
Games of No Chance 4
MSRI Publications
Volume 63, 2015

An algorithm for computing
indistinguishability quotients in misére

impartial combinatorial games
MIKE WEIMERSKIRCH

This paper advances the theory of impartial misère octal games by developing
an algorithm for finding certain infinite quotient monoids. The notion of a
misère quotient monoid was introduced by Thane Plambeck, who also, together
with Aaron Siegel, gave an algorithm for finding finite misère quotients. This
paper examines the periodicity of outcomes when changing the number of
heaps of various sizes. The quotient monoid for misère 0.3122 up to heaps of
size 7 is found. It is the first example of an infinite misère quotient monoid.

1. Introduction

This paper gives an algorithm for computing certain misère indistinguishability
quotient monoids. The approach employed here is not the genus theory of
[Berlekamp et al. 2003, Chapter 13], but rather the quotient monoid approach
introduced by Thane Plambeck [2005].

The algorithm described here was initially designed to analyze octal games,
but is also valid for a broader class of games which will be called “heap rulesets”.

2. Heap rulesets

The notion of a heap ruleset comes from Nim, which is played with heaps of
beans. The rules of Nim, and its variations, specify how a player may remove
beans from a heap. The terminology below is influenced greatly by play of
Nim, and readers may wish to keep games like Nim in mind when reading this
paper. However, the collection of heap rulesets includes many other impartial
games whose standard descriptions do not involve heaps. Chomp and Cram are
examples.

We take a different perspective than is customary in describing our games. We
will begin with the set H={H1, H2, . . . } called the heap alphabet. The positions
that can occur during the course of play are arbitrary finite multisets of H. The

Keywords: none.

267

268 MIKE WEIMERSKIRCH

set of all such positions is called the free heap monoid (terminology developed
in private conversations with Ezra Miller), and is denoted A. Elements of A will
be represented as vectors (x1, x2, . . .) where xi denotes the number of copies
of Hi . Note that A is isomorphic to N∞ =

⊕
n∈Z+ Nn , which is a commutative

monoid, with addition being the standard vector addition. H is a generating set
for A. If we take the set consisting of only the first n elements of H, we have a
partial heap alphabet which we will denote Hn = {H1, . . . , Hn}. The size of a
heap is its index, that is Hi is the heap of size i . A move will change a heap of
size i into a finite (perhaps empty) collection of heaps, all of which have size
< i . The collection of moves allowed for a particular contest will be denoted 0.
A heap alphabet together with a set of legal moves 0, will be called a ruleset. In
essence, the ruleset specifies “how the game is played”. The term game (misused
several times above), is synonymous with position, that is, a game is a particular
element of A. Moves will be represented as vectors in Z∞ =

⊕
n∈Z+ Zn , the

condition stating that the rightmost non-zero coordinate of a move must be −1
and the prior coordinates are all non-negative.

3. Quotient maps and outcome functions

The goal is to be able to look at a game G = (x1, x2, . . .) ∈ A and determine
whether there is a winning strategy for the Next player to move, (an N -position)
or not, in which case it is a game you would like to move to as the Previous
player, (a P-position). We define the game outcome function o− :A→ {N , P}
accordingly.

The outcome of all games under a particular ruleset (H, 0) can be determined
recursively as follows:

Let G be a game and let G+0 be the set of options of G. If for all options
H ∈ G + 0, o−(H) = N , then G is a P-position. If there exists any option
H ∈ G+0 with o−(H)= P , then G is an N -position. That is,

o−(G)=
{

N if there exists an option H of G with o−(H)= P,
P if for all options H of G, o−(H)= N

Note that we have a slight problem with this algorithm. Some elements of
G+0 may have negative coordinates and therefore are not in A. They correspond
to moves which change a heap of size i into some smaller heaps, but no heap of
size i was present in G. These moves do not exist in the actual course of play.
We get around this difficulty by defining o−(γ)= N if any coordinate of γ is
negative. The addition of extra moves to N -positions does not alter the above
algorithm, which searches for the existence of a P-position amongst the options.

Remembering the outcome of every game in A is cumbersome, and so some
simplifications are necessary.

COMPUTING INDISTINGUISHABILITY QUOTIENTS IN MISÉRE GAMES 269

Definition 1. Two games G, H ∈ A are indistinguishable if o−(G + X) =
o−(H + X) for all games X ∈A.

