is our most
important result. The algorithm computes sequences for any approximately linear
function c.

In particular, the algorithm solves efficiently the q-Blocking p-Wythoff’s
game, and also Duchêne’s game. Moreover, since most of the results presented
here are for general sequences defined by the mex function, and the idea behind
the algorithm is basic, we believe that it can be generalized and implemented
with some modifications for other sequences. For example, Fraenkel and Krieger
[2004] and Sun and Zeilberger [2004; Sun 2005] investigated the P-positions
of Fraenkel’s N-Heap Wythoff’s game [Fraenkel 2004a]. These P-positions are
defined similarly to the sequences {an}, {bn}, and they share the same essential
properties as them. Hence the results presented here can possibly offer some
new insights to understanding Fraenkel’s N-Heap Wythoff’s game.

3. Complementary sequences

Unless otherwise specified, any interval of the form [a, b] denotes the set of
integers {k ∈ Z : a ≤ k ≤ b}. Analogously for open/half-open intervals.

Definition 3.1 (complementary sequences). We say that two integer sequences
A := {an}n≥0, B := {bn}n≥0 are complementary sequences if they are strictly
increasing sequences which satisfy A∪ B = Z≥0, A∩ B = {a0 = b0 = 0}. We
also define c := B− A.

We begin with a property of complementary sequences, which will be used
both in the proof of Theorem 3.5, and in the efficient algorithm for computing
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sequences. The idea is that given an element in a sequence, we know its position
between two consecutive elements of the complementary sequence.

Theorem 3.2 (complementary sequences inequality). Suppose that A, B are
complementary sequences. Then

bak−k < ak < bak−k+1, abk−k < bk < abk−k+1, for all k ≥ 1.

Proof. How is the interval I := [1, ak] split between A and B? Since A is
increasing, I contains precisely the first k terms of {an}. Hence the remaining
ak − k terms of I must be the leading terms of the increasing sequence B.
Therefore bak−k ≤ ak < bak−k+1. By complementarity, actually bak−k < ak . The
second inequality is derived the same way by splitting [1, bk] between the two
sequences. �

Remark. Denote I = [br , bs], by the theorem we get that the first element of
A∩ I is abr−r+1, and the last element of A∩ I is abs−s , and a similar result by
switching the roles of A, B.

Now for simple bounds on the growth of the smaller sequence of complemen-
tary sequences.

Corollary 3.3. Assume that A, B are complementary sequences. If an < bn for
all n ≥ 1, then n ≤ an ≤ 2n− 1 for all n ≥ 1.

Proof. Since A is increasing, obviously n ≤ an . From Theorem 3.2 we know
that ban−n < an , and we assumed an < bn , so ban−n < bn . Since B is strictly
increasing, the indices of the last inequality must satisfy an−n<n as claimed. �

The following very intuitive theorem gives an equivalence between the number
of elements of an increasing sequence in an arbitrary interval of length u, and
an inequality about the increments of this interval. We need it for proving
Theorem 3.5.

Theorem 3.4 (min-max-equivalence). Assume that B = {bn}n≥0 is an increasing
sequence, satisfying b0 = 0.

Then the following equivalence holds for any two integers x, u.

min
L≥0
|[L + 1, L + u] ∩ B| ≥ x ⇐⇒ for all n ≥ 0, bn+x ≤ bn + u.

And similarly also the following equivalence holds

max
L≥0
|[L + 1, L + u] ∩ B| ≤ x ⇐⇒ for all n ≥ 0, bn + u ≤ bn+x .

Proof. The implication

min
L≥0
|[L + 1, L + u] ∩ B| ≥ x =⇒ for all n ≥ 0, bn+x ≤ bn + u
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is obvious, since we can take L = bn .
We’ll prove the other direction: given L ≥ 0, take the maximal n such that

bn ≤ L . So since bn+x ≤ bn + u ≤ L + u, we get bn+1, bn+2, . . . , bn+x ∈

[L + 1, L + u] as claimed.
The proof of the second equivalence is similar: for the first implication take

L = bn−1. And for the second direction take minimal n≥ 0 such that L < bn . �

Remark. Equivalence also holds when either x or u are negative integers.

