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Riemann–Hilbert approach
to the six-vertex model

PAVEL BLEHER AND KARL LIECHTY

The six-vertex model, or the square ice model, with domain wall boundary
conditions (DWBC) has been introduced and solved for finite n by Korepin and
Izergin. The solution is based on the Yang–Baxter equations and it represents
the free energy in terms of an n � n Hankel determinant. Paul Zinn-Justin
observed that the Izergin–Korepin formula can be expressed in terms of the
partition function of a random matrix model with a nonpolynomial interaction.
We use this observation to obtain the large n asymptotics of the six-vertex
model with DWBC. The solution is based on the Riemann–Hilbert approach.
In this paper we review asymptotic results obtained in different regions of the
phase diagram.

1. Six-vertex model

The six-vertex model, or the model of two-dimensional ice, is stated on a square
lattice with arrows on edges. The arrows obey the rule that at every vertex there
are two arrows pointing in and two arrows pointing out. This rule is sometimes
called the ice-rule. There are only six possible configurations of arrows at each
vertex, hence the name of the model; see Figure 1.

We will consider the domain wall boundary conditions (DWBC), in which the
arrows on the upper and lower boundaries point into the square, and the ones on
the left and right boundaries point out. One possible configuration with DWBC
on the 4� 4 lattice is shown on Figure 2.

The name of the square ice comes from the two-dimensional arrangement of
water molecules, H2O, with oxygen atoms at the vertices of the lattice and one
hydrogen atom between each pair of adjacent oxygen atoms. We place an arrow
in the direction from a hydrogen atom toward an oxygen atom if there is a bond
between them. Thus, as we already noticed before, there are two in-bound and
two out-bound arrows at each vertex.
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Figure 1. The six arrow configurations allowed at a vertex.
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Figure 2. An example of a 4 � 4 configuration (left) and the corre-
sponding ice crystal (right).

For each possible vertex state we assign a weight wi ; i D 1; : : : ; 6, and define,
as usual, the partition function, as a sum over all possible arrow configurations
of the product of the vertex weights,

Zn D

X
arrow

configurations �

w.�/; w.�/D
Y

x2Vn

w�.x/ D

6Y
iD1

w
Ni .�/
i ; (1-1)

where Vn is the n�n set of vertices, �.x/2 f1; : : : ; 6g is the vertex configuration
of � at vertex x according to Figure 1, and Ni.�/ is the number of vertices of
type i in the configuration � . The sum is taken over all possible configurations
obeying the given boundary condition. The Gibbs measure is defined then as

�n.�/D
w.�/

Zn
: (1-2)
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Our main goal is to obtain the large n asymptotics of the partition function Zn.
In general, the six-vertex model has six parameters: the weights wi . However,

by using some conservation laws we can reduce these to only two parameters.
Any fixed boundary conditions impose some conservation laws on the six-vertex
model. In the case of DWBC, they are

N1.�/DN2.�/; N3.�/DN4.�/; N5.�/DN6.�/C n: (1-3)

This allows us to reduce to the case

w1 D w2 � a; w3 D w4 � b; w5 D w6 � c: (1-4)

Then by using the identity,

Zn.a; a; b; b; c; c/D cn2

Zn

�
a

c
;
a

c
;
b

c
;
b

c
; 1; 1

�
; (1-5)

we can reduce to the two parameters, a=c and b=c. For details on how we make
this reduction, see, e.g., [Allison and Reshetikhin 2005; Ferrari and Spohn 2006;
Bleher and Liechty 2009a].

2. Phase diagram of the six-vertex model

Introduce the parameter

�D
a2C b2� c2

2ab
: (2-1)

The phase diagram of the six-vertex model consists of the following three regions:
the ferroelectric phase region, �> 1; the antiferroelectric phase region, �<�1;
and, the disordered phase region, �1<�< 1 (see, e.g., [Lieb and Wu 1972]).
In these three regions we parametrize the weights in the standard way: in the
ferroelectric phase region,

aD sinh.t � 
 /; b D sinh.t C 
 /; c D sinh.2j
 j/; 0< j
 j< t I (2-2)

in the antiferroelectric phase region,

aD sinh.
 � t/; b D sinh.
 C t/; c D sinh.2
 /; jt j< 
 I (2-3)

and in the disordered phase region,

aD sin.
 � t/; b D sin.
 C t/; c D sin.2
 /; jt j< 
: (2-4)

