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Restrictions of m-Wythoff Nim and
p-complementary Beatty sequences

URBAN LARSSON

Let m be a positive integer. The game of m-Wythoff Nim (A. S. Fraenkel, 1982)
is a well-known extension of Wythoff Nim, also known as Corner the Queen.
Its set of P-positions may be represented by a pair of increasing sequences
of nonnegative integers. It is well-known that these sequences are so-called
complementary homogeneous Beatty sequences, that is they satisfy Beatty’s
theorem. For a positive integer p, we generalize the solution of m-Wythoff Nim
to a pair of p-complementary — each positive integer occurs exactly p times —
homogeneous Beatty sequences a = (an)n∈Z≥0 and b = (bn)n∈Z≥0 , which, for
all n, satisfies bn − an = mn. By the latter property, we show that a and b
are unique among all pairs of nondecreasing p-complementary sequences.
We prove that such pairs can be partitioned into p pairs of complementary
Beatty sequences. Our main results are that {{an, bn} | n ∈ Z≥0} represents the
solution to three new “p-restrictions” of m-Wythoff Nim — of which one has
a blocking maneuver on the rook-type options. C. Kimberling has shown that
the solution of Wythoff Nim satisfies the complementary equation xxn = yn−1.
We generalize this formula to a certain “p-complementary equation” satisfied
by our pair a and b. We also show that one may obtain our new pair of
sequences by three so-called Minimal EXclusive algorithms. We conclude
with an appendix by Aviezri Fraenkel.

1. Introduction and notation

The combinatorial game of Wythoff Nim [Wythoff 1907] is a so-called (2-player)
impartial game played on two piles of tokens. As an addition to the rules of the
game of Nim [Bouton 1901/02], where the players alternate in removing any
finite number of tokens from precisely one of the piles (at most the whole pile),
Wythoff Nim also allows removal of the same number of tokens from both piles.
The player who removes the last token wins.

This game is better known as Corner the Queen, invented by R. P. Isaacs
(1960), because the game can be played on a (large) Chess board with one single
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Queen. Two players move the Queen alternately but with the restriction that,
for each move, the (L1) distance to the lower left corner, position (0, 0), must
decrease. (The Queen must at all times remain on the board.) The player who
moves to this final/terminal position wins.

In this paper we follow the convention to denote our players with the next
player (the player who is in turn to move) and the previous player. A P-position
is a position from which the previous player can win (given perfect play). An
N-position is a position from which the next player can win. Any position
is either a P-position or an N-position. We denote the solution, the set of all
P-positions, of an impartial game G, by P=P(G) and the set of all N-positions
by N = N(G). The positive integers are denoted by Z>0 and the nonnegative
integers by Z≥0. Let x = (xi ) denote an integer sequence over some index set
and let ξ ∈ Z. Then, we let x>ξ denote (xi )i>ξ .

1.1. Restrictions of m-Wythoff Nim. Let m ∈ Z>0. We next turn to a certain
m-extension of Wythoff Nim, studied by A. S. Fraenkel [1982] . In the game of
m-Wythoff Nim, or just mWN (our notation), the Queen’s “bishop-type” options
are extended so that (x+i, y+ j)→ (x, y) is legal if |i− j |<m, i, j, x, y ∈Z≥0,
i > 0 or j > 0. The rook-type options are as in Nim. Hence 1-Wythoff Nim is
identical to Wythoff Nim.

In this paper we define three new restrictions of m-Wythoff Nim — here a
rough outline:

• The first has a so-called blocking maneuver or Muller twist (see also [Hol-
shouser and Reiter 2010; Smith and Stănică 2002] and Section 1.6 of this
paper) on the rook-type options, before the next player moves, the previous
player may announce some of these options as forbidden.

• The second has a certain congruence restriction on the rook-type options.

• For the third, a rectangular piece is removed from the lower left corner of
the game board (including position (0, 0)).

Depending on the particular setup, in addition to (0, 0), the first two games may
have a finite number of final positions of the form {0, x}1, x ∈ Z>0. In the third
game, there are precisely two final positions 6= (0, 0).

1.2. Beatty sequences and p-complementarity. A (general) Beatty sequence is
a nondecreasing integer sequence of the form

(bnα+ γ c), (1)

1For integers 0≤ x ≤ y we use the notation {x, y} whenever (x, y) and (y, x) are considered
the same.
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usually indexed over Z,Z≥0 or Z>0, where α is a positive irrational and γ ∈ R.
S. Beatty is probably most known for a (re)discovery2 [1926] of (the statement of)
the following theorem: If α and β are positive real numbers such that 1

α
+

1
β
=

1 then (bnαc)Z>0 and (bnβc)Z>0 partition Z>0 if and only if they are Beatty
sequences. This was proved in [Beatty et al. 1927] (see also [Fraenkel 1982]). A
pair of sequences that partition Z>0 (Z≥0, Z) is usually called complementary
(see [Fraenkel 1969; 1973; Kimberling 2007; 2008]). Let us generalize this
notion.

Definition 1. Let p ∈Z>0 and Q, R, S⊂Z. Two sequences (xi )i∈Q and (yi )i∈R

of nonnegative integers are p-complementary (on S), if, for each n ∈ S,

#{i ∈ Q | xi = n}+ #{i ∈ R | yi = n} = p.

Remark 1. Since the main topics in this paper are three games mostly played
on Z≥0×Z≥0, we often find it convenient to use S = Z≥0 in Definition 1. Also,
for our purposes, it will be convenient use Z≥0 or Z>0 as the index sets R and
Q. In the Appendix Aviezri Fraenkel provides an alternative approach.

We study the Beatty sequences a = (an)n∈Z≥0 and b = (bn)n∈Z≥0 , where for
all n ∈ Z≥0,

an = am,p
n =

⌊
nφ(mp)

p

⌋
(2)

and

bn = bm,p
n =

⌊
n(φ(mp)+mp)

p

⌋
, (3)

and where

φk =
2− k+

√
k2+ 4

2
. (4)

We show that a and b>0 are p-complementary.
W. A. Wythoff [1907] proved that the solution of Wythoff Nim is given by{
{a1,1

n , b1,1
n } | n ∈ Z≥0

}
. Then in [Fraenkel 1982] it was shown that the solution

of m-Wythoff Nim is {
{am,1

n , bm,1
n } | n ∈ Z≥0

}
.

1.3. Recurrence. Let X be a strict subset of the nonnegative integers. Then the
Minimal EXclusive, for short mex, of X is defined as usual (see [Conway 2001]):

mex X :=min(Z≥0 \ X).

