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Fluctuations and large deviations of some
perturbed random matrices

MYLENE MAIDA

We review joint results with Benaych-Georges and Guionnet (Electron. J.
Probab. 16:60 (2011), 1621-1662 and Prob. Theory Rel. Fields 154:3-4
(2012), 703-751) about fluctuations and large deviations of some spiked
models, putting them in the perspective of various works of the last years on
extreme eigenvalues of finite-rank deformations of random matrices.

1. Introduction

General statement of the problem. The following algebraic problem is very
classical: Let A and B be two Hermitian matrices of the same size. Assume
we know the spectrum of each of them. What can be said about the spectrum
of their sum A + B? The problem was posed by Weyl [1912]. He gave a
series of necessary conditions, known as Weyl’s interlacing inequalities: if
M(A) = = A (A), M(B) == Ay (B) and A (A+ B) = --- = A, (A+ B)
are the spectra of A, B and A + B, then

Aivj(A+B) < Aip1(A) +2j411(B),

whenever 0 <1, j, i+ j <n. These inequalities have been very fruitful in various
fields.

After that, it took a long time to get necessary and sufficient conditions. Horn
in the sixties formulated the right conjecture, but the final answer was only given
in the late nineties in a series a papers [Klyachko 1998; Helmke and Rosenthal
1995; Knutson and Tao 2001].

If we now look at the problem asymptotically, namely when the size of both
matrices goes to infinity, an important breakthrough was made by free probability
theory with the notion of asymptotic freeness. This property can be roughly stated
as follows: If A and B are large-dimensional and in generic position relative to
one another, the limiting spectrum of their sum depends only on their respective
spectra and is given by the free convolution of the two spectra. We won’t go
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further into free probability theory, but we refer the reader to [Emery et al. 2000]
for general background on free probability.

In this review paper, we will address the problem of the asymptotic spectrum
of the sum of two Hermitian matrices in a particular framework: in the case when
one of the matrix is of finite rank, fixed and independent of the size of the matrices.
The problem can be stated as follows: take your favorite ensemble of matrices.
You know very well the global and local behavior of the spectrum (asymptotic
spectral measure, convergence and fluctuations of extreme eigenvalues etc). Add
to your random matrix a finite-rank perturbation. How is the spectrum affected
by this perturbation?

By Weyl’s interlacing inequalities, it is not hard to check that the global
behavior is not changed at the macroscopic level. Only extreme eigenvalues
can be substantially affected. This review paper discusses almost sure limits,
fluctuations and large deviations for these extreme eigenvalues in various models
of this type. There exist also a few results on eigenvectors that we won’t review
here; see [Benaych-Georges and Nadakuditi 2011], for example.

The BBP transition. Before giving a more panoramic view of the literature on
these models, we will describe in detail the first set of rigorous results in this
direction. This seminal work is due to Baik, Ben Arous and Péché [Baik et al.
2005], and the phenomenon we will describe is therefore often called the BBP
transition.

They considered the following model: let G, be an n x m matrix whose column
vectors are centered Gaussian with covariance matrix ¥ and let S, = (1/m)G, G},
be the corresponding sample covariance matrix. Assume n/m — ¢ € (0, 1) and
Y is a perturbation of the identity in the sense that it has at most r eigenvalues
different from 1. Let {1 > £, >---> ¢, > 1, ..., 1 be the eigenvalues of X.

Let us first recall the unperturbed case. If X is the identity matrix, the model
is known as the Laguerre unitary ensemble (LUE). The following results are now
classical:

0. The limiting spectral measure is Marchenko—Pastur, being supported in
[(1=ve)?, A +e)].

1. For any k fixed, the k largest eigenvalues converge to the edge of the bulk,
(1+ /o)

2. They have fluctuations in the scale n
(GUE) Tracy—Widom laws.

~2/3 with Gaussian unitary ensemble

As mentioned above, it is easy to check that the global regime won’t be affected:
property O remains valid in every regime and we won’t repeat it. The interesting
thing is the behavior of the largest eigenvalues.
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The results of [Baik et al. 2005] are as follows:

o If ¢1 < 1+ /c, properties (1) and (2) remain unchanged: we are in the
subcritical regime.

o If ¢ =--- =€ > 1+ 4/c, we are in the supercritical regime.

