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Replica analysis of the one-dimensional
KPZ equation

TOMOHIRO SASAMOTO

In the last few years several exact solutions have been obtained for the one-
dimensional KPZ equation, which describes the dynamics of growing inter-
faces. In particular the computations based on replica method have allowed to
study fine fluctuation properties of the interface for various initial conditions
including the narrow wedge, flat and stationary cases. In addition, an interest-
ing aspect of the replica analysis of the KPZ equation is that the calculations
are not only exact but also “almost rigorous”. In this article we give a short
review of this development.

1. Introduction

The one-dimensional Kardar–Parisi–Zhang (KPZ) equation,
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is a well known prototypical equation which describes a growing interface [Kardar
et al. 1986; Barabási and Stanley 1995]. Here h.x; t/ represents the height of the
surface at position x 2 R and time t � 0. The first term represents a nonlinearity
effect and the second term describes a smoothing mechanism. The parameters �
and � measure the strengths of these effects. The last term �.x; t/ indicates the
existence of randomness in our description of surface growth. For the standard
KPZ equation it is taken to be the Gaussian white noise with covariance,

h�.x; t/�.x0; t 0/i DDı.x�x0/ı.t � t 0/: (2)

Here and in the remainder of the article, h � � � i indicates an average with respect
to the randomness �.

The KPZ equation (1) is a nonlinear stochastic partial differential equation
(SPDE), which is difficult to handle in general. But fortunately the KPZ equation
has a nice integrable structure which has allowed detailed studies of its properties.
In particular the one-point height distribution has been computed explicitly for
three different initial conditions: the narrow wedge h.x; 0/ D �jxj=ı; ı ! 0
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[Sasamoto and Spohn 2010a; Amir et al. 2011], the flat h.x; 0/ D 0;x 2 R

[Calabrese and Le Doussal 2011], and the stationary, h.x; 0/D B.x/ [Imamura
and Sasamoto 2012], cases. Here B.x/;x 2 R, represents the (two-sided) one-
dimensional Brownian motion with B.0/D 0. From the narrow wedge initial
condition the surface grows to a shape of parabola macroscopically, which is
representative of a curved surface. The flat case has been the most typical
initial condition for Monte Carlo simulation studies, whereas the stationary case
is regarded as one of the most important situation from the point of view of
nonequilibrium statistical mechanics. The macroscopic shape from the flat and
the BM cases are both flat but the fluctuations are different.

Historically the narrow wedge case was first “solved” by using a fact that
the KPZ equation can be regarded as a certain weakly asymmetric limit of
the asymmetric simple exclusion process (ASEP) [Sasamoto and Spohn 2010a;
2010b; 2010c; Amir et al. 2011]. Soon after the same result was rederived by
using a replica method, which subsequently allowed the analysis of the other two
cases as well [Calabrese and Le Doussal 2011; Imamura and Sasamoto 2012]. So
the replica method has the advantage of being suited for various generalizations
but it also has a disadvantage related to the analytic continuation about the replica
number. In this article we explain and discuss a few aspects of the application of
the replica method to the KPZ equation.

2. Cole–Hopf transformation

By a set of scalings of space, time and height,

x! ˛2x; t ! 2�˛4t; h!
�

2�
h;

with ˛ D .2�/�3=2�D1=2, we can and will do set � D 1
2
; �DD D 1. Applying

the Cole–Hopf transformation,

Z.x; t/D eh.x;t/; (3)

(1) is linearized as
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Without the last term �, the second term is absent and this is simply the diffusion
equation which can be solved easily by Fourier analysis. For the KPZ equation,
however, there remains the second term which has � as a multiplicative factor.

One should regard the noise to be the cylindrical Brownian motion. Then (4)
written in the form of a stochastic differential equation is well defined and one
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can define the solution of the KPZ equation to be h.x; t/D log Z.x; t/. This is
called the Cole–Hopf solution.

A merit of this transformation is that this equation can be regarded as the
imaginary time Schrödinger equation for a single particle under a random poten-
tial �. In other words this can be regarded as a statistical mechanical problem
of a directed polymer in a random potential where Z has the meaning of its
partition function. In particular one can write down the Feynman–Kac formula
for this quantity [Bertini and Cancrini 1995],

Z.x; t/D Ex

�
exp

�Z t

0

�.b.s/; t � s/ ds

�
Z.b.t/; 0/

�
; (5)

where Ex represents the averaging over the standard Brownian motion b.s/,
0 < s < t with b.0/ D x. The information of the initial condition is given by
specifying Z.x; t D 0/ in this formula. We take Z.x; t D 0/ D ı.x/ for the
narrow wedge case, Z.x D 0; t/D 1 for the flat case, and

Z.x; t D 0/D eB.x/ (6)

for the stationary case.