2This theorem was in fact discovered by J. W. Rayleigh, see [Rayleigh 1894; O’Bryant 2003].
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For n ∈ Z≥0 put

xn =mex
{
{xi , yi | i ∈ {0, 1, . . . , n− 1}

}
and yn = xn +mn. (5)

With notation as in (5), it was proved in [Fraenkel 1982] that (xn)= (am,1
n ) and

(yn)= (bm,1
n ). The mex-algorithm in (5) gives an exponential time solution to

mWN whereas the Beatty-pair in (2) and (3) give a polynomial time ditto. (For
interesting discussions on complexity issues for combinatorial games, see for
example [Fraenkel 2004; Fraenkel and Peled 2009].) We show that one may, for
general m and p, obtain a and b by three mex-algorithms, which in various ways
generalize (5).

It is well-known that the solution of Wythoff Nim satisfies the complementary
equation (see for example [Kimberling 1995; 2007; 2008])

xxn = yn − 1.

For arbitrary positive integers m and p, we generalize this formula to a “p-
complementary equation”

xϕn = yn − 1, (6)

where ϕn := pyn − n =
(
xn + (mp− 1)yn

)
/m, and show that a solution is given

by x = a and y = b.

1.4. I. G. Connell’s restriction of Wythoff Nim. In the literature there is another
generalization of Wythoff Nim that is of special interest to us. Let p ∈ Z>0.
I. G. Connell [1959a] studied the restriction of Wythoff Nim, where the rook-type
options are restricted to jumps of precise multiples of p. This game we call
Wythoff modulo-p Nim and denote with WN(p). Hence Wythoff modulo-1 Nim
equals Wythoff Nim.

From [Connell 1959a] one derives that P(WN(p))=
{
{a1,p

n , b1,p
n } | n ∈ Z≥0

}
.

Remark 2. In Connell’s presentation, for the proof of the above formulas, he uses
p pairs of complementary sequences of integers (in analogy with the discovery
of a new formulation of Beatty’s theorem in [Skolem 1957]). We have indicated
this pattern of P-positions with different shades in Figure 1. In fact, the black
positions, starting with (0, 0) are P-positions of 3-Wythoff Nim. More generally,
it is immediate by (2) and (3) that, for all p and n, a p,1

n = a1,p
pn and bp,1

n = b1,p
pn .

Remark 3. Fraenkel and I. Borosh [1973] study yet another variation of both
m-Wythoff Nim and Wythoff modulo-p Nim which includes a (different from
ours) Beatty-type characterization of the P-positions.
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Figure 1. The P-positions of WN(3) are the positions nearest the origin
such that there are precisely three positions in each row and column and
one position in each NE-SW-diagonal. The black positions represent
the first few P-positions of 3-Wythoff Nim, namely the positions nearest
the origin such that there is precisely one position in each row and one
position in every third NE-SW diagonal. Positions with lighter shades
represent the solutions of games in our third variation.

1.5. Exposition. In Section 2, given fixed game constants m, p∈Z>0, we define
our games, exemplify them and state our main theorem. Roughly: For each of
our games, a position is P if and only if it is of the form {am,p

n , bm,p
n }, with a

and b as in (2) and (3) respectively. In Section 3 we generalize Beatty’s theorem
to pairs of p-complementary sequences, establish that such sequences can be
partitioned into p pairs of complementary Beatty sequences and at last prove
some arithmetic properties of a and b — most important of which is that a and
b>0 are p-complementary and, for all n ∈ Z≥0, satisfy bn = an +mn. Then, in
Section 4, we prove that the latter two properties make a and b unique among
all pairs of nondecreasing sequences. Section 5 is devoted to Equation (6) and
three mex-algorithms. In Section 6 we prove our game theory results (stated
in Section 2) and in Section 7 a few questions are posed. At last there is an
appendix, provided by Aviezri Fraenkel.

Let us, before we move on to our games, give some more background to the
so-called blocking maneuver in the context of Wythoff Nim.

1.6. A bishop-type blocking variation of m-Wythoff Nim. Let m, p ∈ Z>0. In
[Hegarty and Larsson 2006] we gave an exponential time solution to a variation of
m-Wythoff Nim with a ‘bishop-type’ blocking maneuver, denoted by p-Blocking
m-Wythoff Nim (and with (m, p)-Wythoff Nim in [Larsson 2009]).

The rules are as in m-Wythoff Nim, except that before the next player moves,
the previous player is allowed to block off (at most) p−1 bishop-type — note, not
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m-bishop-type — options and declare that the next player must refrain from these
options. When the next player has moved, any blocking maneuver is forgotten.

The solution of this game is in a certain sense “very close” to pairs of Beatty
sequences (see also [Larsson 2009, Appendix]) of the form(⌊

n

√
m2+ 4p2+ 2p−m

2p

⌋)
and

(⌊
n

√
m2+ 4p2+ 2p+m

2p

⌋)
.

But we explain why there can be no Beatty-type solution to this game for p > 1.
However, in [Larsson 2009], for the cases p | m, we give a certain “Beatty-type”
characterization. For these kind of questions, see also [Boshernitzan and Fraenkel
1984]. However, a recent discovery, in [Hadad 2008; Fraenkel and Peled 2009],
provides a polynomial time algorithm for the solution of (m, p)-Wythoff Nim
(for any combination of m and p).

An interesting connection to 4-Blocking 2-Wythoff Nim is presented in
[Duchêne and Gravier 2009], where the authors give an explicit bijection of
solutions to a variation of Wythoff’s original game, where a player’s bishop-type
move is restricted to jumps by multiples of a predetermined positive integer.

For another variation, we defined in [Larsson 2009] the rules of a so-called
move-size dynamic variation of two-pile Nim, (m, p)-Imitation Nim, for which
the P-positions, treated as starting positions, are identical to the P-positions of
(m, p)-Wythoff Nim.

This discovery of a “dual” game to (m, p)-Wythoff Nim has in its turn moti-
vated the study of “dual” constructions of the rook-type blocking maneuver in
this paper.

2. Three games

This section is devoted to defining and exemplifying our game rules and stating
our main results. We begin by introducing some (nonstandard) notation whereby
we decompose the Queen’s moves into rook-type and bishop-type ditto.

Definition 2. Fix m, p ∈ Z>0 and an l ∈ {0, 1, . . . ,m}.

(i) An (l, p)-rook moves as in Nim, but the length of a move must be i p+ j > 0
positions for some i ∈Z≥0 and j ∈ {0, 1, . . . , l−1} (we denote a (0, p)-rook
by a p-rook and a (p, p)-rook simply by a rook);

(ii) A m-bishop may move 0≤ i <m rook-type positions and then any number
of, say j ≥ 0, bishop-type positions (a bishop moves as in Chess), all in
one and the same move, provided i + j > 0 and the L1-distance to (0, 0)
decreases.
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2.1. Game definitions. As is clear from Definition 2 the rook-type options in-
tersect the m-bishop-type options precisely when m > 1. For example, (2, 3)→
(1, 3) is both a 2-bishop-type and a rook-type option. We will make use of this
fact when defining the blocking maneuver. Therefore, let us introduce some new
terminology.