(1) The largest eigenvalue converges outside the bulk to £ 4+c€;/(£; — 1).
(2) Its fluctuations are in the scale n~!/? with the law of the largest eigen-
value of a matrix from the GUE of size k x k.

In the sequel, we will refer to this phenomenon as the BBP transition.

For completeness, we mention that [Baik et al. 2005] also treats the critical
case, when there exists k such that £; = --- = £; = 1 + 4/c, but this critical
behavior is hard to generalize; it seems that only a case-by-case analysis is
pertinent for critical parameters and we won’t dwell on this behavior.

Our last remark about this model is that the perturbation is multiplicative,
whereas we are more interested in additive perturbations. But in fact an additive
perturbation gives the same kind of behavior: for example, Péché [2006] showed
the same kind of transition for a matrix from the GUE perturbed (additively) by
a matrix of finite rank.

A quick review of the literature about fluctuations (see also Section 5). Since
the appearance of [Baik et al. 2005], there has been quite a lot of work on
fluctuations of extreme eigenvalues of different variant of those spiked models.

A large part of the literature has been devoted to applications, more specifically
statistical applications of those spiked models. The seminal work in this direction
is probably [Johnstone 2001], dealing with applications to principal component
analysis (see also [El Karoui 2005]). Indeed, in many papers, the finite-rank
matrix is seen as the signal (with a fixed number of significant parameters) and
the unperturbed random matrix as the noise. The general question addressed is
to know whether the observation of the eigenvalues of “signal plus noise” can
give access to the parameters of interest. The results on fluctuations that we will
expound below allow us to construct statistical tests on the parameters. All these
applied results are a subject in themselves and we won’t review them here; we
will stick to theoretical results on those spiked models.

As pointed out above, Baik et al. [2005] and Péché [2006] dealt with models
with Gaussian entries (perturbed LUE and GUE). There quickly followed attempts
to extend it beyond the Gaussian case.

The first results were in the direction of a generalization of the BBP transition.
Féral and Péché [2007] showed, by using combinatorics of moments techniques,
that the model W,, + A,,, where W), is a Wigner matrix with independent, identi-
cally distributed (iid) complex entries with a law having sub-Gaussian moments
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and A, is a rank-one perturbation such that (A,);; = 6/n for all i, j, exhibits all
the features of the BBP transition. Bai and Yao [2008] studied in more detail the
fluctuations of the eigenvalues converging out of the bulk for quite general spiked
models and showed that these fluctuations, as in the BBP case, were in the scale
n~!/2 and governed by small GUE (or GOE in the case of real entries) matrices
with sizes the multiplicities of the supercritical eigenvalues of the perturbation.

Then, in 2009, there appeared what we can call the first non-BBP features in
such models. Capitaine, Donati-Martin and Féral [Capitaine et al. 2009] showed,
among other results, that the fluctuations of the eigenvalues converging out of the
bulk are not universal. If again, W, is a Wigner matrix with complex iid entries
with a nice symmetric law © and A, has rank one but this time is of the form
A, =diag(, 0, ..., 0), with 6 large enough, then the fluctuations of the largest
eigenvalue are not Gaussian anymore, the law being rather the convolution of a
Gaussian measure together with the law .

In [Capitaine et al. 2009], the reason for this nonuniversality remained a bit
mysterious, but in [Capitaine et al. 2012] the same authors showed that the crucial
feature is whether the perturbation has delocalized eigenvectors (as in [Féral and
Péché 2007]), in which case the BBP transition occurs, or localized eigenvectors
(as in [Capitaine et al. 2009]), in which case the fluctuations may depend on the
law of the entries of the unperturbed matrix.

