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Conservation laws of random matrix theory
NICHOLAS M. ERCOLANI

This paper presents an overview of the derivation and significance of recently
derived conservation laws for the matrix moments of Hermitian random matri-
ces with dominant exponential weights that may be either even or odd. This
is based on a detailed asymptotic analysis of the partition function for these
unitary ensembles and their scaling limits. As a particular application we
derive closed form expressions for the coefficients of the genus expansion
for the associated free energy in a particular class of dominant even weights.
These coefficients are generating functions for enumerating g-maps, related to
graphical combinatorics on Riemann surfaces. This generalizes and resolves a
30+ year old conjecture in the physics literature related to quantum gravity.

1. Introduction

We present an overview of some recent developments in the application of random
matrix analysis to the topological combinatorics of surfaces. Such applications
have a long history about which we should say a few words at the outset. The
combinatorial objects of interest here are maps. A map is an embedding of a
graph into a compact, oriented and connected surface X with the requirement
that the complement of the graph in X should be a disjoint union of simply
connected open sets. If the genus of X is g, this object is referred to as a g-map.
The notion of g-maps was introduced by Tutte [1968] and his collaborators in
the 1960s as part of their investigations of the four color conjecture.

In the early 1980s Bessis, Itzykson and Zuber, a group of physicists studying
’t Hooft’s diagrammatic approaches to large-N expansions in quantum field
theory, discovered a profound connection between the problem of enumerating
g-maps and random matrix theory [Bessis et al. 1980]. That seminal work was
the basis for bringing asymptotic analytical methods into the study of maps and
other related combinatorial problems.

Subsequently other physicists [Douglas and Shenker 1990; Gross and Migdal
1990] realized that the matrix model diagrammatics described by Bessis et al.
provide a natural means for discretizing the Einstein–Hilbert action in two
dimensions. From that and a formal double scaling limit, they were able to put
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forward a candidate for so-called 2D quantum gravity. This generated a great
deal of interest in the emerging field of string theory. We refer to [Di Francesco
et al. 1995] for a systematic review of this activity and to [Mariño 2005] for a
description of more recent developments related to topological string theory.

All of these applications were based on the postulated existence of a 1=n2

asymptotic expansion of the free energy associated to the random matrix partition
function, where n denotes the size of the matrix, as n becomes large. The
combinatorial significance of this expansion is that the coefficient of 1=n2g

should be the generating function for the enumeration of g-maps (ordered by
the cardinality of the map’s vertices). In [Ercolani and McLaughlin 2003] the
existence of this asymptotic expansion and several of its important analytical
properties were rigorously established. This analysis was based on a Riemann–
Hilbert problem originally introduced by Fokas, Its and Kitaev [Fokas et al.
1992] to study the 2D gravity problem.

The aim of this paper is to outline how the results of [Ercolani and McLaughlin
2003] and its sequel [Ercolani et al. 2008] have been used to gain new insights
into the map enumeration problem. In particular, we will be able to prove and
significantly extend a conjecture made in [Bessis et al. 1980] about the closed
form structure of the generating functions for map enumeration.

Over time combinatorialists have made novel use of many tools from analysis
including contour integrals and differential equations. In this work we also
introduce nonlinear partial differential equations, in particular a hierarchy of
conservation laws reminiscent of Burgers equation (see (4-53)) and the shallow
water wave equations [Whitham 1974] (see (6-80)). This appears to make
contact with the class of differential posets introduced by Stanley [1988] (see
Remark 4.8).

2. Background

The general class of matrix ensembles we analyze has probability measures of
the form

d�tj D
1

Z.n/.gs; tj /
exp

�
�
1

gs
TrŒVj .M; tj /�

�
dM; (2-1)

where

Vj .�I tj /D
1

2
�2C

tj

j
�j ; (2-2)

defined on the space Hn of n � n Hermitian matrices, M , and where gs is
a positive parameter, referred to as the string coefficient. The normalization
factor Z.n/.gs; tj /, which serves to make �t a probability measure, is called the
partition function of this unitary ensemble.
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Remark 2.1. In previous treatments [Ercolani and McLaughlin 2003; Ercolani
et al. 2008; Ercolani 2011; Ercolani and Pierce 2012], we have used the parameter
1=N instead of gs . This was in keeping with notational usages in some areas of
random matrix theory; however, since here we are trying to make a connection to
some applications in quantum gravity, we have adopted the notation traditionally
used in that context. This also is why we have scaled the time parameter tj by
1=j in the first three sections of this paper.

For general polynomial weights V it is possible to establish the following
fundamental asymptotic expansion [Ercolani and McLaughlin 2003; Ercolani
et al. 2008] of the logarithm of the free energy associated to the partition function.
More precisely, those papers consider weights of the form

V.�/D
1

2
�2C

jX
`D1

t`

`
�`; (2-3)

with j even.
We introduce a renormalized partition function, which we refer to as a tau

function representation:

�2n;gs .
Et /D

Z.n/.gs; Et /

Z.n/.gs; 0/
; (2-4)

where Et D .t1; : : : tj / 2 Rj . The principal object of interest is the large n
asymptotic expansion of this representation for which one has the result [Ercolani
and McLaughlin 2003; Ercolani et al. 2008]

log �2n;gs .Et /

D n2e0.x; Et /C e1.x; Et /C
1

n2
e2.x; Et /C � � �C

1

n2g�2
eg.x; Et /C � � � (2-5)

as n!1 while gs! 0 with x D ngs , called the ’t Hooft parameter, held fixed.
Moreover, for

TD .1� �; 1C �/�
�
fjEt j< ıg\ ftj > 0g

�
and for some � > 0, ı > 0, we have:

(i) The expansion is uniformly valid on compact subsets of T.

(ii) eg.x; Et / extends to be complex analytic in

TC
D
˚
.x; Et / 2 CjC1

ˇ̌
jx� 1j< �; j Et j< ı

	
:

(iii) The expansion may be differentiated term by term in .x; Et / with uniform
error estimates as in (i).
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The meaning of (i) is that for each g there is a constant, Kg , depending only on
T and g such thatˇ̌̌̌

log �2n;gs .Et /�n
2e0.x; Et /� � � � �

1

n2g�2
eg.x; Et /

ˇ̌̌̌
�
Kg

n2g

for .x; Et / in a compact subset of T. The estimates referred to in (iii) have a
similar form with �2n;gs and ej .x; Et / replaced by their mixed derivatives (the
same derivatives in each term) and with a possibly different set of constants Kg .

Remark 2.2. These results were extended to the case where j is odd in [Ercolani
and Pierce 2012].

To explain the topological significance of the eg.x; Et / as generating functions,
we begin with a precise definition of the objects they enumerate. A map † on a
compact, oriented and connected surface X is a pair †D .K.†/; Œ{�/ where

� K.†/ is a connected 1-complex;

� { is an embedding of K.†/ into X ;

� the complement of K.†/ in X is a disjoint union of open cells (faces);

� the complement of the vertices inK.†/ is a disjoint union of open segments
(edges).

Two such maps, †1 and †2, are isomorphic if there is an orientation-preserving
homeomorphism of X to itself which maps the associated embedding of K.†1/
homeomorphically to that of K.†2/. When the genus of X is g one refers to
the map as a g-map. What Bessis et al. [1980] effectively showed was that the
partial derivatives of eg.1; Et / evaluated at Et D 0 “count” a geometric quotient of
a certain class of labeled g-maps.

As a means to reduce from enumerating these labeled g-maps to enumerating
g-maps, it is natural to try taking a geometric quotient by a “relabeling group”
more properly referred to as a cartographic group [Bauer and Itzykson 1996].

