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A survey of Solitaire Clobber
LAURENT BEAUDOU, ERIC DUCHÊNE AND SYLVAIN GRAVIER

Solitaire Clobber is a one-player variant of the 2-player board game Clobber
introduced by Albert et al. in 2002. According to simple rules, the objective
of Solitaire Clobber is to capture the maximum number of stones from a
given graph. Two versions of Solitaire Clobber were recently investigated: a
partisan and an impartial one. In this survey, we give an overview of the major
results about Solitaire Clobber, more especially about the impartial version.
In particular, the game is considered on grids, trees, and hypercubes. Two
new results are provided: when playing on a tree, we show that the minimum
number of remaining stones can be computed in polynomial time. We also
assert that any game position on a “large” grid can be reduced to 1 or 2 stones.
Note that in each part of this survey, we propose several open problems related
to Solitaire Clobber.

1. Introduction

1.1. Two-player versions. In 2001, Albert, Grossman, Nowakowski and Wolfe
investigated a new 2-player partisan game called Clobber; they developed the first
results in [Albert et al. 2005]. In terms of game values, it turns out that Clobber
is difficult even when played on basic positions. This complexity explains the
author’s motivation for studying Clobber. The description of the game follows
below.

2-player Clobber. Black and white stones are placed on the vertices of an undi-
rected graph, at most one per vertex. The first player moves only black stones
and the second player the white ones. A player moves by picking up one of his
stones and “clobbering” an adjacent stone of the opposite color (vertically or
horizontally). The clobbered stone is deleted and replaced by the one that was
moved. The last player to move wins.

Clobber is usually played on a grid where the initial position is the one of a
checkerboard, as depicted by Figure 1.

In the last few years, several events were organized around Clobber like the first
international Clobber tournament. It was held at the 2002 Dagstuhl seminar on
algorithmic and combinatorial game theory (see the report in [Grossman 2004]).
Since 2005 the game has been one of the events of the Computer Olympiad.
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Figure 1. Initial Clobber position on a 5× 6 grid.

A short article for the general public was also written in Science News (see
[Peterson 2002]).

Albert et al. [2005] proved that determining the winner of a Clobber game is
an NP-hard question. Moreover, even when the game is played on one or two
rows, there are no proved results. Nevertheless the following two conjectures
made in [Albert et al. 2005] seem to hold:

Conjecture 1. The game position ( td)n is winning for the first player if and only
if n 6= 3.

Conjecture 2. For n odd, the position
( td)n is a first player win.

When n is even, it is easy to see that the position
( td)n is a second player win

by invoking symmetry arguments.

Problem P1 (2-player Impartial Clobber). Since Clobber appears to be a hard
game even on regular positions, what about the impartial version? What can we
say about 2-player Impartial Clobber, where the rules are the same, except that
each player can indifferently move a black or a white stone. For example start by
studying this game on 1× n and 2× n checkerboard positions. Can we provide
the same kind of conjecture as for the partisan version?

1.2. Solitaire versions. E. Demaine, L. Demaine and R. Fleisher [Demaine et al.
2004] investigated the Solitaire Clobber game. It can be seen as the solitaire
version of the 2-player partisan Clobber. The way to move the stones is the
same as for Clobber, but the objective is adapted for a unique player. Indeed, the
goal is to minimize the number of remaining stones on the graph. Here is a full
description of this solitaire variant.

Partisan Solitaire Clobber. Black and white stones are placed on the vertices of
an undirected graph, at most one per vertex. The player moves by picking up
alternately a black and a white stone and “clobbering” an adjacent stone of the
opposite color. The clobbered stone is replaced by the one that was moved. The
objective consists in minimising the number of remaining stones on the graph.

Demaine et al. [2004] investigated this game on rows and grids with initial
“checkerboard position”.
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Figure 2. Left: play on a grid graph G. Right: play on complementary
copies of G.

Proposition 3 [Demaine et al. 2004]. In Partisan Solitaire Clobber, the reducibil-
ity value of a checkerboard row of size n is dn/4e if n 6≡ 3 mod [4], and dn/4e+1
otherwise.

The results about checkerboard grids will be developed in Section 2 of this
survey. In particular, Demaine et al. showed that such grids are 2-reducible.

Dorbec, Duchêne and Gravier [Dorbec et al. 2008] studied a second version
of Solitaire Clobber, which corresponds to an impartial 1-player variant. We call
it Impartial Solitaire Clobber. The only difference with the above solitaire game
is that the player is not forced to alternate black and white captures. Without this
constraint, it turns out that Solitaire Clobber becomes easier to work on. Clearly,
1-reducible positions do not need to have the same number of black and white
stones (e.g. tddddd, which is 1-reducible for Impartial Solitaire Clobber and
not for the partisan version).

There exists a natural correlation between the two versions of Solitaire Clobber.
Indeed, playing the impartial game on a graph G is equivalent to playing the
partisan version on two complementary copies of G. This property is illustrated
by Figure 2, where G is a grid graph (i.e., an induced subgraph of the grid).
Optimal play on the Impartial Solitaire Clobber on G (left) is equivalent to
optimal main on the partisan game on two copies of G (right).

1.3. Definitions and notations for Solitaire Clobber. We here introduce several
definitions and notations that are available for both versions of Solitaire Clobber.

A game position on a graph G = (V, E) is a mapping 8 : V → { t, d}.
Given a game position 8 of Solitaire Clobber on a graph G, we say that the

reducibility value of (G,8) is the minimum number of stones that can be left
on the graph from initial position 8. This value is denoted by rv(G,8). We
also say that a position on a graph is k-reducible (for a positive integer k) if
there exists a succession of moves that leaves at most k stones on the graph. In
particular, as for the “classical” Solitaire game, we are interested in Solitaire
Clobber positions that are 1-reducible.
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Figure 3. The Cartesian product of two graphs G1 and G2.

For short if there is no confusion, we may say that G or 8 is k-reducible
instead of (G,8) is k-reducible. Similarly, we may confound a vertex with the
stone it supports.

If all the vertices of the graph G have the same color, we say that G is
monochromatic. If there exists a vertex v such that G \ v is monochromatic and
G is not, then G is said to be quasimonochromatic.

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the Cartesian product
G1�G2 is the graph G = (V, E) where V = V1×V2 and (u1u2, v1v2)∈ E if and
only if u1 = v1 and (u2, v2) ∈ E2, or u2 = v2 and (u1, v1) ∈ E1. One generally
depicts such a graph with |V2| vertical copies of G1, and |V1| horizontal copies
of G2, as shown on Figure 3.

A grid graph is an induced subgraph of the k× n grid Pk�Pn , where Pk and
Pn are two paths of respective lengths k and n.