We emphasize that in the sequel, we are going to work only in the framework of
perturbations with delocalized eigenvectors. The main object of this review paper
is to present the results of two joint papers of the author with Benaych-Georges
and Guionnet [Benaych-Georges et al. 2011; 2012].

2. Fluctuations of extreme eigenvalues of spiked models

Presentation of the deterministic version of the models. As pointed out in the
introduction, many versions of the spiked model have been studied in the literature.
Let us detail the precise models we have been studying. We first present and
detail the case when the unperturbed part is deterministic and we will then explain
how the results can be easily generalized to the usual ensembles of matrices
(Wigner, Wishart, etc.)

Let X, be deterministic self-adjoint with eigenvalues A} > --- > A7

We make the following hypothesis on the spectrum of X,,: as n goes to infinity,

1 n
(H1) ;Z‘SA? — Uy, A}—>a, A, —b,

i=1

with u, a compactly supported probability measure and a and b are respectively
the left and right edges of support of 1y .
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We then add to X, a finite-rank perturbation R, and consider the perturbed
matrix X, = X, + R,. The eigenvalues of X,, will be denoted by A} > --- > A7
The finite-rank perturbation R, will have the following form:

,
R, =Y _6,G}(G)*,
j=1
with

912"'20r0>0>9r0+12"‘29r

fixed and independent of n, and the G such that \/nG” are vectors with iid
entries with law v satisfying a log-Sobolev inequality. This latter hypothesis is
technical; it allows us to use some concentration properties for the quantities we
will be interested in.

One can also consider R,, of the form

Ry =) 6,U! UM,
j=1

where the U/ are obtained from the vectors /nG" by a Gram—Schmidt orthonor-
malization procedure.

In particular, we stress that in our model the eigenvectors of the perturbation
are delocalized.

Almost sure convergence of extreme eigenvalues. Before getting to our results
on fluctuations themselves, let us first look at the convergence of those extreme

eigenvalues.
We set
Gy, (2) = f —dux (),
and define
1 . 1
é = Z1_1)16111_ Gy, (2), 5 = hm+ Gy, (2),
G,l(1/6) if6 € (—00,0)U (0, +00),
po:=1qa if6 €[0,0),
b if 6 € (0, 61.
Theorem 2.1 [Benaych-Georges and Nadakuditi 2011]. Letrg € {0, ..., r} be
such that

01>-->0,,>0>60,41>--->0,.

The largest eigenvalues have the following behavior:
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25 pg forall i €(1,.. ., ro),
WIS b fori> .
Similarly, for the smallest eigenvalues:

1;_,+i 25 po, foralliefro+1,...,r},

~n a.s. .
Ay_; —>a foralli>r—ry.

In the sequel we will state only the part of the results concerning the largest
eigenvalues, the part concerning the smallest eigenvalues being very similar.

Before moving to the fluctuations, we emphasize that our model exhibits
the first feature of the BBP transition: if the perturbation is small, extreme
eigenvalues stick to the bulk; if it is strong enough, they converge out of the bulk.

Gaussian fluctuations outside the bulk. The second feature of the BBP transi-

tion is the fact that the fluctuations of the eigenvalues converging outside the

bulk are in the scale n~!/? and are “of Gaussian type” — in fact, governed by a

small matrix from the Gaussian unitary or orthogonal ensemble (GUE/GOE).
Under the additional hypothesis that

1 n
(H2) — Z 8un — Wy converges at least as fast as 1/ Jn,
n 1
i=1
our model exhibits this second feature. More precisely, we have the following
result. Let oy > - - - > oy > 0 be the different values of the 6; such that pg, > b.
For each j, let I; be the set of indices i such that 6; = o;. Set k; = |I].

Theorem 2.2. Under hypotheses (H1) and (H2), if the fourth cumulant k4(v) of
the law v is zero, the random vector

(Vi = \/ﬁd? —Pg), 1 € Ij)lsjsq

converges in law to the eigenvalues of (cjM )<<, with independent matrices
M; € GUE / GOE of size kj x k; and c; is an explicit constant depending only
on Ly and o ;.