The following result enables us to prove Theorem 4.3. The proof is by
induction, and in order to better understand it, we recommend following the first
steps of m=1, 2, 3, . . .with specific sequences {an}, {bn} (e.g., bn=an+b

√
2nc).

Theorem 3.5 (bounded additivity). Let A, B be complementary sequences. Sup-
pose that c = {cn} = {bn − an}n≥0 is a nonnegative sequence which satisfies, for
all n,m ≥ 0,

cn+m−r ≤ cn + cm ≤ cn+m+s,

for some integer constants r, s ≥ 0 satisfying r − 1 ≤ s. Then we have for all
n,m ≥ 0,

an+m−r − 1≤ an + am + s− r ≤ an+m+s .

Proof. We shall prove the inequality by induction on m. For m= 0, the inequality
is an−r − 1 ≤ an + s − r ≤ an+s for n ≥ 0, which follows from r − 1 ≤ s and
an + s ≤ an+s for all n ≥ 0 (since an is increasing).

We assume that the following holds for all 0≤ t ≤ m,

an+t−r − 1≤ an + at + s− r ≤ an+t+s for all n ≥ 0,

and we shall prove that it holds for all 0≤ t ≤ m+ 1.
By the induction assumption we know

an+t−r − 1≤ an + at + s− r for all n ≥ 0, 0≤ t ≤ m,

and by adding cn+t−r ≤ cn + ct we get

bn+t−r − 1≤ bn + bt + s− r for all n ≥ 0, 0≤ t ≤ m.

Now, by Corollary 3.3 we have t + 1 ≤ at+1 ≤ 2(t + 1) − 1, hence 0 ≤
at+1 − (t + 1) ≤ t ≤ m, and we can switch t with at+1 − (t + 1) in the above
inequality to get

bn+at+1−(t+1)−r ≤ bn + bat+1−(t+1)+ s− r + 1 for all n ≥ 0, 0≤ t ≤ m.

From Theorem 3.2 we know that bat+1−(t+1) < at+1, meaning bat+1−(t+1) ≤

at+1− 1, which, concatenated to the right of the above inequality, gives

bn+at+1−(t+1)−r ≤ bn + at+1+ s− r for all n ≥ 0, 0≤ t ≤ m.
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Since this holds for all n ≥ 0, Theorem 3.4 implies that for every fixed t ≤ m,

min
L≥0
|IL ∩ B| ≤ at+1− (t + 1)− r,

where the closed interval IL is given by IL = [L + 1, L + at+1+ s − r ]. Now,
since A, B are complementary, and |IL | = at+1+ s− r , we get

max
L≥0
|IL ∩ A| ≤ (at+1+ s− r)− (at+1− (t + 1)− r)= t + 1+ s.

Again by Theorem 3.4 we get

an + at+1+ s− r ≤ an+t+1+s for all n ≥, 0≤ t ≤ m.

So we established the right inequality of our goal inequality, namely

an + at + s− r ≤ an+t+s for all n ≥, 0≤ t ≤ m+ 1.

Now, for the left hand side we use similar arguments. We add cn+ct ≤ cn+t+s

to the last inequality, to get

bn + bt + s− r ≤ bn+t+s for all n ≥ 0, 0≤ t ≤ m+ 1.

By Corollary 3.3 we have t ≤ at ≤ 2t−1, hence 0≤ at − t+1≤ t ≤m+1, and
we can switch t with at − t + 1 in the above inequality to get

bn + bat−t+1+ s− r ≤ bn+at−t+1+s for all n ≥ 0, 0≤ t ≤ m+ 1.