1.4. Complexity results. Whatever the type of the game (2-player or Solitaire)
and the way of moving (Impartial or Partisan), it turns out that Clobber is a hard
game. The proofs of the NP-hardness often rely on the Hamiltonicity problem
on graphs. The correlation between these two problems appears when playing
Clobber on a quasimonochrome position.

The first complexity result was proved by Albert et al. [2005]. Their proof
uses a reduction to the Hamiltonian path problem.

Theorem 4 [Albert et al. 2005]. Determining who wins from a 2-player Clobber
position is NP-hard.

The same kind of result was provided by Demaine et al. [2004] for Solitaire
Clobber.



A SURVEY OF SOLITAIRE CLOBBER 17

v2

v1

Figure 4. Reduction to a Hamiltonian path.

Theorem 5 [Demaine et al. 2004]. Deciding whether or not a position of Solitaire
Clobber is 1-reducible is NP-complete.

Their proof can be adapted for both impartial and partisan versions. As for
the 2-player game, it requires a reduction to the Hamiltonian path problem. On
Figure 4 below it is easy to see that the graph on the left admits an Hamiltonian
path between vertices v1 and v2 if and only if the position of the right is 1-
reducible for Impartial Solitaire Clobber. A small gadget (see [Demaine et al.
2004]) leads to the same kind of reduction for the partisan version.

Demaine et al. [2004], using a result of A. Itai, C. H. Papadimitriou and
J. L. Szwarcfiter [Itai et al. 1982], showed that the NP-completeness of Solitaire
Clobber remains true on grid graphs. In Section 2, we give some elements to
solve the complexity on grids. Indeed, we show that for Impartial Solitaire
Clobber, nonmonochromatic positions on grids are 2-reducible. Nevertheless the
complexity remains open.

1.5. Organization of the paper. A major part of this survey will be devoted to
the investigation of Impartial Solitaire Clobber. Section 2 deals with the game on
grids and compares the different results about both versions of Solitaire Clobber.
In particular, it is showed that grids are always 2-reducible for Impartial Solitaire
Clobber, whatever the (nonmonochromatic) initial position is. In this section,
some of the stuff introduced by Demaine et al. will be reinvestigated for the study
of the impartial game. In Conjecture 16 we present algorithms to compute the
reducibility value of game positions on paths, cycles and trees. On such families
of graph, this computation can be done in polynomial time. In Section 4 we
give constant upper bounds on the reducibility value when playing on Hamming
graphs and multipartite complete graphs. Section 5 is devoted to more general
results, such as positions that minimize or maximize the reducibility value on an
arbitrary graph. Moreover in each section we propose several other combinatorial
optimization problems related to Solitaire Clobber.
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2. Solitaire Clobber on grids

2.1. Special positions on grids.

Checkerboard positions. Initially, Clobber was played on a complete grid (k×n
rectangle) with checkerboard position 8c, where 8c is defined by 8c(i, j)= t
if (i + j) is even, and 8c(i, j)= dotherwise. Demaine et al. [2004] solved the
game on such a position:

Theorem 6 [Demaine et al. 2004]. The k×n checkerboard is 2-reducible. More-
over, the k× n checkerboard is 1-reducible if and only if k.n 6≡ 0 mod [3].

The proof of 2-reducibility is done by induction through local rules. In order
to prove that a position is not 1-reducible, Demaine et al. define an invariant
δ available for both versions of Solitaire Clobber on bipartite graphs. The
description of δ follows.

Definition 7. Let 8 be a game position on a bipartite graph G = (V, E). Denote
by S0 and S1 two disjoined independent sets of G such that S0 ∪ S1 = V . We
allocate the color white the to set S0, and the color black to S1. A stone of G is
said to be clashing if its color differs from the color of the independent set to
which it belongs. Define the quantity

δ(G,8)= number of stones+ number of clashing stones.

The following result found by Demaine et al. motivates the introduction of
this invariant.

Proposition 8. Let 8 be a game position of Solitaire Clobber on a bipartite
graph G. Then δ(G,8) mod [3] keeps the same value during the game.

Observe that if k.n≡ 0 mod [3] then the value of δ on a checkerboard position
on a k× n grid is a multiple of 3. Nevertheless, a position consisting of a single
stone has value 1 or 2; therefore when k.n ≡ 0 mod [3], the k× n checkerboard
is not 1-reducible.

Theorem 6 was proved for Partisan Solitaire Clobber and Proposition 8 asserts
that one can not do better for the Impartial version.

Quasimonochromatic positions for Impartial Solitaire Clobber. One of the moti-
vation to investigate the Impartial version of Solitaire Clobber is to consider game
positions that are not balanced in the numbers of black and white stones. In this
way, a natural game position is the quasimonochromatic position. One may hope
to solve this special position on a more general graph than a grid. Unfortunately,
given a graph and a quasimonochromatic position (with a unique white stone v),
determining if this position is 1-reducible is equivalent to determine if G admits
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Figure 5. Forbidden configurations.

an Hamiltonian path starting from v. Therefore, the problem of 1-reducibility of
a quasimonochromatic position on a graph G is NP-complete.

Itai et al. [1982] proved an even stronger result claiming that finding an
Hamiltonian path in a grid graph is still NP-complete. They complete their result
by a nice structural property of Hamiltonian paths in the k × n grid. Before
stating their result we need to introduce some notations. Given a vertex A of the
grid, we denote by x(A) (respectively y(A)) the row (resp. column) of A.

Theorem 9 [Itai et al. 1982]. Let G be a k× n grid and A, B be two vertices of
G. Let c be the 2-coloring of the grid. There exists an Hamiltonian path from A
to B if and only if A and B satisfy the following conditions:

• Coloring condition: If k.n is even then c(A) 6= c(B). Otherwise c(A) =
c(B)= c(1, 1).

• Connectivity condition: If k = 1 then A and B are the extremities of the
grid. If k = 2 then either (A = (1, 1) and B = (2, 1)) or (A = (1, n) and
B = (2, n)) or (A and B belong to distinct columns).

• Forbidden configurations: If k = 3, n is even and c(A) 6= c(1, 1) then if
x(A)= 2 then y(A)≥ x(B) otherwise y(A)≥ y(B)− 1 (see Figure 5).

Observe that this last result solves the 1-reducibility of quasimonochromatic
positions on the k× n grid. Of course, one may provide a simpler proof since
we need to fix only one extremity of the Hamiltonian path.

Corollary 10. Let G be a k × n grid with k ≥ n ≥ 2, c be the 2-coloring of G
and 8 be the quasimonochromatic position with the unique white stone on v.
Then (G,8) is 1-reducible if and only if either c(v)= c(1, 1) or k.n is even.

Proof. First remark that if c(v) 6= c(1, 1) and k.n is odd then any pair (A= v, B)
does not satisfies the coloring condition of Theorem 9. Therefore there is no
Hamiltonian path from A to B which implies that 8 is not 1-reducible.

