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Universality limits via “old style” analysis
DORON S. LUBINSKY

Techniques from “old style” orthogonal polynomials have turned out to be
useful in establishing universality limits for fairly general measures. We survey
some of these.

1. Introduction

We focus on the classical setting of random Hermitian matrices: consider a
probability distribution P .n/ on the space of n by n Hermitian matrices M D

.mij /1�i;j�n:

P .n/.M /D cw.M /dM

D cw.M /

� nY
jD1

dmjj

��Y
j<k

d.Re mjk/ d.Im mjk/

�
:

Here w is some nonnegative function defined on Hermitian matrices, and c is a
normalizing constant. The most important case is

w.M /D exp.�2n tr Q.M //;

for appropriate functions Q. In particular, the choice Q.M / D M 2, leads
to the Gaussian unitary ensemble (apart from scaling) that was considered by
Wigner, in the context of scattering theory for heavy nuclei. When expressed
in spectral form, that is as a probability density function on the eigenvalues
x1 � x2 � � � � � xn of M , it takes the form

P .n/.x1;x2; : : : ;xn/D c

� nY
jD1

w.xj /

��Y
i<j

.xi �xj /
2

�
: (1-1)

See [Deift 1999, p. 102 ff.]. Again, c is a normalizing constant. Note that w now
can be any nonnegative measurable function.
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In most applications, we want to let n!1, and obviously the n-fold density
complicates issues. So we often integrate out most variables, forming marginal
distributions. One particularly important quantity is the m-point correlation
function [Deift 1999, p. 112]:

zRm.x1;x2; : : : ;xm/

D
n!

.n�m/!

Z
� � �

Z
P .n/.x1;x2; : : : ;xn/ dxmC1 dxmC2 : : : dxn:

Here typically, we fix m, and study zRm as n!1. zRm is useful in examining
spacing of eigenvalues, and counting the expected number of eigenvalues in
some set. For example, if B is a measurable subset of R,Z

B

: : :

Z
B

zRm.x1;x2; : : : ;xm/ dx1 dx2 : : : dxm

counts the expected number of m-tuples .x1;x2; : : : ;xm/ of eigenvalues with
each xj 2 B.

The universality limit in the bulk asserts that for fixed m � 2, and � in the
“bulk of the spectrum” (where w above “lives”) and real a1; a2; : : : ; am, we have

lim
n!1

1

.n!.�//m
zRm

�
�C

a1

n!.�/
; �C

a2

n!.�/
; : : : ; �C

am

n!.�/

�
D det.S.ai � aj //1�i;j�m: (1-2)

Here S is the sine or sinc kernel, given by

S.t/D
sin� t

� t
; t ¤ 0; (1-3)

and S.0/D 1. What is !? It is basically an equilibrium density function, and
we’ll discuss this further later. It is appropriate to call the limit (1-2) universal,
as it does not depend on �, nor on the weight function w.

One of the principal goals has been to establish the universality limit under
more and more general conditions, and in this pursuit, orthogonal polynomials
have turned out to be a useful tool. Throughout this paper, let � be a finite
positive Borel measure with compact support J and infinitely many points in
the support. Define orthonormal polynomials

pn.x/D 
nxn
C � � � ; 
n > 0;

nD 0; 1; 2; : : : , satisfying the orthonormality conditionsZ
J

pj pk d�D ıjk :
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We may think of w in (1-1) as �0. The n-th reproducing kernel for � is

Kn.�;x;y/D

n�1X
kD0

pk.x/pk.y/;

and the normalized kernel is

zKn.�;x;y/D �
0.x/1=2�0.y/1=2Kn.�;x;y/:

Kn satisfies the very useful extremal property [Freud 1971; Nevai 1979; 1986;
Simon 2011]

Kn.�; �; �/D inf
deg.P/�n�1

P2.�/R
P2 d�

: (1-4)

WhenwD�0, there are the remarkable formulae for the probability distribution
P .n/ [Deift 1999, p.112]:

P .n/.x1;x2; : : : ;xn/D
1

n!
det. zKn.�;xi ;xj //1�i;j�n; (1-5)

and the m-point correlation function:

zRm.x1;x2; : : : ;xm/D det. zKn.�;xi ;xj //1�i;j�m: (1-6)