This labeling has two parts. First, the vertices of the same valence, `, have an
order labeling 1; : : : ; n`. Second, at each vertex one of the edges is distinguished.
Given thatX is oriented, this second labeling gives a unique ordering of the edges
around each vertex. The fact that the coefficients of the free energy expansion
(2-5) enumerate this class of labeled g-maps is a consequence of statements
(i)–(iii) on the previous page, which enable one to evaluate a mixed partial
derivative of eg in terms of the Gaussian unitary ensemble (GUE) where the
calculation of correlation functions of matrix coefficients all reduce to calculating
just the quadratic correlation functions. (A precise description of how this
enumeration works may be found in [Ercolani and McLaughlin 2003]).
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To help fix these ideas we consider the case of a j-regular g-map (i.e., every
vertex has the same valence, j ) of size m (i.e., the map has m vertices) which is
the main interest of this paper. The cartographic group in this case is generated
by the symmetric group Sm which permutes the vertex labels and m factors of
the cyclic group Cj , which rotates the distinguished edge at a given vertex in the
direction of the holomorphic (counterclockwise) orientation on X . The order
of the cartographic group here is the same as that of the product of its factors
which is mŠjm. On the other hand the generating function for g-maps in this
setting is given by

eg.tj /D eg
�
x D 1; Et D .0; : : : ; 0; tj /

�
(2-6)

D

X
m�1

1

mŠjm
.�tj /

m�
.g/
j .m/; (2-7)

where �.g/j .m/ is the number of labeled j-regular g-maps on m vertices. The
fractional factor in the sum perfectly cancels the order of the cartographic group,
making this series appear to indeed be the ordinary generating function for pure
g-maps. However, for some g-maps the cartographic action may have nontrivial
isotropy and this can create an “over-cancellation” of the labeling. This happens
when a particular relabeling of a given map can be transformed back to the
original labeling by a diffeomorphism of the underlying Riemann surface X .
In this event the two labelings are indistinguishable and the diffeomorphism
induces an automorphism of the underlying map. In addition, the element of the
cartographic group giving rise to this situation is an element of the isotropy group
of the given map. Hence, as a generating function for the geometric quotient,
(2-6) is expressible as

eg.tj /D
X

g-maps†

1

jAut.†/j
.�tj /

m.†/; (2-8)

Eg.x; tj /D eg.x; Et D .0; : : : ; 0; tj // (2-9)

D

X
g-maps†

1

jAut.†/j
.�tj /

m.†/xf .†/ D x2�2geg.x
j=2�1tj /;

where m.†/ is the number of vertices of †, f .†/ is the number of faces of
† and Aut.†/ is the automorphism group of the map †. We have included
the x-dependent form, (2-9), of eg since that will play an important role later
on and also to observe that this is in fact a bivariate generating function for
enumerating g-maps with a fixed number of vertices and faces. Moreover, in
this j-regular setting, one sees that the bivariate function is self-similar. This is
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a direct consequence of Euler’s relation:

2� 2g D # vertices� # edgesC # facesDm.†/� j
2
m.†/Cf .†/;

t
m.†/
j xf .†/ D x2�2g.tjx

j=2�1/m.†/: (2-10)

The presence of geometric factors such as 1=jAut.†/j is not uncommon in
enumerative graph theory, a classical example being that of Erdős–Rényi graphs
[Janson et al. 1993]. In the quantum gravity setting these factors also have a
natural interpretation in terms of the discretization of the reduction to conformal
structures via a quotient of metrics by the action of the diffeomorphism group.
We refer to [Di Francesco et al. 1995; Bauer and Itzykson 1996] for further
details on this attractive set of ideas.

In [Bessis et al. 1980], e0; e1 and e2 were explicitly computed for the case of
valence j D 4. We quote, from the same paper, the following conjecture (some
notation has been changed to be consistent with ours):

It would of course be very interesting to obtain eg.t4/ in closed form
for any value of g. The method of this paper enabled us to do so up to
gD 2, but works in the general case, although it requires an increasing
amount of work. We conjecture a general expression of the form

eg D
.1� z0/

2g�1

.2� z0/5.g�1/
P .g/.z0/; g � 2;

with P .g/ a polynomial in z0, the degree of which could be obtained
by a careful analysis of the above procedure.

Here z0 D z0.t4/ is equal, up to a scaling, to the generating function for the
Catalan numbers; below it will signify z0.t2�/, which is similarly related to the
generating function for the higher Catalan numbers (4-62).

The main purpose of this paper is to show how this conjecture can be verified
and significantly extended. In particular, we will show, for the case of even
valence, j D 2�:

Theorem 2.3. For g � 2 and for � � 2,

eg.z0/D C
.g/
C

c
.g/
0 .�/

.� � .� � 1/z0/2g�2
C � � �C

c
.g/
3g�3.�/

.� � .� � 1/z0/5g�5
(2-11)

D
.z0� 1/

rQ5g�5�r.z0/

.� � .� � 1/z0/5g�5
; (2-12)

r Dmax
�
1;

�
2g� 1

� � 1

��
; (2-13)
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The top coefficient and the constant term are respectively given by

c
.g/
3g�3.�/D

1

.5g�5/.5g�3/�2
a
.g/
3g�1.�/¤ 0; (2-14)

C .g/ D�2.2g�3/Š

�
1

.2gC2/Š
�

1

.2g/ Š 12

C
.1�ı2;g/

.2g�1/Š

g�1X
kD2

.2�2k/2g�2kC2

.2g�2kC2/Š
C .k/

�
; (2-15)

where a.g/3g�1.�/ (see Theorem 4.7) is proportional to the g-th coefficient in the
asymptotic expansion at infinity of the �-th equation in the Painlevé I hierarchy
[Ercolani 2011] and .r/m D r.r � 1/ : : : .r �mC 1/. (Explicit expressions for
e1 and e0 are given in (5-70) and (5-71).)

Our methods can be extended to the case of j odd and the derivation of the
analogue to Theorem 2.3 is in progress (see Section 6).

The route to getting these results passes through nonlinear PDE, in particular
a class of nonlinear evolution equations known as conservation laws which
come from studying scaling limits of the recursion operators for orthogonal
polynomials whose weights match those of the matrix models.

This appeal to orthogonal polynomials also motivated the approaches of [Bessis
et al. 1980; Douglas and Shenker 1990]. However to give a rigorous and effective
treatment to the problem of finding closed form expressions for the coefficients
of the asymptotic free energy, (2-5), requires essential use of Riemann–Hilbert
analysis on the Riemann–Hilbert problem for orthogonal polynomials that was
introduced in [Fokas et al. 1992]. Though we will not review this analysis here,
we will state the consequences of it needed for our applications and reference
their sources.

In Section 3 we present the necessary background on orthogonal polynomials
and introduce the main equations governing their recurrence operators: the
difference string equations and the Toda lattice equations. In Section 4 we
describe how (2-5) can be used to derive and solve (in the case of even valence)
the continuum limits of these equations which relates to the nonlinear evolution
equations alluded to earlier. In Section 5 we outline the proof Theorem 2.3 and
in Section 6 we describe the extension of this program to the case of odd valence
and briefly mention what has been accomplished in that case thus far. This will
also help to illuminate the full picture behind the idea of conservation laws for
random matrices.

Over the years there have been a number of efforts to systematically address
the question of graphical enumeration on Riemann surfaces by studying the
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resolvent of the random matrix and associated Schwinger–Dyson equations
[Ambjørn et al. 1993; Chekhov and Eynard 2006; Eynard 2004; Eynard and
Orantin 2009]. These approaches have led to interesting direct extensions of
the equations that Tutte originally introduced to study maps. They also have
particular relevance for the topics described in the concluding remark Section 7.2.
Our methods take a different approach, based on orthogonal polynomials, but
the development of a unified perspective that incorporates the Toda, string and
Schwinger–Dyson equations would undoubtedly yield valuable insights.

3. The role of orthogonal polynomials and their asymptotics

Let us recall the classical relation between orthogonal polynomials and the space
of square-integrable functions on the real line, R, with respect to exponentially
weighted measures. In particular, we want to focus attention on weights that
correspond to the random matrix weights V.�/, (2-2), with j even. (Recently
this relation has been extended to the cases of j odd [Bleher and Deaño 2012;
Ercolani and Pierce 2012], with the orthogonal polynomials generalized to the
class of so-called non-Hermitian orthogonal polynomials; however, for this
exposition we will stick primarily with the even case.) To that end we consider
the Hilbert spaceH DL2

�
R; e�g

�1
s V.�/

�
of weighted square integrable functions.

This space has a natural polynomial basis, f�n.�/g, determined by the conditions
that

�n.�/D �
n
C lower order terms;Z

�n.�/�m.�/e
�g�1s V.�/d�D 0 for n¤m:

For the construction of this basis and related details we refer the reader to [Deift
1999].

With respect to this basis, the operator of multiplication by � is representable
as a semiinfinite tridiagonal matrix:

LD

0BBBB@
a0 1

b21 a1 1

b22 a2
: : :

: : :
: : :

1CCCCA : (3-16)

We commonly refer to L as the recursion operator for the orthogonal polynomials
and to its entries as recursion coefficients. (When V is an even potential, it follows
from symmetry that aj D0 for all j .) We remark that often a basis of orthonormal,
rather than monic orthogonal, polynomials is used to make this representation.
In that case the analogue of (3-16) is a symmetric tridiagonal matrix. As long
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as the coefficients fbng do not vanish, these two matrix representations can
be related through conjugation by a semiinfinite diagonal matrix of the form
diag

�
1; b�11 ; .b1b2/

�1; .b1b2b3/
�1; : : :

�
.