From Theorem 3.2 we know that at < bat−t+1, meaning at +1≤ bat−t+1, which,
concatenated to the left of the above inequality, gives

bn + at + 1+ s− r ≤ bn+at−t+1+s for all n ≥ 0, 0≤ t ≤ m+ 1.

Since this holds for all n ≥ 0, by Theorem 3.4 we get for every fixed t ≤ m+ 1,

max
L≥0
|IL ∩ B| ≤ at − t + 1+ s,

where IL = [L + 1, L + at + 1+ s − r ]. Now, since A, B are complementary,
and |IL | = at + 1+ s− r , we get

min
L≥0
|IL ∩ A| ≥ (at + 1+ s− r)− (at − t + 1+ s)= t − r.

Again by Theorem 3.4 we get

an+t−r ≤ an + at + 1+ s− r for all n ≥, 0≤ t ≤ m+ 1.

So we also established the left inequality of our goal inequality, hence the
induction is complete. �
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Remark. The theorem’s conclusion also holds for the sequence B, that is, for
all n,m ≥ 0,

bn+m−r − 1≤ bn + bm + s− r ≤ bn+m+s .

To see this, just add the inequality assumption of the sequence c to the inequality
conclusion of an .

We can change the indices in the theorem’s conclusion to get

an+m ≤ an + am+r + s− r + 1≤ an+m+α+s + 1

for all n,m ≥ 0. But we do not want to be concerned with the exact indices
and constants of such inequalities (though these were essential for the theorem’s
proof), so we state a very simple lemma.

Lemma 3.6. Assume that {an}n≥0 is a real sequence, which for some constants
r, s ∈ Z≥0 and u, v ∈ R, satisfies

an+m ≤ an + am+r + u ≤ an+m+s + v for all n,m ≥ 0.

Then there exist constants D, E ∈ R, such that

an+m + D ≤ an + am ≤ an+m + E for all n,m ≥ 0.

Proof. By the left inequality of the assumption we know that at+r ≤ at +a2r +u
for all t ≥ 0, so by taking t = m together with the assumption we get

an+m ≤ an + am+r + u ≤ an + am + a2r + 2u.

We can take D =−a2r − 2u to fit our goal.
Now, again by the left inequality of the assumption we know that at+s ≤

at+as+r+u for all t ≥0. By taking t=n+m we can continue the right inequality
of the assumption as an + am+r + u ≤ an+m+s + v ≤ an+m + as+r + u+ v.

By taking n=0 in the assumption we get am ≤a0+am+r+u, and together with
the previous inequality we get an+am−a0≤an+am+r+u≤an+m+as+r+u+v.
So by both ends of this inequality we can take E = a0+as+r +u+v, and we’re
done. �

4. Approximate linearity

We use a well known lemma from [Fekete 1923].

Lemma 4.1 (Fekete’s lemma). Let {sn}n≥0 be a superadditive sequence of real
numbers, that is, sn+ sm ≤ sn+m for all n,m ≥ 0. Then limn→∞ sn/n exists, and
is equal to supn≥1 sn/n ∈ (−∞,∞].

From this lemma we derive the following corollary, which can be applied
directly to the results of Theorem 3.5.
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Corollary 4.2 (Fekete’s corollary). Assume that A is a sequence of real numbers
which satisfies, for some constants u, v ∈ R,

u ≤ an + am − an+m ≤ v for all n,m ≥ 0.

Then A is approximately linear, with approximation bounds u, v, and linearity
rate α = lim an/n.

Proof. We have (an − v)+ (am − v) ≤ an+m − v for n,m ≥ 0, so by applying
Fekete’s lemma to the sequence an − v we get

sup
n≥1

an − v

n
= lim

an − v

n
= α ∈ (−∞,∞] .

Hence for n ≥ 1 we have an − v ≤ nα, i.e., an − nα ≤ v.
Similarly, (u−an)+ (u−am)≤ u−an+m for n,m ≥ 0, so by Fekete’s lemma

sup
n≥1

u− an

n
= lim

u− an

n
= α′ ∈ (−∞,∞] .