Sometimes we shall find it easier to exclude the measure from the variables
x1;x2; : : : ;xm, that is we consider the “stripped” m-point correlation function,

Rm.x1;x2; : : : ;xm/D det.Kn.�;xi ;xj //1�i;j�m: (1-7)

Because zRm is the determinant of a fixed size m by m matrix, we see that (1-2)
reduces to

lim
n!1

zKn

�
�; �C

a

n!.�/
; �C

b

n!.�/

�
n!.�/

D S.a� b/; (1-8)

for real a; b.
Let us now turn to the choice of !. As above, suppose that � has compact

support J . Then, �J is the probability measure that minimizes the energy integralZZ
log

1

jx�yj
d�.x/ d�.y/;

taken over all probability measures � on J . It is called the equilibrium measure
for the set J . It is absolutely continuous in any subinterval of J . Throughout
this paper, we set !.x/D �0

J
.x/;x 2 J 0, where J 0 is the interior of J . We call
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! the equilibrium density of J and note that ! > 0 in J 0. For example, when
J D Œ�1; 1�,

!.x/D
1

�
p

1�x2
; x 2 .�1; 1/:

Of course, the primary interest in random matrix theory is for varying measures,
where at the n-th stage, �0.x/D e�2nQ.x/, and there ! is an equilibrium density
associated with the external field Q.

In some formulations for measures with fixed support, it is easier to prove the
limit

lim
n!1

zKn

�
�; �C

a
zKn.�; �; �/

; �C
b

zKn.�; �; �/

�
zKn.�; �; �/

D S.a� b/; (1-9)

and this is consistent with (1-8), since under quite general conditions,

lim
n!1

1

n
zKn.�; �; �/D lim

n!1

1

n
�0.�/Kn.�; �; �/D !.�/:

The most obvious approach to proving (1-2) is to use the Christoffel–Darboux
formula,

Kn.�;u; v/D

n�1


n

pn.u/pn�1.v/�pn�1.u/pn.v/

u� v
; u¤ v; (1-10)

and to substitute in asymptotics for pn as n ! 1. This is what effectively
was done for the classical weights. Of course there are many approaches, and
we cannot survey them here. We simply note that it was the Riemann–Hilbert
approach that allowed dramatic breakthroughs, and refer to other papers in this
proceedings, and the books [Baik et al. 2007; Baik et al. 2008; Bleher and Its
2001; Deift 1999; Deift and Gioev 2009; Forrester 2010; Mehta 2004].

In terms of “old style” orthogonal polynomials, it was Eli Levin [Levin and
Lubinsky 2009] who realized that relatively weak pointwise asymptotics, such as

pn.cos �/D cos n� C o.1/; n!1;

combined with a Markov–Bernstein inequality, are sufficient for universality.
However, it has since been realized that much less suffices.

In subsequent sections, we outline some approaches from classical orthogonal
polynomials and complex analysis. In Section 2, it is a comparison method. In
Section 3, it is a method based on the theory of entire functions of exponential
type. In Section 4, we discuss a recent extremal property. This survey has a
narrow focus, and we omit many important contributions and topics.
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2. A comparison method

The philosophy behind the comparison method is that a lot of quantities in
orthogonal polynomials have a strong local component, and a weak global one.
Perhaps the primary example of this is the Christoffel function �n.�;x/, or its
reciprocal, the reproducing kernel along the diagonal Kn.�;x;x/. The global
component in its asymptotic is determined by the equilibrium density ! of the
support of �, often accompanied by the hypothesis of regularity: we say that a
compactly supported measure � is regular (in the sense of Stahl, Totik, Ullmann)
if the leading coefficients f
ng of the orthonormal polynomials satisfy

lim
n!1


 1=n
n D

1

cap.suppŒ��/
:

Here cap denotes the logarithmic capacity of the support of � (see [Ransford
1995; Saff and Totik 1997; Stahl and Totik 1992] for definitions). A simple
sufficient criterion for regularity is that of Erdős–Turán: if suppŒ�� consists of
finitely many intervals, and �0 > 0 a.e. in each of those intervals, then � is
regular. There are more general criteria in [Stahl and Totik 1992]. Note that pure
jump measures and pure singularly continuous measures can be regular.