Similarly, the operator of differentiation with respect to �, which is densely
defined on H , has a semiinfinite matrix representation, D, that can be expressed
in terms of L as

DD
1

gs
.LC tLj�1/�; (3-17)

where the minus subscript denotes projection onto the strictly lower part of the
matrix.

From the canonical (Heisenberg) relation on H , one sees that

Œ@�; ��D 1;

where here � in the bracket and 1 on the right-hand side are regarded as mul-
tiplication operators. With respect to the basis of orthogonal polynomials this
may be reexpressed as �

L; .LC tLj�1/�
�
D gsI: (3-18)

The relations implicit in (3-18) have been referred to as string equations in the
physics literature. In fact the relations that one has, row by row, in (3-18) are
actually successive differences of consecutive string equations in the usual sense.
However, by continuing back to the first row one may recursively decouple these
differences to get the usual equations. To make this distinction clear we will
refer to the row by row equations that one has directly from (3-18) as difference
string equations.

L depends smoothly on the coupling parameter tj in the weight V.�/; see
(2-2). The explicit dependence can be determined from the fact that multiplication
by � commutes with differentiation by tj . This yields our second fundamental
relation on the recurrence coefficients,

gs
@

@tj
LD Œ.Lj /�;L�; (3-19)

which is equivalent to the j -th equation of the semiinfinite Toda lattice hierarchy.
The Toda equations for j D 1 are

�gs
dan;gs
dt1

D b2nC1;gs � b
2
n;gs

; (3-20)

�gs
db2n;gs
dt1

D b2n;gs .an;gs � an�1;gs /: (3-21)
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Hirota equations. One may apply standard methods of orthogonal polynomial
theory [Szegő 1939] to deduce the existence of a semiinfinite lower unipotent
matrix A such that

LD A�1�A;

where

� D

0BBBB@
0 1

0 0 1

0 0
: : :

: : :
: : :

1CCCCA :
(For a description of the construction of such a unipotent matrix we refer to
Proposition 1 of [Ercolani and McLaughlin 2001].)

This is related to the Hankel matrix

HD

0BBB@
m0 m1 m2 : : :

m1 m2 m3 : : :

m2 m3 m4 : : :
:::

:::
:::
: : :

1CCCA ;
where

mk D

Z
R

�ke�g
�1
s V.�/ d�

is the k-th moment of the measure, by

ADA� DH;

D D diagfd0; d1 : : : g;

with

dn D
det HnC1

det Hn
;

where Hn denotes the n�n principal submatrix of H whose determinant may
be expressed as (see [Szegő 1939]) as

det Hn D nŠ OZ
.n/.t1; t2�/;

OZ.n/.t1; t2�/D

Z
R

� � �

Z
R

exp
�
�g�2s

�
gs

nX
mD1

V.�mI t1; t2�/

�g2s

X
m¤`

log j�m��`j
��
dn�; (3-22)

where V.�I t1; t2�C1/D 1
2
�2C t1�C

t2�
2�
�2� . We set det H0 D 1.
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Remark 3.1. One sometimes needs to extend the domain of the tau functions to
include other parameters, such as t1, as we have done here. Doing this presents
no difficulties in the prior constructions.

The diagonal elements may in fact be expressed as dnD
�2nC1;gs
�2n;gs

dn.0/; where

�2n;gs D
OZ.n/ .t1; t2�/

OZ.n/ .0; 0/
(3-23)

D
Z.n/ .t1; t2�/

Z.n/ .0; 0/
; (3-24)

which agrees with the definition of the tau function given in (2-4). The second
equality follows by reducing the unitarily invariant matrix integrals in (3-24)
to their diagonalizations, which yields (3-23) [Ercolani and McLaughlin 2003].
Tracing through these connections, from L to D, one may derive the funda-
mental identity relating the random matrix partition function to the recurrence
coefficients:

b2n;gs D
dn

dn�1
D
�2nC1;gs�

2
n�1;gs

�4n;gs
b2n;gs .0/; (3-25)

which is the basis for our analysis of continuum limits in the next section. (Note
that b20;gs .0/ D 0 and therefore b20;gs � 0.) We will also need a differential
version of this relation:

Lemma 3.2 (Hirota).

an;gs D�gs
@

@t1
log
�
�2nC1;gs
�2n;gs

�
D�gs

@

@t1
log
�
Z.nC1/.t1; t2�/

Z.n/.t1; t2�/

�
; (3-26)

b2n;gs D g
2
s

@2

@t21
log �2n;gs D g

2
s

@2

@t21
logZ.n/.t1; t2�/: (3-27)

(A derivation of this lemma may be found in [Bleher and Its 2005].) It follows
from (3-27), (2-5) and (2-9) that:

Corollary 3.3.

b2n;gs .xI t2�/D x

�
z0.xI t2�/C � � �C

1

n2g
zg.xI t2�/C � � �

�
; (3-28)

zg.xI t2�/D
d2

dt21
eg.xI t1; t2�/jt1D0 (3-29)

D x1�2gzg.x
��1t2�/ (3-30)

is a uniformly valid asymptotic expansion (in the sense of (iii) on page 165).
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Path weights and recurrence coefficients. In order to effectively utilize the rela-
tions (3-18)–(3-19) it will be essential to keep track of how the matrix entries
of powers of the recurrence operator, Lj , depend on the original recurrence
coefficients. That is best done via the combinatorics of weighted walks on the
index lattice of the orthogonal polynomials. For the case of even potentials, the
relevant walks are Dyck paths which are walks, P , on Z which, at each step, can
either increase by 1 or decrease by 1. Set

Pj .m1; m2/D the set of all Dyck paths of length j from m1 to m2: (3-31)

Then step weights, path weights and the .m1; m2/-entry of Lj are, respectively,
given by

!.p/D

�
1 if the p-th step moves from n to nC 1 on the lattice;
b2n if the p-th step moves from n to n� 1;

!.P /D
Y

stepsp2P

!.p/;

Ljm1;m2 D
X

P2Pj .m1;m2/

!.P /: (3-32)

Dyck representation of the difference string equations. The difference string
equations are given (for the 2�-valent case) by (3-18):

ŒL; .LC tL2��1/��D gsI: (3-33)

By parity considerations, when the potential V is even, the only nontautological
equations come from the diagonal entries of (3-34): the .n; n/ entry gives

gs D .LC tL
2��1/nC1;n� .LC tL

2��1/n;n�1: (3-34)

In terms of Dyck paths this becomes

x

n
D b2nC1�b

2
nC t

X
P2P2��1.1;0/

� �Y
mD1

b2nC`m.P /C1�

�Y
mD1

b2nC`m.P /

�
; (3-35)

where `m.P / denotes the lattice location of the path P after the m-th downstep
and we have used the relation x D ngs on the left-hand side of the equation.

We illustrate this more concretely for the case of j D 2� D 4. Referring to
(3-31), the relevant path classes here are

P1.1; 0/D a descent by one step;

P3.1; 0/D paths with exactly one upstep and two downsteps (Figure 1).
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�

�

�

��

Figure 1. Elements of P3.1; 0/.

Note that the structure of the path classes does not actually depend upon n.
This is a reflection of the underlying spatial homogeneity of these equations.
Thus, for the purpose of describing the path classes, one can translate n to 0.

Now applying (3-32) the difference string equation becomes, for n > 0,

1

n
D .b2nC1� b

2
n/C t

˚
b2nC1.b

2
nC b

2
nC1C b

2
nC2/� b

2
n.b

2
n�1C b

2
nC b

2
nC1/

	
;

where, for this example, we have set the parameter x equal to 1.

Dyck representation of the Toda equations. We now pass to a more explicit
form of the Toda equation (3-19) in the case j D 2�:

�
x

2�n

db2n
dt2�

D .L2�/nC1;n�1� .L
2�/n;n�2

D

X
P2P2�.2;0/

� �C1Y
mD1

b2nC`m.P /C1�

�C1Y
mD1

b2nC`m.P /

�
:

Once again we illustrate these equations in the tetravalent case (� D 2). The
relevant path class is

P4.1;�1/D paths with exactly one upstep and three downsteps:

Applying (3-32), the tetravalent Toda equations become

�
1

4n

db2n
dt
D b2nC1b

2
n.b

2
n�1C b

2
nC b

2
nC1C b

2
nC2/

�b2nb
2
n�1.b

2
n�2C b

2
n�1C b

2
nC b

2
nC1/; (3-36)

where we have again used the relation xD ngs and then set the parameter xD 1.

