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Asymptotic expansions for β matrix models
and their applications

to the universality conjecture
MARIYA SHCHERBINA

We consider β matrix models with real analytic potentials for both one-cut
and multi-cut regimes. We discuss recent results on the asymptotic expansion
of the correlators and partition functions and their applications to the studies
of random matrices.

1. Introduction

We consider the probability measure on Rn of the form

pn,β(λ1, . . . , λn)= Q−1
n,β[V ]

n∏
i=1

e−nβV (λi )/2
∏

1≤i< j≤n

|λi − λ j |
β (1-1)

=: Q−1
n,β[V ]e

βH(λ1,...,λn)/2,

En,β{( . . . )} =

∫
( . . . )pn,β(λ1, . . . , λn) dλ̄, (1-2)

where the function H , which we call the Hamiltonian to stress the analogy with
statistical mechanics, and the normalizing constant Qn,β[V ] (partition function)
have the form

H(λ1, . . . , λn)=−n
n∑

i=1

V (λi )+
∑
i 6= j

log |λi − λ j |

=

∫
eβH(λ1,...,λn)/2dλ̄. (1-3)

The function V (called the potential) is a real-valued Hölder function satisfying
the condition

V (λ)≥ 2(1+ ε) log(1+ |λ|). (1-4)
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We will study the asymptotic behavior (for large n) of Qn,β[V ] and the marginal
densities of (1-1) (correlation functions)

p(n)l,β (λ1, . . . , λl)=

∫
Rn−l

pn,β(λ1, . . . λl, λl+1, . . . , λn) dλl+1 . . . dλn. (1-5)

The distribution (1-1) can be considered for any β > 0, but the cases β = 1, 2, 4
are especially important, since they correspond to the eigenvalue distribution of
real symmetric, hermitian, and symplectic matrix models respectively.

Since the papers [Boutet de Monvel et al. 1995; Johansson 1998] it is known
that if V is a Hölder function, then

n−2 log Qn,β[V ] =
β

2
E[V ] + O(log n/n),

where

E[V ] = − min
m∈M1

{
L[dm, dm] +

∫
V (λ)m(dλ)

}
= EV (m∗), (1-6)

and the minimizing measure m∗ (called the equilibrium measure) has a compact
support σ := supp m∗. Here and below we denote

L[ dm, dm] =
∫

log |λ−µ|−1dm(λ) dm(µ),

L[ f ](λ)=
∫

log |λ−µ|−1 f (µ) dµ, L[ f, g] = (L[ f ], g),
(1-7)

where ( . , . ) is a standard inner product of L2
[R].

Moreover, it was proved in [Boutet de Monvel et al. 1995] that for any h
whose first derivative is bounded in σε (ε-neighborhood of σ ) we have∣∣∣∣∫ h(λ)

(
p(n)1,βdλ− dm(λ)

)∣∣∣∣≤ C‖h′‖∞(log n/n)1/2. (1-8)

Here and below ‖ϕ‖∞ = supλ∈σε |ϕ(λ)|.
If V ′ is a Hölder function, then the equilibrium measure m∗ has a density ρ

(equilibrium density). The support σ and the density ρ are uniquely defined by
the conditions:

v(λ) := 2
∫

log |µ− λ|ρ(µ) dµ− V (λ)= sup v(λ) := v∗, λ ∈ σ,

v(λ)≤ sup v(λ), λ 6∈ σ, σ = supp{ρ}. (1-9)

Without loss of generality we will assume below that σ ⊂ (−1, 1) and v∗ = 0.
In this paper we discuss the asymptotic expansion of the partition function

Qn,β[V ] and of the Stieltjes transforms of the marginal densities. Problems
of this kind appear in many fields of mathematics, including the statistical
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mechanics of log-gases, combinatorics (graphical enumeration), and the theory
of orthogonal polynomials (see [Ercolani and McLaughlin 2003] for the detailed
and interesting discussion on the motivation of the problem). Here we are going
to discuss with more details the applications of the problems to studies of the
eigenvalue distribution of random matrices.

The first important problem of the eigenvalue distribution is the behavior of
the random variables called the linear eigenvalue statistics, which correspond to
the smooth test function h

Nn[h] =
n∑

i=1

h(λi ). (1-10)

The result of (1-8) gives us the main term of the expectation of En,β{Nn[h]}. It
was also proved in [Boutet de Monvel et al. 1995] that the variance of Nn[h]
tends to zero, as n →∞. But the behavior of the fluctuations of Nn[h] was
studied only in the case of one-cut potentials (see [Johansson 1998]). Even the
bound for Varn,β{Nn[h]} in the multi-cut regime was known only for β = 2.
Thus the behavior of the characteristic functional, corresponding to the linear
eigenvalue statistics (1-10) of the test function h

Zn,β[h] = En,β
{
eNn[h]−En,β {Nn[h]}

}
=

Qn,β
[
V− 2

β
(h−En,β{n−1Nn[h]})

]
Qn,β[V ]

(1-11)
is one of the questions of primary interest in the random matrix theory. It
is evident from the right-hand side of (1-11) that since Zn,β[h] is a ratio of
two partition functions, to study the behavior of Zn,β[h], it suffices to find the
coefficients of the expansion of log Qn,β[V ] up to the order o(1).

