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Whittaker functions and related
stochastic processes

NEIL O’CONNELL

We review some recent results on connections between Brownian motion,
Whittaker functions, random matrices and representation theory.

1. Harish-Chandra formula, Duistermaat–Heckman measure and
Gelfand–Tsetlin patterns

Define Jλ(x) = h(λ)−1 det(eλi x j ), where h(λ) =
∏

i< j (λi − λ j ). For each x ,
Jλ(x) is an analytic function of λ; in particular,

J0(x)=
(n−1∏

j=1

j !
)−1

h(x).

The functions Jλ(x) play a central role in random matrix theory. For example, if
3 and X are Hermitian matrices with eigenvalues given by λ and x , respectively,
then ∫

U (n)
etr3U XU∗dU =

Jλ(x)
J0(x)

, (1)

where the integral is with respect to normalised Haar measure on the unitary
group. This is known as the Harish-Chandra, or Itzykson–Zuber, formula.

Let β = (βt , t ≥ 0) be a standard Brownian motion in Rn with drift λ. Denote
by Px the law of β started at x and by Ex the corresponding expectation. Set

�= {x ∈ Rn
: x1 > x2 > · · ·> xn}, T = inf{t > 0 : βt /∈�}.

For λ, x ∈ Rn , write λ(x)=
∑

i λi xi .

Proposition 1. For x, λ ∈�, Jλ(x)= h(λ)−1eλ(x)Px(T =∞).

Proof. This is well known; see for example [Biane et al. 2005]. The function
u(x)=Px(T =∞), x ∈�, satisfies 1

21u+λ ·∇u = 0, vanishes on the boundary
of � and limx→∞ u(x)= 1. Here we write x→∞ to mean xi − xi+1→∞ for
i = 1, . . . , n− 1. Hence v(x) = eλ(x)u(x) satisfies 1v =

∑
i λ

2
i v, vanishes on
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the boundary of � and limx→∞ e−λ(x)v(x)= 1. The function det(eλi x j ) also has
these properties, so by uniqueness, v(x)= det(eλi x j ), as required. �

The Harish-Chandra formula has the following interpretation. Pick U at
random according to the normalised Haar measure on U (n) and let µx(dy)
denote the law of the diagonal of the random matrix U XU∗. Then the integral
becomes ∫

U (n)
etr 3U XU∗dU =

∫
Rn

eλ(y)µx(dy).

Setting mx(dy)= J0(x)µx(dy), we obtain∫
Rn

eλ(y)mx(dy)= Jλ(x).

The measure mx is known as the Duistermaat–Heckman measure associated with
the point x ∈ �. It has the following properties, which are well-known. The
symmetric group Sn acts naturally on Rn by permuting coordinates. The support
of the measure mx is the convex hull of the set of images of x under the action of
Sn . It has a piecewise polynomial density. This comes from the fact, which we
will now explain, that the Duistermaat–Heckman measure is the push-forward
via an affine map of the Lebesgue measure on a higher dimensional polytope
known as the Gelfand–Tsetlin polytope.

Let x ∈ � and denote by GT (x) the polytope of Gelfand–Tsetlin patterns
with bottom row equal to x :

GT (x)={Pk, j , 1≤ j ≤ k≤n : Pk, j+1≤ Pk−1, j ≤ Pk, j , 1≤ j < k≤n, Pn,·= x}.

Define the type of a pattern P to be the vector

type P =
(

P1,1, P2,1+ P2,2− P1,1, . . . ,

n∑
j=1

Pn, j −

n−1∑
j=1

Pn−1, j

)
. (2)

Consider the map from U (n) to GT (x) defined by U 7→ P where: for each
1≤ k ≤ n, Pk,· is the vector of eigenvalues of the k-th principal minor of U XU∗.
It is well-known (see, for example, [Baryshnikov 2001] or [Alexeev and Brion
2004, Section 5.6] for a more general statement) that the push-forward of Haar
measure under this map is the standard Euclidean measure on the polytope
GT (x). Moreover, the diagonal of the matrix U XU∗ is equal to the type of the
pattern P . From this we obtain another integral representation for the function
Jλ as

Jλ(x)=
∫

GT (x)
eλ·type P dP. (3)
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2. Whittaker functions

Set H = 1− 2
∑n−1

i=1 e−αi (x), where αi = ei − ei+1, i = 1, . . . , n − 1. Write
H = H (n) for the moment; we will drop the superscript again later, whenever it
is unnecessary. For convenience we define H (1)

= d2/dx2 and ψ (1)λ (x) = eλx .
Following [Gerasimov et al. 2006], for n ≥ 2 and θ ∈ C, define a kernel on
Rn
×Rn−1 by

Q(n)
θ (x, y)= exp

(
θ

( n∑
i=1

xi −

n−1∑
i=1

yi

)
−

n−1∑
i=1

(
eyi−xi + exi+1−yi

))
.

Denote the corresponding integral operator by Q(n)θ , defined on a suitable class
of functions by

Q(n)θ f (x)=
∫

Rn−1
Q(n)
θ (x, y) f (y) dy.

The Whittaker functions ψ (n)λ , λ ∈ Cn are defined recursively by

ψ
(n)
λ1,...,λn

= Q(n)λn
ψ
(n−1)
λ1,...,λn−1

. (4)

As observed in [Gerasimov et al. 2006], the following intertwining relation holds:

(H (n)
− θ2) ◦Q(n)θ = Q(n)θ ◦ H (n−1). (5)

This follows from the identity (H (n)
x −θ

2)Q(n)
θ (x, y)= H (n−1)

y Q(n)
θ (x, y), which

is readily verified. Combining (4) with the intertwining relation (5) yields the
eigenvalue equation:

H (n)ψ
(n)
λ =

( n∑
i=1

λ2
i

)
ψ
(n)
λ . (6)

Let us now drop the superscripts and write H = H (n), ψλ = ψ
(n)
λ . Iterating (4)

gives the following integral formula, due to Givental [1997] (see also [Joe and
Kim 2003; Gerasimov et al. 2006]):

ψλ(x)=
∫
0(x)

eFλ(T )
n−1∏
k=1

k∏
i=1

dTk,i , (7)

where 0(x) denotes the set of real triangular arrays (Tk,i , 1≤ i ≤ k ≤ n) with
Tn,i = xi , 1≤ i ≤ n, and