4. Continuum limits

The continuum limits of the difference string and Toda equations will be described
in terms of certain scalings of the independent variables, both discrete and
continuous. As indicated at the outset, the positive parameter gs sets the scale
for the potential in the random matrix partition function and is taken to be small.
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The discrete variable n labels the lattice position on Z�0 that marks, for instance,
the n-th orthogonal polynomial and recurrence coefficients. We also always take
n to be large and in fact to be of the same order as 1=gs; that is, as n and gs
tend to1 and 0 respectively, they do so in such a way that their product

x
:
D gs n (4-37)

remains fixed at a value close to 1.
In addition to the global or absolute lattice variable n, we also introduce a

local or relative lattice variable denoted by k. It varies over integers but will
always be taken to be small in comparison to n and independent of n. The Dyck
lattice paths naturally introduce the composite discrete variable nC k into the
formulation of the difference string and Toda equations which we think of as a
small discrete variation around a large value of n. The spatial homogeneity of
those equations manifests itself in their all having the same form, independent of
what n is, while k in those equations varies over f���1; : : : ;�1; 0; 1; : : : ; �C1g,
the bandwidth of the .2�/-th Toda/difference string equations. Taking �C1� n

will insure the necessary separation of scales between k and n. We define

w
:
D .nC k/gs (4-38)

D xCgs k D x

�
1C

k

n

�
(4-39)

as a spatial variation close to x which will serve as a continuous analogue of the
lattice location along a Dyck path relative to the starting location of the path.

We also introduce the self-similar scalings

s1
:
D x�

1
2 t1; (4-40)

s2�
:
D x��12�t2� ; (4-41)

zw
:
D

�
1C

k

n

�
; (4-42)

that are natural given (2-10). In terms of these scalings, (3-28) may be rewritten
[Ercolani et al. 2008] as

b2n;gs .s2�/D x

�
xz0.s2�/C � � �C

x1�2g

n2g
zg.s2�/C � � �

�
; (4-43)

zg.s2�/D
d2

ds21
eg.s1; s2�/js1D0; (4-44)

and
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b2nCk;gs .s2�/D x

�
f0.s2� ; w/C � � �C

1

n2g
fg.s2� ; w/C � � �

�
; (4-45)

fg.s2� ; w/D w
1�2gzg.s2� zw

��1/: (4-46)

Remark 4.1. The variables sj as defined above differ slightly from their usage
in related works [Ercolani et al. 2008; Ercolani 2011] where sj D � j̨ tj for
appropriate parameters j̨ > 0.

We also introduce a shorthand notation to denote the expansion of the coeffi-
cients of f .s1; s2�C1; w/ around w D x.

Definition 4.2. For w D xCgs k,

f .s1; s2� ; w/D

1X
jD0

fw.j/ jwDx

j Š

�
kx

n

�j
; (4-47)

where the subscript w.j / denotes the operation of taking the j -th derivative with
respect to w of each coefficient of f :

fw.j/ D
X
g�0

@j

@wj
fg.s1; s2� ; w/

1

n2g
:

As valid asymptotic expansions, these representations denote the asymptotic
series whose successive terms are gotten by collecting all terms with a common
power of 1=n in (4-47).

In what follows we will frequently abuse notation and drop the evaluation at
w D x. In particular, we will write:

b2nCk;gs D

1X
jD0

fw.j/

j Š
.gs k/

j
D

1X
jD0

1

j Š

X
g�0

@j

@wj
fg.s2� ; w/

1

n2g
.gs k/

j:

(4-48)
In doing this these series must now be regarded as formal but whose orders are
still defined by collecting all terms in 1=n and gs of a common order. (Recall
that gs � 1=n, so that n�˛gˇs D O.n�.˛Cˇ//). They will be substituted into
the difference string and the Toda equations to derive the respective continuum
equations. At any point in this process, if one evaluates these expressions at
wD x and gs D x=n one may recover valid asymptotic expansions in which the
b2
nCk;gs

have their original significance as valid asymptotic expansions of the
recursion coefficients.

The continuum limit of the Toda equations. One is now in a position to study
the Toda lattice equations (3-36) expanded on the asymptotic series (4-48):



178 NICHOLAS M. ERCOLANI

�
1

n

d

ds
f .s; w/D

P
P2P2�.1;�1/

�
�C1Q
mD1

1P
jD0

fw.j/

j Š
.gs .`m.P /C1//

j
�

�C1Q
mD1

1P
jD0

fw.j/

j Š
.gs `m.P //

j

�
:

From now on we will take s1 D 0, since its role in determining the structure of
the asymptotic expansions of the bnCk is now completed, and set s2� D s.

Collecting terms in these equations order by order in orders of 1=n one has
a hierarchy of equations that, in principle, allows one to recursively determine
the coefficients of (4-43). We will refer to this hierarchy as the continuum Toda
equations. (Note that one has such a hierarchy for each value of �.) Of course
this is a standard procedure in perturbation theory. The equations we will derive
are PDEs in the form of evolution equations in which w, now regarded as a
continuous variable, is the independent spatial variable and s2� is the temporal
variable. One must still determine, at each level of the hierarchy, which solution
of the PDE is the one that corresponds to the expressions given for fg in (4-46).
This amounts to a kind of solvability condition. This process was carried out
fully in [Ercolani et al. 2008; Ercolani 2011]. We will now state the results of
that analysis.

Theorem 4.3 [Ercolani et al. 2008]. The continuum limit, to all orders, of the
Toda Lattice equations as n!1 is given by the following infinite order partial
differential equation for f .s; w/:

�
df

ds
D F .�C1/.gsIf; fw ; : : : ; fw.j/ ; : : : /

:
D

X
g�0

g2gs F .�C1/g .f; fw ; fw.2/ ; � � � ; fw.2gC1//

D c�f
�fw Cg

2
sF

.�C1/
1 .f; fw ; fww ; fwww/C � � � (4-49)

for .s; w/ near .0; 1/ and initial data given by f .0;w/D w;
(4-50)

F .�C1/g D

X
�2ƒ2gC1

`.�/��C1

� X
È2P2�.1;�1/

�
m�.`1C 1; : : : ; `�C1C 1/

�m�.`1; : : : ; `�C1/
��fw�

�Š
; (4-51)

where ƒ2gC1 denotes the set of number partitions �D .�1; �2; : : : / such that
�1 � �2 � �3 � � � � and whose size j�j D

P
i �i equals 2g C 1; we call

`.�/ D
P
j rj .�/ (where rj .�/ D #f�i j �i D j g) the length of �. The w-

derivatives of f have been expressed in multiindex notation so that

fw� D fw.�1/ � � � fw.��C1/ :
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Recall also that the monomial symmetric function [Macdonald 1995] associated
to the partition �, appearing inside the inner sum of (4-51), is given by

m�.x1; : : : ; x�C1/D
1

r.�/Š

X
�2S�C1

x
�1
�.1/
� � � x

��C1
�.�C1/

; (4-52)

where division by the factor r.�/ŠD
Q
j rj .�/Š ensures that there is no redun-

dancy among the (monic) terms appearing in the symmetric polynomial. Finally,
since a Dyck path in P2�.1;�1/ is uniquely determined by the locations `m of
its downsteps, the inner sum of (4-51) is well defined.

To help see how the expression (4-51) for the forcing term F
.�C1/
g works, let

us illustrate it in the simplest case where gD 0. Then there is only one partition,
�D .1/ in ƒ1 and

m.1/.x1; : : : ; x�C1/D x1C � � �C x�C1;

m.1/.`1C 1; : : : ; `�C1C 1/�m.1/.`1; : : : ; `�C1/D �C 1:

Hence, c� D .�C 1/
�
2�
�C1

�
.

We now introduce the global conservation law structure (4-53) of these con-
tinuum Toda equations.

Proposition 4.4. Equation (4-49) may be rewritten as

�
df

ds
D F .�C1/ D @w OF

.�C1/

:
D @w

X
g�0

g2gs
OF .�C1/g ; (4-53)

where

OF .�C1/g

D
P

�2ƒ2g

`.�/��C1

P
È2P2�.1;�1/

� P
���

1

j���jC 1

�
�
�

�
m�.`1; : : : ; `�C1/

�
1

r.�/Š

fw�

�Š
:

Here � � � means � is a partition such that �1 � �1; : : : ; ��C1 � ��C1 and
j���j D

P
i .�i ��i /D j�j � j�j. The combinatorial coefficient�

�
�

�
D

�
�1
�1

�
� � �

�
��C1
��C1

�
together with the factor j���j C 1 account for the multiplicities induced by
w-differentiation (see Remark 4.8).
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It is straightforward to check the (key) second equality in (4-53) by direct
differentiation. We can again take the special case of g D 0 as an example for
which �D �D∅ and m∅ � 1, so that

OF
.�C1/
0 D

�
2�
�C1

�
f �C1;

@w OF
.�C1/
0 D .�C 1/

�
2�
�C1

�
f �fw D c�f

�fw D F
.�C1/
0 :

One is now in a position to deduce the form of the Toda hierarchy. This is
done by setting x D 1 so that gs D 1=n. One then collects all terms of order
n�2g in the resulting expansion of (4-49) and this will be a partial differential
equation in s and w that we refer to as the g-th equation in the continuum Toda
hierarchy.