The other very important question of the theory of random matrices is so-
called the universality conjecture for the local eigenvalue statistics. According
to this conjecture, for example, for the bulk of the spectrum, the behavior of the
scaled correlation functions of (1-5)

p(n)k,β

(
λ0+ x1/(nρ(λ0)), . . . , λ0+ xk/(nρ(λ0))

)
in the limit n→∞ is universal, that is, do not depend on V and depends only on
β. For β = 2 this problem is very well studied now. It is well known (see, e.g.,
[Mehta 1991]) that for β = 2 all correlation functions of (1-5) can be expressed in
the terms of the reproducing kernel of the system of polynomials orthogonal with
a varying weight e−nβV . The orthogonal polynomial machinery, in particular,
the Christoffel–Darboux formula and Christoffel function simplify considerably
the studies of marginal densities (1-5). This allows to study the local eigenvalue
statistics in many different cases: bulk of the spectrum, edges of the spectrum,
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special points, etc. (see [Pastur and Shcherbina 1997; 2008; 2011; Deift et al.
1999; Bleher and Its 2003; Claeys and Kuijlaars 2006; Levin and Lubinsky 2008;
McLaughlin and Miller 2008; Shcherbina 2011]).

For β = 1, 4 the situation is more complicated. It was shown in [Tracy and
Widom 1998] that all correlation functions can be expressed in terms of some
2× 2-matrix kernels. But the representation is less convenient than that in the
case β = 2. It makes difficult the problems, which for β = 2 are just simple
exercises. For example, the bound for the variance of linear eigenvalue statistics
for β = 2 is a trivial corollary of the Christoffel–Darboux formula for any σ ,
while for β = 1, 4, as it was mentioned above, in the multi-cut regime the bound
was not known till the recent time. As for the universality conjecture, there were
a number of papers with improving results, first for monomial V = λ2m

+ o(1),
(see [Stojanovic 2000; Deift and Gioev 2007b; 2007a; Deift et al. 2007]) proving
the bulk and edge universality for β = 1, 4, then for arbitrary real analytic
one-cut potential (see [Shcherbina 2009b; 2009a]). But combining interesting
observations of the papers [Widom 1999; Stojanovic 2000], we conclude that to
prove the bulk universality for β = 1, 4, it is enough to control log Qn,β

[
V ] up

to the O(1) terms. This was done first for the one-cut case in [Kriecherbauer
and Shcherbina 2010] and then in the multi-cut case in [Shcherbina 2011] (see
Section 3 for a more detailed discussion of the universality proof).

Let us mention now the most important results on the expansion of log Qn,β[V ]
and the correlators. The CLT for linear eigenvalue statistics in the one-cut regime
for any β and polynomial V was proved in [Johansson 1998]. The expansion for
the first and the second correlators for β = 2 and one-cut real analytic V and
β = 2 was proved in [Albeverio et al. 2001]. The expansion of log Qn,β[V ] for
a one-cut polynomial V and β = 2 was obtained in [Ercolani and McLaughlin
2003]. The formal expansion for any β and polynomial V were obtained in
the physical papers [Chekhov and Eynard 2006; Eynard 2009]. The CLT for
real analytic multi-cut V and special h = V for β = 2 was obtained in [Pastur
2006]. The control of log Qn,β[V ] up to O(1) for one-cut real analytic V and
multi-cut real analytic V was performed in [Kriecherbauer and Shcherbina 2010]
and [Shcherbina 2011], respectively. The expansion of the partition function and
all the correlators for the one-cut real analytic V and any β was constructed in
[Borot and Guionnet 2013]. And the CLT for linear eigenvalue statistics in the
multi-cut regime for any β and polynomial V was proved recently in [Shcherbina
2013].

The paper is organized as follows. In Section 2 we discuss the CLT and
the expansion of the partition function and correlators in the one-cut regime,
obtained in [Johansson 1998; Kriecherbauer and Shcherbina 2010; Borot and
Guionnet 2013]. In Section 3 we discuss the applications of the results on the
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control of log Qn,β[V ] up to O(1) in the multi-cut case to the proof of the bulk
universality for β = 1, 4 in the multi-cut case, following [Kriecherbauer and
Shcherbina 2010; Shcherbina 2011], and in Section 4 we discuss the results of
[Shcherbina 2013] on the CLT in the multi-cut case.

Throughout the paper we assume the following conditions on the potential V :

C1. V is a Hölder function satisfying (1-4), which is analytic in some open
domain of D⊂C containing the support σ of the corresponding equilibrium
measure, and

σ =

q⋃
α=1

σα, σα = [aα, bα]; (1-12)

C2. The equilibrium density ρ can be represented in the form

ρ(λ)=
1

2π
P(λ)=X1/2(λ+ i0), inf

λ∈σ
|P(λ)|> 0, (1-13)

where

X (z)=
q∏
α=1

(z− aα)(z− bα), (1-14)

and we choose a branch of X1/2(z) such that X1/2(z) ∼ zq , as z→+∞.
Moreover, the function v defined by (1-9) attains its maximum only if λ
belongs to σ .

Remark. It is known (see, e.g., [Albeverio et al. 2001]) that for analytic V the
equilibrium density ρ always has the form (1-13)–(1-14). The function P in
(1-13) is analytic and can be represented in the form

P(z)=
1

2π i

∮
L

V ′(z)− V ′(ζ )
(z− ζ )X1/2(ζ )

dζ. (1-15)

Hence condition C2 means that ρ has no zeros in the internal points of σ and
behaves like square root near the edge points. This behavior of V is usually
called generic (see [Kuijlaars and McLaughlin 2000] for the results explaining
the term).

