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Misère canonical forms of partizan games
AARON N. SIEGEL

We show that partizan games admit canonical forms in misère play. The proof
is a synthesis of Conway’s simplest form theorems for normal-play partizan
games and misère-play impartial games. As an immediate application, we
show that there are precisely 256 games born by day 2, and obtain a bound on
the number of games born by day 3.

1. Introduction

Disjunctive compounds of short combinatorial games have been studied for
many years under a variety of assumptions. A structure theory for normal-play
impartial games was established in the 1930s by the Sprague–Grundy theorem
[Grundy 1939; Sprague 1935; 1937]. Every such game G is equivalent to a
Nim-heap, and the size of this heap, known as the nim value of G, completely
describes the behavior of G in disjunctive sums. The Sprague–Grundy theorem
underpins virtually all subsequent work on impartial combinatorial games.

Decades later, Conway generalized the Sprague–Grundy theorem in two
directions [Berlekamp et al. 2003; Conway 2001]. First, he showed that every
partizan game G can be assigned a value that exactly captures its disjunctive
behavior, and this value is represented by a unique simplest form for G. Conway’s
game values are partizan analogues of nim values, and his simplest form theorem
directly generalizes the Sprague–Grundy theorem.

Conway also introduced a misère-play analogue of the Sprague–Grundy theo-
rem. He showed that every impartial game G is represented by a unique misère
simplest form [Conway 2001]. Unfortunately, in misère play such simplifications
tend to be weak, and as a result the canonical theory of misère games is less
useful in practice than its normal-play counterparts.

In each case — normal-play impartial, normal-play partizan, and misère-play
impartial — the identification of simplest forms proved to be a key result, at once
establishing a structure theory and opening the door to further investigations. In
this paper, we prove an analogous simplest form theorem for the misère-play
partizan case. The proof integrates techniques drawn from each of Conway’s
advances, together with a crucial lemma from [Mesdal and Ottaway 2007].
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As an immediate application of this theorem, we also calculate the number
of partizan misère games born on day 2. As it turns out, all 256 nonisomorphic
games born by day 2 are already in simplest form, so there are no day-2 reductions
at all! This sobering result is evidence that partizan misère games are yet more
unruly than their impartial cousins.

2. Misère equivalence

We denote by o(G) the misère outcome class of G:

o(G)=


L if Left can win no matter who plays first,
R if Right can win no matter who plays first,
P if second player (the Previous player) can win,

N if first player (the Next player) can win,

with misère play assumed in all cases. These four outcome classes are naturally
partially ordered by favorability to Left:

L

N

R

P

This induces the usual partial order on all misère games.

G ≥ H if and only if o(G+ X)≥ o(H + X) for all games X.

We also define equality in the usual manner.

G = H if and only if G ≥ H and H ≥ G.

These definitions are exactly the same as the corresponding definitions for
the normal-play theory: the only difference is in the meaning of o(G). The
normal-play theory was studied by Berlekamp, Conway and Guy [Berlekamp
et al. 2003; Conway 2001] with great success. They showed that there is a simple
recursive test for normal-play equality:

Fact 2.1. In normal play, G ≥ H if and only if no G R
≤ H and G ≤ no H L .

From this it follows, by a straightforward induction, that G = 0 for every
P-position G (still assuming normal play). These facts are crucial ingredients
in the following key result.
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Fact 2.2 (simplest form theorem [Berlekamp et al. 2003; Conway 2001]). In
normal play, suppose G = H , and assume that neither G nor H has any domi-
nated or reversible options. Then for every H L there is a GL such that GL

= H L ,
and vice versa; and likewise for Right options.

Remarkably, the statement of the simplest form theorem is exactly the same
in misère play, with exactly the same definitions of dominated and reversible
options! However the misère analogue of Fact 2.1 is badly false. A recent result
due to Mesdal and Ottaway shows just how decisively it fails:

Fact 2.3 [Mesdal and Ottaway 2007]. Let G be any game. Then G 6= 0 in misère
play, unless G is identically zero.

The following proposition is the nearest misère analogue to Fact 2.1.

Proposition 2.4. In misère play, G ≥ H if and only if the following two condi-
tions hold:

(i) for all X with o(H + X)≥P, we have o(G+ X)≥P; and

(ii) for all X with o(H + X)≥N , we have o(G+ X)≥N .