Indistinguishablility is a congruence relation on A and the congruence classes
form the quotient monoid Q. (When the free heap monoid A corresponds
to a partial heap alphabet Hn , it is customary to call the quotient a partial
quotient and denote it Qn .) The induced map from A to Q is denoted 8 and is
called the quotient map. The quotient map induces a quotient outcome function
O :Q→ {N , P} making the following diagram commute.

A o− //

8 ##

{N , P}.

Q

O

OO

This represents a notational change from earlier work. What Plambeck and Siegel
[2008] call the “P-portion of Q” and denote by P is here the inverse image of
P under the quotient outcome map and is denoted O−1(P).

It is customary to use multiplicative notation in Q, which can be achieved
by first passing to the multiplicative monoid M with generators {a, b, c, . . . }
replacing {H1, H2, H3, . . . }.

A o− //

8
##��

{N , P}.

M // Q

O

OO

4. Computation of periodicity of outcomes and the corresponding
quotients for finite heap alphabets

For a finite heap alphabet Hn , when the quotient Q is finite, we are able to find
relations of the form αr

= αr+d with d > 0 for each free heap monoid generator
α according to the following algorithm.

4.1. Algorithm for computing periodicity. We wish to find for all xi ≥ 0, 1≤
i ≤ n− 1, the smallest values of the preperiod, rn , and the period, dn , so that for
all k ≥ 0, o−(x1, x2, . . . , xn−1, rn + k)= o−(x1, x2, . . . , xn−1, rn + dn + k). We
achieve this in the following manner.

To find the periodicity for the n-th heap size:

(1) Begin with the preperiods (r1, . . . , rn−1) and periods (d1, . . . , dn−1) calcu-
lated for the previous heap sizes so that o−(r1+ k1, r2+ k2, . . . , rn−1+ kn−1)=

270 MIKE WEIMERSKIRCH

o−(r1+ d1+ k1, r2+ d2+ k2, . . . , rn−1+ dn−1+ kn−1) for all k1, . . . , kn−1 ≥ 0.
Set m = 1.

(2) Calculate outcomes for games with xn = m up to the periodicity of the
previous heap sizes, that is, for xi ≤ ri + di . Verify for each heap size, that the
previous periodicity still holds. If not, calculate additional outcomes in order to
update the preperiods and periods.

(3) Check to see if the outcomes for xn = m agree with the outcomes for xn = l,
for some l < m. If so, then rn = l and dn = m− l, if not, increase m by 1 and
repeat.

4.2. Periodicity theorem. Games can be ordered using the colexicographical
order, in which G precedes H , denoted G < H , if the rightmost coordinate in
which G and H differ is smaller in G. Note that if G < H , then starting at the
game G, no sequence of moves can arrive at H .

The following theorem is central to the algorithm. An example which shows
the use of this theorem in the algorithm appears in the following subsection.

Theorem 2. Fix a heap ruleset (Hn, 0), under misère play, and fix values for
i, yi+1, yi+2, . . . , yn . Suppose that the following assumptions are satisfied for
some ri , di :

(i) The outcomes for games of the form

G = (x1, x2, . . . , xi−1, ri , yi+1, yi+2, . . . , yn)

agree with the outcomes of

G∗ = (x1, x2, . . . , xi−1, ri + di , yi+1, yi+2, . . . , yn)

for all x1, x2, . . . , xi−1.

(ii) The outcomes for games of the form

K = (x1, x2, . . . , xi−1, ri + u, xi+1, xi+2, . . . , xn)

agree with the outcomes of

K ∗ = (x1, x2, . . . , xi−1, ri + di + u, xi+1, xi+2, . . . , xn)

for all x1, x2, . . . , xi−1, for (xi+1, xi+2, . . . , xn) preceding (yi+1, yi+2, . . . , yn)

in the colexicographic order and all u ≥ 0.

Then o−(G+ vHi)= o−(G∗+ vHi) for all v, x1, x2, . . . , xi−1 ≥ 0.