Now, suppose that c(v) = c(1, 1) or k.n is even. One may assume that
v 6= (1, 1) and set A = v. If k.n is even and c(v)= c(1, 1) then set B = (2, 1),
otherwise B = (1, 1). Now, by Theorem 9, G admits an Hamiltonian path from
A to B which gives a way to 1-reduce 8. �

By Corollary 10, the only non-1-reducible positions are the ones for which
c(v) 6= c(1, 1) and k.n is odd. It is worth to notice that in that case, δ≡ 0 mod [3].
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Moreover, as proved in [Gravier and Parreau 2006], in highest dimension d≥3,
the coloring condition is sufficient to insure the existence of an Hamiltonian path
from A to B in the d-dimensional grid. Therefore it is easier to play Impartial
Solitaire Clobber on quasimonochromatic positions in grids of large dimension.

Theorem 9 suggests to investigate the structural properties of spanning trees
in the k × n grid. In [Gravier and Parreau 2006], the authors generalized the
coloring and connectivity conditions and add some forbidden configurations, in
order to determine a necessary and sufficient condition on 3 vertices insuring
that there exists a spanning tree of the grid having precisely these vertices as
leaves. Nevertheless they were not able to solve the following general problem:

Problem P2 (spanning tree of the grid with p fixed leaves (p-STG)). Given a
k × n grid G and p vertices v1, . . . , vp, does there exist a spanning tree of G
having v1, . . . , vp as leaves?

Using an inductive proof based on the result of [Itai et al. 1982] (for p = 2),
Gravier and Parreau [2006] proved that for any fixed integer p ≥ 2, an analogue
of the p-STG problem in grid graphs remains NP-Complete.

2.2. General case. In this section, we will present a recent result due to Derouet-
Jourdan and Gravier which solves Impartial Solitaire Clobber on “large enough”
grids.

Theorem 11 [Derouet-Jourdan and Gravier 2008]. Let 8 be a nonmonochro-
matic position on a k× n grid with k ≥ n ≥ 4. Then 8 is 2-reducible.

Sketch of proof. Let 8 be a nonmonochromatic position on a k× n grid G. Let
k = 4p1+ r1 and n = 4p2+ r2 with 0≤ ri < 4. Denote by Ri (respectively C j )
the restriction of (G,8) to the i-th row (resp. j -th column) of G. For 1≤ i < p1

and 1≤ j < p2, let

B(i, j)=
(⋃i+3

s=i Rs
)
∩
(⋃ j+3

s= j Cs
)
.

For all 1≤ i ≤ p1, let

B(i, p2)=
(⋃i+3

s=i Rs
)
∩
(⋃p2+3+r2

s=p2
Cs
)
.

Similarly, for all 1≤ j ≤ p2, let

B(p1, j)=
(⋃p1+3+r1

s=p1
Rs
)
∩
(⋃ j+3

s= j Cs
)
.

Finally, let
B(p1, p2)=

(⋃p1+3+r1
s=p1

Rs
)
∩
(⋃p2+3+r2

s=p2
Cs
)
.

Observe that the family B(i, j) is a partition of G with (p1−1).(p2−1) grids
of size 4×4, (p1−1) grids of size (4+r1)×4, (p2−1) grids of size 4×(4+r2)

and one grid of size (4+ r1)× (4+ r2).
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In the remainder of the proof, td/ dtwill denote indifferently one of the patternstdor dt.
We will say that a position on a a× b grid Q (with a ≥ b) is nice if it can be

reduced to one of the following patterns on the first column of Q:

- either B1 = 1 or 2 copies of td/ dt,
- or both (B2 = one copy of td/ dtplus don some vertex v) and (B ′2 = one

copy of td/ dtplus ton v).

This property is interesting. Indeed, consider two consecutive blocks B(i, j)
and B(i, j + 1). We claim that if B(i, j) is nice, then we can move the stones of
Bt to B(i, j + 1) insuring that the resulting B ′(i, j + 1) is nonmonochromatic.
To prove this claim, first assume that B(i, j) can be reduced to B1 with one copy
of dt: dt| dd→ |

td, dt| td→ |
dt, dt| tt→ |

td, dt| dt→ |
ttand | dd.

In the last case, we can choose either ddor ttin order to insure that the resulting
B ′(i, j + 1) is not monochromatic.

If B(i, j) can be reduced to B1 with two copies of td/ dt, then proceed as
previously for each copy.

Now, if B(i, j) can be reduced to B2 and B ′2 then choose one of them according
to the color of the stone placed on the neighbour of v in B(i, j + 1). For the
copy of td/ dtin B2 or B ′2 proceed as previously.

With the help of a computer to check a large number of cases, we proved the
following lemma:

Lemma 12 [Derouet-Jourdan and Gravier 2008]. Each nonmonochromatic game
position on a 4×n grid with n= 4, . . . , 7 is nice except the 4×4 position namely
Bad depicted below: ttttttttdddddddd.

To settle the case of Bad’s and monochromatic positions, we consider the
concatenation of blocks. Firstly we consider the two following possible reductions
of a Bad block: ttttttttdddddddd→ tt and

dd.
Secondly, we check by computer that:

Lemma 13 [Derouet-Jourdan and Gravier 2008]. For every game position on a
4× 4 grid A, one of the following properties is true:tt+ A is nice, or

dd+ A is nice, or
tt+ A →

tt and
dd
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To settle the monochromatic case, we explore again by computer a large number
of cases:

Lemma 14 [Derouet-Jourdan and Gravier 2008]. For every nonwhite monochro-
matic position on a 4× n grid A with n = 4, . . . , 7, we have that A plus 2 white
columns is nice.

From Lemma 14, one can prove by induction that M + A with M being a
white monochromatic position on 4× p (with p ≥ 4) and A being a nonwhite
monochromatic position on 4× q (with 4≤ q ≤ 7), is nice.

Now to prove Theorem 11, consider an Hamiltonian path of blocks starting
from B(1, 1) if p1 is odd, otherwise from B(1, p2) and ending at B(p1, p2).
Applying Lemmas 12–14 along this path, we get a nonmonochromatic position on
the grid k×n with 4≤ k≤ n≤ 7. To finish the proof, we check again by computer
that every nonmonochromatic position on a k× n grid, with 4 ≤ k ≤ n ≤ 7, is
2-reducible.

Since the Cartesian product of two (path-)Hamiltonian graphs contains as
a subgraph a 2-dimensional grid, one may mention the following corollary of
Theorem 11.

Corollary 15. Given two (path-)Hamiltonian graphs H and G of order at least
4, and 8 a nonmonochromatic position on G�H , we have that 8 is 2-reducible.

This result “almost” implies the result on hypercubes (Theorem 26 below).
Nevertheless the proof is quite different; it uses a computer to check a huge
number of cases and leads to a weaker result.