Fλ(T )=
n∑

k=1

λk

( k∑
i=1

Tk,i −

k−1∑
i=1

Tk−1,i

)
−

n−1∑
k=1

k∑
i=1

(
eTk,i−Tk+1,i + eTk+1,i+1−Tk,i

)
.
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Now, it is shown in [Baudoin and O’Connell 2011] that, for each λ ∈�, the
equation H f =

∑
i λ

2
i f has a unique solution f = fλ such that e−λ(x) fλ(x)

is bounded and limx→+∞ e−λ(x) fλ(x) = 1, where we write x→+∞ to mean
αi (x)= xi − xi+1→+∞ for each i . Moreover, by Feynman–Kac,

fλ(x)= eλ(x)Ex exp
(
−

n−1∑
i=1

∫
∞

0
e−αi (βs) ds

)
, (8)

where βs is a Brownian motion in Rn with drift λ as in the previous section.
The relation between the functions fλ and the Whittaker functions ψλ is thus
determined by the following proposition.

Proposition 2. For λ ∈�,

lim
x→+∞

e−λ(x)ψλ(x)=
∏
i< j

0(λi − λ j ). (9)

Proof. We prove this by induction on n using the recursion (4). Write ψλ =ψ
(n)
λ

as before, setting ψ (1)λ (x)= eλx . Then e−λ(x)ψ (1)λ (x)= 1 and, for n ≥ 2,

e−λ(x)ψ (n)
λ (x)=

∫
Rn−1

exp
(
−

n∑
i=1

λi xi + λn

( n∑
i=1

xi −

n−1∑
i=1

yi

)
−

n−1∑
i=1

(
eyi−xi + exi+1−yi

))
×ψ

(n−1)
λ1,...,λn−1

(y1, . . . , yn−1) dy1 . . . dyn−1

=

∫
Rn−1

e
∑n−1

i=1 (λi−λn)yi exp
(
−

n−1∑
i=1

eyi −

n−1∑
i=1

exi+1−xi−yi

)
× e−

∑n−1
i=1 λi (xi+yi )ψ

(n−1)
λ1,...,λn−1

(x1+ y1, . . . , xn−1+ yn−1) dy1 . . . dyn−1.

By induction, we immediately conclude that, for each n, if x, λ ∈ � then
e−λ(x)ψ (n)λ (x)≤

∏
i< j 0(λi − λ j ). Here we are using∫

Rn−1
e
∑n−1

i=1 (λi−λn)yi exp
(
−

n−1∑
i=1

eyi −

n−1∑
i=1

exi+1−xi−yi

)
dy1 . . . dyn−1

≤

∫
Rn−1

e
∑n−1

i=1 (λi−λn)yi exp
(
−

n−1∑
i=1

eyi

)
dy1 . . . dyn−1 =

n−1∏
i=1

0(λi − λn).

It follows, again by induction and using the dominated convergence theorem,
that (9) holds for λ ∈�. �

Corollary 3. For λ ∈�,

ψλ(x)=
∏
i< j

0(λi − λ j )eλ(x)Ex exp
(
−

n−1∑
i=1

∫
∞

0
e−αi (βs) ds

)
. (10)
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Corollary 4. For x, λ ∈�,

Jλ(x)= lim
β→∞

β−n(n−1)/2ψλ/β(βx).

Proof. By Proposition 1, the statement is equivalent to

lim
β→∞

β−n(n−1)/2ψλ/β(βx)= h(λ)−1eλ(x)Px(T =∞).

This follows directly from (10) by Brownian rescaling. �

As shown in [Baudoin and O’Connell 2011], the function ψλ, which can be
defined by (10), is a class-one Whittaker function, as defined by Jacquet [2004]
and Hashizume [1982]. In the notation of [Baudoin and O’Connell 2011] we are
taking 5= {αi/2, i = 1, . . . , n−1}, m(2α)= 0, |ηα|2= 1 and ψν(x)= 2qkν(x)
where q = n(n − 1)/2. In [Gerasimov et al. 2008], the relationship between
Givental integral formula and a recursive integral formula due to Stade [1990]
based on Jacquet’s definition (see also [Ishii and Stade 2007]) is described.

Givental’s integral formula (7) has a very similar structure to the formula (3).
Indeed, if we define the type of an array (Tk,i , 1≤ i ≤ k ≤ n) to be the vector

type T =
(

T1,1, T2,1+ T2,2− T1,1, . . . ,

n∑
j=1

Tn, j −

n−1∑
j=1

Tn−1, j

)
,

and a measure

g(dT )=
n−1∏
k=1

k∏
i=1

e−eTk,i−Tk+1,i e−eTk+1,i+1−Tk,i dTk,i = eF0(T )
n−1∏
k=1

k∏
i=1

dTk,i ,

then
ψλ(x)=

∫
0(x)

eλ·type T g(dT ).

On the other hand, if we replace the functions e−ex−y
in the reference measure g

by the indicator functions 1x<y to get a new reference measure

g0(dT )=
n−1∏
k=1

k∏
i=1

1Tk,i<Tk+1,i 1Tk+1,i+1<Tk,i ,

then (3) can be written as

Jλ(x)=
∫
0(x)

eλ·type T g0(dT ).

We note the following. If λ∈ ιRn then ψλ(x)=ψ−λ(x); if λ∈ ιRn and ν ∈Rn ,
then |ψλ+ν(x)| ≤ψν(x). For each x ∈Rn , ψλ(x) is an entire, symmetric function
of λ ∈ Cn [Gerasimov et al. 2008; Hashizume 1982; Kharchev and Lebedev
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1999]. There is a Plancherel theorem [Wallach 1992; Arnold and Novikov 1994;
Gerasimov et al. 2008; Kharchev and Lebedev 1999] which states that the integral
transform

f̂ (λ)=
∫

Rn
f (x)ψλ(x) dx (11)

is an isometry from L2(R
n, dx) onto Lsym

2 (ιRn, sn(λ) dλ), where Lsym
2 is the

space of L2 functions which are symmetric in their variables, ι =
√
−1 and

sn(λ) dλ is the Sklyanin measure defined by

sn(λ)=
1

(2πι)nn!