We have a similar result if k4(v) is not zero, only the limiting law will be a
bit different. We refer the reader to [Benaych-Georges et al. 2011] for details.

Nonuniversality of the fluctuations near the bulk. In the BBP transition men-
tioned in the introduction, it turned out that the fluctuations of extreme eigenvalues
that sticks to the bulk at the level of almost sure convergence exhibited the same
fluctuations as the unperturbed model (in the LUE case, it happened to be
governed by Tracy—Widom laws).
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In our model, we also addressed the question of the so-called “sticking eigen-
values”. Their study happened to be much more delicate than the study of the
fluctuations of eigenvalues outside the bulk.

As mentioned in the introduction, we won’t address the problem of critical
parameters. Our result can be roughly stated as follows:

Theorem 2.3. Under additional hypotheses on X, if none of the 6; is critical,
with overwhelming probability, the eigenvalues of X,, converging to a or b remain
at distance at most n~'7€ of the extreme eigenvalues of X, for some € > 0.

We therefore say that the fluctuations of the eigenvalues near the bulk are
nonuniversal, in the sense that they follow the fluctuations of the eigenvalues of
X, that could be in any scale and according to any probability law.

Before giving a more precise statement of the hypotheses and the theorem,
one can give a rough explanation of the phenomenon: for fixed values of the 6;,
we have a repulsion phenomenon from the eigenvalues (ev) of X, at the edge.

« If the repulsion is very strong, the extreme ev of X, converge away from
the bulk.

o If the repulsion is milder, the extreme ev of X » stick to the edge of the bulk.

o If the repulsion is even milder, the extreme ev of X . stick to the extreme ev
of X, even at the level of fluctuations.

For the repulsion to be very mild, we need the spacings of the eigenvalues of
X, at the edge to stay small, in the following sense:

(H3)[p, ] There exists a sequence m, of positive integers tending to infinity
with m, = O (n%), and constants 7, > 0 and 14 > 0 such that for any § > 0 and

n large enough,
n

1
> G s

i=mpy+1

n 1
4—
Z ar _)Jl)4 =n "
p i

i=m,+1

The fact that the eigenvalues of the unperturbed matrix are sufficiently spread
at the edges to insure the above hypothesis allows the eigenvalues of the perturbed
matrix to be very close to them, as stated in the following theorem.

Theorem 2.4. Let I, be the set of indices corresponding to the eigenvalues 7»:.’
converging to the upper bound of the support of jty. Suppose (H1) and (H3)[r, o]
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hold. Then for any o' > «, we have, for all i € I,

. ~ _ /
min A7 — A7 <n” T
1<k<i+r—ry

with overwhelming probability.

Moreover, in the case where the perturbation has rank one, we can locate
exactly in the neighborhood of which eigenvalues of the unperturbed matrix the
eigenvalues of the perturbed matrix lie. We won’t review this particular case.

Applications to classical models. In comparison with the models presented in
the introduction, the model we have chosen till then that is (deterministic +
finite-rank random perturbation with delocalized eigenvectors) can seem a bit
disappointing. In fact, we can easily extend our theorem to models where
the unperturbed matrix is random and therefore generalize some of the results
presented in the introduction.

If (X,,) is a sequence of random matrices, we say that it satisfies an hypothesis
(H) in probability if the probability that (X,) satisfies (H) goes to one as n goes
to infinity.

To extend our result, we will use the following, which is easy to show.
Theorem 2.5. Let (X)) be a sequence of random matrices independent of the
column vectors G or U] of the perturbation.

(1) If (H1) holds in probability, Theorem 2.1 holds.

(2) If k4(v) =0 and Hypotheses (H1) and (H2) hold in probability, Theorem 2.2
holds.

(3) If none of the 6; is critical and Hypotheses (H1) and (H3) hold in probability,
Theorem 2.4 holds “with probability converging to one” instead of “with
overwhelming probability”.