At leading order in the hierarchy one observes that, for general �, the contin-
uum Toda equation is an inviscid Burgers equation [Whitham 1974]:

d

ds
f0 D�

c�

�C 1
@w.f0/

�C1; (4-54)

with initial data f0 D w. A solution exists and is unique for sufficiently small
values of s. It may be explicitly calculated by the method of characteristics, also
known as the hodograph method in the version we now present. Consider the
(hodograph) relation among the independent variables .s; w; f0/:

w D f0C c�sf
�
0 : (4-55)

Lemma 4.5. A local solution of (4-54) is implicitly defined by (4-55).

Proof. The annihilator of the differential of (4-55),

.1C �c�sf
��1
0 / df0� dwC c�f

�
0 ds;

is a two-dimensional distribution locally on the space .s; w; f0/. An initial curve
over the w-axis (parametrized as the graph of a function f0.w/), transverse to
the locus where 1C �c�sf ��10 D 0 locally determines a unique integral surface
foliated by the integral curves of the characteristic vector field

df0

ds
D 0; (4-56)

dw

ds
D c�f

�
0 ; (4-57)

f0.0; w/D f0.w/: (4-58)
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Equation (4-56) requires that along an integral curve of the characteristic vector
field, f0 is constant; i.e.,

0D
df0

ds
.s; w.s//D

@f0

@s
C
@f0

@w

dw

ds
D
@f0

@s
C c�f

�
0

@f0

@w
;

by (4-57), which is equivalent to (4-54). Using (4-58) to set f0.0; w/D w pins
down our solution uniquely. �

Remark 4.6. We note that the numerical coefficients appearing in these Burgers
equations depend only on the total number of Dyck paths in P2�.1;�1/.

From (4-55) and the self-similar form of f0,

f0.s; w/D wz0.sw
��1/; (4-59)

one finds [Ercolani et al. 2008] that

z0.s/D
X
j�0

cj� �j s
j ; (4-60)

where

c� D 2�
�
2��1
��1

�
D .�C 1/

�
2�
�C1

�
; (4-61)

�j D
1

j

�
�j
j�1

�
D

1

.� � 1/j C 1

�
�j
j

�
: (4-62)

When � D 2, �j is the j -th Catalan number. For general � these are the higher
Catalan numbers which play a role in a wide variety of enumerative combinatorial
problems [Pierce 2007].

Continuum limits of the difference string equations. The continuum difference
string hierarchies may be derived from the difference string equations (3-35) in
a manner completely analogous to what was done with the Toda equations in the
previous subsection.

Expanding (3-35) on the asymptotic series (4-48) one arrives at the following
asymptotic equations:

1

n
D

1X
jD1

fw.j/

j Š

�
1

n

�j
C 2�s

X
P2P2��1.0;�1/

� �Y
mD1

1X
jD0

fw.j/

j Š

�
`m.P /C1

n

�j
�

�Y
mD1

1X
jD0

fw.j/

j Š

�
`m.P /

n

�j�
:

The equations at leading order, O.n�1/, are
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1D @wf0C 2�s
X

P2P2��1.1;0/

�f ��10 @wf0 D @wf0C 2�
�
2��1
�

�
s�f ��10 @wf0;

or, equivalently,

@w.w�f0� c�sf
�
0 /D 0; (4-63)

which one directly recognizes as the spatial derivative of the hodograph solution
(4-55). Evaluating that solution at w D 1 yields

c�sz
�
0 C z0� 1D 0; (4-64)

which is the functional equation for the generating function of the �-th higher
Catalan numbers, mentioned in the previous subsection.

The terms of the equations at O.n�2g�1/ can be computed directly and are
found to have the form

@w Œfg C c�s�f
��1
0 fg �C 2s

 
c�@w

X
0�kj<g

k1C���Ck�Dg

fk1 � � �fk�

!
C @w

g�1X
kD0

fkw.2g�2k/

.2g�2kC1/Š

C2�s
�
F
.�/
1 Œ2g� 2�CF

.�/
2 Œ2g� 4�C � � �CF .�/g Œ0�

�
D 0; (4-65)

where F .�/g Œ2m� denotes the coefficient of n�2m in

F .�/g D

X
�2ƒ2gC1

`.�/��

� X
È2P2��1.0;�1/

�
m�.`1C 1; : : : ; `� C 1/�m�.`1; : : : ; `�/

��fw�
�Š

D @w
X
�2ƒ2g

`.�/��

X
È2P2��1.0;�1/

�X
���

1

j���jC 1

�
�

�

�
m�.`1; : : : ; `�/

�
1

r.�/Š

fw�

�Š

D @w OF
.�/
g :

The above relations are derived in exactly the same manner as those which lead
to Theorem 4.3 and Proposition 4.4.

As a consequence of this result one sees that the continuum difference string
equation is directly integrable:

fg D
�2s

1Cc�s�f
��1
0

(�
c�

X
0�kj<g

k1C���Ck�Dg

fk1 � � � fk�

�

C�
�
yF
.��1/
1 Œ2g�2�C yF

.��1/
2 Œ2g�4�C� � �C yF .��1/g Œ0�

�
C
1

2s

g�1X
kD0

fkw.2g�2k/

.2g�2kC1/Š

)
:
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Setting w D 1 and applying (4-64) to eliminate s this reduces to

zg D
2z0.z0� 1/

.� � .� � 1/z0/

�� X
0�kj<g

k1C���Ck�Dg

zk1
z0
� � �
zk�
z0

�
C

1

2.1� z0/

g�1X
kD0

fkw.2g�2k/ jwD1

.2g� 2kC 1/Š

C
�

c�z
�
0

�
yF
.��1/
1 Œ2g� 2�C yF

.��1/
2 Œ2g� 4�C � � �C yF .��1/g Œ0�

�ˇ̌̌
wD1

�
:

It is immediate from this representation that zg is a rational function of z0.
A priori this antiderivative should also include a constant term (in w; it could
depend on s). This would lead to a term of the form c.s/=.� � .� � 1/z0/.
However, in [Ercolani 2011] it is shown, by an independent argument, that the
pole order in z0 at �=.� � 1/ is always greater than one. Hence the constant of
integration must be zero. With further effort this can be refined to:

Theorem 4.7 [Ercolani 2011].

zg.z0/D
z0.z0� 1/P3g�2.z0/

.� � .� � 1/z0/5g�1

D z0

�
a
.g/
0 .�/

.��.��1/z0/2g
C

a
.g/
1 .�/

.��.��1/z0/2gC1
C � � �C

a
.g/
3g�1.�/

.��.��1/z0/5g�1

�
;

where P3g�2 is a polynomial of degree 3g � 2 in z0 whose coefficients are
rational functions of � over the rational numbers Q and a.g/3g�1.�/¤ 0.

Remark 4.8. A key element in the proof of Proposition 4.4 is the observation
that differentiation with respect to w adjusts the multinomial labeling of partial
derivatives in the expansion according to the edges of the Hasse–Young graph
(Figure 2). This graph describes the adjacency relations between Young diagrams
of differing sizes. The edges describe which partitions of size 2gC1 are covered
by a given partition of size 2g. Conversely it describes which partitions of size
2g cover a partition of size 2gC 1 which in the setting described here acts as an

Figure 2. � Hasse–Young graph (courtesy of D. Eppstein).
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antidifferentiation operator. This kind of structure was called a differential poset
by Stanley and systematically examined in [Stanley 1988].