The phase diagram of the model is shown on Figure 3.
The phase diagram and the Bethe-ansatz solution of the six-vertex model for

periodic and antiperiodic boundary conditions are thoroughly discussed in [Lieb
1967a; 1967b; 1967c; 1967d; Lieb and Wu 1972; Sutherland 1967; Baxter 1989;
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Figure 3. Phase diagram of the model. F, AF and D mark the ferro-
electric, antiferroelectric, and disordered phases. The circular arc
corresponds to the so-called “free fermion” line, where �D 0, and the
three dots correspond to 1-, 2-, and 3-enumeration of alternating sign
matrices.

Batchelor et al. 1995]. See also [Wu and Lin 1975], in which the Pfaffian solution
for the six-vertex model with periodic boundary conditions is obtained on the
free fermion line, �D 0.

3. Izergin–Korepin determinantal formula

The six-vertex model with DWBC was introduced by Korepin [1982], who derived
an important recursion relation for the partition function of the model. This led
to a beautiful determinantal formula of Izergin [1987] for the partition function
of the six-vertex model with DWBC, known as the Izergin–Korepin formula.
A detailed proof of this formula and its generalizations are given in the paper
of Izergin, Coker and Korepin [Izergin et al. 1992]. When the weights are
parametrized according to (2-4), the Izergin–Korepin formula is

Zn D
.ab/n

2�Qn�1
kD0 k!

�2 �n; (3-1)

where �n is the Hankel determinant

�n D det
�

d iCk�2�

dt iCk�2

�
1�i;k�n

; (3-2)

and
�.t/D

c

ab
: (3-3)
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Observe that a; b; c have different parametrizations (2-2)–(2-4) in different phase
regions. An elegant derivation of the Izergin–Korepin determinantal formula
from the Yang–Baxter equations is given in [Korepin and Zinn-Justin 2000;
Kuperberg 1996].

One of the applications of the determinantal formula is that it implies that the
partition function �n solves the Toda equation,

�N �
00
n � �

0
n

2
D �nC1�n�1; n� 1; . 0 /D

@

@t
I (3-4)

cf. [Sogo 1993]. This was used by Korepin and Zinn-Justin [2000] to derive the
free energy of the six-vertex model with DWBC, assuming some ansatz on the
behavior of subdominant terms in the large n asymptotics of the free energy.

4. The six-vertex model with DWBC and a random matrix model

Another application of the Izergin–Korepin determinantal formula is that �n can
be expressed in terms of a partition function of a random matrix model. The
relation to the random matrix model was obtained and used in [Zinn-Justin 2000].
It can be derived as follows. Consider first the disordered phase region.

Disordered phase region. For the evaluation of the Hankel determinant (3-2),
it is convenient to use an integral representation of the function

�.t/D
sin 2


sin.
 � t/ sin.
 C t/
I (4-1)

namely, to write it in the form of the Laplace transform,

�.t/D

Z 1
�1

et�m.�/ d�; (4-2)

where

m.�/D
sinh �

2
.� � 2
 /

sinh �
2
�

: (4-3)

Then
d i�

dt i
D

Z 1
�1

�iet�m.�/ d�; (4-4)

and by substituting this into the Hankel determinant, (3-2), we obtain

�n D

Z nY
iD1

Œet�i m.�i/ d�i � det.�iCk�2
i /1�i;k�n

D

Z nY
iD1

Œet�i m.�i/ d�i � det.�k�1
i /1�i;k�n

nY
iD1

�i�1
i : (4-5)
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Consider any permutation � 2 Sn of variables �i . From the last equation we
have that

�n D

Z nY
iD1

Œet�i m.�i/ d�i �.�1/� det.�k�1
i /1�i;k�n

nY
iD1

�i�1
�.i/: (4-6)

By summing over � 2 Sn, we obtain that

�n D
1

n!