Definition 3. Fix m ∈ Z>0. A rook-type option, which is not of the form of the
m-bishop as in Definition 2(ii), is a roob-type3 option.

Hence, for m = 2, a roob may move (2, 3)→ (2, 1), but not (2, 3)→ (2, 2)
(both are rook-type options). Let us define our games.

Definition 4. Fix m, p ∈ Z>0.

(i) The game of m-Wythoff p-Blocking Nim, or mWNp, is a restriction of
m-Wythoff Nim with a roob-type blocking maneuver. The Queen moves
as in m-Wythoff Nim (that is, as the m-bishop or the rook), but with one
exception: Before the next player moves, the previous player may block
off (at most) p− 1 of the next player’s roob-type options. Any blocked
option is unavailable for the next player. As usual, each blocking maneuver
is particular to a specific move; that is, when the next player has moved,
any blocking maneuver is forgotten and has no further impact on the game.
(For p = 1 this game equals m-Wythoff Nim.)

(ii) Fix an integer 0 ≤ l < p. In the game of m-Wythoff Modulo-p l-Nim, or
mWN(l,p), the Queen moves as the m-bishop or the (l, p)-rook. For l = 0
we denote this game by m-Wythoff Modulo-p Nim or mWN(p). (In case
l = p the game is simply m-Wythoff Nim.)

(iiia) Fix an integer 0 ≤ l < p. In the game of l-Shifted m × p-Wythoff Nim,
or m × pWNl , the Queen moves as in (mp)-Wythoff Nim (that is, as the
(mp)-bishop or the rook), except that, if l > 0, it is not allowed to move
to a position of the form (i, j), where 0 ≤ i < ml and 0 ≤ j < m(p− l).
Hence, for this case, the terminal positions are (ml, 0) and (0,m(p− l)).4

On the other hand m× pWN0 is identical to (mp)-Wythoff Nim.

(iiib) The game of m× p-Wythoff Nim, m× pWN: Before the first player moves,
the second player may decide the parameter l as in (iiia). Once the parameter

3Think of “roob” as “ROOk minus m-Bishop”, or maybe “ROOk Blocking”.
4One might want to think of the game board as if a rectangle with circumference 2mp is cut

out from its lower left corner. By symmetry, there are dp/2e rectangle shapes but (given a starting
position) p distinct game boards; see also (3b). Of course, if cutting out a corner of the nice game
board does not appeal to the players, one might just as well define all positions inside the rectangle
as N . Notice the close relation of these games to the misère version of m-Wythoff Nim studied in
[Fraenkel 1984].



144 URBAN LARSSON

l is fixed, it remains the same until the game has terminated, so that for the
remainder of the game, the rules are as in m× pWNl .

2.2. Examples. Let us illustrate some of our games, where our players are
Alice and Bob — Alice makes the first move (and Bob makes the first blocking
maneuver in case the game has a Muller twist).

Example 1. Suppose the starting position is (0, 2) and the game is 2WN2. Then
the only bishop-type move is (0, 2)→ (0, 1). There is precisely one roob-type
option, namely (0, 0). Since this is a terminal position Bob will block it off from
Alice’s options, so that Alice has to move to (0, 1). The move (0, 1)→ (0, 0)
cannot be blocked off for the same reason, so Bob wins. If y ≥ 3 there is always
a move (0, y)→ (0, x), where x = 0 or 2. This is because the previous player
may block off at most one option. Altogether, this gives that {0, y} is P if and
only if y = 0 or 2.

Example 2. Suppose the starting position is (0, 2) and the game is 2WN(2).
Alice can move to (0, 0), since 0≡ 2 (mod 2), so (0, 2) is N . On the other hand,
the position (0, 3) is P since the only options are (0, 2) and (0, 1). (The latter is
N since the 2-bishop can move (0, 1)→ (0, 0).)

Example 3. Suppose the starting position is (0, 2) and the game is 2WN(2,4).
Alice cannot move to a P-position since 2−0 6≡ 0, 1 (mod 4) and the 2-bishop’s
move is restricted to (0, 1), which is N . Hence (0, 2) is P . More generally,
(0, y) is N for all y ≥ 3, since (0, y)→ (0, 0) is legal if 0< y ≡ 0, 1 (mod 4)
and (0, y)→ (0, 2) is legal if 2< y ≡ 2, 3 (mod 4).

Example 4. Suppose the starting position is (0, 4) and the game is 2WN3. Then
the only bishop-type move is (0, 4)→ (0, 3), so that the roob-type options are
(0, 0), (0, 1), (0, 2). Bob may block off 2 of these positions, say (0, 0), (0, 2).
Then if Alice moves to (0, 1) she will loose (since she may not block off (0,0)),
so suppose rather that she moves to (0, 3). Than she may not block off (0, 2) so
Bob moves (0, 3)→ (0, 2) and blocks off (0, 0). Hence (0, 4) is a P-position.

Example 5. Suppose the starting position is (0, 4) and the game is 2WN(3).
Alice cannot move to (0, 0) or (0, 2). But (0, 1)→ (0, 0) is a 2-bishop-type
option and (0, 3)→ (0, 0) is a 3-rook-type option. This shows that (0, 4) is a
P-position.

Notice that, in comparison to Examples 4 and 5, the P-positions in the Exam-
ples 1 and 2 are distinct in spite the identical game constants (m = p = 2). On
the other hand, the P-positions in Examples 1 and 3 coincide.

Example 6. Suppose the game is 2× 3WN1, then the terminal positions are
(2, 0) and (0, 4). On the other hand, for the game 2×3WN2, the positions (0, 2)



m-WYTHOFF NIM AND p-COMPLEMENTARY BEATTY SEQUENCES 145

Figure 2. P-positions of 2WN(3), 2WN3, 2WN2,6 and 2× 3WN —
the positions nearest the origin such that there are precisely three
positions in each row and column and one position in every second
NE-SW-diagonal. The palest colored squares represent P-positions of
2×3WN1. They are of the form (a3n+1, b3n+1) or (b3n+2, a3n+2). The
darkest squares,

(
{a2,3

3i , b2,3
3i }

)
, represent the solution of 6WN.

and (4, 0) are terminal. Suppose now that the starting position of 2× 3WN2 is
(1, 9). Then Alice wins by moving to (0, 4). If the starting position is the same,
but the game is 2×3WN1, then Alice cannot move to (0, 2) and hence Bob wins.
Similarly, if the starting position of 2× 3WN0 is (1, 7) Alice may not move to
(0, 0) and hence Bob wins.