∏
j 6=k

0(λ j − λk)
−1. (12)

For x, µ∈Rn , denote by σ x
µ the probability measure on the set of real triangular

arrays (Tk,i )1≤i≤k≤n defined by∫
f dσ x

µ = ψµ(x)
−1
∫
0(x)

f (T )eFµ(T )
n−1∏
k=1

k∏
i=1

dTk,i .

Define a probability measure γ x
µ by∫

Rn
eλ·yγ x

µ (dy)=
ψµ+λ(x)
ψµ(x)

, λ ∈ Cn.

The probability measure γ x
=γ x

0 is the analogue of the (normalised) Duistermaat–
Heckman measure in this setting. The integral operator K with kernel

K (x, dy)= ψ0(x)γ x(dy)

satisfies the intertwining relation HK = K1. We can write

K (x, dy)= k(x, y)ρx(dy),

where k is a smooth kernel from Rn to Rn
x =

{
y ∈ Rn

:
∑

i yi =
∑

i xi
}

and ρx

denotes the Euclidean measure on Rn
x . For n = 2,

k(x, y)= exp(−ex2−y1 − ey1−x1)

and, for n = 3,
k(x, y)= ψ (2)0 (a, b)= 2K0(2e(b−a)/2)

where

e−a
= ex3−y1−y2 + e−x1, eb

= ey1 + ey2 + ey1+y2−x2 + ex2,

and K0 denotes the Macdonald function with index 0.
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3. Interpretation of γ x in terms of Brownian motion

A reduced decomposition of an element w ∈ Sn is a minimal expression of w as
a product of adjacent transpositions, that is, w = si1 . . . sir , where si denotes the
transposition (i, i +1). We will also refer to the word i = i1i2 . . . ir as a reduced
decomposition. By definition, any reduced decomposition has the same length
l(w), defined to be the length of w. There is a unique longest element in Sn ,
namely the permutation

w0 =

(
1 2 · · · n
n n−1 · · · 1

)
.

Its length is n(n− 1)/2, as can be seen by taking the reduced decomposition

i = 1 21 321 . . . n n−1 . . . 21.

The symmetric group acts on Rn by permutation of coordinates, and as such is an
example of a finite reflection group. It is generated by the hyperplane reflections
si = sαi , i = 1, . . . , n− 1, defined for x ∈ Rn by

si x = x −αi (x)αi ,

where αi = ei − ei+1. Note that si corresponds to the adjacent transposition
(i, i + 1).

For a continuous path η : (0,∞)→ Rn , define Ti = Tαi by

Tiη(t)= η(t)+
(

log
∫ t

0
e−αi (η(s)) ds

)
αi , t > 0.

Let w = si1 · · · sir be a reduced decomposition. Then

Tw := Tir · · · Ti1

depends only on w, not on the chosen decomposition [Biane et al. 2005].
We now introduce a probability measure P under which η is a Brownian

motion in Rn with a drift µ and η(0)= 0. In this setting, a very special role is
played by the transform T (n)

= Tw0 . In the following we use the fact that this is
well-defined for each n. Write η = (η1, . . . , ηn). For each k ≤ n, set

(Tk,1, . . . , Tk,k)= T (k)(η1, . . . , ηk).

The evolution of the triangular array Tk, j , 1≤ j ≤ k ≤ n, is given recursively
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as follows: dT1,1 = dη1 and, for k ≥ 2,

dTk,1 = dTk−1,1+ eTk,2−Tk−1,1 dt

dTk,2 = dTk−1,2+
(
eTk,3−Tk−1,2 − eTk,2−Tk−1,1

)
dt

...

dTk,k−1 = dTk−1,k−1+
(
eTk,k−Tk−1,k−1 − eTk,k−1−Tk−1,k−2

)
dt

dTk,k = dηk
− eTk,k−Tk−1,k−1 dt. (13)

The process, which is clearly Markov, contains a number of projections which
are also Markov. For example, setting ξk = Tk,k , we have, for k ≤ n,

dξk = dηk
− eξk−ξk−1 dt.

This defines a simple interacting particle system on the real line, which has very
nice properties. For example, in the coordinates

∑
i ξi and ξi−ξi+1 1≤ i ≤ n−1,

it has a product form invariant measure, that is, a product measure which is
invariant.

A remarkable fact is that each row in the pattern Tk, j is a Markov process
with respect to its own filtration. This gives an interpretation of the measures γ x

µ

and σ x
µ defined in the previous section.

Theorem 5 [O’Connell 2012]. Tw0η(t), t > 0, is a diffusion process in Rn with
infinitesimal generator

Lµ =
1
2
ψ−1
µ

(
H −

n∑
i=1

µ2
i

)
ψµ =

1
21+∇ logψµ · ∇.

For t > 0, the conditional law of {Tk, j (t), 1≤ j ≤ k ≤ n}, given

{Tw0η(s), s ≤ t; Tw0η(t)= x},

is σ x
µ , and the conditional law of η(t), given the same, is γ x

µ . The law of Tw0η(t)
is given by

ν
µ
t (dx)= e−

∑
i µ

2
i t/2ψµ(x)θt(x) dx,

where

θt(x)=
∫
ιRn
ψ−λ(x)e

∑
i λ

2
i t/2sn(λ) dλ. (14)

In the case n= 2, this is equivalent to a theorem of Matsumoto and Yor [1999].
Write L=L0 and νt = ν

0
t . The diffusion with generator L is the analogue of

Dyson’s Brownian motion in this setting and the measures νt and θt (the latter
requires normalisation) are the analogues of the Gaussian unitary and Gaussian
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orthogonal ensembles, respectively. The diffusion with generator Lµ was intro-
duced in [Baudoin and O’Connell 2011]. When µ ∈�, it can be interpreted as a
Brownian motion in Rn killed according to the potential

∑
i exi+1−xi and then

conditioned to survive forever [Katori 2011; 2012]. The path-transformation Tw0

is closely related to the geometric (lifting of the) RSK correspondence introduced
by A. N. Kirillov [2001] and studied further by Noumi and Yamada [2004]. A
discrete-time version of the above theorem, which works directly in the setting
of the geometric RSK correspondence, is given in [Corwin et al. 2014]. In the
discrete-time setting the Whittaker functions continue to play a central role. See
also [Borodin and Corwin 2014; Borodin et al. 2013; Chhaibi 2012; Gorsky et al.
2012; O’Connell et al. 2014; O’Connell and Warren 2011] for further related
developments.