3. Replica method

Originally we were interested in the distribution of the height h.x; t/ of the
solution for the KPZ equation. After the Cole–Hopf transformation in the
previous section, it is equivalent to the distribution of the logarithm of the partition
function, log Z.x; t/, of the directed polymer. But considering this quantity
directly seems very difficult. Within the replica method, we instead compute
N -th replica partition function hZN .x; t/i and try to retrieve the information
about log Z from it. ZN means that one is considering N copies of directed
polymer systems with the same randomness and hence the name “replica”.

The replica method is widely used when studying systems with randomness.
For example, in spin glass theory, one considers a Hamiltonian like

H D
X
hiji

Jij sisj : (7)

Here i is a site on a d-dimensional hypercube, the summation is taken over
all nearest neighbor pairs of sites and si D ˙1 is an Ising spin at the site i .
The coupling constant Ji;j is taken to be random, e.g., Bernoulli distributed
independently for all hij is. This is the Ising model with randomness. For low
enough temperature in d � 3, there appears the spin glass phase in which the
spin is frozen randomly [Nishimori 2001]. The quantity of main interest is the
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averaged free energy hlog Zi, where ZD
P

siD˙1 e�H is the partition function.
To study this one often resorts to the following identity,

hlog Zi D lim
n!0

hZni � 1

n
: (8)

This is somehow true if n is taken to be a complex number. By writing
hZniDhen log Z i, for a pure imaginary n one can consider hZni as a characteristic
function of log Z which exists in general. Furthermore when hj log Zji exists,
hlog Zi is given by its first derivative:

hlog Zi D
@hZni

@n

ˇ̌̌̌
nD0

: (9)

In many cases, however, one can compute the replica partition function only for
integer nD 1; 2; : : :. Then using the identity (8) implies that one is assuming
the analytic continuation with respect to n. There is a theorem due to Carlson
for this kind of situation but unfortunately in many cases of physical interest
the assumption of the theorem does not hold and hence the application of (8) is
not justified in general [Tanaka 2007]. But one can still try to utilize (8) which
might give the correct answer. In fact this has been accepted as a very powerful
techniques to study systems with randomness but when using it one always has
to be careful about the pitfalls. The computation of the averaged free energy
hlog Zi using this procedure is called the replica trick.

For the case of the KPZ equation, we are interested not only in the average
but also in the full distribution of log Z. We compute their generating function
Gt .s/ of hZN .x; t/i defined as

Gt .s/D

1X
ND0

.�e�
t s/N

N !
hZN .x; t/ieN


3
t

12 ; (10)

with 
t D .t=2/
1=3. Formally one can recover the probability density by inverting

the generating function. Of course there is a problem of the uniqueness as dis-
cussed above. But this implies the possibility that one can recover the distribution
of log Z by way of the computations of moments. In fact for the KPZ equation
with narrow wedge initial condition, one can check that the correct distribution is
obtained in this way [Calabrese et al. 2010; Dotsenko 2010]. It gives us a strong
motivation to study the KPZ equation with other initial conditions by using the
replica method.

4. Replica Bethe ansatz for KPZ equation: ı-Bose gas

Using the Feynman path integral representation of Z and remembering that the
noise � is Gaussian, one can take the average with respect to the random potential
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� for the replica partition function. As a result it is written as

hZN .x; t/i D hxje�HN t
jˆi: (11)

More details about this procedure can be found in [Imamura and Sasamoto
2011b]. Here HN is a nonrandom Hamiltonian of N particles, hxj represents the
state with all N particles being at the position x and the jˆi the initial state. For
the KPZ equation, the Hamiltonian HN turns out to be that of the delta-function
Bose gas (ı-Bose gas) with attractive interaction [Kardar 1987]:

HN D�
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jD1
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@x2
j
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NX
j¤k

ı.xj �xk/: (12)

The eigenvalues and eigenfunctions can be constructed by using the Bethe
ansatz [Lieb and Liniger 1963; McGuire 1964; Dotsenko 2010; Calabrese et al.
2010]. In particular the ground state is a bound state whose wave function is

hx1; : : : ;xN j‰zi D Ce�
PN

i;jD1 jxi�xj j; (13)

where C is a normalization constant and the corresponding energy is given by
E D� 1