2.3. Game theory results. We may now state our main results. We prove them
in Section 6, since our proofs depend on some arithmetic results presented in
Section 3, 4 and 5.

Theorem 2.1 (main theorem). Fix m, p ∈ Z>0 and let a and b be as in (2) and
(3). Then

(i) P(mWNp)= {{ai , bi } | i ∈ Z≥0};

(ii) (a) P(mWN(p))= {{ai , bi } | i ∈ Z≥0} if and only if gcd(m, p)= 1;
(b) P(mWN(m,mp))= {{ai , bi } | i ∈ Z≥0};

(iii) (a) P(m× pWNl)= {(ai p+l, bi p+l) | i ∈ Z≥0} ∪ {(bi p−l, ai p−l) | i ∈ Z>0};
(b) P(m× pWN)= {{ai , bi } | i ∈ Z≥0}.

By this result it is clear that, in terms of game complexity, the solution of each
of our games is polynomial.

3. More on p-complementary Beatty sequences

As we have seen, it is customary to represent the solution of “a removal game
on two heaps of tokens” as a sequence of (ordered) pairs of nonnegative integers.
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However, often it turns out that it is more convenient to study the corresponding
pair of sequences of nonnegative integers. Sometimes, as in Wythoff Nim, these
sequences are increasing. It turns out that for our purpose we are more interested
in pairs of nondecreasing sequences. This leads us to a certain extension of
Beatty’s original theorem, to pairs of p-complementary Beatty sequences.

In the literature there is a proof of this theorem, where K. O’Bryant [2002]
uses generating functions (a method adapted from [Borwein and Borwein 1993]).
Here, we have chosen to include an elementary proof, in analogy to ideas
presented in [Beatty et al. 1927; Fraenkel 1982]. (See also the Appendix.)

Theorem 3.1 (O’Bryant). Let p ∈ Z>0 and let 0< α < β be real numbers such
that

1
α
+

1
β
= p. (7)

Then (biαc)i∈Z≥0 and (biβc)i∈Z>0 are p-complementary on Z≥0 if and only if
α, β are irrational.

Proof. It suffices to establish that exactly p members of the set

S = {0, α, β, 2α, 2β, . . .}

is in the interval [n, n+ 1) for each n ∈ Z≥0. But for any fixed n we have

#(S ∩ [0, n])= #({0, α, 2α, . . .} ∩ [0, n])+ #({β, 2β, . . .} ∩ [1, n])

= bn/αc+ 1+bn/βc.

But α and β are irrational if and only if, for all n,

np− 1= n/α+ n/β − 1< bn/αc+ 1+bn/βc

< n/α+ n/β + 1= np+ 1.

This gives bn/αc+ 1+bn/βc = np. Going from n to n+ 1 gives the result. �

The following result establishes that a pair of p-complementary homogeneous
Beatty sequences can always be partitioned into p complementary pairs of Beatty
sequences. For the proof we use a generalization of Beatty’s theorem in [Skolem
1957; Fraenkel 1969; O’Bryant 2003].

Proposition 3.2. Let 2 ≤ p ∈ Z. Suppose that (xi ) = (bαic)i∈Z≥0 and (yi ) =

(bβic)i∈Z>0 are p-complementary homogeneous Beatty sequences with 0<α<β.
Then, for any fixed integer 0≤ l < p, the pair of sequences

(x pi+l)i∈Z≥0 and (ypi−l)i∈Z>0

is complementary on Z≥0.
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Proof. Since (xi ) and (yi ) are nondecreasing and p-complementary, we get
that both (x pi+l) and (ypi−l) are increasing. Then, by xl = min{x pi+l} and
yp−l =min{ypi−l}, again, p-complementarity gives that

max{xl, yp−l}>min{xl, yp−l} = 0

and so, we may conclude that the integer 0 occurs precisely once together in
(x pi+l) and (ypi−l). Let us adapt to the terminology in [O’Bryant 2003].

Case xl = 0: Then l < 1/α. For all n ∈ Z>0, we set⌊
n−γ ′

γ

⌋
= x pn+l and

⌊
n−η′

η

⌋
= ypn−l .

This gives γ = 1/pα, γ ′ = −l/p, η = 1/pβ, η′ = l/p. Then according to
Fraenkel’s partition theorem in [O’Bryant 2003, p. 5], since α is irrational,
(x pn+l) and (ypn−l) are complementary on Z>0 if and only if

(i) 0< γ < 1,

(ii) γ + η = 1,

(iii) 0≤ γ + γ ′ ≤ 1,

(iv) γ ′+ η′ = 0 and kγ + γ ′ 6∈ Z for 2≤ k ∈ Z.

These four items are easy to verify.

(i) This follows since (7) together with 0< α < β is equivalent to 1/p < α <
2/p.

(ii) This is immediate by (7).

(iii) We have that 0≤ γ + γ ′ ≤ 1 if and only if 0≤ 1/pα− l/p ≤ 1 if and only
if l ≤ 1/α ≤ p+ l.

(iv) We have that η′+γ ′= l/p−l/p= 0. Since γ is irrational and γ ′ is rational
the latter part holds as well.

Case yp−l = 0: Then p− l < 1/β = p− 1/α, so that l > 1/α. For all n ∈ Z>0,
we set ⌊

n−γ ′

γ

⌋
= x p(n−1)+l and

⌊
n−η′

η

⌋
= yp(n+1)−l .

This gives

γ =
1

pα
, γ ′ =

p−l
p
, η =

1
pβ
, η′ =

l− p
p
.
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Then items (i), (ii) and (iv) are treated in analogy with the first case. For (iii),
since αl > 1, we get

0≤ γ + γ ′ =
1

pα
+

p− l
p
= 1+

1−αl
αp

< 1. �

We will now focus on the properties of the sequences a and b. The next result
is central to the rest of the paper.

Lemma 3.3. Fix m, p ∈ Z>0 and let a and b be as in (2) and (3) respectively.
Then for each n ∈ Z≥0 we have that

(i) a and b are p-complementary;

(ii) bn − an = mn;

(iii) if p = 1, then
(a) an+1− an = 1 and bn+1− bn = m+ 1, or
(b) an+1− an = 2 and bn+1− bn = m+ 2;

(iv) if p > 1, then
(a) an+1− an = 0 and bn+1− bn = m, or
(b) an+1− an = 1 and bn+1− bn = m+ 1.