5. Determining eg

The spatial extension of the basic identity (3-25) reads

b2nCk D
�2
nCkC1

�2
nCk�1

�4
nCk

b2nCk.0/I (5-66)

we have, by taking logarithms,

log �2nCkC1� 2 log �2nCkC log �2nCk�1 D log.b2nCk/� log.b2nCk/.0/; (5-67)

where the initial value b2
nCk

.0/D w is given by the recursion relations of the
Hermite polynomials. As in [Ercolani et al. 2008], we can use formula (5-67) to
recursively determine eg in terms of solutions to the continuum equations. We
use the asymptotic expansion of b2

nCk
which has the form (4-45):

b2nCk D x

1X
gD0

fg.s/n
�2g : (5-68)

Note that the left-hand side of (5-67) has the form of a centered second
difference: �1�2nCk���1�

2
nCk

. It follows that this expression has an expansion
for large n involving only even derivatives of the spatial variable w. We have, at
order n�2g ,

@2

@w2
Eg.s; w/D�

gX
`D1

2

.2`C 2/Š

@2`C2

@w2`C2
Eg�`.s; w/

C the n�2g terms of log
� 1X
mD0

1

n2m
fm.s/

�
; (5-69)

where Eh.s; w/Dw2�2heh.w��1s/. In [Ercolani 2011] it was shown that eg is
rational in z0 with poles located only at z0 D �=.� � 1/. However we will now
prove the more refined result stated in Theorem 2.3.

The proof of this theorem is by induction on g. (The base case of g D 2 is
established by direct calculation [Ercolani et al. 2008].) We assume that (2-11)
holds for all k < g. We state here, without proof, some straightforward lemmas
and propositions describing the derivatives of (2-11) (details may be found in
[Ercolani 2011] where similar lemmas are proved for the zg ).

Lemma 5.1. .Ek/w.p/.s; w/D
pX
jD0

.� � 1/jQ
.p;k/
j .�/w2�2kC.��1/j�psj e

.j /

k
;
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where e.j /
k
D d j ek=d Qs

j , Qs D sw��1,

Q
.p;k/
j .�/DQ

.p�1;k/
j�1 .�/Cf.��1/j�.2k�3Cp/gQ

.p�1;k/
j .�/; 0<j <p;

Q
.p;k/
0 .�/D .2�2k/p; p > 0;

Q.p;k/p .�/D 1;

Q
.p;k/
j .�/D 0; j > p or j < 0:

Lemma 5.2. For 1 < k < g and j > 0,

e
.j /

k
D .�1/j cj� z

j�C1
0

�3k�4CjX
`D0

c
.k;j /

`
.�/

.� � .� � 1/z0/2kC`Cj�1

�
;

c
.k;j /

`
.�/D

�
.j � 1/� � .2kC `C .j � 3//

�
c
k;j�1

`
.�/

C �.2kC `C .j � 3//c
k;j�1

`�1
.�/;

c
.k;j /

`
.�/D 0 ` < 0; `� 3k� 3C j;

c
.k;0/

`
.�/D c

.k/

`
.�/:

Lemma 5.3. For 1 < k < g and j > 0,

sj e
.j /

k
D

z0

.� � 1/j

jX
rD0

3k�4CjCrX
mDr

.�1/j�r
�
j
r

�
c
.k;j /
m�r

.� � .� � 1/z0/2kCm�1
;

where mD `C r .

Proposition 5.4. For 1 < k < g and p > 0,

.Ek/w.p/.s; 1/D .2� 2k/pC
.k/

Cz0

3kC2p�4X
mD0

Pp
jD0Q

.p;k/
j .�/

Pm
rD0.�1/

j�r
�
j
r

�
c
.k;j /
m�r .�/

.� � .� � 1/z0/2kCm�1
:

Lemma 5.5.
pX
jD0

Q
.p;k/
j .�/

mX
rD0

.�1/j�r
�
j
r

�
c.k;j /m�r .�/D 0;

for mD 0; 1; : : : ; p� 1.

By this vanishing lemma, the minimal pole order of the expansion in Propo-
sition 5.4 is � 2k � 2 C p. In particular the minimal pole orders coming
from terms involving Ek on the right-hand side of (5-69) are all greater than
2k� 2C .2gC 2� 2k/D 2g.
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Proposition 5.6. The n�2g term of log
1P
mD0

1

n2m
fm.s/

ˇ̌̌
wD1

is given by

X
j�jDg

.�1/`.�/�1Q
j�1 rj .�/Š

Y
j�1

�
zj

z0

�rj .�/
;

which, by Theorem 4.7, equalsX
j�jDg

.�1/`.�/�1Q
j�1 rj .�/Š

Y
j�1

�
a
.j /
0 .�/

.��.��1/z0/2j
C � � �C

a
.j /
3j�1.�/

.��.��1/z0/5j�1

�rj .�/
:

This result shows that the minimal pole order coming from the log terms in
(5-69) is once again greater than

P
j�1 2jrj D 2g.

The preceding lemmas and propositions provide explicit Laurent expansions
(in z0) for all terms on the right-hand side of (5-69), with two exceptions:

@2g

@w2g
E1.s; w/D

@2g

@w2g
e1.w

��1s/; e1 D�
1
12

log.� � .� � 1/z0/; (5-70)

and

@2gC2

@w2gC2
E0.s; w/D

@2gC2

@w2gC2
w2e0.w

��1s/;

e0 D
1
2

log z0C
.� � 1/2

4�.�C 1/
.z0� 1/

�
z0�

3.�C 1/

� � 1

�
: (5-71)

With a small modification (5-70) may be brought into line with Proposition 5.4:

Proposition 5.7.

.E1/w.p/.s; 1/

D z0

2p�1X
mD0

Pp
jD1Q

.p;1/
j .�/

Pm
rD0.�1/

j�r
�
j
r

�
c
.1;j /
m�r .�/

.� � .� � 1/z0/mC1

D�
.p� 1/Š

12

C
1

� � 1

2pX
mD1

Pp
jD1Q

.p;1/
j .�/

Pm
rD0.�1/

j�r
�
j
r

�˚
�c
.1;j /
m�r�1.�/� c

.1;j /
m�r .�/

	
.� � .� � 1/z0/m

;

with c.1;1/0 D
1
12
.� � 1/. All other coefficients are then specified by the corre-

sponding recursions stated in Lemmas 5.1–5.3 with k set to 1.

A variant of the vanishing Lemma 5.5 also holds for .E1/w.p/.s; 1/:
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Lemma 5.8.
pX
jD1

Q
.p;1/
j .�/

mX
rD0

.�1/j�r
�
j
r

��
c.1;j /m�r .�/� �c

.1;j /
m�r�1.�/

�
D 0;

for mD 0; 1; : : : ; p� 1.

It follows that the minimal pole order of the expansion in Proposition 5.7 is at
least p and so the corresponding contribution to the minimal pole order of (5-69)
is � 2g.

Finally we observe that for p � 3, @p

@wp
E0.s; w/ is a rational function of f0

and its w-derivatives:

Proposition 5.9.

@p

@wp
E0.s; w/

D
@p

@wp

�
w2 1

2
logf0C

.� � 1/2

4�.�C 1/
.f0�w/

�
f0�

3.�C 1/

� � 1
w

�
�w2 1

2
logw

�
D

�
p
2

��f0w
f0

�
w.p�3/

Cpw

�
f0w

f0

�
w.p�2/

C
w2

2

�
f0w

f0

�
w.p�1/

C
.� � 1/2

2�.�C 1/

� bp2 cX
jD0

�
p
j

�
f0w.j/f0w.p�j/ �

2�C 1

� � 1

�
wf0w.p/ Cpf0w.p�1/

��

C .p� 3/Š
�
�
1

w

�p�2
: (5-72)

Each line of the proposition can be established directly by induction, starting
with the base case p D 3. It then follows from Proposition 3.1(iii) of [Ercolani
2011] that the minimal pole order contributed by (5-71) is � 2g.