The archetypal asymptotic for Kn is due to Maté, Nevai, and Totik [Máté et al.
1991] for Œ�1; 1�, and for general support, due to Totik [2000a]:

Theorem 2.1. Let � have compact support J and be regular. Let ! be the
equilibrium density of J .

(a) For a.e. x 2 J 0, we have

lim inf
n!1

1

n
Kn.�;x;x/�

!.x/

�0.x/
:

(b) If in addition, I is a subinterval of J satisfyingZ
I

log�0 > �1; (2-1)

then for a.e. x 2 I ,

lim
n!1

1

n
Kn.�;x;x/D

!.x/

�0.x/
: (2-2)

Why is this local in flavor? Well if two measures � and � have the same
support, and they are equal when restricted to the interval I , then Kn.�;x;x/

and Kn.�;x;x/ have the same asymptotic in I . In fact, more is possible: using
fast decreasing polynomials, and the extremal property (1-4), one can prove that
the ratio Kn.�;x;x/=Kn.�;x;x/ has limit 1 under much weaker conditions
than in (b).
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What relevance does this have to universality limits? The answer lies in the
following inequality: if �� �, then for all real x;y,

jKn.�;x;y/�Kn.�;x;y/j

Kn.�;x;x/
�

�
Kn.�;y;y/

Kn.�;x;x/

�1
2
�
1�

Kn.�;x;x/

Kn.�;x;x/

� 1
2

: (2-3)

In particular, if x and y vary with n, and as n ! 1, Kn.�;x;x/
Kn.�;x;x/

has limit 1,
while Kn.�;y;y/

Kn.�;x;x/
remains bounded, then Kn.�;x;y/ and Kn.�;x;y/ have the

same asymptotic. This inequality is easily proven by using the reproducing
kernel properties of Kn, and the extremal property (1-4). It enables us to use
universality limits for a larger “nice” measure � to obtain the same for a “not
so nice” measure �, which is locally the same as �. Thus [Lubinsky 2009a,
Theorem 1.1, pp. 916–917]:

Theorem 2.2. Let � have support Œ�1; 1� and be regular. Let � 2 .�1; 1/ and
assume� is absolutely continuous in an open set containing � . Assume moreover,
that �0 is positive and continuous at �. Then uniformly for a; b in compact
subsets of the real line, we have

lim
n!1

zKn

�
�C

a�
p

1��2

n
; �C

b�
p

1��2

n

�
zKn.�; �/

D S.a� b/:

Weaker integral forms of this limit were also established in [Lubinsky 2009a],
when continuity of �0 was replaced by upper and lower bounds. However, the
real potential of the inequality (2-3) was soon explored by Findley [2008], Simon
[2008b] and Totik [2009]. It was Findley who replaced continuity of �0 by the
Szegő condition on Œ�1; 1�. Totik used the method of “polynomial pullbacks”,
which is based on the observation that if P is a polynomial, then P Œ�1�Œ�1; 1�

consists of finitely many intervals. This allows one to pass from asymptotics for
Œ�1; 1� to finitely many intervals. In turn, one can use the latter to approximate
arbitrary compact sets. Barry Simon used instead Jost functions. Here is Totik’s
result:

Theorem 2.3. Let � have compact support J and be regular. Let I be a subin-
terval of J in which the local Szegő condition (2-1) holds. Then, for a.e. x 2 I ,
and all real a; b,

lim
n!1

zKn

�
�; �C

a

n!.�/
; �C

b

n!.�/

�
zKn.�; �; �/

D
sin�.a� b/

�.a� b/
:

Totik actually showed that the asymptotic holds at any given � which is a
Lebesgue point of both measure �, and its local Szegő function. The comparison
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approach has also been applied to universality on the unit circle [Levin and
Lubinsky 2007], to exponential weights [Levin and Lubinsky 2009], at the hard
edge of the spectrum [Lubinsky 2008b], to Bergman polynomials [Lubinsky
2010], and in a generalized setting [Lubinsky 2008a].