Proof. Since φx is irrational and 1/φx + 1/(φx + x)= 1, case (i) is immediate
from Theorem 3.1.

For case (ii) put ν = ν(m, p)= φmp/p+m/2 and observe that

bn − an =

⌊
n
(
ν+

m
2

)⌋
−

⌊
n
(
ν−

m
2

)⌋
.

If mn is even, we are done, so suppose that mn− 1= 2k, k ∈ Z≥0. Then

bn − an =

⌊
nν+ 1

2

⌋
−

⌊
nν− 1

2

⌋
+ 2k = 1+ 2k = mn.

For case (iii), by [Fraenkel 1982], we are done. In case p > 1, by the triangle
inequality, we get

0 <
φmp

p
=

1
p
−

m
2
+

√
m2

4
+

1
p2 <

1
p
+

1
p
≤ 1,

the last step since p ≥ 2. Thus we may estimate

an+1− an =

⌊
(n+ 1)φmp

p

⌋
−

⌊
nφmp

p

⌋
∈ {0, 1}.

Then by (ii) we have

bn+1− bn = an+1+m(n+ 1)− an −mn = an+1− an +m,

so that (iv) holds. �
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4. A unique pair of p-complementary Beatty sequences

For fixed p and m we now present a certain uniqueness property for our pair of
p-complementary Beatty sequences (in case p= 1 see also [Hegarty and Larsson
2006] for extensive generalizations).

Theorem 4.1. Fix m, p ∈ Z>0. Suppose x = (xi )i∈Z≥0 and y = (yi )i∈Z≥0 are
nondecreasing sequences of nonnegative integers. Then the following two items
are equivalent,

(i) x and y>0 are p-complementary and, for all n, yn − xn = mn;

(ii) for all n, xn = am,p
n and yn = bm,p

n .

Proof. By Lemma 3.3 it is clear that (ii) implies (i). Hence, it suffices to prove
the other direction.

It is given that x0 = y0 = a0 = b0 = 0. Since x is nondecreasing the condition
yn− xn =mn implies that y is increasing. Suppose that Lemma 3.3(iv) holds for
a fixed n ≥ 0, but with a exchanged for x and b exchanged for y. Then, since x
and y>0 are p-complementary and yn+1 > xn+1, we must have xn+1− xn = 0 if

#{i | xi = xn or yi+1 = xn, 0≤ i ≤ n}< p,

and xn+1− xn = 1 if

#{i | xi = xn or yi+1 = xn, 0≤ i ≤ n} = p.

But, by Lemma 3.3, this also holds for the sequence (ai ). In conclusion, yn+1 =

xn+1+m(n+ 1)= an+1+m(n+ 1)= bn+1 gives the result. �

5. Recurrence results

In Proposition 5.2 in this section, we generalize the mex-algorithm in (5). Each
game family in Definition 4 has motivated the study of a “corresponding” mex-
algorithm. The numberings in Definition 4 and Proposition 5.2 respectively are
in accordance with this correspondence.

But first we explain why the sequences a and b satisfy the “p-complementary
equation” in (6).

Theorem 5.1. Fix m, p ∈ Z>0 and let a and b be as in (2) and (3). For each
n ∈ Z≥0, define

ϕn = ϕn(m, p) :=
an + (mp− 1)bn

m
.

Then, for each n ∈ Z>0, ϕn is the greatest integer such that

bn − 1= aϕn . (8)
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Proof. Notice that, for all n,

ϕn =
an + (mp− 1)bn

m
=

mpbn −mn
m

= pbn − n, (9)

so that

ϕn+1−ϕn = pbn+1− (n+ 1)− (pbn − n)= p(bn+1− bn)− 1. (10)

The proof is by induction. For the base case, notice that b1 = m, a1 = 0 and
ϕ1= (mp−1). The only representative from b in the interval [0, p−1] is b0= 0
(which we by definition do not count). Hence, by a0 = 0 and p-complementarity,
we get that

aϕ1 = amp−1 = m− 1= b1− 1

and
aϕ1+1 = amp = m = b1.

Suppose that (8) holds for all i ≤n. Then we need to show that bn+1−1=aϕn+1

and bn+1 = aϕn+1+1.
If aϕn+1 − aϕn = bn+1− bn , by bn − 1= aϕn and bn = aϕn+1, we are done, so

assume that either

(A) aϕn+1 − aϕn < bn+1− bn , or

(B) aϕn+1 − aϕn > bn+1− bn .

Again, by p-complementarity, the total number of elements from a and b in
the interval

In := (aϕn , aϕn+1] = (aϕn , aϕn+p(bn+1−bn)−1)]

is Rn := p(aϕn+1 − aϕn ), and where the equality is by (10). By assumption,
aϕn+1 ∈ In so that we have at least p(bn+1− bn)− 1 representatives from a in
In . But also bn = aϕn + 1 ∈ In so that altogether we have at least p(bn+1− bn)

representatives in In . Hence

p(bn+1− bn)≤ Rn = p(aϕn+1 − aϕn ),

which rules out case (A).
Notice that case (B) implies that bn+1 lies in In so that aϕn+1 = bn < bn+1 ≤

aϕn+1 . Since both bn and bn+1 lie in In , the total number of representatives in In

is
p(aϕn+1 − aϕn )≤ 2+ϕn+1−ϕn = p(bn+1− bn)+ 1. (11)

In case p> 1, since a and b are integer sequences, we are done, so suppose p= 1.
Then, in fact, by complementarity, we must have aϕn+1 < bn < bn+1 < aϕn+1 ,
contradicting (11). �
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Remark 4. For arbitrary m > 0 and p = 1 it is well-known that a and b solve
xyn = xn + yn . This complementary equation is studied in for example [Connell
1959b; Fraenkel and Kimberling 1994; Kimberling 2007]. However, we have not
been able to find any references for the complementary equation yn − 1= xyn−n .
By (9), for the cases p = 1, this equation is also resolved by a and b.

A multiset (or a sequence) X may be represented as (another) sequence of
nonnegative integers ξ = (ξ i )i∈Z≥0 , where, for each i ∈ Z≥0, ξ i

= ξ i (X) counts
the number of occurrences of i in X . For a positive integer p, let mexp ξ denote
the least nonnegative integer i ∈ X such that ξ i < p.

Proposition 5.2. Let m, p ∈ Z>0. Then the definitions of the sequences x and
y in (i), (ii) and (iii) are equivalent. In fact, for each n ∈ Z≥0, we have that
xn = am,p

n and yn = bm,p
n .

(i) For n ≥ 0,
xn =mexp ξn,

where ξn is the multiset, where for each i ∈ Z≥0,

ξ i
n = #{ j | i = x j or i = y j , 0≤ j < n},

yn = xn +mn.