Proof by induction. The statement is true for v = 0 by supposition. Assume
the statement is true for v. All moves from the heaps Hi+1, . . . Hn correspond
to options with the same outcomes for G + (v+ 1)Hi and G∗+ (v+ 1)Hi by

COMPUTING INDISTINGUISHABILITY QUOTIENTS IN MISÉRE GAMES 271

(ii) and all moves from Hi correspond to options with the same outcomes for
G+ (v+ 1)Hi and G∗+ (v+ 1)Hi by the induction hypothesis. These are the
only moves available when x1 = 0, x2 = 0, . . . xi−1 = 0. Since the options have
the same outcomes, the games themselves have the same outcome. We then
induct on x1, leaving x2 = 0, x3 = 0, . . . , xi−1 = 0. Since the only new options
are to move from H1, the outcomes of the new options will be the same by
induction, and the games themselves again have the same outcome. Now we
have the statement true for arbitrary x1, x2 = 0 and x3 = 0, x4 = 0, . . . xi−1 = 0.
We next induct on x2. The new options make use of H2 which are known to have
the same value by a similar argument. Continue inducting on each heap size up
to i − 1 to complete the proof. �

4.3. Example. As a first example, we will compute several partial quotients for
the quaternary ruleset 0.3122.

First partial quotient of 0.3122. This first quotient shows the fundamental nature
of the periodicity of outcomes.

For the first partial heap alphabet H1, there is only one legal move, namely
0 = {(−1)}. The outcome of the game (0) is defined to be N in misère play.
o−(1)= P , since the only move is to the N -position (0) and o−(2)= N , since
there is a move to the P-position (1).

What about the sum of several copies of H1? That is, what is the outcome of
(x1) for arbitrary x1. Since the only move is (−1), the outcome of (x1) will be
P if o−(x1−1)= N and vice versa. The outcomes are periodic with period two.

x1 = 0 1 2 3 4 5 . . .

o−(x1)= N P N P N P . . .

The key fact is that the outcome of (3) is a function of o−(2), just as the
outcome of (1) is a function of o−(0). In fact, o−(j + 1) is a function of o−(j)
for all j ≥ 0. Moreover, the outcomes of (j + k) for j, k > 0 are all determined
by a single outcome, o−(j). Since the outcome of (2) is the same as the outcome
of (0), then the outcome of (2+ k) must be the same as the outcome of (0+ k)
for all k ≥ 0.

We will record this periodicity for the partial heap alphabet Hn as follows: Rn

and Dn are n-tuples where Rn records the preperiod in each component and Dn

records the period. That is, when Rn= (r1, r2, . . . , rn) and Dn= (d1, d2, . . . , dn),
if you have at least ri heaps of size i , adding di more heaps of size i won’t change
the outcome.

Thus in the current example, R1 = (0) and D1 = (2)
This periodicity gives us a candidate for the quotient monoid, namely Q∗ =
〈a | a2

= 1〉. The relation a2
= a0 is clearly valid from the periodicity. The

272 MIKE WEIMERSKIRCH

candidate quotient is therefore a refinement of the true quotient Q in the sense
that every game associated to a particular element of Q∗ belongs to a single
indistinguishability congruence class in Q. However, Q∗ may have too many
elements by having further partitioned the congruence classes in Q. In general,
we need to check that there do not exist distinct elements p, q ∈Q∗ where for all
x ∈Q∗, O(px)=O(qx). If we find two such elements, then we add the relation
p = q to create a new candidate quotient. When the full periodicity Rn, Dn has
been found for a partial heap alphabet, the initial candidate quotient is finite, as
will be the list of relations to check. Each successive quotient will have strictly
smaller cardinality than the previous quotient, and therefore this verification will
converge to the true quotient Q in a finite number of steps.

In this case, since the N -position (0) is mapped to 1 in Q∗ and the P-
position (1) is mapped to a, then O(1) = N and O(a) = P . Thus 1 and a
are distinguishable and the candidate Q∗ is as small as possible, that is Q∗ =Q1.

Second partial quotient of 0.3122. This second step shows the recursive nature
of the algorithm, and provides an example where the periodicity of outcomes
occurs after a preperiod.

For the second partial quotient Q2, the legal moves are

0 = {(−1, 0), (0,−1), (1,−1)}.