2. Asymptotic expansion and CLT for β matrix models
in the one-cut regime

The one-cut case is the simplest version of the possible spectrum of the β-models.
As it is clear from the physical papers [Chekhov and Eynard 2006; Eynard 2009],
it is the only case when it is expected that fluctuations of eigenvalue statistics are
asymptotically Gaussian and the asymptotic expansions of log Qn,β[V ] does not
contain some kind of θ -function. Hence, almost all known before results on the



468 MARIYA SHCHERBINA

expansions of log Qn,β[V ] and the correlators (see the definition in (2-4) below)
were obtained for the one-cut potentials V . One of the first results in this direction
is the CLT for linear eigenvalue statistics, which was proved by Johansson [1998]
and improved in [Kriecherbauer and Shcherbina 2010; Shcherbina 2013].

Theorem 1. Let V satisfy condition C1–C2 and σ = supp ρ = [a, b]. Then for
any real-valued h with ‖h(4)‖∞, ‖h′‖∞ ≤ log n the characteristic functional
Zn,β[h] of (1-11) has the form

Zn,β[h] = exp
{
β

2

((
2
β
− 1

)
(h, ν)+ 1

4(Dh, h)
)}

·
(
1+ n−1O

(
‖h′‖3

∞
+‖h(4)‖3

∞

))
, (2-1)

where the operator Dσ is defined as

Dσ =
1
2
(Dσ + D∗σ ), Dσh(λ)=

X−1/2(λ)

π2

∫
σ

h′(µ)X1/2(µ)dµ
(λ−µ)

, (2-2)

and the nonpositive measure ν has the form

(ν, h) := 1
4(h(b)+ h(a))−

1
2π

∫
σ

h(λ) dλ
X1/2(λ)

+
1
2(Dσ log P, h), (2-3)

with P defined by (1-15) and X1/2(λ) := =X1/2(λ+ i0) with X of (1-14).

The method of the proof proposed in [Johansson 1998] was based on the
analysis of the first loop equation (see (2-10) below) combined with a priory
bound (1-8), obtained in [Boutet de Monvel et al. 1995]. But it was used
essentially in the proof that V is a polynomial. Then in [Kriecherbauer and
Shcherbina 2010] the method of [Johansson 1998] was generalized to any one-
cut analytic potential. Moreover, log Qn,β[V ] was found up to O(1) term by
using the idea of the interpolation between the Gaussian potential and the arbitrary
one-cut potential. The last step in the construction of the asymptotic expansion
in n−1 was done recently in [Borot and Guionnet 2013]. The authors studied the
asymptotic expansion of all correlators, defined as

wk(z1, . . . , zk) :=
1
n

∂k

∂t1 . . . ∂tk
log Qn,β

[
V −

2
βn

k∑
j=1

tkφzk

]∣∣∣∣
t1=···=tk=0

, (2-4)

where

φz(λ)=
1

z− λ
.

One can easily see that then, for example, w1 is the Stieltjes transform of the
first marginal density (1-5) and
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w1(z)= n−1En,β{Nn[φz]} = (φz, p(n)1,β),

w2(z1, z2)= n−1Covn,β{Nn[φz1],Nn[φz2]}.
(2-5)

The main result of [Borot and Guionnet 2013] is the following theorem.

Theorem 2. Under conditions C1–C2, any correlator (2-4) admits an asymptotic
expansion of any order m, which means that

wk(z I )=

m∑
j=k−1

n− jw
( j)
k (z I )+ O(n−m−1), (2-6)

where the bound is uniform in z1, . . . , zk varying in any compact K of the upper
half-plane.

Moreover, log Qn,β also admits the asymptotic expansion in n of any order m:

log(Qn,β/n!)=
βn2

2
E[V ]+Fβ(n)+n

(
β

2
−1
)(
(log ρ, ρ)−1− log 2π

)
+

m∑
j=0

n− j q( j)
[ρ] + O(n−m−1), (2-7)

where the coefficients of the expansion q( j)
[ρ] are defined in terms of the integrals

with the Stieltjes transform of the equilibrium density ρ, Fβ(n) collects the term
which appears in the Gaussian case

Fβ(n)= log(Q∗n,β/n!)+
3βn2

8
,

and Q∗n,β is the partition function of the Gaussian case, that is, corresponds to
V (λ)= 1

2λ
2.

Remark. By the Selberg formula (see, e.g., [Forrester 2010]), we have

Q∗n,β/n! =
(

nβ
2

)−βn2/4−n(1−β/2)/2

(2π)n/2
n∏

j=1

0(β j/2)
0(β/2)

. (2-8)

Moreover, it is known (see [Forrester 2010]) that

Fβ(n)=n
(
β

2
−1
)(

log
nβ
2
−

1
2

)
+n log

√
2π

0(β/2)
−cβ log n+c(1)β +o(1), (2-9)

where
cβ =

β

24
−

1
4
+

1
6β
,

and c(1)β is some constant, depending only on β (for β = 2, c(1)β = ζ
′(1)).
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Sketch of the proof. As was mentioned above, the proof (given in [Borot and
Guionnet 2013]) is a nice combination of the methods and results of [Johansson
1998; Kriecherbauer and Shcherbina 2010] with the analysis of the loop equations
given in the physical papers [Chekhov and Eynard 2006; Eynard 2009]. The first
loop equation is well known and used in many papers [Pastur and Shcherbina
1997; Johansson 1998; Kriecherbauer and Shcherbina 2010]:

w2
1(z)− V ′(z)w1(z)+

1
2π i

∮
L

V ′(z)−V ′(ζ )
z−ζ

w1(ζ ) dζ

=
1
n

(
2
β
− 1

)
∂zw1(z)−

1
n
w2(z, z). (2-10)