The remaining questions left by Theorem 11 can be formulated as follows:

Problem P3 (2-reducibility of small grids). Does there exist a nonmonochro-
matic position on the 2×n or the 3×n grid (with n≥ 2) which is not 2-reducible?

Our feeling is that, maybe, there exist such positions for the 2× n grid, but
none for the 3× n.

The next problem is maybe easier:

Problem P4 (characterization of the 1-reducible grids). Given a nonmonochro-
matic position 8 of the k× n grid (with k ≥ n ≥ 4), is 8 1-reducible?

A careful analysis of the proof in [Derouet-Jourdan and Gravier 2008] may
solve Problem P4. For the special positions studied previously (checkerboard
and quasimonochromatic), we remarked that if 8 is not 1-reducible then δ ≡
0 mod [3]. Therefore one may conjecture:

Conjecture 16. A position 8 on a “large enough” grid G is not 1-reducible if
and only if 8 is monochromatic or δ(G,8)≡ 0 mod [3].
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3. Algorithms on Impartial Solitaire Clobber

In this section, we only deal with Impartial Solitaire Clobber. We know that
computing the reducibility value of a given game position is NP-hard in general.
But for some specific cases, it can be done efficiently.

3.1. Paths and cycles. A game position on a path (with a stone on each vertex)
will be considered as a word on the alphabet { t, d}. We use the classical notations
for words and languages: t+ represents all nonzero repetitions of t, the notationt? represents the words t+ or the empty word. For example, td+ tdefines all
the game positions that begin with t, continue with a sequence of d (at least
one), and end with t.

We now give a characterization of the 1-reducible game positions on a path:

Lemma 17. A 1-reducible path is either a single stone or in the form td? t? d, or
its symmetric dt? d? t.
Proof. One easily sees that such paths are 1-reducible. We now prove that
1-reducible paths are necessarily in this form. First note that on a 1-reducible
path, one must play from the extremities at each step. A different move would
split the game into two subpaths, which would yield at least two stones in the
end.

The proof is done by induction on the size of the path. Let P be a 1-reducible
path of length strictly greater than 1. Without loss of generality, one may assume
that P = tdP ′ and the first move gives tP ′. Since the length of tP ′ is less
than the length of P , by induction, tP ′ = td? t? dor P ′ is empty. Therefore
P = tdd? t? dor P = td. Both are in the form td? t? d. �

The set of words { td? t? d, dt? d? t, t, d} is a regular language, which means
that it can be recognized by a finite automaton. The automaton associated to
1-reducible paths is depicted by Figure 6. The initial state is 0, and the final ones
are 1, 3, 5. The set of 1-reducible paths can then be recognized in linear time.

0 1 2

3 4 5 6

❞ ❞

t ❞ ❞, t
t tt

❞

t ❞

t, ❞

Figure 6. Automaton for 1-reducible paths.
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Deciding whether a game position is k-reducible on a graph G consists in
finding a partition of G into k 1-reducible subgraphs. We here give a way to
see the reducibility value of a game position as the solution of a well-known
problem in graph theory. When playing on paths and cycles, we show that the
reducibility value can be computed in polynomial time by using this auxiliary
problem.

Given a game position 8 on a graph G, consider the graph H(G,8) as the
intersection graph of all 1-reducible subgraphs of (G,8) (i.e., the vertices of
H(G,8) are the 1-reducible subgraphs of (G,8), and a pair of vertices (u, v)
of H(G,8) is an edge if and only if the subgraphs u and v of G have a common
vertex).

Proposition 18. A game position 8 on a graph G is k-reducible if and only if
H(G,8) admits a maximal independent set of cardinality k.

Proof. Since 8 is k-reducible, there exists a partition U = {U1, . . . ,Ut } of G
into t ≤ k 1-reducible subgraphs. Each stone u of 8 must belong to exactly one
1-reducible subgraph Ui of the partition. This means that in H(G,8), U must
be independent (at most one Ui per stone) and maximal (each stone must be
covered by at least one Ui ).

Let U = {U1, . . . ,Uk} be a maximal independent set of H(G,8). Since U

is independent and each Ui is a 1-reducible subgraph, then the restriction of 8
to ∪Ui is k-reducible. Now since each vertex of G is a vertex of H(G,8), by
maximality of U, the position 8 is k-reducible. �

In terms of graph theory, the maximal independent set problem is known as:

Independent dominating set. Given an integer k and a graph G, does there
exist an independent set D of G of cardinality ≤ k such that each vertex v of G
either belongs to D or is adjacent to a vertex of D?

This problem is NP-complete for arbitrary graphs (see [Garey and Johnson
1979; Chang and Nemhauser 1984; Hochbaum and Shmoys 1985]). R. Irving
[1991] showed that even the problem of finding an independent dominating set
within a factor of t of a smallest independent dominating set is still NP-hard.
According to Proposition 18, it will be interesting to consider the following
problem:

Problem P5 (approximating scheme for Solitaire Clobber). Given a game posi-
tion 8 on a graph, does there exist an integer t and an algorithm reducing 8 to a
number of stones within a factor of t of the reducibility value of 8?

Nevertheless the Independent Dominating Set problem is known to be poly-
nomially solvable for some classes of graphs. For instance, Klostermeyer and
Eschen [2000] proposed a quadratic time algorithm for arc-circular graphs.
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The class of arc-circular graphs contains the intersection graphs of paths
(known as interval graphs) and cycles. Moreover, since the number of 1-reducible
subgraphs of a path (resp. cycle) on n vertices is at most n2, one may use the
algorithm of Klostermeyer et al. to determine the reducibility value of paths
(resp. cycles) in O(n4) time. However, Blondel, Hendrickx and Jungers [Blondel
et al. 2008] suggest another approach to compute this value in linear time. They
encode a position by words, but letters refer to separations between stones: s
means that it is a separation between two stones with same color and a means it
is a separation between opposite colors. For example, the position tttddtddtis
represented by the word ssasasa. This breaks the symmetry between the colors
since each word encodes two opposite positions.

Theorem 19 [Blondel et al. 2008]. Given a game position 8 on a path on n
vertices, the reducibility value of 8 can be computed in O(n) time.

By removing an edge of a cycle, we get a path and we can compute its
reducibility value in linear time. This provides an algorithm running in quadratic
time. This complexity can be improved to linear time:

Corollary 20 [Blondel et al. 2008]. The reducibility value of a game position on
a cycle can be computed in linear time.

Proof. Let v1, . . . , vn be the n vertices of a cycle C of size n with edges (vi , vi+1)

where the subscript is taken modulo n. Let 8 be a nonmonochromatic position
on C . Suppose that 8(v1)= t. We consider all the different ways of playing v1.
There are five cases.

- No move involves v1 (rightmost diagram in Figure 7). Then

rv(C,8)≤ rv(C − v1,8)+ 1.