Z nY
iD1

Œet�i m.�i/d�i ��.�/
2; (4-7)

where �.�/ is the Vandermonde determinant,

�.�/D det.�k�1
i /1�i;k�n D

Y
i<k

.�k ��i/: (4-8)

Equation (4-7) expresses �n in terms of a matrix model integral. Namely, if
m.x/D e�V .x/, then

�n D

Qn�1
nD0 n!

�n.n�1/=2

Z
dMeTrŒtM�V .M /�; (4-9)

where the integration is over the space of n� n Hermitian matrices. The matrix
model integral can be solved, furthermore, in terms of orthogonal polynomials.

Introduce monic polynomials Pk.x/D xk C � � � orthogonal on the line with
respect to the weight

w.x/D etxm.x/; (4-10)

so that Z 1
�1

Pj .x/Pk.x/e
txm.x/ dx D hkınm: (4-11)

Then it follows from (4-7) that

�n D

n�1Y
kD0

hk : (4-12)

The orthogonal polynomials satisfy the three term recurrence relation,

xPk.x/D PkC1.x/CQkPk.x/CRkPk�1.x/; (4-13)

where Rk can be found as

Rk D
hk

hk�1

I (4-14)

see, e.g., [Szegő 1975]. This gives

hk D h0

kY
jD1

Rj ; (4-15)
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where

h0 D

Z 1
�1

etxm.x/ dx D
sin.2
 /

sin.
 C t/ sin.
 � t/
: (4-16)

By substituting (4-15) into (4-12), we obtain that

�n D hn
0

n�1Y
kD1

Rn�k
k : (4-17)

Colomo and Pronko identified the orthogonal polynomials fPkg at some points
on the phase diagram with classical orthogonal polynomials, see [Colomo and
Pronko 2003; 2004; 2005; 2006]. They showed that on the free fermion line,
fPkg are the Meixner–Pollaczek polynomials, at the ice point .1; 1/ they are the
continuous Hahn polynomials, and at the point . 1p

3
; 1p

3
/, fPkg can be expressed

in terms of the continuous dual Hahn polynomials. The ice point .1; 1/ and
the point . 1p

3
; 1p

3
/ correspond to the 1- and 3-enumerations, respectively, of

alternating sign matrices The 2-enumeration of ASMs corresponds to the point
on the free fermion line at which a D b. The 1-, 2-, and 3-enumerations of
ASMs are marked A(1), A(2), and A(3), respectively, in Figure 3, and the full
free fermion line is marked there as well. In all these cases the normalizing
constants hk are known explicitly, and formula (4-12) can be used to find the
asymptotic behavior of �n as n!1. At all other points on the phase diagrams,
no reduction to classical orthogonal polynomials is known.

Ferroelectric phase. In the ferroelectric phase, the parameters a; b, and c are
parametrized by (2-2). We consider the case 
 > 0, which corresponds to the
region b > aC c in the phase diagram. The case 
 < 0 is similar, and a and b

should be exchanged in that case. The function � is the Laplace transform of a
discrete measure supported on the positive integers:

�.t/D
sinh.2
 /

sinh.t C 
 / sinh.t � 
 /
D 4

1X
lD1

e�2tl sinh.2
 l/: (4-18)

Then, similar to (4-7), we find that

�n D
2n2

n!

1X
l1;:::;lnD1

�.li/
2

nY
iD1

Œ2e�2tli sinh.2
 li/�: (4-19)

This is the partition function for a discrete version of a Hermitian random matrix
model, often called a discrete orthogonal polynomial ensemble (DOPE), and can
also be solved in terms of orthogonal polynomials. The appropriate polynomials
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in this case are the monic polynomials Pn.l/D lnC � � � with the orthogonality

1X
lD1

Pj .l/Pk.l/w.l/D hkıjk ;

w.l/D 2e�2tl sinh.2
 l/D e�2tlC2
 l
� e�2tl�2
 l :

(4-20)

Then it follows from (4-19) that

�n D 2n2
n�1Y
kD0

hk : (4-21)