Note that o(G)≥P is equivalent to “Left can win playing second on G,” and
o(G)≥N is equivalent to “Left can win playing first on G.”

Proof of Proposition 2.4.⇒ is immediate. For the converse, we must show that
o(G + X) ≥ o(H + X), for all X . If o(H + X) = R, then there is nothing to
prove; if o(H + X) = P or N , it is immediate from (i) or (ii), respectively.
Finally, if o(H + X) = L , then by (i) and (ii) we have o(G + X) ≥ both P

and N , whence o(G+ X)=L . �

3. Ends and adjoints

In normal play, G + (−G) is a P-position, and hence equal to 0, for every
game G. This is emphatically false in misère play: by Fact 2.3, G+ (−G) 6= 0
for every game G except 0 itself. Nonetheless, we can give an explicit example of
a game G◦, the adjoint of G, such that G+G◦ is a misère P-position. Readers
familiar with the impartial theory will recognize it as the partizan analogue of
Conway’s mate [Conway 2001].

Games of the form {GL | } and { | G R}, with options for just one player, will
feature prominently in the succeeding analysis. Recall that in normal play, every
such game is equal to an integer [Berlekamp et al. 2003]. In misère play, by
contrast, such games emerge as a crucial and complicated pathology. We will
sometimes use a dot to indicate “no moves”, when it is useful to clarify the
notation; for example, we may write {0 | · } in place of {0 |}.
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We now focus exclusively on misère play, and we won’t consider normal play
again until Section 7. All further uses of the notation o(G), and the relations ≥
and =, refer unambiguously to misère play.

Definition 3.1. G is a Left (Right) end if G has no Left (Right) option.

Definition 3.2. The adjoint of G, denoted G◦, is given by

G◦ =


∗ if G = 0,{
(G R)◦

∣∣ 0
}

if G 6= 0 and G is a Left end,{
0
∣∣ (GL)◦

}
if G 6= 0 and G is a Right end,{

(G R)◦
∣∣ (GL)◦

}
otherwise.

Note that G◦ always has at least one option for each player, and hence is never
an end.

Proposition 3.3. G+G◦ is a P-position.

Proof. By symmetry, it suffices to show that Left can win G+G◦ moving second.
G◦ is not a Right end, so G+G◦ has at least one Right option. There are two
cases:

• If Right moves to G R
+G◦ or G + (GL)◦, Left makes the mirror image

move on the other component, which wins by induction on G.

• If G is a Left end and Right moves to G+0, then Left has no move, and so
wins a priori. �

Theorem 3.4. If G 6≥ H , then:

(a) there is some T such that o(G+ T )≤P but o(H + T )≥N ; and

(b) there is some U such that o(G+U )≤N but o(H +U )≥P.

Proof. We know by Proposition 2.4 that one of (a) or (b) must hold, so it suffices
to show that (a)⇒ (b) and (b)⇒ (a). The arguments are identical, so we will
show that (a)⇒ (b).

Fix T so that o(G+ T )≤P and o(H + T )≥N , and put

U =
{
(H R)◦

∣∣ T
}
.

Now from G+U , Right has a winning move, to G+T . Therefore o(G+U )≤N .
Likewise, consider H+U . It is certainly not a Right end, since Right has a move
from U to T . Now if Right moves to H R

+U , Left has a winning response to
H R
+ (H R)◦. If instead Right moves to H +T , then since o(H +T )≥N , Left

wins a priori. Therefore o(H +U )≥P, as needed. �

The following lemma is a straightforward generalization of the Mesdal–
Ottaway result (Fact 2.3), and it proves to be a crucial piece of the analysis.
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Lemma 3.5. If H is a Left end and G is not, then G 6≥ H.

Proof. Put
T =

{
(H R)◦

∥∥ · ∣∣ (GL)◦
}
.

Consider H+T . If Right moves to H R
+T , then Left can respond to H R

+(H R)◦,
winning by Proposition 3.3; if Right moves to H +

{
·
∣∣ (GL)◦

}
, then Left wins

outright, since he has no further move. Therefore o(H + T )≥P.
Now consider G + T . Right has a move to G +

{
·
∣∣ (GL)◦

}
. Left’s only

response is to GL
+
{
·
∣∣ (GL)◦

}
, which must exist since G is not a Left end. But

Right may then respond to GL
+ (GL)◦, winning. Therefore o(G+ T )≤N .