This result allows us to treat a lot of classical models. For each of these models,
it will be enough to check that the different hypotheses hold in probability. This
will allow us to generalize some of the results of [Péché 2006; Féral and Péché
2007; Capitaine et al. 2009]. We detail hereafter some of these generalizations.

Let X,, be one of the following models:

(a) X, is a Wigner matrix with iid entries (up to symmetry) with zero mean,
variance one and finite fourth moment.

(b) X, is a Wishart matrix of the form X, = G, G} /m, with G, a n x m matrix
with (real or complex) iid entries with zero mean, variance one and finite
fourth moment, with n/m — ¢ € (0, 1).

Iwe say that a sequence of events (Ey ), cn holds with overwhelming probability if there exists
C, n > 0 such that for n large enough, P(E,) > 1 — Ce™",
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Then, for the deformed model X 0

o Almost sure convergence of extreme eigenvalues is governed by Theorem 2.1.

o The eigenvalues converging out of the bulk have Gaussian fluctuations (see
Theorem 2.2, where c¢; can be computed explicitly).

« If the entries of X, in the Wigner case and G, in the Wishart case have a
subexponential decay,

— for a one dimensional perturbation: if the perturbation is supercritical,
the largest eigenvalue converges outside and has Gaussian fluctuations,
the p-th largest has the p — 1-th Tracy—Widom law, if it is subcritical,
the p-th largest has the p-th Tracy—Widom law;

— for a multidimensional perturbation: the sticking eigenvalues of X, are
at distance negligible with respect to n~%/3 to the extreme eigenvalues
of X,,.

We also get the same kind of results for perturbed Coulomb gases, that is,
when the joint law of eigenvalues of the unperturbed part is of the form

dPy(M, . d) = (1/Z,) [AQ) PP R VOO T d,,

i=1

with V a strictly convex polynomial potential.

3. Large deviations of extreme eigenvalues of spiked models

Introduction. As the spectrum of a matrix is a very complicated function of the
entries, usual large deviations theorems, mainly based on independence do not
easily apply. There have been only few works dealing with large deviations in
the context of random matrices. The first breakthrough in this direction, which
played an important role in the development of the theory, appeared in [Ben Arous
and Guionnet 1997], which showed a full large deviation principle (LDP) for the
empirical spectral law of Gaussian Wigner matrices or more generally in models
where the joint law of the eigenvalues is given by a Coulomb gas distribution,
as introduced above (see also [Anderson et al. 2010]). Recently, Adrien Hardy
[2012] gave some extension of the result of Ben Arous and Guionnet in the case
when the potential is weakly confining. For the empirical spectral law of the sum
of a Gaussian Wigner matrix and a deterministic self-adjoint matrix, the LDP
is also known thanks to [Guionnet and Zeitouni 2002]. We can also mention
[Chatterjee and Varadhan 2012] and [Bordenave and Caputo 2012] on Wigner
matrices, and [Hardy and Kuijlaars 2013] on noncentered Wishart matrices.

If we now look at the large deviations for extreme eigenvalues, a little bit
more is known. The first result in this direction concerns the largest eigenvalue
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of a matrix from the GOE or GUE and was shown by Ben Arous, Dembo
and Guionnet [Ben Arous et al. 2001] (see also [Anderson et al. 2010] for
generalizations). Wishart matrices of the form XX*, with X a n x m matrix with
iid, not necessarily Gaussian, entries, have been studied in [Fey et al. 2008] in
the case when the ratio m/n goes to zero.

Hereafter, we study the problem of the large deviations of extreme eigenvalues
in spiked models that are of the same form as the models introduced at the start
of Section 2. The only previous result in this direction was established in [Maida
2007] for a rank-one perturbation of a GOE matrix.

Before going into our results, we stress that among the results mentioned
above, all of them, except [Chatterjee and Varadhan 2012; Fey et al. 2008],
dealt with Gaussian entries or with cases when the joint law of eigenvalues was
explicitly known.