Here and below the contours L , L ′ (and so on) in D encircle the ε-neighborhood
of the spectrum 6, but do not contain z and zeros of P of (1-15). The other loop
equations can be obtained from the first one by differentiating as in (2-4):

(2w1(z)− V ′(z))wk+1(z, z I )+
1

2π i

∮
V ′(z)− V ′(ζ )

z− ζ
wk+1(ζ, z I ) dζ

= Fk+1
(
z; {w j }

k+2
j=2

)
,

where

Fk+1
(
z; {w j }

k+2
j=2

)
:=

1
n

(
2
β
− 1

)
∂zwk+1(z, z I )−

∑
J⊂I
|J |6=0,k

w|J |+1(z, z J )wk+1−|J |(z, z I\J )

−
2
β

k∑
j=1

∂z j

wk(z, z I\{ j})−wk(z I )

z−z j
−

1
n
wk+2(z, z, z I ).

It was proved in [Johansson 1998; Kriecherbauer and Shcherbina 2010] that

w1(z)= g(z)+ n−1w
(1)
1 (z)+ O(n−2),

g(z)= 1
2

(
V ′(z)− P(z)X1/2(z)

)
.

(2-11)

Substituting this expression in (2-10) and multiplying the result by n, we obtain
an equation with respect to w(1)1 , which (combined with equations for {wk}k≥2

above) gives us the system of equations:

Kw(1)1 (z)=
(

1− 2
β

)
∂z

(
g(z)+ 1

n
w
(1)
1 (z)

)
−w2(z, z)− 1

n
(
w
(1)
1 (z)

)2

=: F1
(
z;w(1)1 , w2

)
,

Kwk+1(z, z I )= Fk+1(z; {w j }
k+2
j=2)−

2
n
w
(1)
1 (z)wk+1(z, z I ), (2-12)
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where the linear operator K : Hol [D \ σ ] → Hol [D \ σ ] is defined as

K f (z)=−P(z)X1/2(z) f (z)+
1

2π i

∮
V ′(z)− V ′(ζ )

z− ζ
f (ζ ) dζ.

Consider also the operator K(−1)
: Hol [D \ σ ] → Hol [D \ σ ] of the form

K(−1) f (z) :=
1

2π i X1/2(z)

∮
L

f (ζ ) dζ
P(ζ )(z− ζ )

. (2-13)

Till now we have not used that we have a one-cut potential. The loop equations
can be written in the multi-cut case as well as in the one-cut and the operators K

and K(−1) can be constructed by the same formulas, if we use P and X of (1-15)
and (1-14). It is straightforward to check that if we apply to the both parts of
(2-12) the operator (2-13), then in the multi-cut case (when X1/2(z) ∼ zq) we
obtain

wk+1(z, z I )+
pk+1(z; z I )

X1/2(z)
=

K(−1)Fk+1
(
z; {w j }

k+2
j=2

)
−

2
n

K(−1)w
(1)
1 (z)wk+1(z, z I ),

where pk+1(z; z I ) is a polynomial with respect to z of degree q − 2, whose
coefficients are the linear combinations of the first q − 1 coefficient in the
asymptotic expansion of wk+1(z, z I ) with respect to z− j . The main technical
obstacle to study the multi-cut case by the method described in this section is
that for q 6= 1 we do not know these coefficients, while in the case q = 1 (one-cut
case) it is easy to see that pk+1(z; z I )= 0 for all k ≥ 0 and we obtain the system
of equations

wk+1(z, z I )= K(−1)Fk+1(z; {w j }
k+2
j=2)−

2
n

K(−1)w
(1)
1 (z)wk+1(z, z I ). (2-14)

The key technical point in the analysis of the last equations is a priory estimate

|wk+1(z, z I )| ≤ n−1C(z, z I ), k ≥ 1. (2-15)

It can be derived from the bound proven in [Johansson 1998] (see also [Kriecher-
bauer and Shcherbina 2010]). Let L be any contour enclosed σ . Then there is a
constant CL such that for any real analytic function ϕ,

En,β
{
exp

{ ◦
Nn[ϕ]/

(
CL sup

ζ∈L
|ϕ(ζ )|

)}}
≤ 6
⇒ En,β{|

◦

Nn[ϕ]|
p
} ≤ C p(CL sup

ζ∈L
|ϕ(ζ )|)p,

where
◦

Nn[ϕ] =Nn[ϕ]−En,β{Nn[ϕ]}. The last bound implies (2-15). With this
bound in hands it is easy to see that (2-14) has “triangle” form: the right-hand
side of the equation for wk+1 contains w2, . . . , wk , the derivative of n−1wk+1,
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n−1w
(1)
1 wk+1, and n−1wk+2. Hence it can be solved in each order in n−1 starting

from the first equation and going down step by step. This leads to the assertion
(2-6).