This shows that o(G+ T ) 6≥ o(H + T ), so in fact G 6≥ H . �

4. Dominated and reversible options

Definition 4.1. Let G be a game.

(a) A Left option GL is said to be dominated if GL ′
≥ GL for some other Left

option GL ′ .

(b) A Right option G R is said to be dominated if G R′
≤ G R for some other

Right option G R′ .

(c) A Left option GL is said to be reversible if GL R
≤G for some Right option

GL R .

(d) A Right option G R is said to be reversible if G RL
≥G for some Left option

G RL .

Lemma 4.2. Suppose GL1 is dominated by GL2 , and let G ′ be the game obtained
by eliminating GL1 from G. Then G = G ′.

Proof. Since the Left options of G ′ are a subset of those of G, and since G ′ still
has at least one Left option (namely, GL2), we trivially have G ′ ≤ G. Thus it
suffices to show that G ′ ≥ G.

By Proposition 2.4, we must show that for all X ,

(i) if o(G+ X)≥P, then o(G ′+ X)≥P;

(ii) if o(G+ X)≥N , then o(G ′+ X)≥N .

The proof is by induction on X .

(i) Suppose o(G + X) ≥ P. Then every o(G R
+ X) ≥ N and every o(G +

X R) ≥ N . Now G and G ′ have exactly the same Right options, so every
o((G ′)R

+ X)≥N . Also, by induction on X , we have

o(G ′+ X R)= o(G+ X R)≥N
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for all X R . This shows that o(G ′+ X)≥P, except possibly in the case where
G ′+X is a Right end. But since G and G ′ have the same Right options, this would
imply that G+ X is a Right end, contradicting the assumption o(G+ X)≥P.

(ii) Suppose o(G + X) ≥N . We know that G + X is not a Left end (since G
is assumed to have a Left option), so either some o(G + X L) ≥ P or some
o(GL

+ X) ≥ P. If o(G + X L) ≥ P, then by induction o(G ′ + X L) ≥ P,
so we are done. If o(GL

+ X) ≥ P and GL is a Left option of G ′, then the
conclusion is immediate. So the only remaining case is when GL

= GL1 . But
since GL2 ≥ GL1 , we have

o(GL2 + X)≥ o(GL1 + X)≥P.

In all cases, o(G ′+ X)≥N . �

Lemma 4.3. Suppose GL1 is reversible through GL1 R1 , and let G ′ be the game
obtained by bypassing GL1 :

G ′ =
{
GL1 R1 L , GL ′

∣∣ G R},
where GL ′ is understood to range over all Left options of G except GL1 . Then
G = G ′.

Proof. By Proposition 2.4, we must show that for all X ,

(i) o(G+ X)≥P if and only if o(G ′+ X)≥P;

(ii) o(G+ X)≥N if and only if o(G ′+ X)≥N .

The proof is by induction on X .

(i) If either G+X or G ′+X is a Right end, then both must be, since G and G ′ have
the same Right options. If both are Right ends, then necessarily o(G+ X)≤N

and o(G ′+ X)≤N , so (i) is satisfied. So assume neither is a Right end; then
by induction on X we have

o(G+ X)≥P ⇐⇒ every o(G R
+ X)≥N and every o(G+ X R)≥N

⇐⇒ every o((G ′)R
+ X)≥N and every o(G ′+ X R)≥N

⇐⇒ o(G ′+ X)≥P.

(ii) First suppose o(G + X) ≥ N . We know that G is not a Left end (since
it has GL1 as a Left option), so either some o(G + X L) ≥ P, or else some
o(GL

+ X)≥P. There are three subcases.

• If o(G+ X L)≥P, then o(G ′+ X L)≥P, by induction on X .

• If o(GL
+ X)≥P for GL

6= GL1 , then GL is also a Left option of G ′ and
the conclusion is immediate.



MISÈRE CANONICAL FORMS OF PARTIZAN GAMES 231

• Suppose instead that o(GL1 + X)≥P. Then in particular,

o(GL1 R1 + X)≥N .

So either o(GL1 R1 L
+ X)≥P or o(GL1 R1 + X L)≥P . In the first case we

are done, since GL1 R1 L is a Left option of G ′. But in the second case, we
have G ≥ GL1 R1 (by hypothesis) so

o(G+ X L)≥ o(GL1 R1 + X L)≥P,

and therefore o(G ′+ X L)≥P, by induction on X .