4. Application to random polymers

The following model was introduced in [O’Connell and Yor 2001]. The envi-
ronment is given by a sequence B1, B2, . . . independent standard 1-dimensional
Brownian motions. For up/right paths φ ≡ {0< t1 < · · ·< tN−1 < t} (as shown
in Figure 1), define

E(φ)= B1(t1)+ B2(t2)− B2(t1)+ · · ·+ BN (t)− BN (tN−1),

P(dφ)= Zn
t (β)

−1eβE(φ)dφ, Zn
t (β)=

∫
eβE(φ)dφ.

Set Xn
1(t)= log Zn

t and, for k = 2, . . . , n,

Xn
1(t)+ · · ·+ Xn

k (t)= log
∫

eE(φ1)+···+E(φk)dφ1 . . . dφk,

where the integral is over nonintersecting paths φ1, . . . , φk from (0, 1), . . . , (0, k)
to (t, n− k+ 1), . . . , (t, n).

Let η = (Bn, . . . , B1). Then X = Tw0η and the following holds.

-

6

ttn−1tn−2t3t2t1
1
2
3

n−1
n

Figure 1. An up/right path φ ≡ {0< t1 < . . . < tn−1 < t}.
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Theorem 6 [O’Connell 2012]. The process X (t), t > 0 is a diffusion in Rn with
infinitesimal generator L. The distribution of X (t) is given by νt . For s > 0,

Ee−s Zn
t =

∫
s−

∑
λi
∏

i

0(λi )
ne

1
2
∑

i λ
2
i t sn(λ) dλ,

where the integral is along (upwards) vertical lines with <λi > 0 for all i .

The free energy for this model is given by [O’Connell and Yor 2001; Moriarty
and O’Connell 2007]

lim
n→∞

1
n

log Zn
n = inf

t>0
[t −9(t)],

almost surely, where9(z)=0′(z)/0(z). The conjectured KPZ scaling behaviour
for the fluctuations of log Zn

n was (essentially) established by Seppäläinen and
Valkó [2010]; more recently, Borodin, Corwin and Ferrari have proved the full
KPZ universality conjecture for this model, namely that log Zn

n , suitably centred
and rescaled, converges in law to the Tracy–Widom F2 distribution of random
matrix theory [Borodin and Corwin 2014; Borodin et al. 2014]. See also [Spohn
2014].

5. Reduced double Bruhat cells and their parametrisations

The Weyl group associated with GL(n) is the symmetric group Sn . Each element
w ∈ Sn has a representative w̄ ∈ GL(n) defined as follows. Denote the standard
generators for gln by hi , ei and fi . For example, for n = 3,

h1 =

1 0 0
0 0 0
0 0 0

 , h2 =

0 0 0
0 1 0
0 0 0

 , h3 =

0 0 0
0 0 0
0 0 1

 ,

e1 =

0 1 0
0 0 0
0 0 0

 , e2 =

0 0 0
0 0 1
0 0 0

 , f1 =

0 0 0
1 0 0
0 0 0

 , f2 =

0 0 0
0 0 0
0 1 0

 .
For adjacent transpositions si = (i, i + 1), define

s̄i = exp(−ei ) exp( fi ) exp(−ei )= (I − ei )(I + fi )(I − ei ).

In other words, s̄i = ϕi
( 0 −1

1 0

)
, where ϕi is the natural embedding of SL(2) into

GL(n) given by hi , ei and fi . For example, when n = 3,

s̄1 =

0 −1 0
1 0 0
0 0 1

 , s̄2 =

1 0 0
0 0 −1
0 1 0

 .
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Now let w = si1 . . . sir be a reduced decomposition and define w̄ = s̄i1 . . . s̄ir .
Note that uv = ūv̄ whenever l(uv)= l(u)+ l(v). For n = 2, w0 = s1 and

w̄0 = s̄1 =

(
0 −1
1 0

)
.

For n = 3, w0 = s1s2s1 = s2s1s2 is represented by

w̄0 = s̄1s̄2s̄1 = s̄2s̄1s̄2 =

0 0 1
0 −1 0
1 0 0

 .
Denote the upper (respectively lower) triangular matrices in GL(n) by B and

B−, and the upper (respectively lower) uni-triangular matrices in GL(n) by N
and N−. The group GL(n) has two Bruhat decompositions

GL(n)=
⋃

u∈Sn

Bū B =
⋃
v∈Sn

B−v̄B−.

The double Bruhat cells Gu,v are defined, for u, v ∈ Sn , by

Gu,v
= Bū B ∩ B−v̄B−.

The reduced double Bruhat cells Lu,v are defined by

Lu,v
= NūN ∩ B−v̄B−.

We also define the opposite reduced double Bruhat cells Mu,v by

Mu,v
= Bū B ∩ N−v̄N−.

The reduced double Bruhat cell Lw,e (where e denotes the identity in Sn)
admits the following parametrisations, one for each reduced decomposition of w.
See [Lusztig 1994; Berenstein and Zelevinsky 2001; Berenstein et al. 1996;
Fomin and Zelevinsky 1999]. Set

Yi (u)= ϕi

(
u 0
1 u−1

)
, i = 1, . . . , n− 1.