(ii) For n ≥ 0,

xn =mex{νn
i , µ

n
i | 0≤ i < n}, where

νn
i = xi if n ≡ i (mod p), else νn

i =∞,

µn
i = yi if n ≡−i (mod p), else µn

i =∞,

yn = xn +mn.

(iii) For n ≥ 0,

x pn =mex{x pi , ypi | 0≤ i < n},

ypn = x pn +mpn,

and for each integer 0< l < p,

x pn+l =mex{x pi+l, yp(i+1)−l | 0≤ i < n},

ypn+l = x pn+l +m(pn+ l).

Proof. For p = 1 it is a straightforward task to check that each recurrence is
equivalent to (5). Hence, let p > 1. Observe that in (i), by definition, x and y
are nondecreasing, p-complementary and, for all n,

yn = xn +mn. (12)
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Hence, for this case, Theorem 4.1 gives the result.
Let us now study the definitions of x and y in (ii). For z ∈ Z, let z denote

the congruence class of z modulo p. Here, it is not immediately clear that the
sequences are nondecreasing. Neither is it obvious that they are p-complementary.
But, at least we have that, for each n ∈ Z≥0, (12) holds.

Hence, if (ii) fails (by a0 = x0) there has to exist a least index n′ ∈ Z>0 such
that an′ 6= xn′ . But notice that 0≤ n < p implies νn

i =µ
n
i =∞, for all 0≤ i < n,

which in its turn implies an = xn = 0. This gives n′ ≥ p. We have two cases to
consider:

(a) r := xn′ < an′ . By Theorem 5.1 there are two cases to consider.

Case 1: There is an i ≥ 0 such that ϕ(i)+ p− 1< n′ and

yi = xϕ(i)+1 = xϕ(i)+2 = · · · = xϕ(i)+p−1 = r.

But then, by

{ −i, −i + 1, . . . , −i + p− 1 } = { 0, 1, . . . , p− 1 } (13)

and

ϕn = pbn − n ≡−n (mod p), (14)

there is a j ∈ {i, ϕ(i) + 1, . . . , ϕ(i) + p − 1} such that either n′ ≡
j (mod p) and j ∈ {ϕ(i)+ 1, . . . ϕ(i)+ p− 1} which implies νn′

j = r ,
or n′ ≡− j (mod p) and j = i which implies µn′

j = r . In either case the
choice of xn′ = r contradicts the definition of mex.

Case 2: There is an i ≥ 0 such that i + p− 1< n′ and

r = xi = xi+1 = xi+2 = · · · = xi+p−1.

This case is similar but simpler, since for this case we rather use that

{ i, i + 1, . . . , i + p− 1 } = { 0, 1, . . . , p− 1 }. (15)

(b) r := an′ < xn′ : Then our mex-algorithm has refused r as the choice for xn′ .
But then there must be an index 0≤ j < n′ such that either νn′

j = r or µn′
j = r .

Hence, we get to consider two cases.

Case 1: j = n′ and r = x j . On the one hand, there is a k ∈ Z>0 such that
kp+ j = n′ On the other hand, there is a greatest k ′ ∈ Z>0 such that
an′−k′ = an′−k′+1= · · · = an′ and by p-complementarity 0≤ k ′< p. But
then, since n′−k ′ > n′−kp= j , we get a j < r = x j , which contradicts
the minimality of n′.
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Case 2: − j =n′ and r = y j . Then, by Theorem 5.1, ϕ j+1 is the least index such
that aϕ j+1=an′ . Then, by minimality of n′, a j = x j gives b j = y j so that
an′=b j . For this case, p-complementarity gives n′−(ϕ j+1)+1≤ p−1.
Then 0< k ′ := n′−ϕ j < p and so

− j + k ′ = ϕ( j)+ k ′ = n′ = − j,

which is nonsense.

For (iii), suppose that there is a least index n′ ≥ p such that an′ 6= xn′ . (The
case n′ < p may be ruled out in analogy with (ii).) Then, there exist unique
integers, 0< t and 0≤ l < p, such that tp+ l = n′.

Suppose that r := an′ < xn′ . Since the mex-algorithm did not choose xn′ = r ,
there must be an index 0≤ t ′< t such that either xt ′ p+l = r or y(t ′+1)p−l = r . But
then, by assumption, either at ′ p+l = xt ′ p+l = an′ or b(t ′+1)p−l = y(t ′+1)p−l = an′ .
But, by Proposition 3.2 a and b are complementary, so either case is ridiculous.

Hence, assume r := an′ > xn′ . Then again, by Proposition 3.2, there is an
index 0≤ t ′ < t such that either at ′ p+l = xn′ or b(t ′+1)p−l = xn′ . But, again, by
minimality of n′, this contradicts the mex-algorithm’s choice of xn′ < an′ . �

6. The games’ final section

The proof of Theorem 2.1 is based on standard impartial games arguments — with
occasional references to facts already established in for example Proposition 5.2.
Notice that the blocking variation in (i) is “simpler” (and more elegant?) than
the other, namely it depends only on results from Section 3.

Proof of Theorem 2.1. For p = 1, the games have identical rules. This case
has been established in [Fraenkel 1982]. The case m = 1 has been studied in
[Connell 1959a] for games of form (ii). (and implicitly for 1× pWNl).

For the rest of the proof assume that p > 1. For each game we need to prove
that, if (x, y)

(A) is of the form {ai , bi }, then none of its options is;

(B) is not of the form {ai , bi }, then it has an option of this form.

(We will need a slightly different notation for Case (iii) below.) By symmetry, we
may assume that 0≤ x ≤ y. Clearly, any final position satisfies (A) but not (B).

Game (i): We need to prove that P(mWNp) = {{ai , bi } | i ∈ Z≥0}. Suppose
(x, y)= (ai , bi ) for some i ∈ Z≥0. By parts (i) and (ii) of Lemma 3.3, a and b>
are p-complementary and bi − b j ≥ m for all j < i . Then any roob-type option
of the form {a j , b j } may be blocked off, unless perhaps a j < ai and b j = bi for
some j < i . But this is ridiculous since b is strictly increasing. By Lemma 3.3(ii)
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we get that, for j < i , bi − ai ± (b j − a j )≥ m. Then an m-bishop cannot move
(x, y)→ {a j , b j }, This proves (A).

For (B), since p ≥ 2, we may assume x = ai , for some i , but y 6= bi . Then,
by Lemma 3.3(iv): (*) There exists a j < i such that an m-bishop can move
(x, y)→ (a j , b j ) unless y− x − (b j −a j )≥m for all j such that a j ≤ x . Then,
for all j such that a j = x , we have that y ≥ x +m( j + 1) > b j . But then, by
Lemma 3.3(i), there are p options of (x, y) of the form {ai , bi}. By the rule of
game, they cannot all be blocked off.