We already know the outcomes of games of the form (x1, 0) and notice that
o−(x1, 1)= N for all x1 ≥ 0 since (x1, 1) has options to (x1, 0) and (x1+ 1, 0),
one of which is a P-position. Moving on to the next row, we compute the first
three outcomes.

x1 = 0 1 2 3 4 5 . . .

o−(x1, 0)= N P N P N P . . .

o−(x1, 1)= N N N N N N . . .

o−(x1, 2)= P N P

We use the theorem to claim that this row must also be periodic. Compare
the options of (3, 2) versus the options of (1, 2). The moves from (3, 2) which
make use of H2, that is, the moves (1,−1) and (0,−1) to the positions (4, 1)
and (3, 1) respectively, are moves with the same outcomes as the options of
(1, 2) to (2, 0) and (1, 0), since the previous row was periodic. (Part (ii) of
the theorem.) Also, o−(2, 2) = o−(0, 2). Since the outcomes of the options
of (3, 2) agree with the outcomes of the options of (1, 2), then o−(3, 2) =
o−(1, 2). We then proceed inductively using part (i) of the theorem. For all k> 0,
o−(3+ k, 2)= o−(1+ k, 2) since using the move (1,−1) from each game has
o−(4+k, 1)= o−(2+k, 1) by the previous row’s periodicity. Likewise, using the
move (0,−1) has o−(3+ k, 1)= o−(1+ k, 1) by the previous row’s periodicity.

COMPUTING INDISTINGUISHABILITY QUOTIENTS IN MISÉRE GAMES 273

Finally, using the move (−1, 0) has o−(3+ k − 1, 1) = o−(1+ k − 1, 1) by
induction.

We then repeat this process to calculate the outcome of further rows.

x1 = 0 1 2 3 4 5 · · ·
o−(x1, 0)= N P N P N P · · ·
o−(x1, 1)= N N N N N N · · ·
o−(x1, 2)= P N P N P N · · ·
o−(x1, 3)= N N N N N N · · ·

Notice that for all x1 ≥ 0 we have o−(x1, 3) = o−(x1, 1). We now claim to
have established periodicity in the second dimension. The outcomes of (x1, 4)
for all x1 ≥ 0 are determined by the outcomes of the previous row (x2 = 3), just
as the outcomes of (x1, 2) for all x1 ≥ 0 were determined by the previous row
(x2 = 1). Since o−(x1, 3)= o−(x1, 1), then o−(x1, 4)= o−(x1, 2). By induction,
o−(x1, 3+ k)= o−(x1, 1+ k) for all x1 ≥ 0 and k ≥ 0.

Computing the quotient monoid Q2, the periodicity R2 = (0, 1) D2 = (2, 2)
gives the candidate quotient Q∗ = 〈a, b | a2

= 1, b3
= b〉.

Again, we check to see if we can find p, q ∈ Q∗ with O(px) = O(qx) for
all x ∈Q∗. In fact, all six elements are distinguishable (for instance, a and b2

are distinguishable, since O[a(b2)] = N , but O[b2(b2)] =O(b4)=O(b2)= P .)
Therefore Q∗ is the true quotient Q2

In the second row, we verified periodicity by comparing the options of (3, 2)
versus the options of (1, 2), but the periodicity occurs from the beginning of
the row. The difficulty in comparing (2, 2) and (0, 2) is that from (0, 2), the
move (−1, 0) takes us off the board to (−1, 2) /∈ A. We can fix this problem
by extending the domain of outcome function o− to include vectors in Zn by
declaring that o−(x1, x2, . . . xn)= N if any xi < 0. Adding in extra illegal moves
to N -positions will not alter the existence or non-existence of legal options to a
P-position.

x1 = –1 0 1 2 3 4 5 · · ·
o−(x1,−1)= N N N N N N N · · ·

o−(x1, 0)= N N P N P N P · · ·
o−(x1, 1)= N N N N N N N · · ·
o−(x1, 2)= N P N P N P N · · ·
o−(x1, 3)= N N N N N N N · · ·

...

Third and fourth partial quotients of 0.3122. Calculation of the third partial
quotient is similar to the second. The fourth partial quotient gives an example of
step 2) of the algorithm updating the prior periodicity.

274 MIKE WEIMERSKIRCH

We can continue to calculate outcomes for x1= 0, 1, 2, and the reader unfamil-
iar with reversibility may wish to continue to include these outcomes. However,
in order to decrease the amount of data we need to keep track of, we will employ
the following simplification. It is a global condition on any ruleset (H, 0), for
any game whose only option is to the identity, (H1 in this case), that two copies
of that game are reversible to, and therefore indistinguishable from, the identity.
(See [Berlekamp et al. 2003, Chapter 13].) Therefore we only need to keep track
of columns 0, 1 and do not need to verify the periodicity for heaps of size 1.
Column 2 will always agree with column 0.