Then, for any reduced decomposition i = i1 . . . ir of w, the map

(u1, . . . , ur ) 7→ Yi1(u1) · · · Yir (ur )

defines a bijection between Cr
6=0 and Lw,e. This bijection has the property that

the totally positive part Lu,v
>0 of Lu,v corresponds precisely to the subset Rr

>0 of
Cr
6=0. There are explicit transition maps which relate the parameters (u1, . . . , ur )

corresponding to different reduced decompositions of w.
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In the case n= 3, the two representations of an element in Lw0,e corresponding
to the words 121 and 212, denoting the corresponding parameters by (u1, u2, u3)

and (u′1, u′2, u′3), respectively, are given by u1u3 0 0
u3+u2/u1 u2/u1u3 0

1 1/u3 1/u2

=
u′2 0 0

u′1 u′1u′3/u
′

2 0
1 u′3/u

′

2+1/u′1 1/u′1u′3

 .
The transition maps are given by

u′1 = u3+ u2/u1, u′2 = u1u3, u′3 = u1u2/(u2+ u1u3). (15)

Their is a similar parametrisation for Mw,e, due to Lusztig [1994]. For
i=1, . . . , n−1, set X i (v)= I+v fi . Take any reduced decomposition i= i1 . . . ir

for w. Then the map

(v1, . . . , vr ) 7→ X i1(v1) · · · X ir (vr )

defines a bijection between Cr
6=0 and Mw,e. This bijection also has the property

that the totally positive part Mu,v
>0 of Mu,v corresponds precisely to the subset

Rr
>0 of Cr

6=0.
In the case n=3, the two representations of an element in Mw0,e corresponding

to the words 121 and 212, denoting the corresponding parameters by (v1, v2, v3)

and (v′1, v
′

2, v
′

3), respectively, are given by 1 0 0
v1+v3 1 0
v2v3 v2 1

=
 1 0 0
v′2 1 0
v′1v
′

2 v
′

1+v
′

3 1

 ,
with transition maps

v′1 =
v2v3

v1+ v3
, v′2 = v1+ v3, v′3 =

v1v2

v1+ v3
. (16)

We conclude this section with a simple lemma. Let b ∈ Ge,w and write
b = an where a = diag(a1, . . . , an), say, and n ∈ N . Then, for any w ∈ Sn , bw̄
has a Gauss (or LDU) decomposition bw̄ = [bw̄]−[bw̄]0[bw̄]+ and nw̄ has a
Gauss decomposition nw̄ = [nw̄]−[nw̄]0[nw̄]+ [Fomin and Zelevinsky 1999].
Moreover, [nw̄]−0 = [nw̄]−[nw̄]0 ∈ Lw,e and [bw̄]− ∈ Mw,e. Let i = i1 . . . ir be
a reduced decomposition for w. Then we can write

[nw̄]−0 = Yi1(u1) . . . Yir (ur ), [bw̄]− = X i1(v1) . . . X ir (vr ).

Define Zi (u) = ϕi
(

u 0
0 u−1

)
. Set a0

= a and, for 1 ≤ k ≤ r , ak
= ak−1 Zik (uk).

Write ak
= diag(ak

1, . . . , ak
n).
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Lemma 7. The following relations holds: [bw̄]0 = ar and, for k = 1, . . . , r ,
vk = u−1

k ak−1
ik+1/a

k−1
ik

.

Proof. Note that a[nw̄]−0 = [bw̄]−0 = [bw̄]−[bw̄]0, hence

aYi1(u1) . . . Yir (ur )= X i1(v1) . . . X ir (vr )[bw̄]0.

The result follows by repeated application of the identity aYi (u) = X i (v)a′,
where a′ = aZi (u) and v = u−1ai+1/ai . �

6. An evolution on upper triangular matrices

As shown in [Biane et al. 2005], the path-transformations Twη can also be
represented in terms of an evolution on the upper triangular matrices in GL(n,R).
Let w= si1 · · · sir be a reduced decomposition and η : (0,∞)→Rn a continuous
path. Set η0 = η and, for k ≤ r ,

ηk = Tik . . . Ti1η xk(t)= log
∫ t

0
e−αik (ηk−1(s))ds. (17)

Then ηr = Twη and, for each k ≤ r , ηk = η+
∑k

j=1 x jαi j .
Write η(t)= (η1

t , . . . , η
n
t ). Define a path b(t) taking values in B by

bi j (t)= eη
i (t)
∫

0<s j−1<s j−2<···<si<t
exp

(
−

j−1∑
k=i

αk(η(sk))

)
dsi · · · ds j−1.

If η is smooth, the b satisfies the ordinary differential equation

db =
( n∑

i=1

hi dηi
+

n−1∑
i=1

ei dt
)

b, b(0)= I.

If η is a Brownian path (as in the next section) then b satisfies the equation
interpreted as a Stratonovich SDE.

When n = 2,

db =
(

dη1 dt
0 dη2

)
b, b(t)=

(
eη

1
t
∫ t

0 eη
2
s−η

1
s+η

1
t ds

0 eη
2
t

)
.

When n = 3,

db =

dη1 dt 0
0 dη2 dt
0 0 dη3

 b,
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and the solution is given by

b(t)=

eη
1
t
∫ t

0 eη
2
s−η

1
s+η

1
t ds

∫∫
0<r<s<t eη

3
r−η

2
r+η

2
s−η

1
s+η

1
t dr ds

0 eη
2
t

∫ t
0 eη

3
s−η

2
s+η

2
t ds

0 0 eη
3
t

 .
Write b = an, where a = diag(eη

1
, . . . , eη

n
) and n ∈ N . Set uk = exk and

vk = e−xk−αk(ηk−1).

Theorem 8 [Biane et al. 2005; 2009]. For each t > 0, b(t)w̄ has a Gauss
decomposition bw̄ = [bw̄]−[bw̄]0[bw̄]+, with [bw̄]0 = exp(Twη(t)). Moreover,
[nw̄]−0 = Yi1(u1) · · · Yir (ur ) ∈ Lw,e>0 .

By Lemma 7, we also have [bw̄]− = X i1(v1) · · · X ir (vr ) ∈ Mw,e
>0 .

6.1. The case n = 2. From the definitions: α1 = e1−e2, w0 = s1 = se1−e2 ,

u := u1 = ex1 =

∫ t

0
e−η

1
s+η

2
s ds, v := v1 = e−η

1
+η2

u−1,

eTw0η = (eη
1
u, eη

2
u−1)=

(∫ t

0
eη

2
s+η

1
t −η

1
s ds,

∫ t

0
e−(η

1
s+η

2
t −η

2
s )

)
,

b =

(
eη

1 ∫ t
0 eη

2
s−η

1
s+η

1
t ds

0 eη
2

)
=

(
eη

1
eη

1
u

0 eη
2

)
=

(
eη

1
0

0 eη
2

)(
1 u
0 1

)
= an.