Large deviation principle: the statement. In the paper [Benaych-Georges et al.
2012], we consider the same models (iid and orthonormalized) as introduced
at the start of Section 2. The perturbation is more or less the same, except,
instead of taking /nG? vectors with iid entries with law v satisfying a log-
Sobolev inequality, we assume that G = (gy, . . ., g-) is arandom vector satisfying
E(e* % |gi|2) < oo for some a > 0 and (/nG", ..., /nG") are random vectors
whose entries are independent copies of G; again (U7, ..., U)") are obtained
from (/nG7, ..., /nG") by a Gram—Schmidt orthonormalization procedure.

Theorem 3.1. If X, satisfies (H1), the law of the ry largest eigenvalues of X,
satisfies a LDP in the scale n with a good rate function L. It has a unique
minimizer towards which almost sure convergence holds.

For the reader that are not familiar with large deviations, we recall that this
means that for any open set O C R,

liminf * log P(Giy. ... %) € 0) > ~infL,

n—-oo n

and for any closed set F C R",

limsupllog P((il, - ,1,0) € F) < —infL.
n—oo N F
In particular, in the simplest case when X, = 0, and for the iid model, we
are back to the following: if G, are n x r matrices whose rows are i.i.d. copies
of G and ® = diag(dy, ..., 6,), we study the deviations of the eigenvalues of
W, = (1/n)G;OG, (see [Fey et al. 2008] where they treat the case ® = Id).
Before going any further, we want to mention an important generalization
of our theorem that will be crucial in the next application: provided the law of
% satisfies a LDP, one can relax the hypothesis (H1) in the sense that we do
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not need to assume that the extreme eigenvalues of X,, converge to the edges
(respectively a and b) of the limiting measure 1, . We can allow a finite number
of eigenvalues, that we call outliers, to have their limit outside the support of 1ty .

Application: LDP for perturbed Coulomb gases. As for the study of fluctua-
tions, the deterministic model (i.e., when the unperturbed part is deterministic)
may seem a bit artificial. The real interest is in X,, random. But there isn’t much
hope to get a LDP for the extreme eigenvalues of the perturbed model if we
don’t even know the deviations of extreme eigenvalues of the original model. As
pointed out in the introduction of this section, there are only a few models for
which we know a LDP for extreme eigenvalues.

Here, we consider the case when X, is random with a law with density
proportional to e "VX) We work with the orthonormalized model. More
precisely, we assume the U;" to be a family of orthonormal vectors, either
deterministic or independent of X,.

Theorem 3.2. Under appropriate assumptions on V, for any fixed k, the law of
the k largest eigenvalues of X, satisfies a large deviation principle with a good
rate function.

The strategy of the proof goes as follows: as we have enough information on
the deviations of the eigenvalues of X,,, as only a finite number can deviate, we
first condition on these deviations so that conditionally to the positions of the
eigenvalues of X,,, we can apply the generalization of Theorem 3.1 to the case
with outliers.

4. A sketch of the proofs

Without getting too much into the details, we would like to briefly give a few
ideas of the proofs of the theorems stated in Sections 2 and 3.
The starting point is a determinant computation: we recall that if V, =

V', ... V") is the n x r matrix with column vectors (G7, ... G}) in the iid
model or (U{, ... U/) in the orthonormalized model then R, = V,,®V*, with
® =diag(¥y, ..., 0,). Now, for any z which is not an eigenvalue of X, we have

det(z — X,,) = det(z — X, — V,0V")
= det(z — X,,) det O det(®~' — V*(z — X,)"'V,).

Therefore, the eigenvalues of X » that are not eigenvalues of X, satisfy
fo@) :=det@! =V (z = X,)"' V) =0,

The fact that f; is the determinant of an r x r, that is fixed size, matrix will
considerably ease its study.
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From this, the almost sure limits are easy to determine, as one can show, by
concentration of measure arguments, that

(<‘/in’ (z—X,)! VJ(Z))lgi’er ~ diag(GMX(z), cees GMX(Z)),

so that the possible limits are the solutions of G, (z) = 9,71, fori e{l,...r}.