Hence for n ≥ 1 u− an ≤ nα′, i.e., u ≤ an + nα′.
Lastly, notice that α′= lim (u− an)/n=− lim an/n=− lim (an − v)/n=−α,

hence α ∈ R. Altogether we get u ≤ an − nα ≤ v, as claimed. �

Using Theorem 3.5 together with Fekete’s lemma and their corollaries, we
get Theorem 4.3, which is the main theorem of this paper.

Theorem 4.3 (approximate linearity). Let A, B be complementary sequences.
Then both A and B are approximately linear if and only if c = B− A is approxi-
mately linear.

Proof. Assume that A, B are approximately linear, i.e., u1 ≤ an − nα ≤ u2

and v1 ≤ bn − nβ ≤ v2 for suitable constants u1, u2, v1, v2. Then we easily get
v1− u2 ≤ (bn − an)− n(β−α)≤ v2− u1, which means that c is approximately
linear with linearity rate β −α.

In the other direction, assume c is approximately linear, i.e., K1≤cn−nγ ≤K2

for constants K1, K2. We would like to use Theorem 3.5, so we first look
for integer constants r, s ≥ 0. We take an integer r ≥ 0, which satisfies r ≥
(K2− 2K1)/γ . Thus,

cn+m−r ≤ (n+m− r)γ + K2 ≤ nγ + K1+mγ + K1 ≤ cn + cm

(the middle inequality is by our choice of r , and rightmost/leftmost inequalities
are the approximate linearity of c).

We also take some integer s ≥ 0 which satisfies s ≥ (2K2− K1)/γ . Then

cn + cm ≤ nγ + K2+mγ + K2 ≤ (n+m+ s)γ + K1 ≤ cn+m+s .



HARNESSING THE UNWIELDY MEX FUNCTION 87

But recall that the theorem also requires s ≥ r − 1, so we choose s that also
satisfies this.

In conclusion, cn+m−r ≤ cn+cm ≤ cn+m+s , so by Theorem 3.5 and Lemma 3.6
we get u1 ≤ an+an−an+m ≤ u2 for some constants u1, u2, and similarly for B.
Hence Fekete’s Corollary implies that A, B are approximately linear. �

Remark. If we know the approximation bounds K1, K2 and the linearity rate
γ = lim cn/n, then by Theorem 3.5’s conclusion and the proof of Lemma 3.6, we
can compute approximation bounds for the sequences A and B after choosing —
preferably minimal — r, s. Thus we regard them as known constants.

Also the linearity rates α, β are known. Since A, B are complementary
sequences, and since lim an/n = α, lim bn/n = β, density considerations imply
α−1
+β−1

=1 [Fraenkel 1982]. Also notice that cn=bn−an implies β−α=γ , so
we find α, β by solving the quadratic equation α−1

+ (α+γ )−1
= 1. For any θ ∈

R>0, setting cn= kbθncwe have c= kθ , so we obtain a= 1
2

(
2−kθ+

√
k2θ2+ 4

)
,

b = 1
2

(
2+ kθ +

√
k2θ2+ 4

)
.

If 0<θ < 1 then for 0≤ i < 1/θ we get ci = kbθ ic= 0. And for i0=d1/θe we
get ci0= kbθ i0c≥1 and bi =ai = i ; thus ai0= i0, bi0 > i0. By shifting the indices,
we get the complementary sequences A′, B ′ defined by a′n = an+i0−1− i0+ 1,
b′n = bn+i0−1− i0+ 1 for n ≥ 0. The difference

c′n = b′n − a′n = bn+i0−1− an+i0−1 = kbθ(n+ i0− 1)c

is approximately linear, so by Theorem 4.3, A′, B ′ are approximately linear.
Definition 2.3 then implies that also the original A, B are approximately linear.