Taking w̄0 =
( 0 −1

1 0

)
, we see that

bw̄0 =

(
eη

1
u −eη

1

eη
2

0

)
=

(
1 0
v 1

)(
eη

1
u 0

0 eη
2
u−1

)(
1 −u−1

0 1

)
.

and

nw̄0 =

(
1 u
0 1

)(
0 −1
1 0

)
=

(
u −1
1 0

)
=

(
u 0
1 u−1

)(
1 −u−1

0 1

)
Hence

[bw̄0]0 = eTw0η, [bw̄0]− =

(
1 0
v 1

)
= X1(v), [nw̄0]−0 =

(
u 0
1 u−1

)
= Y1(u),

as claimed.

6.2. The case n = 3. From the definitions:

α1 = e1−e2, α2 = e2−e3, w0 = s1s2s1 = s2s1s2.

For the reduced decomposition w0 = s1s2s1, we have

u1 = ex1 =

∫ t

0
e−η

1(s)+η2(s) ds, eη1 = (eη
1
u1, eη

2
/u1, eη

3
),
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u2 = ex2 =

∫ t

0
e−η

2
1(s)+η

3
1(s) ds, eη2 = (eη

1
u1, eη

2
u2/u1, eη

3
/u2),

u3 = ex3 =

∫ t

0
e−η

1
2(s)+η

2
2(s) ds, eη3 = eTw0η = (eη

1
u1u3, eη

2
u2/u1u3, eη

3
/u2),

v1 = e−η
1
+η2
/u1, v2 = e−η

2
+η3 u1

u2
, v3 = e−η

1
+η2 u2

u2
1u3

,

b =

eη
1 ∫ t

0 eη
2
s−η

1
s+η

1
t ds

∫∫
0<r<s<t eη

3
r−η

2
r+η

2
s−η

1
s+η

1
t dr ds

0 eη
2 ∫ t

0 eη
3
s−η

2
s+η

2
t ds

0 0 eη
3



=

eη
1

0 0
0 eη

2
0

0 0 eη
3


1 u1 u1u3

0 1 u3+u2/u1

0 0 1

= an.

The identity ∫ t

0
eη

3
s−η

2
s+η

2
t ds = u3+u2/u1

follows from (15). Now,

w̄0 =

0 0 1
0 −1 0
1 0 0

 ,
so we have

bw̄0 =

 eη
1
u1u3 −eη

1
u1 eη

1

eη
2
(u3+u2/u1) −eη

2
0

eη
3

0 0



=

 1 0 0
v1+v3 1 0
v2v3 v2 1


eη

1
u1u3 0 0
0 eη

2
u2/u1u3 0

0 0 eη
3
/u2


1 −1/u3 1/u1u3

0 1 −u3/u2−1/u1

0 0 1


and

nw̄0 =

 u1u3 −u1 1
u3+u2/u1 −1 0

1 0 0


=

 u1u3 0 0
u3+u2/u1 u2/u1u3 0

1 1/u3 1/u2

1 −1/u3 1/u1u3

0 1 −u3/u2−1/u1

0 0 1

 .
Thus [bw̄0]0 = eTw0η, and, as claimed,
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[bw̄0]− =

 1 0 0
v1+v3 1 0
v2v3 v2 1

= X1(v1)X2(v2)X3(v3),

[nw̄0]−0 =

 u1u3 0 0
u3+u2/u1 u2/u1u3 0

1 1/u3 1/u2

= Y1(u1)Y2(u2)Y3(u3).

6.3. Evolution of the Lusztig parameters. As before, we introduce a probability
measure P under which η is a Brownian motion in Rn with a drift µ and η(0)= 0.
For each k ≤ n, set

(Tk,1, . . . , Tk,k)= T (k)(η1, . . . , ηk).

Note that this is given in terms of the principal minors b(k), k ≤ n, of b by
T (k)(η1, . . . , ηk)= log

[
b(k)w̄(k)0

]
0, where w(k)0 denotes the longest element in Sk .

The evolution of the triangular array Tk, j , 1 ≤ j ≤ k ≤ n, is given by (13). As
remarked earlier, this process contains a number of projections which are also
Markov. In particular, setting ξk = Tk,k , we have, for k ≤ n,

dξk = dηk
− eξk−ξk−1 dt.

This defines a simple interacting particle system on the real line which, in the
coordinates

∑
i ξi and ξi−ξi+1, 1≤ i≤n−1, has a product form invariant measure.

There is an extension of this process, involving the Lusztig parameters, which
is also Markov and, moreover, also has a product form invariant measure. Let
v1, . . . , vq be the Lusztig parameters corresponding to a reduced decomposition
w0 = si1 . . . siq , that is,

[bw̄0]− = X i1(v1) · · · X iq (vq).

Set yk =− log vk . The evolution of yk , 1≤ k ≤ q , is given by

dyk = dαik (ηk−1)+ e−yk dt,

where ηk = Tik . . . Ti1η. Setting xk = yk−αik (ηk−1), note that dxk = e−yk dt and
ηk = η+

∑k
j=1 x jα j . Hence,

dyk = dαik (η)+

k−1∑
j=1

αik (αi j )e
−y j dt + e−yk dt. (18)

Let β1 = αi1 and, for 2 ≤ k ≤ q, βk = si1 . . . sik−1αik . Set θk = −βk(µ). If
µ∈w0�=−�, then θk > 0 for all k and the diffusion has stationary distribution
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given by the product measure

π =

q⊗
k=1

0(θk)
−1gθk ,

where gθ (dx)= exp(−θx − e−x) dx . This can be seen as a consequence of the
following fact, which is the analogue in this setting of the output theorem for the
M/M/1 queue [O’Connell and Yor 2001]. Let xt be a standard one-dimensional
Brownian motion with negative drift −θ , and consider the one-dimensional
diffusion

dy =
√

2dx + e−y dt.

This has a unique invariant distribution 0(θ)−1gθ . If we start this diffusion
in equilibrium and define x̃t = xt + 2(y0 − yt), then x̃ has the same law as x
and, moreover, x̃s , s ≤ t , is independent of yu , u ≥ t , for all t . It follows that
the measure π is invariant. For an analytic proof of this fact, see [O’Connell
and Ortmann 2012]. See also [Biane et al. 2009, Proposition 5.9], where the
equivalent property is proved in the “zero-temperature” setting.