Critical line between disordered and ferroelectric phase. When the parameters
a; b, and c are such that b � a D c (so � D 1 in (2-1)), the Izergin–Korepin
formula is not directly applicable. However, we may consider a limiting case of
the orthogonal polynomial formula (4-21). On the critical line

b

c
�

a

c
D 1; (4-22)

we fix a point,
a

c
D
˛� 1

2
;

b

c
D
˛C 1

2
I ˛ > 1; (4-23)

and consider the partition function

Zn DZn

�
˛�1

2
;
˛�1

2
;
˛C1

2
;
˛C1

2
; 1; 1

�
: (4-24)

Consider the limit of (4-21) as

t; 
 !C0;
t



! ˛: (4-25)

Observe that in this limit,

a

c
D

sinh.t � 
 /
sinh.2
 /

!
˛� 1

2
;

b

c
D

sinh.t C 
 /
sinh.2
 /

!
˛C 1

2
: (4-26)

By (1-5), (3-1), and (4-12), we have

Zn

�
a

c
;
a

c
;
b

c
;
b

c
; 1; 1

�
D

�
2 sinh.t � 
 / sinh.t C 
 /

sinh.2
 /

�n2 n�1Y
kD0

hk

.k!/2
: (4-27)

To deal with limit (4-25) we need to rescale the orthogonal polynomials Pk.l/.
Introduce the rescaled variable

x D 2tl � 2
 l; (4-28)
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and the rescaled limiting weight,

w˛.x/D lim
t;
!C0
t=
!˛

.e�2tlC2
 l
� e�2tl�2
 l/D e�x

� e�rx;

r D
˛C 1

˛� 1
> 1:

(4-29)

Consider monic orthogonal polynomials Pj .xI˛/ satisfying the orthogonality
condition, Z 1

0

Pj .xI˛/Pk.xI˛/w˛.x/ dx D hk;˛ıjk : (4-30)

To find a relation between Pk.l/ and Pk.xI˛/, introduce the monic polynomials

zPk.x/D ı
kPk.x=ı/; (4-31)

where
ı D 2t � 2
; (4-32)

and rewrite orthogonality condition (4-11) in the form

1X
lD1

zPj .lı/ zPk.lı/w˛.lı/ı D ı
2kC1hkıjk ; (4-33)

which is a Riemann sum for the integral in orthogonality condition (4-30).
Therefore,

lim
t;
!C0
t=
!˛

zPk.x/D Pk.xI˛/; lim
t;
!C0
t=
!˛

ı2kC1hk D hk;˛: (4-34)

Thus, if we rewrite formula (4-27) as

Zn

�
a

c
;
a

c
;
b

c
;
b

c
; 1; 1

�
D

�
2 sinh.t � 
 / sinh.t C 
 /

sinh.2
 /ı

�n2 n�1Y
kD0

ı2kC1hk

.k!/2
;

(4-35)
we can take limit (4-25). In the limit we obtain that

Zn DZn

�
˛�1

2
;
˛�1

2
;
˛C1

2
;
˛C1

2
; 1; 1

�
D

�
˛C1

2

�n2 n�1Y
kD0

hk;˛

.k!/2
: (4-36)

Antiferroelectric phase. In the antiferroelectric phase, the parameters a; b, and
c are parametrized by (2-3), and the function

�.t/D
sinh.2
 /

sinh.
 � t/ sinh.
 C t/
; jt j< 
; (4-37)
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is the Laplace transform of a discrete measure supported on the integers:

�.t/D
sinh.2
 /

sinh.
 � t/ sinh.
 C t/
D 2

1X
lD�1

e2tl�2
 jlj: (4-38)

Then

�n D
2n2

n!

1X
l1;:::;lnD�1

�.l/2
nY

iD1

e2tli�2
 jli j: (4-39)

This is again the partition function of a DOPE, and we introduce the discrete
monic polynomials Pn.l/D lnC � � � via the orthogonality condition

1X
lD�1

Pj .l/Pk.l/w.l/D hkıjk ; w.l/D e2tl�2
 jlj: (4-40)

Then it follows from (4-39) that

�n D 2n2
n�1Y
kD0

hk : (4-41)

Critical line between the antiferroelectric and disordered phases. When the
parameters a; b, and c are such that aCbD c, (so �D�1 in (2-1)), the Izergin–
Korepin formula is not directly applicable, and we must consider a limiting case
of the orthogonal polynomial formula (4-41). On the critical line

a

c
C

b

c
D 1; (4-42)

we fix a point,

a

c
D

1�˛

2
;

b

c
D

1C˛

2
; �1< ˛ < 1; (4-43)

and consider the partition function

Zn DZn

�
1�˛

2
;
1�˛

2
;
1C˛

2
;
1C˛

2
; 1; 1

�
: (4-44)