We are now in a position to outline the

Proof of Theorem 2.3. In [Ercolani 2011, Theorem 1.3] it was shown that

eg.z0/D
.z0� 1/qd.g/.z0/

.� � .� � 1/z0/o.g/
; (5-73)

where qd.g/.z0/ denotes a polynomial of degree d.g/ in z0. We first want to
determine the relation between this degree and the pole order o.g/. To this
end we observe from Propositions 5.4, 5.6, 5.7, and 5.9 that the right-hand side
of (5-69), evaluated at w D 1, is a rational function in z0 that approaches a
finite constant value as z0!1. From the form of the left-hand side of (5-69)
evaluated at w D 1 one also sees that its asymptotic order (as z0!1) is the
same as that of eg . Hence, d.g/D o.g/�1 and this shows that (2-11) is valid up
to the determination of the minimal and maximal pole orders at z0 D �=.� � 1/,
to which we now turn.
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In the preceding lemmas and propositions we have seen that, for all terms
on the right-hand side of (5-69), the minimal pole order is � 2g. Furthermore,
from these same representations together with Proposition 3.1(iii) of [Ercolani
2011] one sees that, with the possible exception of the genus 0 terms in (5-72),
the maximal pole order of the terms on the right-hand side of (5-69) is 5g� 1.
The apparent maximal pole order in (5-72) is 4gC 3, which exceeds the stated
bound when g D 2; 3. This maximal order comes from terms containing the
factor f0w.2gC2/ , which are, specifically,�
1

2

f0w.2gC2/

f0
�
.2�C 1/.� � 1/

2�.�C 1/
f0w.2gC2/ C

.� � 1/2

2�.�C 1/
.f0f0w.2gC2//

�
wD1

D
f0w.2gC2/

2f0

ˇ̌̌
wD1

�
1�

.2�C 1/.� � 1/

�.�C 1/
z0C

.� � 1/2

�.�C 1/
z20

�
D

f0w.2gC2/

2�.�C 1/f0

ˇ̌̌
wD1

˚
.� � .� � 1/z0/C .� � .� � 1/z0/

2
	
:

Hence the maximal pole order contributed by the genus 0 terms is � 4gC 2.
Indeed, one may go further with this type of analysis to show that the coefficient
of order O

�
.��.��1/z0/

�4g�2
�

also vanishes. In establishing this the following
identity, which is a direct consequence of the quadratic relation satisfied by the
generating function for the Catalan numbers 1

gC1

�
2g
g

�
, proves useful:

.2g/Š

gŠ
D

gX
jD1

�
gC1
j

�.2j � 2/Š.2.g� j //Š
.j � 1/Š.g� j /Š

:

It follows that the maximal pole order coming from genus 0 terms is � 4gC 1
which is < 5g� 1 for g > 2. This establishes that the pole orders on the right-
hand side of (5-69) are always bounded between 2g and 5g� 1. For g > 2, the
case-by-case checking of terms on the right-hand side of (5-69) that has been
carried out in this subsection shows that the maximal pole order is realized by the
term in Proposition 5.6 corresponding to the partition � of 2g having minimal
length (= 1), i.e., the partition whose Young diagram is a single row. This implies
that the residue of the maximal order pole is a.g/3g�1.�/, which is nonzero by
Theorem 4.7. (This also holds for gD 2, as can be checked by direct calculation;
see, for example, [Ercolani 2011, Section 1.4.2].) Hence the maximal order
pole is realized. Now, given that eg has the form (5-73) with d.g/D o.g/� 1,
it follows that @2Eg.s; 1/=@w2 raises the minimum pole degree by 2 and the
maximum pole degree by 4 with the coefficient at this order given by (2-14).

To establish (2-13) first note that by Euler’s relation, 2� 2g Dm� �mCF
for a g-map where m is the number of (2�-valent) vertices and F is the number
of faces. Since F � 1, one immediately sees that the number of vertices of such
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a map must satisfy the inequality m� 2g�1
��1

: It follows that

e.j /g .s D 0/D 0 for j � r Dmax
�
1;
2g� 1

� � 1

�
(eg must vanish at least simply at s D 0 since �2n.s D 0/ � 1). Via Cauchy’s
theorem these conditions may be reexpressed as

0D
1

2�i

I
s�0

eg.s/

sjC1
ds D

�1

2�i

I
z�1

z�j�1q5g�6.z/

.� � .� � 1/z/5g�6.z� 1/j
dz;

for j � r , where in the second line we have rewritten eg as a rational function
of z ((5-73) with o.g/D 5g� 5) and employed the change of variables

ds

dz
D�

� � .� � 1/z

z�C1
;

which may be deduced from the string equation (4-64). This yields a contour
integral in z centered at 1. Now one can see that these vanishing conditions are
satisfied if and only if q.j /5g�6.z D 1/D 0 for j � r , which in turn proves (2-13).

Finally we turn to the determination of the constant C .g/. By Proposition 5.6,
contributions to the constant term of eg come only from the first sum on the
right-hand side of (5-69). The parts of this coming from g D 0 and g D 1 are,
by Propositions 5.9 and 5.7, respectively,

�2
.2g� 1/Š

.2gC 2/Š
and 2

.2g� 1/Š

.2g/Š

1

12
:

At higher genus, k < g, the contribution to the constant term is determined by
Lemma 5.1 to be

�2
.2� 2k/2g�2kC2

.2g� 2kC 2/Š
C .k/:

Hence, by (5-69) we have

.2� 2g/.1� 2g/C .g/

D�2
.2g� 1/Š

.2gC 2/Š
C 2

.2g� 1/Š

.2g/Š

1

12
� 2

g�1X
kD2

.2� 2k/2g�2kC2

.2g� 2kC 2/Š
C .k/;

from which (2-15) immediately follows. �

6. The case of odd valence

In the case when j is odd in the weight (2-3) for V , there is clearly a problem in
applying the method of orthogonal polynomials as it was outlined in Section 3.
Very recently, however, a generalization of the equilibrium measure (which
governs the leading order behavior of the free energy associated to (2-1)) was
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developed and applied to this problem [Bleher and Deaño 2012]. It is based on
generalizing to a class of complex valued non-Hermitian orthogonal polynomials
on a contour in the complex plane other than the real axis. These extensions were
motivated by new ideas in approximation theory related to complex Gaussian
quadrature of integrals with high order stationary points [Deaño et al. 2010].

But even when the issue of existence of appropriate orthogonal polynomials
has been resolved, there are still a number of significant obstacles to deriving
results like Theorem 2.3 that are not present when the valence j is even. For
odd valence there is an additional string of recurrence coefficients, the diagonal
coefficients an of L, whose asymptotics need to be analyzed. This in turn requires
that the lattice paths used to define and analyze the Toda and difference string
equations must be generalized to the class of Motzkin paths which can have
segments where the lattice site remains fixed rather than always taking a step
(either up or down) as was the case for Dyck paths.

Nevertheless, all these constructions have been carried out in [Ercolani and
Pierce 2012] to derive the hierarchies of continuum Toda and difference string
equations when the valence j is odd.

The recurrence coefficients again have asymptotic expansions with continuum
representations given by

anCk;N D h.s1; s2�C1; w/D x
1=2

X
g�0

hg.s1; s2�C1; w/n
�g (6-74)

and

hg.s1; s2�C1; w/

D�w1�g
X

2g1CjDgC1
g1�0;j>0

1

j Š

�
@jC1

@s1@ Qwj

�
Qw2�2g1eg1

�
.w Qw/�

1
2 s1; .w Qw/

�� 1
2 s2�C1

��
QwD1

: (6-75)

The off-diagonal coefficients have corresponding representations which are much
as they were in the even valence case,

b2nCk;N D f .s1; s2�C1; w/D x
X
g�0

fg.s1; s2�C1; w/n
�2g ; (6-76)

fg.s1; s2�C1; w/D w
2�2g @

2

@s21
eg.w

�1=2s1; w
��1=2s2�C1/: (6-77)

The coefficients in these expansions have a self-similar structure given by

hg.s1; s2�C1; w/D w
1
2
�gug.s1w

�1=2; s2�C1w
�� 1

2 /; (6-78)

fg.s1; s2�C1; w/D w
1�2gzg.s1w

�1=2; s2�C1w
�� 1

2 /: (6-79)



CONSERVATION LAWS OF RANDOM MATRIX THEORY 191

At leading order the continuum Toda equations are

@

@s

�
h0
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�
C .2�C 1/

�
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f0B12 B11

�
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@w

�
h0
f0

�
D 0; (6-80)

and the leading order continuum difference string equations are�
0

1

�
D

�
A11 A12
f0A12 A11

�
@

@w

�
h0
f0

�
; (6-81)

where the coefficients of the matrix in (6-80) are specified by

B11 D

�X
�D1

�
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2��1; ���; ���C1
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2��1
0 f

���C1
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B12 D

�X
�D0

�
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2�; ���; ���
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0 f

���
0 ; (6-83)

and those of the matrix in (6-81) by

A11D1C.2�C1/s
��1P
�D0

�
2�

2�C1; ����1; ���

�
.���/h

2�C1
0 f

����1
0 ; (6-84)

A12D.2�C1/s
��1P
�D0

�
2�

2�; ����1; ���C1

�
.���C1/h

2�
0 f

����1
0 : (6-85)

Remark 6.1. The index � appearing in the trinomial coefficients corresponds to
the number of flat steps, 2�� 1 or 2�, in the Motzkin paths giving rise to that
term.