3. A normal families approach

One pitfall of the comparison inequality, is that it needs a “starting” measure
for which universality is known. For general supports, there is no such measure,
unless one assumes regularity — which is a global restriction, albeit a weak one.
In [Lubinsky 2008d], a method was introduced, that avoids this. It uses basic
tools of complex analysis and complex approximation, such as normal families,
together with some of the theory of entire functions, and reproducing kernels.

Perhaps the most fundamental idea in this approach is the notion that since Kn

is a reproducing kernel for polynomials of degree � n�1, any scaled asymptotic
limit of it must also be a reproducing kernel for a suitable space. It turns out
that the correct limit setting is Paley–Wiener space. For given � > 0, this is the
Hilbert space of entire functions g of exponential type at most � > 0, (so that
given " > 0, jg.z/j D O.e.�C"/jzj/, for large jzj), whose restriction to the real
line is in L2.R/, with the usual L2.R/ inner product. Here the sinc kernel is the
reproducing kernel [Stenger 1993, p. 95]:

g.x/D

Z 1
�1

g.t/
sin �.x� t/

�.x� t/
dt; x 2 R: (3-1)

It is not a trivial exercise to rigorously prove that reproducing kernels for poly-
nomials turn into the reproducing kernel for Paley–Wiener space.

Assume that � has compact support and that �0 is bounded above and below
by positive constants in some open interval O containing the closed interval I .
Then it is well known that for some C1;C2 > 0,

C1 �
1

n
Kn.�;x;x/� C2; (3-2)

in any proper open subset O1 of O . Indeed, this follows by comparing �n

below to the Christoffel function of the weight 1 on a suitable subinterval of
O , and comparing it above to a suitable dominating measure. Cauchy–Schwarz
inequality’s then gives

1

n
jKn.�; �; t/j � C for �; t 2O1: (3-3)

We can extend this estimate into the complex plane, by adapting Bernstein’s
inequality,

jP .z/j � jzC
p

z2� 1jnkPkL1Œ�1;1�;
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which is valid for polynomials of degree � n and all complex z. The branch of
p is taken so that

p
z2� 1> 0 for z 2 .1;1/. This leads toˇ̌̌̌

1

n
Kn

�
�C

a

n
; �C

b

n

�ˇ̌̌̌
� C1eC2.j Im ajCj Im bj/:

Here C1 and C2 are independent of n; a and b. In view of (3-2), the same is true
of ffn.a; b/g

1
nD1

, where

fn.a; b/D

Kn

�
�C

a
zKn.�; �/

; �C
b

zKn.�; �/

�
Kn.�; �/

:

Thus, given A> 0, we have for n� n0.A/ and jaj; jbj �A, that

jfn.a; b/j � C1eC2.j Im ajCj Im bj/: (3-4)

We emphasize that C1 and C2 are independent of n;A; a and b.
Let f .a; b/ be the limit of some subsequence ffn. � ; � /gn2S of ffn. � ; � /g

1
nD1

.
It is an entire function in a; b, but (3-4) shows even more: namely that for all
complex a; b,

jf .a; b/j � C1eC2.j Im ajCj Im bj/: (3-5)

So f is bounded for a; b 2 R, and is an entire function of exponential type in
each variable. Our goal is to show that

f .a; b/D
sin�.a� b/

�.a� b/
: (3-6)

So we study the properties of f . The main tool is to take elementary properties
of the reproducing kernel Kn, such as properties of its zeros, and then after
scaling and taking limits, to analyze the zeros of f , and related quantities. At
the end, armed with a range of properties, one proves that these characterize the
sinc kernel, and (3-6) follows.

The first result of this type was given in [Lubinsky 2008d]:

Theorem 3.1. Let � have compact support J . Let I be compact, and � be
absolutely continuous in an open set containing I . Assume that �0 is positive
and continuous at each point of I . The following are equivalent:

(I) Uniformly for � 2 I and a in compact subsets of the real line,

lim
n!1

Kn

�
�C a

n
; �C a

n

�
Kn.�; �/

D 1: (3-7)
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(II) Uniformly for � 2 I and a; b in compact subsets of the complex plane, we
have

lim
n!1

Kn

�
�C

a
zKn.�; �/

; �C
b

zKn.�; �/

�
Kn.�; �/

D
sin�.a� b/

�.a� b/
: (3-8)

One can weaken the condition of continuity of �0 to upper and lower bounds
and then require � to be a Lebesgue point of �, that is, we assume only

lim
h;k!0C

�.Œ� � h; �C k�/

kC h
D �0.�/:

The clear advantage of the theorem is that there is no global restriction on �.
The downside is that we still have to establish the ratio asymptotic (3-7) for the
Christoffel functions/ reproducing kernels, and to date, these have only been
established in the stronger form (2-2).