To derive the assertion (2-7) from (2-6), we use the idea of [Kriecherbauer and
Shcherbina 2010] of interpolation between the Gaussian (quadratic) potential
with the same support σ = [a, b] and the potential V . Consider the functions
V (0) and Vt of the form

V (0)(λ)=2(λ− c)2/d, c = 1
2(a+ b), d = b− a,

Vt(λ)=tV (λ)+ (1− t)V (0)(λ).
(2-16)

Let Qn,β(t) := Qn,β[Vt ] be defined by (1-3) with V replaced by Vt . Then,
evidently, Qn,β(1)= Qn,β[V ], and Qn,β(0)= Qn,β[V (0)

]. Hence

1
n2 log Qn,β(1)−

1
n2 log Qn,β(0)=

1
n2

∫ 1

0
dt d

dt
logQn,β(t)

=−
β

2π i

∫ 1

0
dt
∮

L
dz(V (z)−V (0)(z))w1(z; t),

(2-17)

where w1(z; t) is defined by (2-4) for Vt . Using (1-9), one can check that for the
distribution (1-1) with V replaced by Vt the equilibrium density ρt has the form

ρt(λ)= tρ(λ)+ (1− t)ρ(0)(λ), ρ(0)(λ)=
2X1/2(λ)

πd2 , (2-18)

with X of (1-14). Hence, substituting (2-11) for Vt into (2-17), we get

log Qn,β[V ] = log Qn,β[V (0)
] − n2β

2
E[V (0)

] + n2β

2
E[V ]

+
βn
2

1
(2π i)

∫ 1

0
dt
∮

L
(V (z)− V (0)(z))w(1)1 (z; t) dz,

Then we use the expression for w(1)1 (z; t) which follow from the first equations
of (2-12). After some transformations we arrive at (2-7). �

3. Bulk universality for orthogonal and symplectic ensembles

As it was mentioned in Introduction one of the most important applications of the
asymptotic expansion of log Qn,β[V ] is the proof of the universality of the local
regime in the case of β = 1, 4 (for real symmetric and symplectic matrix models).
Throughout this section we will assume that V is a polynomial of degree 2m,
satisfying condition C2, and n is even, but the result can be generalized on V ,
satisfying conditions C1–C2. According to the results of [Tracy and Widom
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1998], the matrix kernels for β = 1, 4 can be expressed in terms of the scalar
kernels

Sn,1(λ, µ)=−

n−1∑
j,k=0

ψ
(n)
j (λ)(M (n)

n )−1
jk (εψ

(n)
k )(µ), (3-1)

Sn/2,4(λ, µ)=−

n−1∑
j,k=0

(ψ
(n)
j )′(λ)(D(n)

n )−1
jk ψ

(n)
k (µ); (3-2)

here ε(λ)= 1
2 sgn(λ) (sgn denoting the standard signum function),

(ε f )(λ) :=
∫

R

ε(λ−µ) f (µ) dµ,

and D(n)
n and M (n)

n are the top left corner n×n blocks of the semiinfinite matrices
that correspond to the differentiation operator and to some integration operator,
respectively:

D(n)
∞
:=
(
(ψ

(n)
j )′, ψ

(n)
k

)
j,k≥0, D(n)

n =
{

D(n)
jk

}n−1
j,k=0,

M (n)
∞
:=
(
εψ

(n)
j , ψ

(n)
k

)
j,k≥0, M (n)

n =
{

M (n)
jk

}n−1
j,k=0.

(3-3)

Both matrices D(n)
∞ and M (n)

∞ are skew-symmetric, and since ε(ψ (n)j )′ = ψ
(n)
j ,

we have for any j, l ≥ 0 that

δ jl =
(
ε(ψ

(n)
j )′, ψl

)
=

∞∑
k=0

(D(n)
∞
) jk(M (n)

∞
)kl ⇐⇒ D(n)

∞
M (n)
∞
= 1= M (n)

∞
D(n)
∞
.

It was observed in [Widom 1999] that if V is a rational function, in particular, a
polynomial of degree 2m, then the kernels Sn,1, Sn,4 can be written as

Sn,1(λ, µ)= Kn,2(λ, µ)+ n
2m−1∑

j,k=−(2m−1)

F (1)jk ψ
(n)
n+ j (λ)εψ

(n)
n+k(µ),

Sn/2,4(λ, µ)= Kn,2(λ, µ)+ n
2m−1∑

j,k=−(2m−1)

F (4)jk ψ
(n)
n+ j (λ)εψ

(n)
n+k(µ),

(3-4)

where F (1)jk , F (4)jk can be expressed in terms of the matrix T−1
n , where Tn is the

(2m− 1)× (2m− 1) block in the bottom right corner of D(n)
n M (n)

n :

(Tn) jk := (D(n)
n M (n)

n )n−2m+ j,n−2m+k, 1≤ j, k ≤ 2m− 1. (3-5)

The main technical obstacle to study the kernels Sn,1, Sn,4 is the problem to
prove that (T−1

n ) jk are bounded uniformly in n. Till the recent time this technical



474 MARIYA SHCHERBINA

problem was solved only in a few cases. In [Deift and Gioev 2007b; 2007a] the
case V (λ) = λ2m(1+ o(1)) (in our notations) was studied and the problem of
invertibility of Tn was solved by computing the entries of Tn explicitly. Similar
method was used in [Deift et al. 2007] to prove bulk and edge universality
(including the case of the hard edge) for the Laguerre type ensembles with
monomial V . In [Stojanovic 2000] the problem of invertibility of Tn was solved
also by computing the entries of Tn for V being an even quartic polynomial.
In [Shcherbina 2009b; Shcherbina 2009a] similar problem was solved without
explicit computation of the entries of Tn . It was shown that for any real analytic
V with one interval support of the equilibrium density (M (n)

n )−1 is uniformly
bounded in the operator norm.