- The vertex v1 is clobbered by vn (middle diagram in Figure 7). This is
possible only if the first white vertex v j at the left of v1 moves to vn . Let

v j

vn
v1 v2

C ′

v j

vn
v1 v2

C ′

v1

C ′

Figure 7. Possible fates for v1. Left: v1 captures v2. Middle: v1 is
captured by v2. Right: v1 is not involved in the move.
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C ′ be the path induced by v1, . . . , v j−1 and 8′ be a position on C ′ defined
by 8′(v1) = d and 8′(vi ) = 8(vi ) for all i = 2, . . . , j − 1. Therefore,
rv(C,8)≤ rv(C ′,8′).

- The vertex v1 is clobbered by v2. This case is similar to the previous one.

- The vertex v1 clobbers vn (leftmost diagram in Figure 7). This is possible
only if the first white vertex v j at the left of v1 moves to vn . If j = n, let
C ′ = C − v1 and 8′ be a position on C ′ such that 8′(vi ) = 8(vi ) for all
i 6= 1, n and 8′(vn)= t. Then rv(C,8)≤ rv(C ′,8′). Otherwise let C ′ be
the path induced by v2, . . . , v j−1 and 8′ be the restriction of 8 on C ′. We
thus have rv(C,8)≤ rv(C ′,8′)+ 1.

- The vertex v1 clobbers v2. This case is similar to the previous one.

Now, since we explored all the possibilities to play v1, we get rv(C,8) by
taking the minimum value among all the five possibilities. Thanks to Theorem 19,
we obtain a linear time algorithm to compute rv(C,8). �

3.2. Trees. Farber [1981/82] proved that the Independent Dominating Set prob-
lem is polynomial on chordal graphs. A graph G is chordal if and only if there
exist a tree T and a family F of subtrees of T such that G is the intersection graph
of F. Therefore, one may use Proposition 18 in order to find a polynomial time
algorithm for Impartial Solitaire Clobber on trees. Unfortunately, given a tree
T and a game position on T we don’t know whether the number of 1-reducible
induced subtrees of T is polynomial.

However, deciding whether a game position on a tree is 1-reducible can be
computed in linear time: it suffices to play recursively from the hanging vertices
whenever it is possible (a hanging vertex is a vertex of degree 1). If there remains
a unique stone in the end, then the tree is 1-reducible. Otherwise, it is not.

In this section, we propose a dynamic algorithm to solve Impartial Solitaire
Clobber on trees. This result was obtained in collaboration with Luerbio Faria
from State University of Rio de Janeiro.

Theorem 21. Given a position 8 on a tree T = (V, E), the value rv(T,8) can
be computed polynomially in O(|V |3).

Let 8 be a position on the tree T = (V, E), and let r be any vertex of T .
We will consider a dynamic algorithm on T rooted in r . For each vertex s ∈ V ,
denote by T (s) the subtree of T induced by s and all its children (i.e., from s to
the leaves). Clearly T (r) is equal to T itself.

Denote by J = {s1, . . . , sp} the set of the children of s.
For all vertex s, there are three possibilities in a way of playing in T (s):

- in the end s is d.
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- in the end s is t.
- in the end s supports no stone.

Remark that in the third case, the stone on s moves to some vertex si at some
step during the game. Therefore it corresponds to playing a joker move in the
subtree T (si ).

Hence for each vertex s of T scanned from the leaves to the root, we compute
five k-values:

(1) k−1(s), which is the reducibility value of T (s) when a stone dis left on s
in the end.

(2) k1(s), which is the reducibility value of T (s) when a stone tis left on s in
the end.

(3) k0(s), which is the reducibility value of T (s).

(4) kbj (s), which is the reducibility value of T (s) when the black joker is played.
The black joker consists in turning a white stone don s into a black one t
whenever during the play. It must be used exactly once.

(5) kw j (s), which is the reducibility value of T (s) when the white joker is
played. The white joker consists in turning a black stone ton s into a white
one dwhenever during the play. It must be used exactly once.

When computing a k-value, if T (s) is monochromatic d (resp. t), then we
assign the value∞ to k1(s) and kw j (s) (resp. k−1(s) and kbj (s)).

Note that k0(r) is exactly the value rv(T,8). Then we also have for all vertex
s, k0(s)≤min(k−1(s), k1(s)).

Now consider a way of playing on T (s) such that there is no move from s to
some si . Let

J−1 = {si | there is a move of a stone dfrom si to s},

J1 = {si | there is a move of a stone tfrom si to s},

J0 = {si | there is no move between si to s}.

Remark that by definition of J1 and J−1, we have

−1≤ |J1| − |J−1| ≤ 1.

The value of this way of playing (i.e., the number of remaining stones) is thus
greater or equal to

W (J−1, J1, J0)=
∑

i∈J−1

(k−1(si )− 1)+
∑
i∈J1

(k1(si )− 1)+
∑
i∈J0

k0(si )+ 1.

A part of the resolution of Impartial Solitaire Clobber on trees relies on the
following problem:
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J-tripartition. Given an integer a, a set J = {s1, . . . , sp} and three mappings
ki (with i ∈ {−1, 0, 1}) from J to N∪ {∞}, find a partition J−1 ∪ J0 ∪ J1 of J
which minimizes

W =
∑

i∈J−1

(k−1(si )− 1)+
∑
i∈J1

(k1(si )− 1)+
∑
i∈J0

k0(si )+ 1

under the constraint
|J1| − |J−1| = a. (1)

Lemma 22. J -tripartition can be solved in O(|J |2) time.

Proof. For all si ∈ J , set xi = k1(si )− k0(si )− 1 and yi = k−1(si )− k0(si )− 1.
Let X = {i |si ∈ J1} and Y = {i |si ∈ J−1}. Thus, xi represents the relative gain
of putting si in J1 and yi the relative gain of putting si in J−1. The overall gain
is then

W (X, Y )=
∑
i∈X

xi +
∑
i∈Y

yi .

We want to minimize this quantity with respect to the constraint |X | − |Y | = a.
Without loss of generality, assume that a ≥ 0.

Additionally one may assume that a ≥ p, otherwise there is no solution.
Let (X∗n, Y ∗n ) be an optimal solution, i.e., a solution such that W (X∗n, Y ∗n ) is

minimum with respect to the fact that |X∗n | = n and |X∗n | − |Y
∗
n | = a.

Let (Xn, Yn) be the solution produced by Algorithm 1 with |Xn| = n.
If n = a, then clearly W (Xn, Yn) = W (X∗n, Y ∗n ). Now suppose n > a, and

assume W (Xk, Yk)=W (X∗k , Y ∗k ) for all k<n, where the pair (Xk, Yk) is obtained
by Algorithm 1 and (X∗k , Y ∗k ) are two optimal sets with respect to the fact that
|X∗k | = k and |X∗k | − |Y

∗

k | = a.
Let 1 denote the set (X∗n ∪ Y ∗n ) \ (Xn−1 ∪ Yn−1). Since |X∗n | > |Xn−1| and
|Y ∗n |> |Yn−1|, we have |1| ≥ 2.