The analysis of the fluctuations out of the bulk consists in looking at the
fine asymptotics of (V/", (o, — X,)™! Vj?’) around its limits G, (po) = 1/ for
On = Po +x/+/n. The result comes essentially from a precise analysis of the
orthonormalization procedure and the use of a central limit theorem for quadratic
forms developed in [Bai and Yao 2008].

Then comes the more delicate part which is the analysis of the fluctuations
of the eigenvalues sticking to the bulk. The strategy is much more involved as
it is hard to distinguish between the eigenvalues of X,, and those of X, which
are not well separated. The work essentially consists in checking that f,(z) may
vanish only if z is very near to the eigenvalues of X,,.

The starting point to show the LDP is the same as for almost sure conver-
gence and fluctuations, namely the fact that the eigenvalues we are interested
in are solutions of f,,(z) = 0. Now assume that X,, is diagonal, then f,(z) is a
polynomial function of

gi(k)g, (k)

1 n
—1,n\
(G}, a= X' Gy =—3 —y

n
and (GG =3 5B
i=1 i=l1
By Cramer’s theorem or weighted Cramer’s theorem and some abstract arguments
that are pretty standard in large deviation theory, one can derive LDPs for those
two sums and then for f,.
The eigenvalues being the zeroes of f;,, one could expect to get easily an LDP
for them. In fact, they are not continuous functions of f, in the topology we are
dealing with so it will be quite delicate to get this LDP but in fine, we will get

the expected rate function.

5. A few concluding remarks

There is still a lot of activity around spiked models and as for concluding remarks,
we would like to briefly mention the content of a few very recent works that have
appeared in the last years or months on the subject.

A first interesting direction was developed by a group of authors and shed a
new light on the links between almost sure convergence of the outliers in various
spiked models and free probability theory. They successfully used the notion
of subordination to characterize the limits of extreme eigenvalues. Capitaine,
Donati-Martin, Féral and Février [Capitaine et al. 2011], and then Capitaine
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[2013] could approach the problem of spiked models in the case when the
perturbation is not of finite rank anymore. Belinschi, Bercovici, Capitaine and
Février [Belinschi et al. 2012], address the problem of the outliers of A+ UBU™,
when A and B are deterministic, U Haar unitary and A has a finite number of
outliers but its limiting distribution may not be the Dirac mass at zero.

Baik and Wang [2011; 2013] studied a model in which the law of the matrices
is proportional to

e_” Tr(V(Xn)+AnXn) an

with A, which is of finite rank. In the physics literature (see, e.g., [Brézin
and Hikami 1998]), V is usually called the potential and A,, the external field.
Although looking very similar to we called perturbed Coulomb gases, this model
turns out to be quite different ; in particular it is strongly anisotropic and exhibits
some subtle nonuniversal behavior when the potential V is not convex.

In [Pizzo et al. 2013; Renfrew and Soshnikov 2013], the results of [Capitaine
et al. 2009] and [Benaych-Georges et al. 2011] on perturbed Wigner matrices
have been extended. Using techniques close to those explained in Section 4,
the authors could relax the conditions on the moments of the entries of X,
and consider more general forms of finite-rank perturbation, going back to the
dichotomy between localized and delocalized eigenvectors.

To conclude we mention that Bloemendal and Virag [2013; 2011] studied
the largest eigenvalue of a sample covariance matrix from a spiked population
in a model which is the real counterpart of the perturbed LUE studied in [Baik
et al. 2005]. In particular, they proved a conjecture from that paper regarding the
law of the fluctuations of the outliers when the perturbation is properly scaled
around its critical value. These results were generalized to non-Gaussian models
by Knowles and Yin [2013; 2014], relying on isotropic local semicircle law for
such models.
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