5. Efficient algorithm for computing sequences

5.1. Preparation. We deal with complementary sequences A, B, and assume
that c is approximately linear with known approximating bounds K1, K2, and
known linearity rate γ = lim cn/n. Then A, B are also approximately linear
by Theorem 4.3, and as we demonstrate below, we can compute some integer
approximating bounds u1, u2, v1, v2, and compute α = lim an/n, β = lim bn/n
by the formula 1± γ /2+

√
1+ (γ /2)2.

Now, given a pair of integers (x, y), we would like to check whether (x, y)=
(an, bn) for some n. If indeed x = an , then by the approximate linearity we must
have (x − u2)/α ≤ n ≤ (x − u1)/α. So we need to check whether x = an for
only a fixed number of n’s (at most (u2− u1)/α such n’s). If x = an for some n,
we are just left to check if y = bn in order solve the decision problem. Notice
that if we know x = an , then checking whether y = bn can be done by checking
whether y− x = cn , thus it depends on the complexity of computing cn .
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So, we need to find an efficient method for computing the elements of an given
n. The naïve recursive method for computing the elements of an, bn is very slow
and inefficient: its complexity is O(n), whereas the input size is of complexity
O(log n) in succinct representation. Hence the naïve method is exponential in
the input size.

5.2. Idea. The algorithm computes am, am+1, . . . , an for given m, n, by operat-
ing as follows. If for some r, s we can compute br , br+1 . . . , bs , where br < am

and an < bs . Then since A, B are complementary sequences, we can compute
am, . . . , an by complementing the interval [br , bs] with elements of {ai }. Notice,
however, that the first element of A in the interval [br , bs] will not necessarily be
am , but rather abr−r+1 by Theorem 3.2. The last element of A in the interval will
be abs−s . So since we know the start and end indices, namely br−r+1 and bs−s,
we can immediately locate the desired am, . . . , an inside abr−r+1, . . . , abs−s .

The problem that remains is to find r , s, which are easy to compute, and that
satisfy br < am, an < bs . Moreover, br , . . . , bs should be efficiently computable.
First we deal with finding such r . By Theorem 3.2 we can take any r ≤ am −m,
and it will satisfy br < am . But we have not yet computed am , so how can we
find r ≤ am −m?

By the approximate linearity of {ai } we know that m(α− 1)+ u1 ≤ am −m,
so we can take r = bm(α − 1)+ u1c to satisfy r ≤ m(α − 1)+ u1 ≤ am −m,
hence br < am . By similar reasoning, for s = dn(α − 1)+ u2e + 1 we have
an − n+ 1≤ n(α− 1)+ u2+ 1≤ s, hence an < bs (Theorem 3.2).

So we have easy formulas for r , s, which satisfy br < am, an < bs . But how
can we easily compute br , . . . , bs?

Notice that it’s enough to know ar , ar+1, . . . , as , and then we can compute
directly bi = ai + ci . In order to compute ar , . . . , as , we simply recursively call
the main part of the algorithm, with r , s instead of m, n, and we’re done.

We now turn to formulate the algorithm, afterwards we show how it works on
a specific example, and lastly we analyze its complexity.

Remark. Though the algorithm is written here recursively, it is easy to imple-
ment it only with loops, and without recursion.

5.3. The algorithm.

Algorithm 1: ComputeSequenceA(m, n)

Input: Two indices m, n (integers).
Output: The elements am, am+1, . . . , an .

1: If m ≤ 0 then
2: For j = 0, . . . , n do
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3: a j ←mex{ai , bi : 0≤ i < j}.
4: b j ← a j + c j .
5: End for
6: Else {m > 0}
7: Calculate r←bm(α− 1)+ u1c and s←dn(α− 1)+ u2e+ 1.
8: ar , . . . , as← ComputeSequenceA(r, s).
9: For j = r, . . . , s do
10: b j ← a j + c j .
11: End for
12: Calculate abr−r+1, . . . , abs−s as the complemented elements of br , . . . , bs

in the interval [br , bs].
13: End if
14: Return am, . . . , an .