Nevertheless, the method itself has far more promise than the comparison
inequality. For varying exponential weights (the “natural” setting for universality
limits), it yielded [Levin and Lubinsky 2008b] universality very generally in
the bulk, see below. It has also been used at the hard edge of the spectrum in
[Lubinsky 2008c], at the soft edge of the spectrum [Levin and Lubinsky 2011],
and to Cantor sets with positive measure by Avila, Last and Simon [Avila et al.
2010], as well as for orthogonal rational functions [Deckers and Lubinsky 2012].
Totik has observed that it yields an easier path to his Theorem 2.3 [Totik 2011].

With much more effort, and in particular a new uniqueness theorem for the
sinc kernel, this set of methods also yields universality in measure, for arbitrary
measures � with compact support [Lubinsky 2012a]:

Theorem 3.2. Let � have compact support. Let " > 0 and r > 0. The (linear
Lebesgue) measure of the set of � satisfying �0.�/ > 0 and

sup
juj;jvj�r

ˇ̌̌̌
ˇ̌̌̌Kn

�
�C

u
zKn.�; �/

; �C
v

zKn.�; �/

�
Kn.�; �/

�
sin�.u� v/

�.u� v/

ˇ̌̌̌
ˇ̌̌̌� "

tends to 0 as n!1.

(In the supremum, u; v are complex variables.) Because convergence in
measure implies convergence a.e. of subsequences, one obtains pointwise a.e.
universality for subsequences, without any local or global assumptions on �.

Another development involves pointwise universality in the mean [Lubinsky
2012b], under some local conditions. Like all the results of the section, the
essential feature is the lack of global regularity assumptions:
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Theorem 3.3. Let � have compact support. Assume that I is an open interval
in which for some C > 0, �0 � C a.e. in I . Let � 2 I be a Lebesgue point of �.
Then, for each r > 0,

lim
m!1

1

m

mX
nD1

sup
juj;jvj�r

ˇ̌̌̌
ˇ̌̌̌Kn

�
�C

u
zKn.�; �/

; �C
v

zKn.�; �/

�
Kn.�; �/

�
sin�.u� v/

�.u� v/

ˇ̌̌̌
ˇ̌̌̌D 0:

In particular, this holds for a.e. � 2 I .

Pointwise universality at a given point � seems to usually require at least
something like �0 being continuous at �, or � being a Lebesgue point of �.
Indeed, when �0 has a jump discontinuity, the universality limit is different from
the sine kernel [Foulquié Moreno et al. 2011], and involves de Branges spaces
[Lubinsky 2009b]. It is noteworthy, though, that pure singularly continuous
measures can exhibit sine kernel behavior [Breuer 2011].

From a mainstream random matrix point of view, the most impressive ap-
plication of the normal families method is to exponential weights W .x/ D

exp.�Q.x//, defined on a closed set † on the real line. If † is unbounded, we
assume that

lim
jxj!1;x2†

W .x/jxj D 0: (3-9)

Associated with † and Q, we may consider the extremal problem

inf
�

�ZZ
log

1

jx� t j
d�.x/ d�.t/C 2

Z
Q d�

�
;

where the inf is taken over all positive Borel measures � with support in † and
�.†/D 1. The inf is attained by a unique equilibrium measure �Q, characterized
by the following conditions: let

V �Q.z/D

Z
log

1

jz� t j
d�Q.t/

denote the potential for �Q. Then

V �Q CQ � FQ on †I

V �Q CQD FQ in suppŒ�Q�:

Here the number FQ is a constant. Using asymptotics for Christoffel functions
obtained in [Totik 2000b], Eli Levin and I proved this:

Theorem 3.4 [Levin and Lubinsky 2008b, Theorem 1.1, p. 747]. Let W D e�Q

be a continuous nonnegative function on the set †, which is assumed to consist
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of at most finitely many intervals. If † is unbounded, we assume also (3-9). Let
h be a bounded positive continuous function on †, and for n� 1, let

d�n.x/D .hW 2n/.x/ dx: (3-10)

Moreover, let zKn denote the normalized n-th reproducing kernel for �n.
Let I be a closed interval lying in the interior of suppŒ�Q�. Assume that

�Q is absolutely continuous in a neighborhood of I , and that �0
Q

and Q0 are
continuous in that neighborhood, while �0

Q
> 0 there. Then uniformly for � 2 I ,

and a; b in compact subsets of the real line, we have (1-9).

In particular, when Q0 satisfies a Lipschitz condition of some positive order in
a neighborhood of I , then [Saff and Totik 1997, p. 216] �0

Q
is continuous there,

and hence we obtain universality except near zeros of �0
Q

. Note too that when Q

is convex in †, or xQ0.x/ is increasing there, then the support of �Q consists of
at most finitely many intervals, with at most one interval per component of †
[Saff and Totik 1997, p. 199].

4. A variational principle

The methods above intrinsically involve asymptotics for a single reproducing
kernel, from which one can pass to the asymptotic for the general m-point
correlation function. Remarkably (see [Lubinsky 2013]), there is a variational
principle for the m-point correlation function Rm, for arbitrary measures �, that
generalizes the extremal property (1-4) of reproducing kernels, and allows one
to investigate general m.

Its formulation involves ALm
n , the alternating polynomials of degree at most

n in m variables. We say that P 2ALm
n if

P .x1;x2; : : : ;xm/D
X

0�j1;j2;:::;jm�n

cj1j2:::jm
x

j1

1
x

j2

2
: : :xjm

m ; (4-1)

so that P is a polynomial of degree � n in each of its m variables, and in addition
is alternating, so that for every pair .i; j / with 1� i < j �m,

P .x1; : : : ;xi ; : : : ;xj ; : : : ;xm/D�P .x1; : : : ;xj ; : : : ;xi ; : : : ;xm/: (4-2)

Thus swapping variables changes the sign.
Observe that if Ri is a univariate polynomial of degree � n for each i D

1; 2; : : : ;m, then P .t1; t2; : : : ; tm/D detŒRi.tj /�1�i;j�m 2ALm
n . Given a fixed

m, we shall use the notation

x D .x1;x2; : : : ;xm/; t D .t1; t2; : : : ; tm/;
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while ��m denotes the m-fold Cartesian product of �, so that

d��m.t/D d�.t1/ d�.t2/ : : : d�.tm/:

Theorem 4.1 [Lubinsky 2013].

detŒKn.�;xi ;xj /�1�i;j�m Dm! supP2ALm
n�1

.P .x//2R
.P .t//2 d��m.t/

: (4-3)

The supremum is attained for

P .t/D detŒKn.�;xi ; tj /�1�i;j�m:

Here is an immediate consequence:

Corollary 4.2. Rn
m.x1;x2; : : : ;xm/ is a monotone decreasing function of �,

and a monotone increasing function of n.

The proof of Theorem 4.1 is based on multivariate orthogonal polynomials
built from �. Given m� 1, and nonnegative integers j1; j2; : : : ; jm, define

Tj1;j2;:::;jm
.x1;x2; : : : ;xm/D det.pji

.xk//1�i;k�m:

It is easily see that if 0� j1 < j2 < � � �< jm and 0� k1 < k2 < � � �< km, thenZ
Tj1;j2;:::;jm

.t/Tk1;k2;:::;km
.t/d��m.t/Dm!ıj1k1

ıj2k2
: : : ıjmkm

:

Define an associated reproducing kernel,

Km
n .x; t/D

1

m!