Game (iia): We are going to prove that P(mWN(p)) = {{ai , bi } | i ∈ Z≥0} if
and only if gcd(m, p)= 1. Let us first explain the “only if” direction. Denote
with γ = gcd(m, p), p′ = p

γ
and m′ = m

γ
. Then, clearly, the positions of the

form (0,mi), where 0 ≤ i < p′, are P-positions of mWN(p). Now, (0,mp′) is
an N-position because m′ p = mp′ implies that (0,mp′)→ (0, 0) is an option.
But, by definition, bp′ = mp′ if and only if p′ < p if and only if γ > 1. Hence
gcd(m, p)= 1 is a necessary requirement.

For this game, the options of the m-bishop are identical to those in (i). Hence,
let us analyze the p-rook.

For (A), suppose that (x, y)= (ai , bi ) for some i ∈Z≥0 but that, for a contradic-
tion, that a p-rook can move to {a j , b j }. Then, since b is strictly increasing, there
is a 0≤ j < i , such that either bi ≡ b j (mod p) and ai = a j , or bi ≡ a j (mod p)
and ai = b j . But then, for the first case (using the same notation as in Section 5),
since

mj = b j − a j = bi − ai = mi

and gcd(m, p)=1 we must have j = i . This is ridiculous, since by p-complemen-
tarity and a nondecreasing we have 0 < i − j < p. For the second case, by
Theorem 5.1, we have that

−mj = a j − b j = bi − ai = mi = m(ϕ( j)+ t)= m(− j + t),

for some t ∈ {1, . . . , p− 1}. This implies 0= mt but then again gcd(m, p)= 1
gives a contradiction.

For (B), we follow the ideas in the second part of Case (i) up until (*). Then, for
this game, we rather need to show that there is a j < i such that y ≡ b j (mod p)
and a j = x or y ≡ a j (mod p) and b j = x . But this follows directly from the
proof of Proposition 5.2(ii)(a).

Game (iib): We are now going to show that P(mWN(m,mp))={{ai , bi } | i ∈Z≥0}.
For (A), suppose (x, y)= (ai , bi ) for some i ∈ Z≥0 but that there is a j < i such
that the (m,mp)-rook can move to {a j , b j }. Then, we have two cases:
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Case 1: bi ≡ b j − r (mod mp) and ai = a j , for some r ∈ {0, 1, . . . ,m − 1}.
Then bi − ai ≡ b j − a j − r (mod mp) so that mi ≡ mj − r (mod mp)
and so m(i − j) ≡ −r (mod mp). But this forces r = 0 and i − j ≡
0 (mod p) which is impossible since Lemma 3.3 (i) and (iv) imply
i − j ∈ {1, 2, . . . , p− 1}.

Case 2: bi ≡ a j − r (mod mp) and ai = b j , for some r ∈ {0, 1, . . . ,m − 1}.
Then bi −ai ≡ a j −b j −r (mod mp) so that mi ≡−mj−r (mod mp)
and so m(i + j) ≡ −r (mod mp). By Theorem 5.1 we have that i =
ϕ( j) + s for some s ∈ {1, 2, . . . , p − 1}. Further, by (14), we have
ϕ( j) ≡ − j (mod p), so that m(ϕ( j)+ s + j) = ms ≡ −r (mod mp).
Once again we have reached a contradiction.

For (B), in analogy with (*), it suffices to study the (m,mp)-rook’s
options where y is such that y − x − (b j − a j ) ≥ m for all j such
that a j ≤ x = ai . Hence, we need to show that there are a j and an
r ∈ {0, 1, . . .m− 1} such that

y ≡ b j − r (mod mp) and a j = x

or
y ≡ a j − r (mod mp) and b j = x .

Clearly, we may choose r such that y− x + r ≡ 0 (mod m). Then, for
all j , we get ms := y− x+r ≡±(b j −a j ) (mod m). Hence, it suffices
to find a specific j such that

j =
b j − a j

m
≡ s (mod p) and a j = x

or

− j =
a j − b j

m
≡ s (mod p) and b j = x .

But then, by (13) or (15), we are done.

Game (iiia): We are now going to show that P(m× pWNl)= {(ai p+l, bi p+l) |

i ∈Z≥0}∪{(bi p−l, ai p−l) | i ∈Z>0}. We may assume that l > 0. We have already
seen that (a′i ) := (api+l)i≥0 and (b′i ) := (bp(i+1)−l)i≥0 are complementary. Our
proof will be a straightforward extension of those in [Fraenkel 1982] (which
deals with the case l = 0) and [Connell 1959a] (which implicitly deals with the
case m = 0). Observe that a′0 = al = 0 and b′0 = bp−l = m(p− l).

For (A), let (x, y) = (a′i , b′i ). In case i = 0 (by Definition 4 (iiia)), the
Queen has no options at all, so assume i > 0. Proposition 5.2(iii) gives that
b′i − a′i ± (b

′

j − a′j ) ≥ mp for all 0 ≤ j < i . Then the mp-bishop cannot move
(x, y)→ (a′j , b′j ) for any 0≤ j < i . Since a′ and b′ are complementary there is
no rook-type option (a′i , b′i )→ {a

′

j , b′j }.
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For (B), we adjust the statement (*) accordingly: Suppose x = a′i . By
Proposition 5.2(iii): If the mp-bishop cannot move to (a′j , b′j ) for any j < i we
get that either i = 0 or y− x − (b′j − a′j )≥ mp for all j < i . If i = 0 there is a
rook-type option to (a′0, b′0) (we may assume here that y > b′0), so suppose i > 0.
But then, by Proposition 5.2(iii), we get y ≥ b′j+mp+x−a′j ≥ b′i+a′i−a′j > b′i .
Hence, for this case, the rook-type move (x, y)→ (a′i , b′i ) suffices. Suppose on
the other hand that x = b′i with i ≥ 0. Then, since y ≥ x = b′i > a′i , the desired
rook-type move is (x, y)→ (b′i , a′i ).

Game (iiib) It only remains to demonstrate that P(m×pWN)={{ai , bi } | i ∈Z≥0}.
Suppose that the starting position is (ai , bi ). Then i = pj + l ′ for some (unique)
pair j ∈ Z≥0 and 0≤ l ′ < p. The second player should choose l = l ′. If, on the
other hand, the starting position is (bi , ai ). Then i = pj − l ′ for some (unique)
pair j ∈ Z>0 and 0 < l ′ ≤ p. The second player should choose l = p− l ′. In
either case, by (iiia), there is no option of the form (a′i , b′i ).