5.4. Example. We demonstrate the following case: A, B are complementary
sequences, and bn = an +b4n/3c; i.e., cn = b4n/3c. Then K1 ≤ cn − nγ ≤ K2

holds for K1 = −1, K2 = 0, γ = 4
3 . In the proof of Theorem 4.3 we take

r = 2, s = 1 to satisfy r ≥ (K2− 2K1)/γ =
3
2 and s ≥ (2K2− K1)/γ =

3
4 (also

s ≥ r − 1). Then we have cn+m−2 ≤ cn + cm ≤ cn+m+1. Note that usually this
general method for finding r , s does not give the best (smallest) r , s possible, so
one might try to look for better r , s if one wanted to; we don’t.

Now, by Theorem 3.5, an+m−2−1≤ an+am+2−1≤ an+m+1, equivalently
an+m ≤ an + am+2+ 0 ≤ an+m+3+ 1. Then in the proof of Lemma 3.6 we get
that an+m+h1 ≤ an+am ≤ an+m+h2 holds for h1 =−a4, h2 = a0+a5+1. So
we compute the first element of A, B by the definition:

n 0 1 2 3 4 5 6 7 · · ·

cn 0 1 2 4 5 6 8 9 · · ·
an 0 1 3 4 6 7 9 10 · · ·
bn 0 2 5 8 11 13 17 19 · · ·

Thus h1=−6, h2= 0+7+1= 8, and Fekete’s corollary yields−6≤an−nα≤ 8,
where α = 1− γ /2+

√

1+ (γ /2)2 = 1
3(1+

√
13).

We begin with m = n = 1000. By lines 7, 8, the parameters m, n called in the
recursion steps are

Recursive step # 0 1 2 3 4 5 6 7

m 1000 529 277 142 69 30 10 −1
n 1000 545 301 171 101 64 44 33
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The computation of the first elements an , bn begins at the recursion stop (line 2).

a0 a1 a2 · · · a31 a32 a33

0 1 3 · · · 48 49 50

Computing bi = ai + ci (line 4) gives

b0 a1 b1 a2 a3 · · · b32 a60 a61 b33

0 2 · · · 91 94

The indices of a518, . . . , a562 are derived from Theorem 3.2; that is, ab0−0+1 and
ab33−33 are the first and last elements of A inside the interval [b0, b33].

By complementing the interval [b0, b33] (line 12) we get a1, a2, . . . , a61. From
these we extract the desired elements (m = 10, n = 44):

a10 a11 b6 a12 · · · b23 a43 a44

15 16 18 · · · 66 67

Computing bi = ai + ci (line 9), we get

...

b277 a518 b278 a519 a520 · · · b300 a561 a562 b301

794 796 · · · 860 863

Again, the indices of a518, . . . , a562 are derived from Theorem 3.2, i.e., ab277−277+1

and ab518−518 are the first and last elements of A inside the interval [b277, b518].
Complementing the interval [b277, b301], and extracting desired elements gives

a529 a530 b284 a531 · · · b291 a544 a545

812 813 815 · · · 835 836

Computing bi = ai + ci (line 9), we get

b529 a989 b530 · · · a1016 b544 a1017 b545

1517 1519 · · · 1560 1562

Complementing the interval [b529, b545], and extracting the wanted element, we
finally obtain

a1000

1535
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5.5. Complexity analysis and validity proof. Due to the variety of multiplica-
tion algorithms, we denote by M(k) the complexity of multiplication of two
k-digits numbers. We also denote by T (k) the complexity of computing ck , and
by Y (k) the complexity of computing the multiplication αk to integer precision.

For example, we can trivially choose M(k) = k2. Then, if we take ck =

b4k/3c, we get T (k) = O(log k). Since γ = lim cn/n = 4/3, we have α =
(1+
√

13)/3. Hence computing αk forces a computation of the square root of
a log k-digits integer (plus some computations with lower complexity). Thus
Y (k) = M(log k) = O(log2 k) (complexity of square root computation is the
same as of multiplication).