For H4, the legal moves are 0 = {(−1, 0, 0, 0), (0,−1, 0, 0), (1,−1, 0, 0),
(0, 1,−1, 0), (1, 0, 0,−1), (0, 0, 1,−1)}

We calculate the outcomes for x3 = 1 up to the previous periodicity on x2

which requires us to calculate rows 0, 1, 2, 3. The periodicity for heaps of size 2
checks, that is o−(x1, 3, 1) = o−(x1, 1, 1), but the outcomes for (x1, x2, 1) do
not agree with the outcomes of (x1, x2, 0), so we continue to x3 = 2.

x3 = 0 x1 = 0 1 x3 = 1 x1 = 0 1 x3 = 2 x1 = 0 1
x2 = 0 N P P N P N
x2 = 1 N N N N N N
x2 = 2 P N P N P N
x2 = 3 N N N N N N

Now the outcomes for (x1, x2, 2) agree with those for (x1, x2, 1) so R3 =

(0, 1, 1); D3 = (2, 2, 1).

When x4 = 1 and x3 = 0, the outcomes for x2 = 3 no longer agree with the
outcomes of x2 = 1, so we need to calculate additional outcomes. The new
preperiod for x2 must be greater than the old preperiod and the new period must
be a multiple of the old period. In this case the new preperiod is 2 and the period
remains 2.

x4 = 1, x3 = 0 x1 = 0 1
x2 = 0 N P
x2 = 1 N N
x2 = 2 N N
x2 = 3 P N
x2 = 4 N N

We continue calculating outcomes until the full periodicity R4 = (0, 2, 1, 0),
D4 = (2, 2, 1, 2) is reached. (See figure on the next page.)

The candidate quotient arrived at from the periodicity is

Q∗ = 〈a, b, c, d | a2
= 1, b4

= b2, c2
= c, d2

= 1〉.

COMPUTING INDISTINGUISHABILITY QUOTIENTS IN MISÉRE GAMES 275

x4 = 0
x3 = 0 x1 = 0 1 x3 = 1 x1 = 0 1 x3 = 2 x1 = 0 1
x2 = 0 N P P N P N
x2 = 1 N N N N N N
x2 = 2 P N P N P N
x2 = 3 N N N N N N
x2 = 4 P N P N P N

x4 = 1
x3 = 0 x1 = 0 1 x3 = 1 x1 = 0 1 x3 = 2 x1 = 0 1
x2 = 0 N P N N N N
x2 = 1 N N P N P N
x2 = 2 N N N N N N
x2 = 3 P N P N P N
x2 = 4 N N N N N N

x4 = 2
x3 = 0 x1 = 0 1 x3 = 1 x1 = 0 1 x3 = 2 x1 = 0 1
x2 = 0 N P P N P N
x2 = 1 N N N N N N
x2 = 2 P N P N P N
x2 = 3 N N N N N N
x2 = 4 P N P N P N

A check of outcomes reveals that c = b2 and b2d = b3, so that

Q4 = 〈a, b, d | a2
= 1, b4

= b2, b2d = b3, d2
= 1〉,

with outcome map 8(H1) = a, 8(H2) = b, 8(H3) = b2, 8(H4) = d and
O−1(P)= {a, b2, ad}.

5. Infinite quotients

If the quotient Q is infinite for a particular partial heap alphabet, the algorithm
will fail to terminate. Similar techniques searching for periodicity in directions
involving more than one heap size may be employed to discover these infinite
monoids.

One example is the fifth partial quotient of the quaternary game 0.31011. The
moves are given as follows:

0 = {(−1, 0, 0, 0, 0), (1,−1, 0, 0, 0), (0,−1, 0, 0, 0), (0, 1,−1, 0, 0),

(0, 0, 1,−1, 0), (0, 0, 0,−1, 0), (0, 0, 0, 1,−1), (0, 0, 0, 0,−1)}

276 MIKE WEIMERSKIRCH

For each value of x5, the first three preperiods are r1 = 0, r2 = 2, r3 = 3
and the first three periods are d1 = 2, d2 = 2, d3 = 1. However, r4 continues to
increase with x5. A “diagonal” periodicity is produced, so that for all games G
with x4+ x5 > 11, o−(G)= o−(G+ 2H4+ 2H5). One verifies this by

(1) finding preperiods and periods in the first four dimensions for x5 = 0, 1, 2;

(2) verifying that

(i) o−(x1, x2, x3, 12, 0) = o−(x1, x2, x3, 14, 0) = o−(x1, x2, x3, 14, 2) =
o−(x1, x2, x3, 16, 2),