Case I: There exist i, j ∈1 such that i ∈ X∗n and j ∈ Y ∗n .
By the induction hypothesis, we have W (X∗n \{i}, Y ∗n \{ j})≥W (Xn−1, Yn−1).

Moreover, by the first item of Algorithm 1 we get W (Xn−1 ∪ {i}, Yn−1 ∪ { j})≥
W (Xn, Yn). Thus W (X∗n, Y ∗n )≥W (Xn, Yn).

Case II: 1 ⊂ X∗n . Let i, j be two distinct elements of 1. Then, since |Y ∗n | >
|Yn−1|, there exists l ∈ Y ∗n \Yn−1. As 1 ⊂ X∗n , it turns out that l 6∈ 1 and thus
l ∈ Xn−1. By the induction hypothesis we have W (X∗n ∪ {l} \ {i, j}, Y ∗n \ {l})≥
W (Xn−1, Yn−1). Morevoer, by the second item of Algorithm 1, we obtain
W (Xn−1∪{i, j}\{l}, Yn−1∪{l})≥W (Xn, Yn). Thus W (X∗n, Y ∗n )≥W (Xn, Yn).

Case III: 1 ⊂ Y ∗n . Symmetric to case II, by considering the third item of
Algorithm 1.
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Algorithm 1. J -tripartition

Require: (xi , yi ) for i ∈ {1, 2, . . . , p} and a

Ensure:
∑

i∈X∗ xi +
∑

i∈Y ∗ yi is minimum and |X∗| − |Y ∗| = a

put the a elements i with the smallest values of xi in Xa and set Ya =∅
n← a

repeat
X∗← Xn

Y ∗← Yn

n← n+ 1
For all triples (i ′, j ′, j), take the minimum value of W (Xn, Yn) among the
three following cases:

(1) For i ′, j ′ /∈ {Xn−1, Yn−1}, set Xn = Xn−1 ∪ {i ′}, Yn = Yn−1 ∪ { j ′}.

(2) For i ′, j ′ /∈ {Xn−1, Yn−1} and j ∈ Yn−1, set Xn = Xn−1 ∪ { j} and
Yn = (Yn−1 \ { j})∪ {i ′, j ′}.

(3) For i ′, j ′ /∈ {Xn−1, Yn−1} and j ∈ Xn−1, set Yn = Yn−1 ∪ { j} and
Xn = (Xn−1 \ { j})∪ {i ′, j ′}.

until (W (Xn, Yn)≥W (X∗, Y ∗) or (n > a+b p−a
2 c))

if W (Xn, Yn) < W (X∗, Y ∗) then
X∗← Xn

Y ∗← Yn

end if

Complexity analysis. The initialization step can be done in O(p log p). In the
loop, the considered sets need at most O(p3) operations to be enumerated. The
update of best sets costs O(1). In the end, we get a O(p4)-time algorithm.

However, in Algorithm 1 we do not need to consider all the possible triples
(i ′, j ′, j), but only one that minimizes W . To do this, we start by sorting the
sets A = {x1, . . . , x p}, B = {y1, . . . , yp} and C = {x1 − y1, . . . , x p − yp} by
increasing order. This can be done in O(p log p) time. Additionally consider
the function ξ : {1, . . . , p} → {x, y, z} such that

ξ(i)=


x if i ∈ Xn−1,

y if i ∈ Yn−1,

z otherwise.
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Let
i ′1 = index of min{xi | ξ(i)= z},

j ′1 = index of min{y j | ξ( j)= z and j 6= i ′1},

i ′2 = index of min{xi | ξ(i)= z and i 6= i ′1},

j1 = index of min{xi − yi | ξ(i)= y},

j2 = index of max{xi − yi | ξ(i)= x}.

Each one of the indices above can be computed in O(p) time thanks to the
sorts of A, B and C . Now for each step in the loop of Algorithm 1, it is sufficient
to consider the triple (i ′, j ′, j) such that (i ′, j ′)= (i ′1, j ′1) or (i ′2, i ′1). For step 2,
set j = j1, and for step 3, set j = j2. Finally, since updating ξ can be done in
constant time, we get a O(p2) time algorithm. �

We now have enough ingredients to prove Theorem 21.

Proof of Theorem 21. By induction from the leaves to the root r of T .
Let l be a leaf of T . We have straightforwardly k0(l)= 1. If l is white, then

k−1(l)= kbj = 1 and k1(l)= kw j =∞. Conversely if l is black.
We now suppose that for some vertex s of T , the five k-values of each child

si for 1≤ i ≤ p are known. Then the k-values of s can be computed as follows:

(1) k−1(s). Since s must be white in the end, there is no move from s to some
si . Thus an optimal way of playing on T (s) is a solution of J -tripartition
with a = 0 if s is initially d, otherwise a =−1.

(2) k1(s). Identical to the previous case with a = 0 or 1 according to the initial
color of s.

(3) k0(s). Let us consider first the computation of k∅(s), which is the reducibil-
ity value of T (s) when there remains no stone on s in the end. If there
remains no stone on s in the end, one must play from s to some child s j .
Assume that s j is fixed. There are two possible ways of playing to compute
k∅(s) (depending on whether s→ s j is a black or white move): as for k1(s),
compute the reducibility value of T (s) \ T (s j ) when a stone tis left on s
in the end. Denote by Wb this value. Play then on T (s j ) by considering
the s→ s j move as a black joker. These operations leave Wb+ kbj (s j )− 1
stones on T (s). Do the same by yielding a stone don s and then considering
the white joker.

Apply this method by fixing each child s j ∈ J , and take the minimum
value among these 2|J | computations.

Now set k0(s)=min(k−1(s), k1(s), k∅(s)).
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(4) kbj (s). Proceed as for the computation of k0(s). But since we have one
additional move (the joker one t→ d), we need an additional child in J−1.
Hence replace a by a− 1 in the previous cases.

(5) kw j (s). Identical to the computation of kbj (s), except that we replace a by
a+ 1 in the previous cases.

When considering the complexity of this algorithm, each vertex is scanned
exactly once to compute its five k-values. The computation of k0(s) is the highest
one, since it requires to apply |J | times the J -tripartition algorithm. Therefore
k0(s) needs O(p3) operations. Since p is at most the degree of a vertex, we get
a total complexity in O(n3). �

Remark that if we apply the algorithm of Theorem 21 for a path where the root
is a leaf, then p = 1 at each time we apply J -tripartition. Hence this algorithm
also solves Impartial Solitaire Clobber on paths in linear time.

It will be interesting to develop algorithms for other classes of graphs. Since
the structure of chordal graphs is closed to the one of trees, one may ask the
following problem:

Problem P6 (Impartial Solitaire Clobber on chordal graphs). Given a position
8 on a chordal graph G, can we compute rv(G,8) in polynomial time?