Now, for the complexity analysis of the algorithm. Denote by mi , ni the
parameters m, n called on the i-th step of the recursion. So we have m0= n0= n
(to compute an we call ComputeSequenceA(n, n)), and line 7 gives the recursive
relation

mi+1 = bmi (α− 1)+ u1c, ni+1 = dni (α− 1)+ u2+ 1e.

From this it’s easy to see that

mi+1 ≤ mi (α− 1)+ u1 and ni+1−mi+1 ≤ (ni −mi )(α− 1)+ u2− u1+ 3,

which implies

mi ≤ (α− 1)i
(

n− u1
2−α

)
+

u1

2−α
,

ni −mi ≤−(α− 1)i
u2− u1+ 3

2−α
+

u2− u1+ 3
2−α

. (2)

Notice from this that mi decreases at least exponentially (1 < α < 2, since
α= 1−γ /2+

√
1+ (γ /2)2 ), and that though the difference ni−mi is increasing,

it is bounded by a constant, (u2− u1+ 3)/(2−α).
Since 0< α− 1< 1, and u1 ≤ a0− 0= 0, from (2) we see that the recursion

stopping condition of the algorithm m ≤ 0 (line 1), is fulfilled after at most
O(log n) steps of the recursion. In this case, we compute the first elements of ai

directly by definition (line 2). At the stopping condition we know that mi ≤ 0,
and since also the difference ni −mi is bounded by a constant, we see that the
number of initial ni elements computed is bounded by a constant. Hence the
complexity of the stopping part of the algorithm (line 2) is constant O(1).

On line 7 we have complexity Y (n) (mi and ni are at most n). The complexity
of line 9 is just T (n), since the loop index runs from mi to ni , and we saw that
ni−mi is bounded by a constant. We also get from this that in line 12 the size of
the interval [bmi , bni ] is bounded by a constant (since bi is approximately linear),
hence this line’s complexity is O(1).
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In conclusion, the algorithm has complexity O((Y (n)+ T (n)) log n), which,
depending on this complexity, is generally much more efficient then O(n). For
the example in Section 5.4, it is O(log3 n). The arguments in Sections 5.1, 5.2
and 5.5 jointly also establish the validity of the algorithm.

6. Conclusion

We have shown that the unwieldy mex function can be harnessed to behave
polynomially for a large set of interesting games, such as those given in [Hegarty
and Larsson 2006; Duchêne and Gravier 2009], for which no polynomial winning
strategy was known.

It is interesting that the most time consuming part of the algorithm is not the
recursion (with complexity O(log n)), but the calculations on lines 7 and 9–10,
of complexity O(Y (n)+ T (n)).

Another surprising aspect is that even though it seems at first that the mi , ni

are growing apart from each other as the recursion progresses, which would
affect both the time complexity and the space complexity, this effect vanishes
eventually, since the difference ni −mi is bounded by a constant, as shown by
(2).

On a fundamental level, we attribute the efficiency of the algorithm to three
properties of the sequences A, B:

• The two sequences partition the positive integers. This enabled use of
Theorem 3.2 to compute the {an} elements as the complement of a {bn}-
interval.

• The sequence {an} has a simple approximation by another efficiently com-
putable sequence, namely sn = nα. The sequence S(n) = sn − n, is de-
creasing fast when composed onto itself (in our case S(n)≈ (α− 1)n, so
S(k)(n)≈ (α− 1)kn decreases exponentially).

• The recursive relation between an and bn is simple. That is, knowing an , it
is easy to compute bn by the formula bn = an + cn .

One direction of further research is to extend the results to sequences to which
the idea of the algorithm can be applied. For example, for cn = ζbnθc, where
ζ, θ ∈R>0. This requires a generalization of the mex function, since the sequences
are not integers anymore. It should not be hard to extend our results to multiple
sequences that split Z≥1.
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