If the starting position (x, y) is not of the form {ai , bi }, again, by (iiia), for
any choice of 0≤ l < p, there is a move (x, y)→ {a′i , b′i } for some i ≥ 0. �

7. Questions

Can one find a polynomial time solution of mWN(l,p) for some integers l ≥ 0,
m > 0 and p > 0 whenever

• gcd(m, p) 6= 1 and l = 0, or

• 0< l 6= m or m - p?

If this turns out to be complicated, can one at least say something about its
asymptotic behavior?

Denote the solution of mWN(l,p) with
{
{c(l,m,p)i , d(l,m,p)i }

}
i∈Z≥0

. Let us finish
off with two tables of the initial P-positions of such games.

From these tables one may conclude that: The infinite arithmetic progressions
of the sequences

(bm,p
i − am,p

i )i∈Z≥0 = (mi)i∈Z≥0

(see also Tables 1 and 2) are not in general seen among the sequences

(d(l,m,p)i − c(l,m,p)i )i∈Z≥0 .

We believe that the latter sequence is an arithmetic progression if and only if
none of the items in our above question is satisfied. We also believe that, for
arbitrary constants,

(
c(l,m,p)i

)
i∈Z≥0 and

(
d(l,m,p)i

)
i∈Z>0 are p-complementary. But

the solution of these questions are left for some future work.

Remark 5. We may also define generalizations of mWNp and m× pWNl :
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b1,3
n 0 1 2 4 5 7 8 10 11 12 14 15 17 18 20 21 22

a1,3
n 0 0 0 1 1 2 2 3 3 3 4 4 5 5 6 6 6

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 1. The initial P-positions of Connell’s restriction of Wythoff
Nim, WN(3).

b2,3
n 0 2 4 7 9 11 14 16 19 21 23 26 28 31 33 35 38

a2,3
n 0 0 0 1 1 1 2 2 3 3 3 4 4 5 5 5 6

bn − an 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 2. Some initial values of the Beatty pairs defined in (2) and (3),
here m= 2 and p= 3, together with the differences of their coordinates
(= 2n).

d(0,2,2)n 0 3 6 9 12 15 19 22 25 28 31 34 37 40 43 46 49

c(0,2,2)n 0 0 1 1 2 2 3 4 4 5 5 6 7 7 8 8 9

dn − cn 0 3 5 8 10 13 16 18 21 23 26 28 30 33 35 38 40

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 3. The first few P-positions of 2WN2 together with the respective
differences of their coordinates.

d(1,2,3)n 0 2 5 7 11 14 16 19 21 26 29 31 36 39 41 44 46

c(1,2,3)n 0 0 1 1 2 3 3 4 4 5 6 6 7 8 8 9 9

dn − cn 0 2 4 6 9 11 13 15 17 21 23 25 29 31 33 35 37

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 4. The first few P-positions of 2WN(1,3). Notice that (as in
Table 3) the successive differences of their coordinates are not in
arithmetic progression.

Fix l ∈ Z>0. Let mWNp
l be as mWNp but where the player may only block

off l-roob-type options (recall, non-l-bishop options). Otherwise, the Queen
moves as the m-bishop or the rook. Then mWNp

m = mWNp. On the other hand
mWNp

1 is the blocking variation of m-Wythoff Nim where the previous player
may block off any p− 1 rook-type options.
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Let u, v ∈ Z>0 and let m × pWNu,v be as m × pWNl , but the removed
(lower left) rectangle has base u and height v. Then for this game the final
positions are (u, 0) and (0, v). If l > 0, u = ml and v = m(p − l) we get
m× pWNlm,m(p−l) = m× pWNl . Some of these games are identical to misère
versions of Wythoff Nim, see [Fraenkel 1984].

One may ask questions in analogy to the above for these variations. For
example, we have found a minimal exclusive algorithm satisfying P(mWNp

1 )

which is related to a polynomial time construction in [Fraenkel 1998]. Is there
an analog polynomial time construction for P(mWNp

1 )? Another question is if
any of these further generalized games coincide via identical set of P-positions?

Appendix

The following discussion, provided by Aviezri Fraenkel, provides a complemen-
tary analysis of “p-complementarity”/“p-fold complementarity” and homoge-
neous Beatty sequences:

Definition. Let p ∈ Z>0. The multisets S, T of positive integers are 1-upper
p-fold complementary, for short: p-fold complementary, if S ∪ T = p×Z>0.

If the multisets S, T satisfy Definition 1 and have irrational densities α−1,
β−1, say α ≤ β, then a necessary condition for p-fold complementarity is
α−1
+β−1

= p. Thus a := β−α > 0. Then α = (2− ap+
√

a2 p2+ 4)/2p, so
p−1 < α < 2p−1. Then 1/β = p− 1/α, so β > 2/p.

Let M = b1/αc + 1, N = b1/βc + 1. Notice that α(M − 1) < 1 < αM ,
β(N − 1) < 1< βN . From now on we let S = {bnαc}n≥M , T = {bnβc}n≥N .

Theorem. The multisets S, T are p-fold complementary.

Proof. For any k ∈ Z>0, since α is irrational, the number of terms less than k in
S ∪ T is

bk/αc− (M − 1)+bk/βc− (N − 1)= bk/αc+ bk(p−α−1)c−M − N + 2

= kp+bk/αc+ b−k/αc−M − N + 2

= kp−M − N + 1.

Similarly, S∪ T contains (k+ 1)p−M − N + 1 terms < k+ 1. Hence there are
exactly p terms < k+1 but not < k. They are the terms k with multiplicity p. �

Remarks. (i) b1/αc = p+ b−1/βc = p− 1− b1/βc = p− N . Hence M =
b1/αc+ 1= p− N + 1.

(ii) Clearly (b(M − 1)αc, b(N − 1)βc)= (0, 0). Since α < β, we have N ≤ M .
Hence, for all N ≤n<M , we have that (bnαc, bnβc)= (0, bnβc)where bnβc>0.
Thus there are precisely M−N couples (bnαc, bnβc)with bnαc=0 and bnβc>0,
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containing M − N 0s. Thus, for 0 ≤ n < M , there are precisely M couples
(bnαc, bnβc) with bnαc = 0 and bnβc ≥ 0, containing, in total, M + N = p+ 1
0s.

(iii) The proof is a straightforward generalization to p ≥ 1 of a proof included in
an editorial comment to [Fraenkel 2010] stating: “. . . The result is so astonishing
and yet easily proved that we include a short proof for the reader’s pleasure.”
This is then followed by the above proof for the special case p = 1, which is
itself a slight simplification of the proof given in [Fraenkel 1982].
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