4. Other classes of graphs

In this section we determine the reducibility value for some classes of graphs.

4.1. Impartial Solitaire Clobber on Hamming graphs. Playing Solitaire Clob-
ber on cliques is not a tricky activity. It is straightforward that all nonmonochro-
matic cliques are 1-reducible. A more detailed analysis even lead to the fact that
one can choose the color and the location of the final stone.

Hamming graphs are multiple Cartesian product of cliques. The clique Kn ,
K2�K3 or K4�K5�K2 are examples of Hamming graphs. Hypercubes, defined
by Qn = �n K2, constitute the most famous class of Hamming graphs. It is
well-known that any Hamming graph admit an Hamiltonian cycle.

For these reasons, it is not surprising that the reducibility value of a position
on a Hamming graph is small. From Corollary 15, it turns out that Hamming
graphs are 2-reducible. Note that this result was already contained in [Dorbec
et al. 2008], where the case of Hamming graphs is fully investigated.

As for the case of cliques, one can reduce “strongly” the family of Hamming
graphs, in the sense that one can choose the location and the color of the final
stones. This property is developed through the two following definitions:



32 LAURENT BEAUDOU, ERIC DUCHÊNE AND SYLVAIN GRAVIER

Definition 23. A graph G is strongly 1-reducible if: for any vertex v of G, for
any position 8 on G (provided (G \v,8) is not monochromatic), for any color c
( tor d), there exists a way of playing that yields a unique stone of color c on v.

Definition 24. A graph G is strongly 2-reducible if: for any vertex v of G, for
any position 8 on G (provided (G \ v,8) is not monochromatic), for any two
colors c and c′ (provided there exist two different vertices u and u′ such that
8(u) = c and 8(u′) = c′), there exists a way of playing that yields a stone of
color c on v, and (possibly) a second stone of color c′ somewhere else.

The following result asserts that almost all the Hamming graphs are strongly
1-reducible.

Theorem 25 [Dorbec et al. 2008]. Any Hamming graph that is neither K2�K3

nor an hypercube is strongly 1-reducible.

The case of hypercubes and the graph K2�K3 are a bit different.
In the case of hypercubes, there are some game positions for which the

reducibility value equals 2. For example, the position tdtdon the hypercube Q2 is
not 1-reducible. Dorbec et al. [2008] showed that for all integer n>1, there exists
a nonmonochromatic position on Qn which is not 1-reducible. Nevertheless,
hypercubes were proved to be 2-reducible, and even more since the location and
the color of the final stones can be fixed (under some conditions). It corresponds
to Theorem 26.

Theorem 26 [Dorbec et al. 2008]. Hypercubes are strongly 2-reducible.

Note that this result is not sufficient to quickly decide whether or not a game
position on an hypercube is 1-reducible. In [Dorbec et al. 2008] Conjecture 27 is
proposed. Since hypercubes are bipartite graphs, the invariant δ of Definition 7
and Proposition 8 is available.

Conjecture 27. The nonmonochromatic game positions 8 on the hypercube Qn

that are 1-reducible are exactly those for which the invariant

δ(Qn,8) 6≡ 0 mod [3].

We conclude this part with the Hamming graph K2�K3. It was proved in
[Dorbec et al. 2008] that nonmonochromatic positions on this graph are always
1-reducible. However the conditions for strong 1-reducibility are not fulfilled.

One may ask whether there are strong 1-reducible graphs which are not
Hamming graphs, and more generally:

Problem P7 (strongly 1-reducible graphs). Characterize all the graphs that are
strongly 1-reducible.



A SURVEY OF SOLITAIRE CLOBBER 33

Figure 8. The complete bipartite graph K4,2.

4.2. Impartial Solitaire Clobber on complete multipartite graphs. Given k≥ 2
integers n1, . . . , nk , the complete k-partite graph Kn1,...,nk is the graph G =
(V, E) such that V can be partitioned into k independent sets Si with |Si | = ni

for 1≤ i ≤ k, and for all u ∈ Si and v ∈ S j with i 6= j we have (u, v) ∈ E . See
Figure 8 for an example.

For convenience, the edges of the complete k-partite graphs will not be drawn
in the other figures.

Complete bipartite graphs. As shown in the previous sections, the invariant
δ(G,8) defined by Demaine et al. is a powerful tool to compute the reducibility
value on several families of bipartite graphs. It is also the case of balanced
complete bipartite graphs Kn,n , as proved in [Duchêne et al. 2009]. For such
graphs we have a result similar to the one of checkerboard grids:

Proposition 28 [Dorbec et al. 2008]. A position 8 on a balanced complete
bipartite graph Kn,n is 1-reducible if δ(Kn,n,8) 6≡ 0 mod [3]. Otherwise, the
reducibility value is equal to 2.

When the complete bipartite graph is unbalanced, the reducibility value may
be higher. The invariant δ is thus not sufficient to compute the exact reducibility
value.

Let us denote by Kn,m with n>m> 0 an unbalanced complete bipartite graph,
and 8 a game position on Kn,m .

The values nb and nw denote respectively the numbers of black and white
stones in the independent set of size n. Obviously we have n=nb+nw. Similarly,
mb and mw denote respectively the numbers of black and white stones in the
independent set of size m.

Without loss of generality, we consider positions satisfying nb ≤ nw. Under
this condition, we define a nonnegative integer q = n− 2nb. We also define the
function f (8)= q −m−mb.

Theorem 29 [Duchêne et al. 2009]. Let 8 be a game position on Kn,m with
n > m > 0 and nb ≤ nw.

If f (8) < 0 then rv(Kn,m,8) ≤ 2 and rv(Kn,m,8) = 1 if and only if
δ(Kn,m,8) 6≡ 0 mod [3].

If f (8)≥ 0 then rv(Kn,m,8)= f (8)+ 2.

The ground of Theorem 29 can be explained as follows. When f (8) < 0, it
is always possible to reduce 8 to a nonmonochromatic position on a balanced
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2nb q

n

m
mb

2nb q

n
m

mb

Figure 9. Two examples of positions satisfying f (8) < 0.

2nb q

n
m

mb

Figure 10. A position satisfying f (8)≥ 0.

complete bipartite graph Km,m . This operation can be done by alternating black
and white moves to reduce the size of the larger independent set, or by clobbering
at most mb − 1 black stones of the smaller independent set. Two examples of
such positions are given by Figure 9. Once the graph is reduced to a balanced
Km,m , it suffices to use Proposition 28.

When f (8) ≥ 0, it means that the number of white stones in the larger
independent set is too big comparing to the number of black stones in the smaller
independent set. A reduction to a balanced position is not possible. Figure 10
illustrates this situation. In such cases, the reducibility value equals f (8)+ 2.
One key of the proof is to show that when playing any move from 8, the
function f never decreases.