Finally, suppose o(G ′+ X) ≥ N . Then again we have three subcases: either
o(GL

+ X) ≥P, or o(G ′ + X L) ≥P, or o(GL1 R1 L
+ X) ≥P. The first two

subcases are just the same as before, so suppose o(GL1 R1 L
+ X)≥P. Then in

particular, o(GL1 R1 + X)≥N . But G ≥ GL1 R1 so

o(G+ X)≥ o(GL1 R1 + X)≥N . �

5. The simplest form theorem

Theorem 5.1 (simplest form theorem). Suppose G= H , and assume that neither
G nor H has any dominated or reversible options. Then for every H L there is a
GL such that GL

= H L , and vice versa; and likewise for Right options.

In order to prove Theorem 5.1, we generalize some machinery from Conway’s
proof [2001, Theorem 76] that impartial games admit misère simplest forms.

Definition 5.2. (a) G is downlinked to H (by T ) if

o(G+ T )≤P and o(H + T )≥P.

(b) G is uplinked to H (by T ) if o(G+ T )≥P and o(H + T )≤P.

Theorem 5.3. G ≥ H if and only if the following four conditions hold.

(i) G is downlinked to no H L ;

(ii) no G R is downlinked to H ;

(iii) if H is a Left end, then so is G;

(iv) if G is a Right end, then so is H.

Proof. For⇒ (i), fix any game T . If o(G+T )≤P , then certainly o(H+T )≤P

as well. Therefore o(H L
+ T )≤N , so T cannot downlink G to H L . ⇒ (ii) is

similar, and⇒ (iii) and (iv) are just restatements of Lemma 3.5 (and its mirror
image).

We now prove⇐. By Proposition 2.4, we must show that for all T ,

• if o(H + T )≥P, then o(G+ T )≥P; and



232 AARON N. SIEGEL

• if o(H + T )≥N , then o(G+ T )≥N .

The proof proceeds by induction on T . First suppose (for contradiction) that
o(H + T )≥P but o(G+ T )≤N . Then either

o(G+ T R)≤P or o(G R
+ T )≤P,

or else G + T is a Right end. If o(G + T R) ≤P, then by induction on T we
have o(H + T R) ≤ P, contradicting the assumption that o(H + T ) ≥ P. If
o(G R

+ T ) ≤ P, then T downlinks G R to H , contradicting (ii). Finally, if
G + T is a Right end, then in particular G is a Right end, so by (iv) H is a
Right end. Therefore H + T is a Right end, contradicting the assumption that
o(H + T )≥P.

This shows that o(H + T ) ≥ P implies o(G + T ) ≥ P. The proof that
o(H + T ) ≥ N implies o(G + T ) ≥ N is identical, with (i) and (iii) used in
place of (ii) and (iv). �

Theorem 5.4. G is downlinked to H if and only if no GL
≥ H and G ≥ no H R .

Proof. Suppose T downlinks G to H , so that o(G+T )≤P and o(H+T )≥P .
Then necessarily o(GL

+ T ) ≤N and o(H R
+ T ) ≥N , so T witnesses both

GL
6≥ H and G 6≥ H R .

Conversely, suppose that no GL
≥ H and G ≥ no H R . Then for each GL

i ,
Theorem 3.4 yields an X i such that

o(GL
i + X i )≤P and o(H + X i )≥N .

Likewise, for each H R
j , there is some Y j such that

o(G+ Y j )≤N and o(H R
j + Y j )≥P.

Put

T =


∗ if G = H = 0,{
0
∣∣ (H L)◦

}
if G = 0 and H is a nonzero Right end,{

(G R)◦
∣∣ 0
}

if H = 0 and G is a nonzero Left end,{
Y j , (G R)◦

∣∣ X i , (H L)◦
}

otherwise.

We claim that G is downlinked to H by T . We will show that o(G+ T )≤P;
the proof that o(H + T )≥P is identical.

We first show that G + T has a Left option. If G has a Left option, this is
automatic. If G or H has a Right option, then T necessarily has a Left option.
This exhausts every case except when G = 0 and H is a Right end; but then
Left’s move to 0 is built into the definition of T .