It is straightforward to see that (6-80) may be rewritten in conservation law
form as

@
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�
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f0C
1
2
h20

�
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@

@w

�
‰1

‰2C h0‰1

�
D 0; (6-86)

where the coefficients in the flux vector are given by

‰1 D

�X
�D0

�
2�C1

2�; ���; ���C1

�
h
2�
0 f

���C1
0 ; (6-87)

‰2 D

�X
�D0

�
2�C1

2�C1; ����1; ���C1

�
h
2�C1
0 f

���C1
0 : (6-88)

Recently, we have determined that the equations (6-81) are in fact a differenti-
ated form of the generalized hodograph solution of the conservation law (6-86).
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This hodograph solution is given by

ˆ1
:
D h0C .2�C 1/sB12 D 0; (6-89)

ˆ2
:
D f0C .2�C 1/sB11 D w: (6-90)

Analogous to what was done in Theorem 2.3 we expect to determine closed
form expressions for all the coefficients in the topological expansion with odd
weights. The first few of these, for the trivalent case, are [Ercolani and Pierce
2012]
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2
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�
3
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�
z20
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�
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1
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3.4z40 � 93z
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240
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64Z
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32Z2
�
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48Z3
�
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8Z4
�
21

5Z5
; Z D z0� 3;

(6-91)

where z0 is implicitly related to t3 by the polynomial equation

1D z20 � 72t
2
3 z
3
0 :

In fact, z0.t3/ is the generating function for a fractional generalization of the
Catalan numbers. Its m-th coefficient counts the number of connected, non-
crossing symmetric graphs on 2mC 1 equidistributed vertices on the unit circle
(V. U. Pierce, private communication).

7. Concluding remarks

7.1. Spectrum. Nothing has been said, in this article, about the eigenvalues
of the random matrix M although this is at the heart of the Riemann–Hilbert
analysis underlying all of our results. The essential link comes through the
equilibrium measure [Ercolani and McLaughlin 2003; Ercolani et al. 2008], or
density of states, for these eigenvalues. When tj D 0 in (2-2), this equilibrium
measure reduces to the well known Wigner semicircle law. As tj changes this
measure deforms; but, for tj satisfying the bounds implicit in (2-5) (i), its support
remains a single interval, Œ˛; ˇ�. The edges of the spectrum ˛.tj /; ˇ.tj / evolve
dynamically with tj . In fact can show that ˛ and ˇ are the Riemann invariants
of the hyperbolic system (6-80). In the case of even valence these invariants
collapse to ˙2

p
z0 where z0 is the generating function upon which all the eg
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are built, as described in Theorem 2.3. So the edge of the spectrum is indeed
directly related to the genus expansion (2-5).

7.2. Random surfaces. It follows from Corollary 3.3 and the map-theoretic
interpretation of eg given by (2-8) that zg.tj / is a generating function for enu-
merating j-regular g-maps with, in addition, two legs. A leg is a univalent
vertex; that is, a vertex with just one adjacent edge, connected to some other
vertex of the map. In particular z0.t/ enumerates such maps on the Riemann
sphere or what are more commonly referred to as two-legged planar maps. In a
remarkable paper, [Schaeffer 1997], building on prior work of Cori and Vauquelin
[1981], Schaeffer found a constructive correspondence between two-legged 2�-
regular planar maps and 2�-valent blossom trees. A 2�-valent blossom tree is a
rooted 2�-valent tree, with each external vertex taken to be a leaf that is colored
either black or white and such that each internal (nonroot) vertex is adjacent to
exactly � � 1 black leaves. This gives another interpretation of z0.t2�/ as the
generating function for the enumeration of blossom trees. It seems reasonable to
hope that the arithmetic data implicit in the coefficients a.g/m .�/ in Theorem 4.7
(resp. c.g/m .�/ in Theorem 2.3) might provide a means, such as sewing rules, for
constructing two-legged 2�-regular g-maps (resp. pure 2�-regular g-maps) from
blossom trees.

In another direction Bouttier, Di Francesco and Guitter [Di Francesco 2006]
have studied the combinatorics of geodesic distance for planar maps. They
define the geodesic distance of a two-legged graph to be the minimum number
of edges crossed by a continuous path between the two legs and study rd .t2�/,
the generating function for enumerating all two-legged 2�-valent planar maps
whose geodesic distance is � d . They find surprising and elegant closed form
expressions for the rd .t2�/. The statistics of planar maps is a natural stepping
off point for the study of random surfaces. There has been a lot of recent activity
in this direction by Le Gall and his collaborators related to the work of Schaeffer
and Bouttier et al. See, for example, [Le Gall 2010].

7.3. Enumerative geometry of moduli spaces. A different (from matrix mod-
els) representation of 2D quantum gravity may be given in terms of intersection
theory on the moduli space of stable curves (Riemann surfaces), Mg;n and from
this alternate perspective Witten conjectured that a generating function for the
intersection numbers of tautological bundles on Mg;n should be “given by” a
double-scaling limit of the differentiated free energy (3-28) for matrix models.
(A precise description of this double-scaling limit may be found in [Ercolani
2011].) He further conjectured that this intersection theoretic generating function
should, with respect to appropriate choices of parameter variables, satisfy the
Korteweg–de Vries (KdV) equation. Subsequently, Kontsevich [1992] was able
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to outline a proof of Witten’s KdV conjecture based on a combinatorial model
of intersection theory on Mg;n. This model expresses tautological intersections
in terms of sums over trivalent graphs on a genus g Riemann surface. He was
then able to recast this sum in terms of a special matrix integral involving cubic
weights on which the proof of Witten’s KdV conjecture is based. For a readable
overview on the above circle of ideas we refer to [Okounkov and Pandharipande
2009].

However, the first Witten conjecture, on relating the intersection-theoretic
free energy to the matrix model free energy (see (2-5)), remains open. With the
results described in this paper it may now be possible to determine if, and in
precisely what sense, this conjecture might be true and to see if this leads to
connections between the KdV equation in the Witten–Kontsevich model and the
conservation laws given by (6-80). In addition, given the recent results on matrix
models with odd dominant weights [Bleher and Deaño 2012; Ercolani and Pierce
2012], it may now be possible to give a rigorous treatment of Kontsevich’s matrix
integral which, up to now, has been formal.

More recently there have been other, perhaps more natural, approaches to the
proof of Witten’s KdV conjecture [Kazarian and Lando 2007; Mirzakhani 2007;
Goulden et al. 2009], in terms of coverings of the Riemann sphere and Hurwitz
numbers for which the generating functions specified in Theorem 2.3 should also
have a natural interpretation.

7.4. Analytical deformations and critical parameters. In [Ercolani 2011] it
was observed that the equilibrium measure (see concluding remark Section 7.1)
for the weight V, with j D 2� in (2-2), may be reexpressed as

�Vt .�/D z0�0.�/C .1� z0/�1.�/; (7-92)

where �0 is the equilibrium measure for V D 1=2�2 (the semicircle law) and �1
is the equilibrium measure for V D �2� ; that is, the general measure is a linear
combination, over z0, of two extremal monomial equilibrium measures. For
z0 2 Œ0; 1� (which corresponds to t2� 2 Œ0;1�), this combination is convex and
(7-92) is indeed a measure with a single interval of support in � 2 R. This may
be analytically continued to a complex z0 neighborhood of Œ0; 1� so that (7-92)
remains a positive measure along an appropriate connected contour (“single
interval”) in the complex �-plane. For � D 2 this continuation may be made up
to a boundary curve in the complex z0-plane passing through z0 D 2 (with a
corresponding image in the complex t4 plane). (For a related result see [Bertola
and Tovbis 2011].) This should be extendable for general �. The mechanism for
carrying out this continuation is to regard (7-92) as a z0-parametrized family of
holomorphic quadratic differentials. The candidate for the measure’s support is
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then an appropriate bounded real trajectory of the quadratic differential. Outside
the boundary curve, the Riemann–Hilbert analysis used in this paper may be
analytically deformed and our results extended. The boundary may be regarded
as a curve of critical parameters for this deformation. This curve is precisely the
locus where the Riemann invariants, that determine the edge of the spectrum (as
described in concluding remark 7.1) exhibit a shock.

This scenario is reminiscent of that for the small „-limit of the nonlinear
Schrödinger equation [Jin et al. 1999; Kamvissis et al. 2003] in which the
analogue of our boundary curve is the envelope of dispersive shocks. In that
setting it is the Zakharov–Shabat inverse scattering problem that shows one how to
pass through the dispersive shocks and describe a continuation of measure-valued
solutions with so-called multigap support. It is our expectation that coupling
gravity to an appropriate conformal field theory (to thus arrive at a bona fide
string theory) [Mariño 2005] will play a similar role in our setting to determine
a unique continuation through the boundary curve of critical parameters to a
unique equilibrium measure with multicut support. We also hope that this will
help bring powerful methods from the study of dispersive limits of nonlinear
PDE into the realm of random matrix theory.
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