Complete k-partite graphs with k ≥ 3. In the case of complete k-partite graphs
with k ≥ 3, the invariant δ is no more available. Nevertheless, the introduction
of the function f for complete bipartite graphs is the key for the other k-partite
graphs. We distinguish two cases, depending on the number of maximum
independent sets of the graph.

Theorem 30 [Duchêne et al. 2009]. Let8 be a nonmonochromatic position on a
k-partite graph G with k ≥ 3. If G has at least two independent sets of maximum
size, then 8 is 1-reducible.

An example of such a 1-reducible position is given by Figure 11 (left).
When the k-partite graph G has a unique maximum independent set M0 (as

on Figure 11 (right), then the reducibility is once again fixed by the function f .
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M0 M1 M2

stable sets of
maximum size

M0

n

Figure 11. Left: 6-partite complete graph with three maximum inde-
pendent sets. Right: 6-partite complete graph with a unique maximum
independent set.

The parameters introduced for complete bipartite graphs are extended for k-
partite graphs : the value n is the size of the maximum independent set M0,
the quantities nb and nw are the numbers of black and white stones in M0, the
parameter m is the size of G \M0, and q is still equal to n−2nb. The function f
is unchanged (i.e., equal to q −m−mb). Then the reducibility value is similar
as in Theorem 29:

Theorem 31 [Duchêne et al. 2009]. Let 8 be a nonmonochromatic position on
a k-partite graph G with k ≥ 3. If f (8) < 0 then 8 is 1-reducible. If f (8)≥ 0
then rv(Kn,m,8)= f (8)+ 2.

Problem P8 (general invariant). In view of the previous result and the use of the
function f , could we provide a general invariant that extends δ to nonbipartite
graphs?

5. General results about Impartial Solitaire Clobber

If you play Impartial Solitaire Clobber on a random graph with a random position,
you have great chance to leave a unique stone in the end. This result is due to
Ruszinkó (personal communication) and can be formulated in the following way
in terms of random graphs:

Proposition 32 (Ruszinkó). Almost all graphs are 1-reducible.

In other words, it means that for any fixed p ∈]0, 1[, the random graph Gn,p

is 1-reducible with probability tending to 1 as n tends to infinity — for details
about the Erdős–Rényi random graph model Gn,p, see [Bollobás 2001].
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In contrast with this probabilistic result, the study of extremal game positions
of Impartial Solitaire Clobber was investigated in [Duchêne et al. 2009; Blondel
et al. 2008]. The following part deal with the main results relating to this topic.

Given a graph G, let us denote by maxrv(G)=max(rv(G,8)) taken over all
non-monochromatic game positions 8 on G, and by minrv(G) the minimum
of these values taken over the same set. In other words, maxrv(G) is the worst
arrangement of the stones that can be found on G, and minrv(G) is the the one
that minimizes the reducibility value.

In [Duchêne et al. 2009] we tried to estimate the values of minrv(G) and
maxrv(G) for all graph G.

The first result asserts that it is always possible to find a 1-reducible position
on any connected graph.

Proposition 33. Let G be a connected graph. Then we have minrv(G)= 1.

Proof. Let G = (V, E) be a connected graph. We will prove a stronger result:
for any vertex u of G and any color c ∈ { d, t}, there exists a position 8 on G
such that (G,8) is 1-reducible with the last stone located on u and with color c.

The proof works by induction. It is obvious if |V | = 1. Now suppose that
|V | ≥ 2. Let u be a vertex of G and c∈ { t, d}. Let G1, . . . ,G t be the t connected
components of G − u. For each i = 1, . . . , t , let ui be a neighbour of u in Gi .
Without loss of generality, assume that c = t. Set ci = tfor 1≤ i ≤ dt/2e, and
c j = dfor dt/2e< j ≤ t . By the induction hypothesis, there exists a position 8i

on Gi such that there is a way of playing that yields a unique stone of color ci on
ui . Now consider the position 8 on G defined as follows: 8(v)=8(u) for all
v 6= u, 8(u)= tif t is even, and dotherwise. If t is even, then play alternately
a pair (u j → u, ui → u) with i ≤ dt/2e and j > dt/2e. If t is odd, play first
u1→ u and then as the case where t is even. �

The discussion is more tricky when estimating the value of maxrv(G). Upper
bounds are given in [Duchêne et al. 2009]. They involve the minimum degree d
of the graph.

Theorem 34 [Duchêne et al. 2009]. Given a graph G of minimum degree d , we
have maxrv(G)≤ n− d.

Theorem 34 asserts that it is always possible to find a strategy with at least d
moves. Note that a greedy strategy is provided to do so.

When d is fixed, Duchêne et al. [2009] give in a characterization of the graphs
G satisfying exactly maxrv(G)= n− d . Roughly speaking, they correspond to
stars of cliques of size d+ 1. This family of graphs is fully defined below and is
denoted by Gd .

For any d ≥ 1, let us define Gd , a set of connected graphs of degree minimum
d as follows:
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Figure 12. The graph Sk(Kd+1).

• The complete graph on d + 1 vertices belongs to Gd for all d ≥ 1.

• For any integer k ≥ 2, let us define Sk(Kd+1) as the graph obtained by
k disjoined copies of Kd plus one additional vertex v adjacent to all the
vertices of each Kd .

• For d = 2, add the cycle on 4 vertices C4.

• No other graph belongs to Gd .

Theorem 35 [Duchêne et al. 2009]. For all d ≥ 1, the set of connected graphs
G having minimum degree d and such that maxrv(G)= n− d is exactly Gd .

For example, a position 8 on a graph G ∈ Gd that satisfies rv(G,8)= n− d
can be built as follows:

- If G = Kd+1, then choose any nonmonochromatic position 8 on G.

- If G = Sk(Kd+1), then choose 8(v) 6=8(u) for all vertex u 6= v.

- If G = C4 = (v1, . . . , v4), then choose a position 8 such that 8(v1) =

8(v2)= tand 8(v3)=8(v4)= d.
Given a graph G, it seems that the computation of maxrv(G) is a hard problem.

Problem P9 (maxrv(G)). Given a graph G and an integer k, does there exist a
polynomial time algorithm deciding whether maxrv(G)≤ k?

Blondel et al. [2008] give in a closed formula for maxrv(G) when G is a path
or a cycle. Their results are summed up below:

Proposition 36 [Blondel et al. 2008]. If P is a path of size n, then maxrv(P)=
dn/2e.

Note that on a path P of size n, examples of game positions 8 satisfying
rv(P,8)= dn/2e are those in the form tk dtk .
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Proposition 37 [Blondel et al. 2008]. If C is a cycle of size n, then maxrv(C)=
dn/3e.

This value is reached for positions consisting in repetitions of the pattern
( ttd).
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