This corresponds to taking a limit of the Izergin–Korepin formula in the antifer-
roelectric phase as t; 
 ! 0, and t=
 D ˛. Introduce the rescaled variable

x D�2tl C 2
 l; (4-45)

and the rescaled limiting weight,

w˛.x/D lim
t;
!C0; t



!˛

e2tl�2
 jlj
D

�
e�x; x � 0;

erx; x < 0;
(4-46)
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where

r D
1C˛

1�˛
> 0: (4-47)

Consider monic orthogonal polynomials Pj .xI˛/ satisfying the orthogonality
condition, Z

R

Pj .xI˛/Pk.xI˛/w˛.x/ dx D hk;˛ıjk ; (4-48)

which can be obtained from the polynomials (4-40) by taking the appropriate
scaling limit as t; 
 ! 0, and t=
 D ˛. Similar to (4-36), we obtain

Zn DZn

�
˛�1

2
;
˛�1

2
;
˛C1

2
;
˛C1

2
; 1; 1

�
D

�
1C˛

2

�n2 n�1Y
kD0

hk;˛

.k!/2
: (4-49)

5. Large n asymptotics of Zn

The asymptotic evaluation of Zn in the different regions of the phase diagram thus
reduces to asymptotic evaluation of different systems of orthogonal polynomials.
In general, this may be done by formulating the orthogonal polynomials as the
solution to a 2� 2 matrix valued Riemann–Hilbert problem as in [Fokas et al.
1992]. One may then perform the steepest descent analysis of [Deift and Zhou
1993]. In the case that the weight of orthogonality is a continuous one on R, this
analysis was performed for weights of the form exp.�nV .x// for a very general
class of analytic potential functions V .x/ in [Deift et al. 1999]. The analysis was
adapted to the case that the orthogonality is with respect to a discrete measure
in [Baik et al. 2007; Bleher and Liechty 2011]. The steepest descent analysis
yields the following results in the different regions of the phase diagram.

Disordered phase.

Theorem 5.1 [Bleher and Fokin 2006]. Let the weights a, b, and c, in the six-
vertex model with DWBC be parametrized as in (2-4). Then, as n!1, the
partition function Zn has the asymptotic expansion

Zn D C n�Fn2

.1CO.n�"//; " > 0; (5-1)
where

F D
�ab

2
 cos � t
2


; � D
1

12
�

2
 2

3�.� � 2
 /
; (5-2)

and C > 0 is a constant.

This proves the conjecture of Zinn-Justin, and it gives the exact value of the
exponent �. Let us remark that the presence of the power-like factor n� in the
asymptotic expansion of Zn in (5-1) is rather unusual from the point of view of
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random matrix models. Also, in the one-cut case the usual large n asymptotics
of log Zn in a noncritical random matrix model is the so called “topological
expansion”, which gives .log Zn/=n2 as an asymptotic series in powers of 1=n2

(see, e.g., [Ercolani and McLaughlin 2003; Bleher and Its 2005]). In this case
the asymptotic expansion of log Zn includes the term � log n.

It is noteworthy that, as shown in [Bogoliubov et al. 2002], asymptotic formula
(5-1) remains valid on the borderline between the disordered and antiferroelectric
phases. In this case � D 1

12
, which corresponds to 
 D 0. In [Bleher and

Bothner 2012] the constant C in the asymptotic expansion (5-1) is calculated
on the borderline between the disordered and antiferroelectric phases, up to a
universal constant factor, which is still unknown. Also, it is shown in [Bleher and
Bothner 2012] that the error term O.n�"/ in (5-1) can be replaced by O.n�1/.
The calculations of [Bleher and Bothner 2012] can be extended to the whole
disordered region, where they give an explicit dependence of the constant C on
the parameter t in parametrization (2-4), and improve the error term in (5-1) to
O.n�1/.