24
.N 3�N /. Kardar [1987] argued that the N 3 term is responsible for

the KPZ exponent 1
3

.
Fortunately, for the ı-Bose gas, one can give a description of all the eigen-

functions and eigenvalues. So at least formally one can expand hZN .x; t/i in
terms of the eigenstates of the Hamiltonian and the corresponding eigenvalues.
It had been anticipated for a long time that this might lead to more detailed
information on h beyond the scaling exponent (see, for instance, [Dotsenko
2001]), but performing the summation over excited states is very involved and it
was only very recently that this program was performed successfully to give an
expression for the height distribution.

Now we give a description of the eigenstate and its eigenvalues. Let j‰zi and
Ez be the eigenstate and its eigenvalue of HN :

HN j‰zi DEzj‰zi: (14)

By the Bethe ansatz, they are given as follows. For a set of quasimomenta zj s,
the eigenfunction is given by

hx1; : : : ;xN j‰ziDCz

X
P2SN

sgn P
Y
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�
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�
� exp

�
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NX
lD1

zP.l/xl

�
; (15)
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where SN is the set of permutations with N elements and Cz is the normalization
constant,

Cz D

�QM
˛D1 n˛

N !

Y
1�j<k�N

1

jzj � zk � i j2

�1=2

; (16)

taken to be a positive real number. The corresponding eigenvalue is simply
given by Ez D

1
2

PN
jD1 z2

j . For the ı-Bose gas with attractive interaction, the
quasimomenta zj .1� j �N / are in general complex numbers. They are divided
into M groups (1�M �N ) and the ˛-th group consists of n˛ quasimomenta
which share the common real part q˛. With this notation, the eigenvalue Ez is
given by [Dotsenko 2010]

Ez D
1
2

MX
˛D1

n˛q2
˛ �

1
24

MX
˛D1

.n3
˛ � n˛/: (17)

Note that for N DM and q˛ D 0; 1� ˛ �N , this gives the ground state energy
�

1
24
.N 3�N / mentioned above.

We expand the replica partition function hZN .x; t/i (11) by the eigenstates
as

hZN .x; t/i D
X

z

e�Ez t
hx j‰zih‰z jˆi: (18)

For the case of the narrow wedge initial condition, jˆi is simply j0i and hence
one only needs to take the summation over z. But in general we would write as
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�1

dy1 � � �
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(19)

Expanding the propagator hxje�HN t jy1; : : : ;yN i by the Bethe eigenstates of
the ı-Bose gas (15), we have
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Here we want to perform the integrations over yj .1� j �N / and write
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At this point this is not allowed in general because in some cases like the stationary
situation the integrations over q˛; .1� ˛ �M / must be performed before those
over yj ; .1� j �N /. But here with this remark in mind we will write the last
factor as h‰zjˆi and then

hZN .x; t/i D

NX
MD1

N !

M !

�Z 1
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MY
˛D1

dq˛

2�
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�
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e�Ez t

�hx j‰zih‰z jˆi: (22)

5. Narrow wedge

For the narrow wedge case, jˆi D j0i. The wave function (15) with xl D x can
be simplified by applying a combinatorial identity:X
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This holds for any complex variables wj .1 � j � N / and f .j ; k/ and was
derived as Lemma 1 in [Prolhac and Spohn 2011a]. We find
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where in the last equality we use the Cauchy determinantal formula.
Using this we get the expression for the generating function. Taking x D 0

for simplicity, we have
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Here notice that the summation over n is divergent because of a factor e

3
t n3=12.

This is a serious difficulty of the replica analysis of the KPZ equation. But for
the moment let us proceed by using a formula,

en3

D

Z
R

Ai.y/eny dy; (26)

where Ai is the standard Airy function. This linearizes n3 in the exponent and
then one can take the geometric series to arrive at an expression,

Gt .s/D det.1�P0Kt;sP0/; (27)

where det means the Fredholm determinant, P0 is the projection to Œ0;1/ and
the kernel is

Kt;s.�j ; �k/D

Z 1
�1

dyAi.�j Cy/Ai�.�k Cy/
e
t y

e
t y C e
t s
: (28)

By inverting this one gets an expression for the height distribution, which agrees
with the expression which has been derived by unarguably correct methods
[Sasamoto and Spohn 2010a; Amir et al. 2011]. This may be a posteriori
evidence that the replica method is useful for studying the KPZ equation. In
addition, this can be considered as a “singular” limit of a rigorous analysis for a
discrete model; see the remark in 7.2. The computations are involved and one
awaits full details of their derivations.