But there is also a possibility to prove that Tn is invertible with another
technique. As a by product of the calculation in [Tracy and Widom 1998] one
also obtains relations between the partition functions Qn,β and the determinants
of M (n)

n and D(n)
n :

det M (n)
n =

(
Qn,10n

n! 2n/2

)2

, det D(n)
n =

(
Qn/2,40n

(n/2)! 2n/2

)2

,

where

0n :=

n−1∏
j=0

γ
(n)
j ,

γ (n)j being the leading coefficient of the j-th orthogonal polynomial p(n)j (λ). It
is also known (see [Mehta 1991]) that Qn,2 = n!/02

n . Since d(n)
∞

M (n)
∞
= 1 and

since (D(n)
∞ ) j,k = n sign( j − k)V ′(J (n)) jk implies that

(D(n)
∞
) j,k = 0 if | j − k| ≥ 2m,

|(D(n)
∞
) j,k | ≤ nC if | j − n| ≤ nc,

(3-6)

we have D(n)
n M (n)

n = 1+1n with 1n being zero except for the bottom 2m− 1
rows, and we arrive at this formula, first observed in [Stojanovic 2000]:

det(Tn)= det(D(n)
n M (n)

n )=

(
Qn,1 Qn/2,4

Qn,2(n/2)! 2n

)2

. (3-7)

Hence to control det(Tn), it suffices to control log Qn,β for β = 1, 2, 4 up to
the order O(1). One can easily see that for a one-cut case the control can be
done by using Theorem 1. But, as it was mentioned in the previous section, the
method used there does not work for the multi-cut case (see discussion after
Equation (2-13)).

In [Shcherbina 2011] the problem to control Qn,β[V ] for β = 1, 2, 4 is solved
in a little bit different way. It is proved that for any analytical potential V with
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q-interval support σ of the equilibrium density Qn,β[V ] up to the order O(1) can
be factorized to a product of some one-cut partition functions with appropriate
“effective potentials” V (a)

α defined in terms of σ , V and ρ.
Set

µα =

∫
σα

ρ(λ) dλ, n∗α := [nµα] + dα, (3-8)

where [x] means an integer part of x , and dα = 0,±1,±2 are chosen in a way
which makes n∗α even (recall that n is even) and∑

n∗α = n. (3-9)

Note, that the choice of dα is not unique, but a different choice differs only by
O(1) and leads to the same expression for Qn,β[V ] in (3-12) which is up to
O(1).

Introduce the “effective potentials”

V (a)
α (λ)= 1σα,ε(λ)

(
V (λ)− 2

∫
σ\σα

log |λ−µ|ρ(µ) dµ
)
, (3-10)

and denote by 6∗ the “cross energy”

6∗ :=
∑
α 6=α′

∫
σα

dλ
∫
σα′

dµ log |λ−µ|ρ(λ)ρ(µ). (3-11)

Theorem 3. Let V be a polynomial of degree 2m satisfying condition C2 and n
be even. Then the matrices F (1) and F (4) in (3-4) are bounded in the operator
norm uniformly in n. Moreover, the logarithm of the partition function Qn,β[V ]
can be obtained up to O(1) term from the representation

log(Qn,β[V ]/n!)=
q∑
α=1

log(Qn∗α,β[V
(a)
α ]/n∗α!)−

βn2

2
6∗+ O(1), (3-12)

where V (a)
α and 6∗ are defined in (3-10) and (3-11).

As it was mentioned above, Theorem 3 together with some asymptotic re-
sults for orthogonal polynomials of [Deift et al. 1999] proves the universality
conjecture for local eigenvalue statistics of the matrix models (1-1).

Theorem 4. Let V be a polynomial of degree 2m satisfying condition C2. Then
we have for (even) n→∞, λ0 ∈ R with ρ(λ0) > 0, and for β ∈ {1, 4} that

(nρ(λ0))
−1Sn,1

(
λ0+ ξ/nρ(λ0), λ0+ η/nρ(λ0)

)
=

sinπ(ξ − η)
π(ξ − η)

+ O(n−1/2),

(nρ(λ0))
−1Sn/2,4

(
λ0+ ξ/nρ(λ0), λ0+ η/nρ(λ0)

)
=

sinπ(ξ − η)
π(ξ − η)

+ O(n−1/2).
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the error bound is uniform for bounded ξ , η and for λ0 contained in some
compact subset of

⋃q
α=1(aα, bα).

It is an immediate consequence of Theorem 4 and of the formulas which
express the correlation functions in terms of Sn,1 or Sn,4 (see [Tracy and Widom
1998]) that the corresponding rescaled l-point correlation functions

p(n)l,1 (λ0+ ξ1/nρ(λ0), . . . , λ0+ ξl/nρ(λ0)) ,

p(n/2)l,4 (λ0+ ξ1/nρ(λ0), . . . , λ0+ ξl/nρ(λ0))

converge for n (even)→∞ to some limit that depends on β = 1, 4 but not on
the choice of V .