(ii) o−(x1, x2, x3, 13, 0)= o−(x1, x2, x3, 15, 2),
(iii) o−(x1, x2, x3, 11, 1)= o−(x1, x2, x3, 13, 1);

(3) verifying for a+ b = 12, o−(x1, x2, x3, a, b)= o−(x1, x2, x3, a+ 2, b+ 2);

(4) verifying that

(i) o−(x1, x2, x3, 0, 12)= o−(x1, x2, x3, 0, 14)= o−(x1, x2, x3, 2, 16),
(ii) o−(x1, x2, x3, 1, 12)= o−(x1, x2, x3, 1, 14)= o−(x1, x2, x3, 1, 16),
(iii) o−(x1, x2, x3, 1, 13)= o−(x1, x2, x3, 1, 15),
(iv) o−(x1, x2, x3, 0, 13)= o−(x1, x2, x3, 2, 15)

This yields the candidate quotient Q∗5 = 〈a, b, c, d, e | a2
= 1; b4

= b2
; c4
=

c3
; e2d14

= d12
; e3d13

= ed11
; e4d12

= e2d10
; e5d11

= e3d9
; e6d10

= e4d8
;

e7d9
= e5d7

; e8d8
= e6d6

; e9d7
= e7d5

; e10d6
= e8d4

; e11d5
= e9d3

; e12d4
=

e10d2
; e13d3

= e11d; e14d2
= e12

〉.
Additional relations can be found, giving a new candidate quotient Q∗∗5 =
〈a, b, c, d, e | a2

= 1; b4
= b2
; cb2

= c; c4
= c3
; dc3

= c3a; d2b2
= d2
; ec3

=

c3b; e2b2
= e2
; e2d6

=d4
; e7d5

= e5d3
; e8d4

= e6d2
; e9d3

= e7d; e10d2
=d8
〉.

Another example for which the verification has been performed is the seventh
partial quotient of the quaternary game 0.3122: Q7 = 〈a, b, c, d, e, f | a2

= 1;
b5
= b3
; cb3

= b4
; c2b2

= b2
; c3b= cb; c4

= c2
; d2b4

= d2b2
; d2cb2

= d2b3
;

d3b2
= d2b2

; eb2
= b4a; e2

= b4
; f b2

= d2b3a; f d3cb = d2c2ba; f d3c2
=

d2c3a; f 2ed2c2
= f edc3a; f 3dcb = f 2c2ba; f 3dc2

= f 2c3a; f 4d6
= d2
;

f 5ed5
= f ed; f 6d4

= f 2
〉, with outcome map 8 having values

8(H1)= a, 8(H2)= b, 8(H3)= b2d2, 8(H4)= c,
8(H5)= d, 8(H6)= e, 8(H7)= f .

6. Further work

The two examples of infinite quotients were discovered on a case-by-case basis.
Automation of the process to search for “diagonal” periodicities would greatly
enhance our ability to find other infinite quotients. Included in finding such an

COMPUTING INDISTINGUISHABILITY QUOTIENTS IN MISÉRE GAMES 277

algorithm is a determination of exactly which directions are possible directions
for periodicity given a ruleset.

An algorithm which exhausts the list of possible relations in the infinite case
is also needed.

References

[Berlekamp et al. 2003] E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning ways for your
mathematical plays, II, 2nd ed., A K Peters, Natick, MA, 2003.

[Plambeck 2005] T. E. Plambeck, “Taming the wild in impartial combinatorial games”, Integers
5:1 (2005), G05.

[Plambeck and Siegel 2008] T. E. Plambeck and A. N. Siegel, “Misère quotients for impartial
games”, J. Combin. Theory Ser. A 115:4 (2008), 593–622.

weim0024@math.umn.edu School of Mathematics, University of Minnesota,
206 Church St. SE, Minneapolis, 55455, United States

http://www.emis.de/journals/INTEGERS/papers/fg5/fg5.pdf
http://dx.doi.org/10.1016/j.jcta.2007.07.008
http://dx.doi.org/10.1016/j.jcta.2007.07.008
mailto:weim0024@math.umn.edu

	1. Introduction
	2. Heap rulesets
	3. Quotient maps and outcome functions
	4. Computation of periodicity of outcomes and the corresponding quotients for finite heap alphabets
	4.1. Algorithm for computing periodicity
	4.2. Periodicity theorem
	4.3. Example

	5. Infinite quotients
	6. Further work
	References