Thus G + T is not a Left end, and it therefore suffices to show that every
Left option is losing. If Left moves to GL

i + T , Right can respond to GL
i + X i ,
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which wins by choice of X i . If Left moves to G + (G R)◦, Right can respond
to G R

+ (G R)◦, which wins by Proposition 3.3. Left’s move to G + Y j loses
automatically, by choice of Y j . The only remaining possibility is Left’s additional
move to 0 in the first two cases of the definition of T . But that move is only
available when G = 0, so it ends the game immediately. �

Proof of Theorem 5.1. Fix H L . Since G ≥ H , Theorem 5.3 implies that G is
not downlinked to H L . By Theorem 5.4, either GL

≥ H L or G ≥ H L R . The
latter would imply that H ≥ H L R , contradicting the assumption that H has no
reversible options. So we must have GL

≥ H L .
An identical argument, using the fact that H ≥ G, shows that H L ′

≥ GL for
some H L ′ . Therefore

H L ′
≥ GL

≥ H L .

Since H has no dominated options, we must have H L ′
= H L , so that

H L ′
= GL

= H L .

The same argument suffices for the remaining cases. �

6. Games born by day 2

There are four games born by day 1; and they are familiar from the normal-play
theory:

0= { · | · }, ∗ = {0 | 0}, 1= {0 | · }, 1̄= { · | 0}.

Remarkably, they are pairwise incomparable.

Proposition 6.1. The four games 0, ∗, 1, and 1̄ are pairwise incomparable.

Proof. Theorem 5.3(iii) and (iv) immediately yield ∗, 1 6≥ 0, 1̄ and 0, 1 6≥ ∗, 1̄.
Since 0 is downlinked to 0 (by ∗), (i) and (ii) furthermore imply 0 6≥ 1 and 1̄ 6≥ 0.

Now as a trivial consequence of Theorem 5.4, we have that 1̄ is downlinked
to 0 and 0 is downlinked to 1. It therefore follows from Theorem 5.3(i) that
1̄ 6≥ 1, ∗ and from (ii) that 1̄, ∗ 6≥ 1. This exhausts all possibilities. �

Theorem 6.2. There are 256 games born by day 2.

Proof. There are 16 subsets of {0, ∗, 1, 1̄}. This gives 256 isomorphism types for
games born by day 2, so it suffices to show that every (formal) game born by
day 2 is already in simplest form.

So fix such a game G. By Proposition 6.1, G has no dominated options, so it
suffices to show that G has no reversible options. Consider some GL R . Since G
is born by day 2, GL R is born by day 0, so necessarily GL R

= 0. But GL R is
a Left end and G is not (since it has GL as a Left option), so by Lemma 3.5
G 6≥ GL R . Likewise, by symmetry, G 6≤ G RL for any G RL . �
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Let P denote the set of games born by day 2. We next describe the partial
order structure of P. Define

P+ = {G ∈ P : G is a nonzero Left end},

P− = {G ∈ P : G is a nonzero Right end},

P0
= {G ∈ P : G is not an end.}

Then we can write P as a disjoint union

P= P+ ∪P− ∪P0
∪ {0}.

Now let B4 denote the complete Boolean lattice of dimension 4. Let B+4 be the
partial order obtained by removing the largest element from B4, and likewise
delete the smallest element to obtain B−4 . We will show that

P+ ∼= B+4 , P− ∼= B−4 , P0 ∼= B+4 ×B−4 . (†)

In order to characterize the structure of P, it will then suffice to describe the
interaction between components.

We first show that there are certain order relations G ≥ H that can be inferred
from the top-level structure of G and H .

Definition 6.3. We say that G simply exceeds H , and write G ≥S H , if:

(i) every H L is equal to some GL ;

(ii) every G R is equal to some H R;

(iii) if H is a Left end, then so is G;

(iv) if G is a Right end, then so is H .

Lemma 6.4. If G ≥S H , then G ≥ H.

Proof. Certainly G is downlinked to no GL , since whenever Right can win G+T
moving second, then he can necessarily win GL

+ T moving first. So by (i) G
is downlinked to no H L . Likewise, no H R can be downlinked to H , so by (ii)
no G R is downlinked to H . The conclusion now follows from Theorem 5.3. �

Theorem 6.5. Fix G and H satisfying Definition 6.3(iii) and (iv), and assume
that G and H are both born by day 2. If G ≥ H , then G ≥S H.