6. Flat and stationary case

6.1. Flat. The state jˆi corresponding to the flat initial condition is constant.
Hence one has to perform the y integration in (21) which is already not easy.
Calabrese and Le Doussal [2011] found a formula for this case using the idea of
studying a half-infinite system at first.

6.2. Stationary. In [Imamura and Sasamoto 2012], in order to take the average
over the BM initial condition, we employed the strategy that we first consider a
generalized initial condition,

h.x; 0/D

�
B�;v�.�x/ WD QB.�x/C v�x; x < 0;

BC;vC.x/ WD B.x/� vCx; x > 0;
(29)

where B.x/; QB.x/ are independent standard BMs and v˙ are the strengths of
the drifts. The point is that once this generalized case is solved, one can study
the stationary case by taking the v˙! 0 limit.

Because the Brownian motion is a Gaussian process, one can perform the
average over the initial distribution (29) and the dependence of jˆi on x1; : : : ;xN
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can be explicitly calculated. For the region where

x1 < � � �< xl < 0< xlC1 < � � �< xN ; 1� l �N;

one finds

hx1; : : : ;xN jˆi

D ev�
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2
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At this point one has to put the conditions v˙ > 0 to have the wave function
decaying at infinity. Since we are considering a bosonic system, this should
be symmetrized with respect to x1; : : : ;xN . Using this together with another
combinatorial identity, one can compute h‰z jˆi as

h‰z jˆi DN ! Cz
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mD1.vCC v��m/
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k
/QN
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: (31)

Then we can proceed in a fairy similar way as for the narrow wedge case.
After some computation, we get an expression for the generating function,
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; (32)

with c taken large enough. A big difference from the narrow wedge [Sasamoto and
Spohn 2010a; 2010b; 2010c; Amir et al. 2011] and the half BM initial condition
[Imamura and Sasamoto 2011a] is that this generating function itself is not a
Fredholm determinant because of the existence of the factor

QN
lD1.vCCv�� l/.

But this difficulty can be overcome by considering a further generalization of the
initial condition in which the initial overall height is distributed as the inverse
gamma distribution. After some computation, we obtain the height distribution
for the initial condition (29) given by

Fv˙;t .s/D
�.vCC v�/

�.vCC v�C 

�1
t d=ds/

�
1�

Z 1
�1

due�e
t .s�u/

�v˙;t .u/

�
: (33)

Here �v˙;t .u/ is expressed as a difference of two Fredholm determinants,

�v˙;t .u/D det
�
1�Pu.B

�
t �P�

Ai/Pu

�
� det.1�PuB�t Pu/; (34)
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where Ps represents the projection onto .s;1/,

P�
Ai.�1; �2/D Ai��

�
�1;

1


t
; v�; vC

�
Ai��

�
�2;

1


t
; vC; v�
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1� e�
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1


t
; v�; vC

�
�Ai��

�
�2Cy;

1


t
; vC; v�

�
; (36)

and

Ai��.a; b; c; d/D
1

2�

Z
�

i d
b

dzeizaCi z3

3
�.ibzC d/

�.�ibzC c/
; (37)

where �zp
represents the contour from �1 to1 and, along the way, passing

below the pole at z D id=b. Note the similarity of our formulas with the narrow
wedge case.

Once this generalized case is solved, it is not difficult to find a formula for
the height distribution for the stationary situation. Furthermore by a simple
generalization one can also study the stationary two point correlation function.
For more details see [Imamura and Sasamoto 2012; 2013].

7. A few remarks

7.1. Multipoint distribution. Prolhac and Spohn [2011a; 2011b] applied the
replica analysis to study the distribution at more than one point. Unfortunately a
summation which appears in the computation seems impossible to perform. But
they showed that if one introduces an “factorization approximation”, one can
proceed further and that in the scaling limit it tends to the Airy process which is
the expected limiting process.

7.2. Replica analysis for discretized models. Recently, Borodin and Corwin
[2014] introduced a new discrete model called the q-TASEP. In a certain limit
this model reduces to the KPZ equation. On the other hand, for this model, the
series become convergent and the replica computation can be made rigorous. In
this sense, one could say that the replica method for the KPZ equation is “almost
rigorous”.
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