X
1�j1<j2<���<jm�n

Tj1;j2;:::;jm
.x/Tj1;j2;:::;jm

.t/:

Theorem 4.1 follows easily from the reproducing kernel relation

P .x/D

Z
P .t/Km

n .x; t/ d��m.t/; P 2ALm
n�1; x 2 Rn;

and the Cauchy–Schwarz inequality.
Just as the extremal property (1-4) for Kn.�;x;x/ is the main idea in proving

Theorem 2.1, so we can use Theorem 4.1 to prove [Lubinsky 2013, Theorem 2.1]:

Theorem 4.3. Let � have compact support J . Let m� 1.

(a) For Lebesgue a.e. .x1;x2; : : : ;xm/ 2 .J
0/m,

lim inf
n!1

1

nm
detŒKn.�;xi ;xj /�1�i;j�m �

mY
jD1

!.xj /

�0.xj /
:

The right-hand side is interpreted as1 if any �0.xj /D 0.
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(b) Suppose that I is a compact subinterval of J , for which (2-1) holds. Then
for Lebesgue a.e. .x1;x2; : : : ;xm/ 2 Im,

lim sup
m!1

1

nm
detŒKn.�;xi ;xj /�1�i;j�m �

mY
jD1

!�.xj /

�0.xj /
;

where, if !L denotes the equilibrium density for the compact set L,

!�.x/D inf
˚
!L.x/ WL� J is compact, �jL is regular, x 2L

	
:

A more impressive consequence is pointwise, almost everywhere, one-sided
universality, without any local or global restrictions on � [Lubinsky 2013, Theo-
rem 2.2]:

Theorem 4.4. Let � have compact support J . Let m� 1.

(a) For a.e. x 2 J 0\f�0 > 0g , and for all real a1; a2; : : : ; am,

lim inf
n!1

�
�0.x/

n!.x/

�m

Rn
m

�
xC

a1

n!.x/
; : : : ;xC

am

n!.x/

�
� det.S.ai � aj //1�i;j�m:

(b) Suppose that I is a compact subinterval of J , for which (2-1) holds. Then
for a.e. x 2 I , and for all real a1; a2; : : : ; am,

lim sup
n!1

�
�0.x/

n!�.x/

�m

Rn
m

�
xC

a1

n!�.x/
; : : : ;xC

am

n!�.x/

�
� det.S.ai � aj //1�i;j�m:

In closing, we note that the study of universality limits has greatly enriched the
asymptotics of orthogonal polynomials. A prime example of this is asymptotics
for spacing of zeros [Levin and Lubinsky 2008a; 2010; Simon 2005a; 2005b;
2008a; 2011].
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Ann. of Math. .2/ 134:2 (1991), 433–453.

[Mehta 2004] M. L. Mehta, Random matrices, 3rd ed., Pure and Applied Mathematics (Amster-
dam) 142, Elsevier/Academic Press, Amsterdam, 2004.

[Nevai 1979] P. G. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. 213, Amer. Math.
Soc., Providence, RI, 1979.

[Nevai 1986] P. Nevai, “Géza Freud, orthogonal polynomials and Christoffel functions: a case
study”, J. Approx. Theory 48:1 (1986), 167.

[Ransford 1995] T. Ransford, Potential theory in the complex plane, London Mathematical Society
Student Texts 28, Cambridge University Press, Cambridge, 1995.

[Saff and Totik 1997] E. B. Saff and V. Totik, Logarithmic potentials with external fields,
Grundlehren der Math. Wissenschaften 316, Springer, Berlin, 1997.

[Simon 2005a] B. Simon, Orthogonal polynomials on the unit circle, I: classical theory, Amer.
Math. Soc. Coll. Pub. 54, Amer. Math. Soc., Providence, RI, 2005.

[Simon 2005b] B. Simon, Orthogonal polynomials on the unit circle, II: spectral theory, Amer.
Math. Soc. Coll. Pub. 54, Ame. Math. Soc., Providence, RI, 2005.

[Simon 2008a] B. Simon, “The Christoffel–Darboux kernel”, pp. 295–335 in Perspectives in
partial differential equations, harmonic analysis and applications, edited by D. Mitrea and M.
Mitrea, Proc. Sympos. Pure Math. 79, Amer. Math. Soc., Providence, RI, 2008.

[Simon 2008b] B. Simon, “Two extensions of Lubinsky’s universality theorem”, J. Anal. Math.
105 (2008), 345–362.
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