Proof. We show that every Left option of H is a Left option of G; the argument
that every Right option of G is a Right option of H is identical.

So fix an H L ; by Theorem 5.3, G is not downlinked to H L . By Theorem 5.4,
either GL

≥ H L for some GL , or else G ≥ H L R . Now since H has the Left
option H L , it is not a Left end, whence by assumption neither is G. Since H is
born by day 2, we know that every H L R

= 0, so by Lemma 3.5 we cannot have
G ≥ H L R . Therefore GL

≥ H L for some GL .
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But GL and H L are both born by day 1. By Proposition 6.1, this implies
GL
= H L . �

Now if G and H are in the same component of P, then they necessarily
satisfy Definition 6.3(iii) and (iv). Therefore, on each component, the relations
≥ and ≥S coincide. But this immediately establishes †. For example, for the
isomorphism P+→ B+4 , we can regard B4 as the powerset lattice of {0, ∗, 1, 1̄};
then each G maps to its set of Right options.

To complete the picture of P, we must characterize the interaction between
the four components. We are concerned specifically with the case where H is a
Right end, but G is not; or where G is a Left end, but H is not (the converses
are ruled out by Lemma 3.5).

Theorem 6.6. The ordering of P is generated by its restrictions to P+, P−, and
P0, together with the following four relations and their mirror images:

{ · | ∗, 1}≥ 0, {∗ | ∗, 1}≥ {∗ | · }, {1̄ | ∗, 1}≥ {1̄ | · }, {∗, 1̄ | ∗, 1}≥ {∗, 1̄ | · }.

Proof. It is easy to verify each of the four stated relations. To prove the theorem,
we must show that they collectively generate every relation G ≥ H , for games
G, H ∈ P.

It suffices to prove the following facts (together with their mirror images,
which follow by symmetry):

(i) If G > 0, then G ∈ P+ and G ≥ { · | ∗, 1};

(ii) If G ≥ H , H ∈P−, and G ∈P0, then one of the following three inequalities
holds:

G ≥ {∗ | ∗, 1} ≥ {∗ | · } ≥ H,

G ≥ {1̄ | ∗, 1} ≥ {1̄ | · } ≥ H, or

G ≥ {∗, 1̄ | ∗, 1} ≥ {∗, 1̄ | · } ≥ H.

(i) Suppose G ≥ 0. By Theorem 5.3, G is necessarily a Left end, and furthermore
no G R is downlinked to 0. By Theorem 5.4, the Right options of G must therefore
be a subset of {∗, 1}. So either G = 0, or G ≥S { · | ∗, 1}.

(ii) Suppose G ≥ H , H is a Right end, and G is not. Consider any G R . By
Theorem 5.3, G R is not downlinked to H . Since H is a Right end, it is necessarily
the case that G RL

≥ H , by Theorem 5.4. In particular, G R is not a Left end.
Therefore G R

∈ {∗, 1}. This shows that the Right options of G form a subset of
{∗, 1}.

Furthermore, G is born by day 2, so G RL is born on day 0. Therefore G RL
= 0

and we have H ≤ 0. By (i), this implies that H ≤S {∗, 1̄ | · }. This shows that
the Left options of H form a subset of {∗, 1̄}.
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Finally, by Theorem 6.5, we know that G ≥S H . So the Left options of G
form a superset of those of H .

There are now three possibilities for the Left options of H : either {∗}, {1̄},
or {∗, 1̄}. In each case we obtain one of the three inequalities described in (ii)
(since the Right options of G form a subset of {∗, 1}, and the Left options of G
form a superset of those of H ). �

Antichains by day 2. Since P has such a clean structure, we can get a tight
bound on the number of antichains. From a standard reference such as [OEIS],
we find that B4 has 168 antichains. This shows that P+ (and hence P− as well)
has precisely 167, since there is a unique antichain containing the largest element
of B4.

Consider P0. We have B4 × B4 ∼= B8, trivially. Again from a standard
reference, we find that B8 has 56130437228687557907788 antichains. Since
every antichain of P0 is an antichain of B8, this gives an upper bound for the
number of antichains of P0.