Sketch the proof of Theorem 3. Set

σε=

q⋃
α=1

σα,ε, σα,ε=[aα−ε, bα+ε], dist {σα,ε, σα′,ε}>δ>0, α 6=α′. (3-13)

First of all we replace the integration domain in the definition of Qn,β[V ] and
p(n)k,β from R to σε. Then, according to [Pastur and Shcherbina 2008], Qn,β[V ]
and p(n)k,β will be changed by (1+ O(e−nc)) factor.

To understand how the potentials V (a)
α of (3-10) appear, let us represent

H(λ̄) as

−n
n∑

i=1
V (λi )+

q∑
i 6= j
α,α′=1

χα(λi )χα′(λ j ) log |λi − λ j |

= −n
n∑

i=1
V (λi )+

∑
i 6= j

q∑
α=1

χα(λi )χα(λ j ) log |λi − λ j |

+ 2n
n∑

j=1
χα(λi )

∑
α′ 6=α

∫
log |λi −µ|χα′(µ)ρ(µ) dµ− n26∗

+
∑

i, j=1,...,n
α 6=α′

∫
dλ dµ log |λ−µ|χα(λ)χα′(µ)(δλi (λ)−ρ(λ))(δλ j (µ)−ρ(µ))

= Ha(λ̄)+1H(λ̄), (3-14)

where χα is the indicator function of the interval σα,ε, δλi (λ) = δ(λ− λi ) is a
delta-function, the “cross energy” 6∗ is defined in (3-11), and we introduce

Ha(λ1 . . . λn)

=−n
q∑
α=1

n∑
i=1

V (a)
α (λi )+

∑
i 6= j

log |λi − λ j |

( q∑
α=1

χα(λi )χα(λ j )

)
− n26∗,

in which the “effective potential” V (a)
α (λ) is defined by (3-10).
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Consider

Q(a)
n,β[V ] =

∫
σ n
ε

eβHa(λ1,...,λn)dλ1 . . . dλn.

By the Jensen inequality

β

2
〈1H〉Ha ≤ log Qn,β[V ] − log Q(a)

n,β[V ] ≤
β

2
〈1H〉H .

Then it was shown that both the right-hand side and the left-hand side of this
inequality are O(1) and

log Q(a)
n,β[V ] =

q∑
α=1

log Qn∗α,β[(n/n∗α)V
(a)
] − n26∗+ O(1),

where the n∗α , α= 1, . . . , q , are chosen to satisfy (3-8) and (3-9). We do not give
more details here, because the result follows from (4-10) in the next section. �

4. CLT for β-model in the multi-cut regime

The idea of using some factorization of Qn,β[V ] into a product of one-cut
partition functions for the effective potentials V (a)

α was used in [Shcherbina 2013]
to prove the CLT for linear eigenvalue statistics (1-10). In order to formulate
corresponding result we need some extra definitions. Consider the Hilbert space

H=

q⊕
α=1

L2
[σα] (4-1)

with the standard inner product ( . , . ). Define the operator L (cf. (1-7)) by

L f = 1σ L[ f ], Lα f := 1σα L[ f 1σα ], (4-2)

the block diagonal operators

D :=
q⊕
α=1

Dα, L̂ :=
q⊕
α=1

L̂α, (4-3)

where Dα is defined by (2-2) for σα. Moreover, denote

L̃ := L− L̂, G := (1+ DL̃)−1. (4-4)

An important role below belongs to a positive definite matrix Q= {Qαα′}
q
α,α′=1

of the form

Qαα′ = (Lψ
(α), ψ (α

′)), (4-5)
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where ψ (α)(λ)= pα(λ)X−1(λ) (pα is a polynomial of degree q−1) is the unique
solution of the system of equations

(Lψ (α))α′ = δαα′, α′ = 1, . . . , q. (4-6)

One can easily see that the function 9α(z) =
∫

log |z − λ|ψ (α)(λ) dλ is the
harmonic measure of σα with respect to C \ σ . Denote also

I [h] = (I1[h], . . . , Iq [h]), Iα[h] :=
∑
α′

Q−1
αα′(h, ψ

(α′)). (4-7)

The main result of [Shcherbina 2013] is this:

Theorem 5. Let the potential V satisfy conditions C1–C2, and let ‖h(4)‖∞ <∞.
Then

Zn,β[h] = exp
{
β

8
(GDh, h)+

(
β

2
− 1

)
(Gν, h)

}
2( Ī [h]; {nµ̄})
2(0; {nµ̄})

(1+ O(n−δ)),

(4-8)
where δ > 0 and

2(I [h]; {nµ̄}) :=∑
n1+···+nq=n0

exp
{
−
β

2
(Q−11n̄,1n̄)+

β

2
(1n̄, I [h])+

(
β

2
− 1

)
(1n̄, I [log ρ̄])

}
,

({nµ̄})α = {nµα}, (1n̄)α = nα −{nµα},

( log ρ̄)α = log ρα, n0 =

q∑
α=1

{nµα}, (4-9)

with a positive definite matrix Q of (4-5) and I [h] defined by (4-7).
For h = 0 we have

Qn,β[V ] = Zn,β

exp
{

2
β

(
β

2 − 1
)2
(L̃Gν, ν)

}
det1/2(1− DL̃)

2(0; {nµ̄})(1+ O(n−κ)),

Qn,β[V ] = exp
{

n2β

2
E[V ] + Fβ(n)+ n

(
β

2 − 1
)(
(log ρ, ρ)−1− log 2π

)
−cβ(q − 1) log n+

q∑
α=1

(q(0)β [µ
−1
α ρα] − cβ logµα)

}
, (4-10)

where µα, ρα are defined in (3-8), q(0)β [ρ] is defined in (2-7), Fβ(n) and cβ are
defined in (2-9) and det means the Fredholm determinant of DL̃ on σ .
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Let us remark that since the kernel of L is an analytic function, it is easy to
prove that DL̃ is a trace class operator. Moreover, it is proven in [Shcherbina
2013] that ‖DL̃‖< 1. Hence det1/2(1+ DL̃)−1 is well defined.