Ferroelectric phase. We have obtained the large n asymptotics of Zn in the
ferroelectric phase, �> 1 [Bleher and Liechty 2009a], and also on the critical
line between the ferroelectric and disordered phases, � D 1 [2009b]. In the
ferroelectric phase we use parametrization (2-2) for a; b and c. The large n

asymptotics of Zn in the ferroelectric phase is given by the following theorem.

Theorem 5.2 [Bleher and Liechty 2009a]. Let the weights a, b, and c in the
six-vertex model with DWBC be parametrized as in (2-2) with t > 
 > 0. For any
" > 0, as n!1,

Zn D C GnFn2�
1CO.e�n1�"

/
�
; (5-3)

where C D 1� e�4
 , G D e
�t and F D b.

On the critical line between the ferroelectric and disordered phases we use
the parametrization b D aC 1, c D 1. The main result here is the following
asymptotic formula for Zn.

Theorem 5.3 [Bleher and Liechty 2009b]. As n!1,

Zn D C n�G
p

nFn2

Œ1CO.n�1=2/�; (5-4)

where C > 0,

� D 1
4
; G D exp

�
��
�

3
2

�q a

�

�
; (5-5)

and
F D b: (5-6)
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Notice that in both Theorems 5.2 and 5.3, the limiting free energy F is the
weight b. The ground state in this phase is unique and is achieved when there is
exactly one c-type vertex in each row and column, and the rest of the vertices
are of type b. That is, the diagonal consists of type 5 vertices while above the
diagonal all vertices are type 3 and below all vertices are type 4. The weight
of the ground state is bn2

.c=b/n, and thus the free energy in the ferroelectric
phase is completely determined by the ground state. This is a reflection of
the fact that local fluctuations from the ground state can take place only in a
thin neighborhood of the diagonal. The conservation laws (1-3) forbid local
fluctuations away from the diagonal.

Antiferroelectric phase. The large n asymptotics in the antiferroelectric phase
were obtained nonrigorously in [Zinn-Justin 2000], and rigorously, using the
Riemann–Hilbert method, in [Bleher and Liechty 2010]. They are given in the
following theorem. In this theorem #1 and #4 are the Jacobi theta functions with
elliptic nome q D e��

2=2
 (see, e.g., [Whittaker and Watson 1996]), and the
phase ! is given as

! D
�

2

�
1C

t




�
: (5-7)

Theorem 5.4 [Bleher and Liechty 2010]. Let the weights a, b, and c in the
six-vertex model with DWBC be parametrized as in (2-2). As n!1,

Zn D C#4.n!/F
n2

.1CO.n�1//; (5-8)

where C > 0 is a constant, and

F D
�ab# 0

1
.0/

2
#1.!/
: (5-9)

In contrast to the disordered phase, note the lack of a power like term. In contrast
to the ferroelectric phase, notice that the free energy depends transcendentally on
the weight of the ground state configuration. Only in the limit as 
 !1, which
can be regarded as the low temperature limit, does the weight of the ground state
become dominant. For a discussion of this limit, see [Zinn-Justin 2000].

6. The Riemann–Hilbert approach

All the above asymptotic results are obtained in the Riemann–Hilbert approach,
but the concrete asymptotic analysis of the Riemann–Hilbert problem is quite
different in the different phase regions. Let us discuss it.
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Disordered phase region. To apply the Riemann–Hilbert approach, we introduce
a rescaled weight as

wn.x/D w

�
nx




�
: (6-1)

It can be written as
wn.x/D e�nVn.x/; (6-2)

where

Vn.x/D��x�
1

n
ln

sinh
�
n
�
�
2

� 1

�
x
�

sinh n�x
2


; � D
t



: (6-3)

The external potential Vn.x/ is real analytic for any finite n, but it has logarithmic
singularities on the imaginary axis, which accumulate to the origin as n!1.
In fact, the limiting external potential,

lim
n!1

Vn.x/D V .x/D��xCjxj; (6-4)

is not analytic at x D 0. The Riemann–Hilbert approach developed in [Bleher
and Fokin 2006] is based on an opening of lenses whose boundary approaches
the origin as n!1. This turns out to be possible due to the fact that the density
of the equilibrium measure �n.x/ for the external potential Vn.x/ diverges
logarithmically at the origin as n!1, and as a result, the jump matrix on the
boundary of the lenses converges to the unit matrix (for details, see [ibid.]). The
calculation of subdominant asymptotic terms in the partition function as n!1

is the central difficult part of the work [ibid.], and it is done by an asymptotic
analysis of the solution to the Riemann–Hilbert problem near the turning points
and near the origin.