Finally, {0} trivially admits just two antichains, ∅ and {0}. Since every
antichain on P restricts to an antichain on each component, this gives an upper
bound of

M = 2× 167× 167× 56130437228687557907788

for the number of antichains of P. Thus we obtain an upper bound of M2 games
born by day 3. This number is large, indeed (roughly 2183), but it is much smaller
than 2512, the number of nonisomorphic game trees of height 3.

7. Relationships to other theories

In this section we consider how the partizan misère theory relates to other theories
of combinatorial games. To avoid confusion, we now abandon the notation o(G),
and denote explicitly by o+(G) and o−(G) the normal-play and misère-play
outcome classes of G. We also write

G ≥+ H if and only if o+(G+ X)≥ o+(H + X) for every game X;

G ≥− H if and only if o−(G+ X)≥ o−(H + X) for every game X .

≥
− is the relation that we have been calling ≥, and o− is the same mapping as o;

for this section only, we include the minus signs for clarity. ≥+ is, of course, the
usual Berlekamp–Conway–Guy inequality for normal-play partizan games. The
following result shows that ≥+ is a coarsening of ≥−.

Theorem 7.1. If G ≥− H , then G ≥+ H.

Proof. We must show that Left can get the last move in G− H . Suppose Right
plays to G R

− H (the argument is the same if he plays to G − H L ). Since
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G ≥− H , Theorem 5.3 implies that G R is not downlinked to H . By Theorem 5.4,
either G RL

≥
− H or G R

≥
− H R . By induction, we may assume that either

G RL
≥
+ H or G R

≥
+ H R . In the first case, Left wins by moving to G RL

− H ;
in the second, by moving to G R

− H R . �

In addition to the usual equivalences =+ and =−, obtained by symmetrizing
≥
+ and ≥−, we have two further equivalences when G and H are impartial.

G=+I H if and only if o+(G+ X)=o+(H + X) for every impartial game X;

G=−I H if and only if o−(G+ X)=o−(H + X) for every impartial game X .

It is a well-known fact that =+I is just the restriction of =+ to impartial games.
It is worth pointing out that the analogous statement does not hold for misère
games, as the following proposition demonstrates.

Proposition 7.2. There exist impartial games G and H such that G =−I H but
G 6=− H.

Proof. It is well-known that ∗ + ∗ =−I 0 (see [Conway 2001]). However,
∗+∗ 6=

− 0, by Lemma 3.5. �

Therefore =−I is a strict coarsening of =−. This highlights an interesting
difference between normal and misère play: there exist impartial games G and H
that are distinct in partizan misère play, but that are not distinguishable by any
impartial game. This behavior arises in other theories, as well; for example, there
exist impartial loopy games G and H that are distinct (in normal play), but that
are not distinguishable by any impartial loopy game [Siegel 2009]. Indeed, the
coincidence of =+ and =+I appears to be an artifact of the special nature of short
games in normal play: it is the exception rather than the rule.

8. Partizan misère quotients

Recently Thane Plambeck [2005] observed that, if A is any set of impartial
games, then its misère-play structure can often be simplified by localizing the
misère equivalence relation to A . Plambeck showed that many important aspects
of the theory can be generalized to the local setting, and the structure theory
of such quotients has been explored in detail; see [Plambeck and Siegel 2008;
Siegel 2007].

It is not our intention to replicate that analysis here, but merely to remark that
a partizan generalization exists. The construction is exactly the same, but instead
of a bipartite monoid (Q,P), we now have a tetrapartite monoid (Q, 5), where
5 :Q→ {L , R, P, N } is the outcome partition for Q.

Intriguingly, such monoids have an induced partial order structure, given by

x ≥ y if and only if 5(xz)≥5(yz) for all z ∈Q.
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If G ≥ H , then it is certainly true that 8(G) ≥ 8(H). However, the quotient
may also gain new order-relations that are not present in the universe of games.
We include one example to illustrate the rich possibilities. In the previous section
we remarked that 1 and 1̄ are incomparable, and we have also seen that 1+ 1̄ 6= 0.
In Q(1, 1̄), however, the expected inequalities hold:

8(1̄) > 8(0) > 8(1) and 8(1̄)8(1)=8(0);

and indeed we have Q(1, 1̄)∼= Z, equipped with the usual partial-order structure.
We leave it to the reader to verify these assertions.

In the time since this manuscript was first prepared, Meghan Allen has obtained
some exciting results on partizan misère games, including identifying several
interesting quotients. These results represent the current state of the art on the
subject.
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