Note also that since L̃= 0 in the one-cut case, the formulas of Theorem 5 for
q = 1 coincide with that of Theorem 1.

According to Theorem 5, the fluctuations of the linear eigenvalue statistics
Nn[h] are not Gaussian in the multi-cut regime, because the exponent of the
generating functional Zn,β[h] is not quadratic with respect to h. We obtain
that Zn,β[h] contains some quasiperiodic 2-function in which the quadratic
form Q

q
α,α′=1 is determined by the geometrical structure of σ . The fluctuations

of Nn[h] become Gaussian if and only if all parameters Iα[h] = 0 (see (4-7)).
Similar results for β = 2 were predicted in [Pastur 2006] on the basis of the
analysis of the asymptotics of orthogonal polynomials obtained in [Deift et al.
1999]. One more interesting observation is that the operator L̃G which appears
in the place of the “variance” differ from L−1 (see (4-2) for the definition of L)
only by the final rank perturbation. This perturbation provides, in particular, that
L̃G f = 0, if f (λ)= const, λ ∈ σ .

Sketch of the proof of Theorem 5. Let n̄ := (n1, . . . , nq) and set

|n̄| :=
q∑
α=1

nα, 1n̄(λ̄) :=

n1∏
j=1

1σ1,ε(λ j ) . . .

n∏
j=|n̄|−nq+1

1σq,ε(λ j ). (4-11)

It is evident that

Qn,β[V ]/n! =
∑
|n̄|=n

∫
1n̄(λ̄)eβH(λ̄)/2

n1! . . . nq !
=

∑
|n̄|=n

∫
1n̄(λ̄)eβ(Ha(λ̄)+1H(λ̄))/2

n1! . . . nq !
. (4-12)

Since log |λ− µ| for λ ∈ σα,ε, µ ∈ σα′,ε, α 6= α′ is an analytic function, the
expansion of it in the Fourier series with respect to some appropriate basis (e.g.,
Chebyshev polynomials {p(α)k (λ)}, {p(α

′)
k (µ)}) will converge exponentially fast.

Hence, if we choose M = [log2 n], then

log |λ−µ| =
M∑

k,m=1

L(α,α
′)

k,m p(α)k (λ)p(α
′)

m (µ)+ O(e−c log2 n),

λ ∈ σα,ε, µ ∈ σα′,ε, α 6= α
′. (4-13)

Thus,

1H(λ̄)1n̄(λ̄)

= 1n̄(λ̄)

n∑
j, j ′=1
α 6=α′

M∑
k,m=1

L(α,α
′)

k,m

(
p(α)k (λ j )−

n
nα

c(α)k

)(
p(α

′)
m (λ j ′)−

n
nα′

c(α)k

)
+O(e−c log2 n)
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with

c(α)k := (p
(α)
k , ρ1σα ).

Then we represent the matrix

L̃(M)
:=
{

L(α,α
′)

k,m

}
k,m=1,...m,α,α′=1,...q ,

which consists of q2 blocks M×M , as a difference of two positive block matrix
of the same dimensionality

L̃(M)
= Â(M)

−A(M), A(M), Â(M) > 0

and apply the Hubbard–Stratonovich transformation to eβ1H(λ̄)/21n̄(λ̄):

eβ(Â
(M) x̄,x̄)/2

=

(
β

2π

)(Mq)2/2
∫

R(Mq)2
dū(1)eβ((Â

(M))1/2 x̄,ū(1))/2−β(ū(1),ū(1))/8,

e−β(A
(M) x̄,x̄)/2

=

(
β

2π

)(Mq)2/2
∫

R(Mq)2
dū(2)eiβ((A(M))1/2 x̄,ū(2))/2−β(ū(2),ū(2))/8.

(4-14)

We obtain the linear with respect to p(α)k (λ j ) expression h̃(ū1, ū2) in the exponent.
Then apply Theorem 1 to

V = µ−1
α V (a)

α , h =
β

2
(µ−1

α − n/nα)V (a)
α + h̃(u1, ū2).

This gives a quadratic form with respect to (ū(1), ū(2)) in the exponent, and the
quasi periodic quadratic form in the exponent appears due to the coefficient
in front of V (a)

α . Then we integrate with respect to (ū(1), ū(2)). After some
transformations we obtain the assertion of Theorem 5. �

In principle, this way could be used to construct the asymptotic expansion of
Qn,β[V ] with respect to n−1, because after the Hubbard–Stratonovich transfor-
mation we can apply the result Theorem 2. But there is a problem that in this
case we have to apply (2-7) to a non real perturbation of V (see (4-14)). There
is a way to extend the bounds obtained for th with a real t to a non real t , but
for |t | ≤ | log n|1/2. It is enough for the CLT but not enough for the construction
of the expansion.
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