Ferroelectric phase region. In the ferroelectric region, the measure of orthogo-
nality is a discrete one on N. To apply the Riemann–Hilbert approach to discrete
orthogonal polynomials, we need to rescale both the weight and the lattice that
supports the measure so that the mesh of the lattice goes to zero as n!1.
Introduce the rescaled lattice and weight

Ln D

�
2t

n

�
N; wn.x/D e�nx.1��/.1� e�4nx/D e�nVn.x/; (6-5)

where

Vn.x/D x.1� �/�
1

n
log.1� e�2nx�/; 0< � D




t
< 1: (6-6)

Then the orthogonality condition (4-20) can be written asX
x2Ln

Pj

�
nx

2t

�
Pk

�
nx

2t

�
wn.x/D hkıjk : (6-7)
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Notice that, as n!1, Vn.x/ has the limit

lim
n!1

Vn.x/D x.1� �/; (6-8)

which would indicate that, in the large n limit, the polynomials (4-20) behave as
polynomials orthogonal on N with a simple exponential weight. These polyno-
mials are a special case of the classical Meixner polynomials, and there are exact
formulae for their recurrence coefficients (see, e.g., [Koekoek et al. 2010]). The
monic Meixner polynomials which concern us are defined from the orthogonality
condition

1X
lD1

Qj .l/Qk.l/q
l
D h

Q
k
ıjk ; q D e2
�2t ; (6-9)

and the normalizing constants are given exactly as

h
Q
k
D

.k!/2qkC1

.1� q/2kC1
: (6-10)

Up to the constant factor, Theorem 5.2 can therefore be proven by showing that
hk and h

Q
k

are asymptotically close as k!1. More precisely, it is shown in
[Bleher and Liechty 2009a] that as k!1, for any " > 0,

hk D h
Q
k

�
1CO.e�k1�"

/
�
: (6-11)

Antiferroelectric region. In the antiferroelectric region, the orthogonal polyno-
mials are with respect to a discrete weight, and we rescale the weight in (4-40)
and the integer lattice as

Ln D

�
2


n

�
Z; wn.x/D e�nV .x/; V .x/D jxj � �x; � D

t



< 1; (6-12)

so that the orthogonality condition (4-40) can be written asX
x2Ln

Pj

�
nx

2


�
Pk

�
nx

2


�
wn.x/D hkıjk : (6-13)

The mesh of the lattice Ln is 2
=n, which places an upper constraint on the
equilibrium measure, which is the limiting distribution of zeroes of the orthogonal
polynomials. This upper constraint is realized. The equilibrium measure, which
has density �.x/, is supported on a single interval Œ˛; ˇ�, but within that interval
is an interval Œ˛0; ˇ0� on which �.x/� 1=2
 . This interval is called the saturated
region, and it separates the single band of support Œ˛; ˇ� into the two bands of
analyticity Œ˛; ˛0� and Œˇ0; ˇ�. Thus in effect we have a “two-cut” situation, which
is the source of the quasiperiodic factor #4.n!/ in Theorem 5.4.



54 PAVEL BLEHER AND KARL LIECHTY

In principle, a problem could come from the fact that the potential V .x/ is
not analytic at the origin. However, it turns out that this point of nonanalyticity
is always in the saturated region and therefore does not present a problem in the
steepest descent analysis.

As previously noted, there is no power-like term in the asymptotic formula for
Zn in the antiferroelectric phase. The Riemann–Hilbert approach to orthogonal
polynomials generally gives an expansion of the normalizing constants hn in
inverse powers of n. In the two-cut case, the coefficients in this expansion may
be quasiperiodic functions of n. For the orthogonal polynomials (4-40) it is a
tedious calculation involving the Jacobi theta functions to show that the term of
order n�1 vanishes in the expansion of hn, which then implies the absence of
the power-like term in Zn.
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