If we choose the reduced decomposition i = 1 21 321 n−1n−2 . . . 21, and
define, for m ≤ n− 1 and 1≤ i ≤ n−m, qm,i = Ti+m−1,i − Ti+m,i+1, then

(y1, y2, . . . , yq)= (q1,1, q1,2, . . . , q1,n, q2,1, . . . , q2,n−1, . . . , qn−1,1).

Note that q1,i = ξi − ξi+1, for 1≤ i ≤ n− 1. In these coordinates, the evolution
is given by

dqm,i = dαi (η)+ e−qm,i dt +
m−1∑
l=1

(2e−ql,i − e−ql,i+1 − e−ql,i−1) dt,

with the conventions that the empty sum is zero and ql,0 =+∞. Setting θm,i =

µm+i − µm , an invariant measure for this diffusion is given by the product
measure

⊗
m,i gθm,i . The dynamics of this process can be viewed as a network,

as follows. Consider the dynamics

d Q = d(A− S)+ e−Q dt, d D = d A− d Q, dT = d S+ d Q.

We think of A, S as the input and D, T as the output, and represent this system
graphically as follows:

Q
S

A

D

T

- -
?

?
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q3,1

q2,1 q2,2

q1,1 q1,2 q1,3

η
1

η
2

η
3

η
4

T2,2 T3,3 T4,4

T2,1 T3,2 T4,3

T3,1 T4,2

T4,1

� � � �

� �

�

� � �

�

�

� �

�

�

Figure 2. Graphical representation of the evolution of Lusztig parameters.

Then the evolution of the qm,i can be represented as in Figure 2. To see
directly from this picture the product-form invariant measure, note that, if A and
S are independent standard one-dimensional Brownian motions with respective
drifts λ and σ , with λ < σ , then the diffusion Q has invariant distribution
0(θ)−1gθ , where θ = σ − λ. Moreover, if we start this diffusion in equilibrium,
then Dt = At + Q0 − Qt and Tt = St − Q0 + Qt are independent standard
one-dimensional Brownian motions with respective drifts λ and σ , and for each
t > 0, (Ds, Ts), s ≤ t , is independent of Qu , u ≥ t . The analogue of this fact in
the setting of Poisson queueing networks is the cornerstone of classical queueing
theory. It is called the output, or Burke, theorem. Finally, we remark that the
dynamics indicated by Figure 2 is the analogue, in this setting, of the dynamical
interpretation given in [O’Connell 2003] of the RSK correspondence as a kind
of “queueing network”.

7. From the Feynman–Kac formula to Givental’s integral formula

The fact that the evolution equation (18) for the Lusztig parameters has a product
form invariant measure sheds some light on the relation between the Feynman–
Kac formula (10) and the integral formula of Givental. It follows from this that,
for any given reduced decomposition of w0, the random variables∫

∞

0
e−αi (βs) ds, i = 1, . . . , n− 1

can be expressed, via the transition maps, as rational functions of a collection of
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q= n(n−1)/2 independent Gamma-distributed random variables with respective
parameters θk , k ≤ q , defined as above with β =−η. Note that β is a Brownian
motion with drift λ=−µ ∈�. Since the sets {θk, k ≤ q} and {λi − λ j , i < j}
are the same, this allows (10) to be written as a q-dimensional integral

ψλ(x)=
∏
i< j

0(λi − λ j )eλ(x)Ex exp
(
−

n−1∑
i=1

∫
∞

0
e−αi (βs) ds

)

= eλ(x)
∫

R
q
+

e−
∑n−1

i=1 e−αi (x)ri (v1,...,vq )

q∏
i=1

v
θi−1
i e−vi dvi . (19)

For example, when n = 3 and i = 121, we have

θ1 = λ1− λ2, θ2 = λ1− λ3, θ3 = λ2− λ3,

and, using (16),

r1(v1, v2, v3)=
1
v1
, r2(v1, v2, v3)=

1
v′1
=
v1+ v3

v2v3
.

In this case, the integral formula (19) becomes

ψλ(x)= eλ1x1+λ2x2+λ3x3

∫
R3
+

v
λ1−λ2−1
1 v

λ1−λ3−1
2 v

λ2−λ3−1
3

× exp
(
−v1− v2− v3− e−x1+x2

1
v1
− e−x2+x3

v1+ v3

v2v3

)
dv1 dv2 dv3.

Under the change of variables

v1 = eT32−T21, v2 = eT33−T22, v3 = eT22−T11,

where T = (Tki , 1 ≤ i ≤ k ≤ 3) is an array with (T31, T32, T33) = (x1, x2, x3),
this integral becomes

ψλ(x)=
∫

R3
eλ1(T31+T32+T33−T21−T11)+λ2(T21+T22−T11)+λ3T11

× exp
(
−eT32−T21−eT33−T22−eT22−T11−eT21−T31−eT11−T22−eT22−T32

)
dT11 dT21 dT22.

Since 9λ(x) is a symmetric function of λ we see that this agrees with Given-
tal’s integral formula (7). We note that this is reminiscent of the derivation of
Givental’s formula given in [Gerasimov et al. 2008] (see also [Gerasimov et al.
2006; 1997]).
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8. Fundamental Whittaker functions

The eigenvalue equation (6) also has series solutions known as fundamental
Whittaker functions. Define a collection of analytic functions an,m(ν), n ≥ 2,
m ∈ (Z+)n−1, ν ∈ Cn recursively by

a2,m(ν)=
1

m!0(ν1− ν2+m+ 1)
,

and for n > 2,

an,m(ν)=
∑

k

an−1,k(µ)

n−1∏
i=1

1
(mi − ki )!

1
0(νi − νn +mi − ki−1)

,

where µi = νi+νn/(n−1), i ≤ n−1, and the sum is over k ∈ (Z+)n−2 satisfying
ki ≤mi , 1≤ i ≤ n− 2, with the convention that k0 = kn−1 = 0. Then for each n,
an,m(ν) satisfies the recursion[ n−1∑

i=1

m2
i −

n−2∑
i=1

mi mi+1+

n−1∑
i=1

(νi − νi+1)mi

]
an,m(ν)=

n−1∑
i=1

an,m−ei (ν)

[Ishii and Stade 2007, Theorem 15], with the convention that an,m = 0 for m /∈

(Z+)
n−1, and an,0(ν)=

∏
i< j 0(νi−ν j+1)−1. Writing m′=

∑n−1
i=1 mi (ei−ei+1),

the series
mν(x)=

∑
m

an,m(ν)e−(m
′
+ν,x) (20)

is a fundamental Whittaker function as defined by Hashizume [1982], and satisfies
the eigenvalue equation (6). We adopt a slightly different normalisation than the
ones used in [Hashizume 1982] or [Ishii and Stade 2007]. Note that, for each
x ∈ Rn , mν(x) is an analytic function of ν. Moreover:

Proposition 9. ψν(x)=
∏
i< j

π

sinπ(νi − ν j )

∑
w∈Sn

(−1)wm−wν(x).

Proof. This comes from [Baudoin and O’Connell 2011]. In the notation of that
paper we are taking 5 = {αi/2 : i = 1, . . . , n− 1}, m(2α) = 0, |ηα|2 = 1 and
ψν(x)= 2qkν(x), where q = n(n− 1)/2. �

Now consider the function θt(x) defined by (14). Note that we can write

sn(λ)=
1

(2πι)nn!
h(λ)

∏
i> j

sinπ(λi − λ j )

π
.

Corollary 10. θt(x)=
1

(2πι)n

∫
ιRn

mλ(x)h(λ)e
∑

i λ
2
i t/2dλ.
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9. Relativistic Toda and q-deformed Whittaker functions

The algebraic structure underlying Theorem 5 is an intertwining relation between
certain differential operators associated with the open quantum Toda chain with n
particles. This structure should carry over to the setting of Ruijsenaars’ relativistic
Toda difference operators and q-deformed Whittaker functions [Ruijsenaars 1990;
1999; Etingof 1999; Gerasimov et al. 2010]. A recent (related, but different)
development along these lines is given in [Borodin and Corwin 2014]. We
will describe here the q-analogue of Theorem 5 in the rank one case, which
corresponds to n = 2.

In the case n = 2, the Whittaker function is given by

ψλ(x)= 2 exp
( 1

2(λ1+ λ2)(x1+ x2)
)
Kλ1−λ2(2e(x2−x1)/2),

where Kν(z) is the Macdonald function. In this case, Theorem 5 is equivalent to
the following theorem of Matsumoto and Yor [1999].

Theorem 11. (1) Let (B(µ)t , t ≥ 0) be a Brownian motion with drift µ, and
define

Z (µ)t =

∫ t

0
e2B(µ)s −B(µ)t ds.

Then log Z (µ) is a diffusion process with infinitesimal generator

1
2

d2

dx2 +

(
d

dx
log Kµ(e−x)

)
d

dx
.

(2) The conditional law of B(µ)t , given {Z (µ)s , s ≤ t : Z (µ)t = z}, is given by the
generalised inverse Gaussian distribution

1
2 Kµ(1/z)−1eµx exp(−cosh(x)/z) dx .

Let 0≤ q < 1. Denote the q-Pochhammer symbol by

(q)n = (q; q)n = (1− q) · · · (1− qn),

with the conventions that (q)0 = 1 and (0)n = 1. In what follows we also adopt
the convention that 00

= 1.
For λ ∈ C and z ≥ 0, define

ψλ(z)=
z∑

y=0

qλ(2y−z)

(q)y(q)z−y
.

This is a q-deformed Whittaker function associated with sl2 [Gerasimov et al.
2010]. It satisfies the difference equation

(1− q z+1)ψλ(z+ 1)+ψλ(z− 1)= (qλ+ q−λ)ψλ(z)
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where we set ψλ(−1)= 0, and is related to the q-Hermite polynomials by

(q)zψλ(z)= Hz

(
qλ+ q−λ

2

∣∣∣∣ q
)
.

Fix 0≤ q < 1, 0≤ p ≤ 1, and let (Yn, Zn)n≥0 be a Markov chain with state
space {(y, z) ∈ Z2

: z ≥ y ≥ 0} and transition probabilities given by

5((y, z), (y+ 1, z+ 1))= p, 5((y, z), (y, z+ 1))= (1− p)q y,

5((y, z), (y− 1, z− 1))= (1− p)(1− q y).

Note that Y is itself a Markov chain with transition probabilities

P(y, y+ 1)= p, P(y, y)= (1− p)q y, P(y, y− 1)= (1− p)(1− q y),

and X = 2Y − Z is a simple random walk on the integers which increases by one
with probability p and decreases by one with probability 1− p. Choose ν ∈ R

such that p = qν/(qν + q−ν).

Theorem 12. Let Y0 = Z0 = 0. The process (Zn, n ≥ 0) is a Markov chain with
transition probabilities

Q(z, z+ 1)=
1− q z+1

qν + q−ν
ψν(z+ 1)
ψν(z)

, Q(z, z− 1)=
1

qν + q−ν
ψν(z− 1)
ψν(z)

.

Moreover, for each n ≥ 0, the conditional distribution of Yn , given σ {Zm,m ≤ n}
and Zn = z, is given by

πz(y)= ψν(z)−1 qν(2y−z)

(q)y(q)z−y
, y = 0, 1, . . . , z.

The proof is straightforward using the theory of Markov functions, by which it
suffices to check that the transition operators 5 and Q satisfy the intertwining
relation QK = K5 where

K (z, (y, z′))=
δz,z′qν(2y−z)

ψν(z)(q)y(q)z−y
.

This intertwining relation is readily verified. When q = 0 and ν = 0, ψν(z)= z
and the above theorem can be interpreted as the discrete version of Pitman’s
2M−X theorem, which states that if Xn is a simple symmetric random walk and
Mn =maxm≤n Xm , then 2M − X is a Markov chain with transition probabilities
Q(z, z + 1) = (z + 1)/2z, Q(z, z − 1) = (z − 1)/2z. When q → 1, it should
rescale to Theorem 11.

The analogue of the output/Burke theorem in the setting of Theorem 12 is the
following. If p < 1/2, then the Markov chain Y has a stationary distribution. If
Y0 is chosen according to this distribution and Z0 = 0, the process (Zn, n ≥ 0)
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is a simple random walk on the integers which increases by one with probability
p and decreases by one with probability 1− p.
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