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Experimental realization of Tracy—Widom
distributions and beyond:
KPZ interfaces in turbulent liquid crystal

KAZUMASA A. TAKEUCHI

Analytical studies have shown the Tracy—Widom distributions and the Airy
processes in the asymptotics of a few growth models in the Kardar—Parisi—
Zhang (KPZ) universality class. Here the author shows evidence that these
mathematical objects arise even in a real experiment: more specifically, in
growing interfaces of turbulent liquid crystal. The present article is devoted to
overviewing the current status of this experimental approach to the KPZ class,
which directly concerns random matrix theory and related fields of mathemati-
cal physics. In particular, the author summarizes those statistical properties
which were derived rigorously for simple solvable models and realized here
experimentally, and those which were evidenced in the experiment and remain
to be explained by further mathematical or theoretical studies.

1. Introduction

The first decade of the 21st century and a couple of preceding years have been
marked by a series of remarkable analytical developments, which have revealed
profound and rigorous connections among random matrix theory, combinatorial
problems, and the physical problem of the fluctuating interface growth ([Baik
and Rains 2001; Kriecherbauer and Krug 2010; Sasamoto and Spohn 2010a;
Corwin 2012] and references therein). Their primary conclusions in terms of the
interface growth problem, first pointed out by Johansson [2000] for TASEP and by
Priahofer and Spohn [2000] for the PNG model, are the following [Kriecherbauer
and Krug 2010; Sasamoto and Spohn 2010a; Corwin 2012]: (i) The distribution
function and the spatial correlation function were obtained rigorously for the
asymptotic interface fluctuations. (ii) The results depend on the global shape
of the interfaces, or on the initial condition. For the two prototypical cases of
the curved and flat growing interfaces, the distribution function is given by the
Tracy—Widom distribution [Tracy and Widom 1994; 1996] for GUE and GOE,
respectively, and the spatial two-point correlation function by the covariance
of the Airy; and Airy; process [Prihofer and Spohn 2002; Sasamoto 2005],
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respectively. (iii) All or some of these conclusions were reached for a number
of models, namely the TASEP [Johansson 2000; Borodin et al. 2007; 2008;
Sasamoto 2005] and the PASEP [Tracy and Widom 2009], the PNG model
[Prahofer and Spohn 2000; 2002; Borodin et al. 2008], and the KPZ equation
[Sasamoto and Spohn 2010c; 2010b; Amir et al. 2011; Calabrese et al. 2010;
Dotsenko 2010; Calabrese and Le Doussal 2011; Prolhac and Spohn 2011]. They
are believed to be universal characteristics of the KPZ class, which is the basic
universality class for describing scale-invariant growth of interfaces due to local
interactions [Kardar et al. 1986].

This geometry-dependent universality of the KPZ class and the nontrivial
connection to random matrix theory were recently made visible by a real ex-
periment [Takeuchi and Sano 2010; 2012; Takeuchi et al. 2011]. Using the
electrically driven convection of nematic liquid crystal [de Gennes and Prost
1995], the author and his coworker generated expanding domains of turbulence
amidst another turbulent state which is only metastable (Figure 1) and measured
the fluctuations of their growing interfaces. Although the growth mechanism in
this experiment is far more complicated than the solvable mathematical models —
it is realized by proliferation and random transport of topological defects due
to local turbulent flow in the electroconvection, such microscopic difference is
scaled out in the macroscopic dynamics according to the universality hypothesis.
The author then indeed found the aforementioned statistical properties of the
KPZ class emerge in the scaling limit [Takeuchi and Sano 2010; 2012; Takeuchi
et al. 2011].

The present contribution is devoted to overviewing the current status of this
experimental investigation. It summarizes, one by one, those statistical properties
which were derived rigorously for the solvable models and confirmed here
experimentally (Section 2) and those which were evidenced in the experiment
and remain to be explained by mathematical or theoretical studies (Section 3).
Note however that, because of the space constraint, the present survey does not
cover all the experimental results obtained so far; for the complete description
of the experimental system and the results, the readers are referred to the recent
article by the author and the coworker [Takeuchi and Sano 2012].

2. Experimental realization of analytically solved properties

Scaling exponents. The generated growing interfaces become rougher and rough-
er as time elapses. In other words, the local height 4 (x, t) measured along the
average growth direction (see Figure 1) is fluctuating in both space and time and
the fluctuations grow with time. The roughness can be quantified by, for example,
the height-difference correlation function Cy(/, t) = ([h(x + [, t) — h(x, H1?)
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(a) circular interface 300 ym
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(b) flat interface

10 sec 30 sec 50 sec

Figure 1. Growing turbulent domain (black) in the liquid-crystal con-
vection, bordered by a circular (a) and flat (b) interface. Indicated below
each image is the elapsed time for this growth process. Movies are
also available as supplementary information of [Takeuchi et al. 2011].
Such interfaces were generated about a thousand times to evaluate all
the statistical properties presented in this article.

with the ensemble average (- - -). It then turned out to obey the following power
law called the Family—Vicsek scaling [Family and Vicsek 1985]:

1* forl «l,,

1
t# forl>1,, M

Coll, )" 2 ~tPFy(t™17) ~ {
with a scaling function Fj, a crossover length scale [, ~ 12 and the KPZ
characteristic exponents « = 1/2, 8 = 1/3, and z = /8 = 3/2 for 1 + 1
dimensions [Kardar et al. 1986]. The same set of the exponents was found for
both circular and flat interfaces. This implies that the one-point fluctuations of
the local height / can be described, for large ¢, as

h >~ veot + (') 3y, (2

with two constant parameters v, and I and with a random variable x that
captures the fluctuations of the growing interfaces. The two parameters are
related to those of the KPZ equation, 9,4 = v8fh 4+ (1/2) (Och)* + @5 with
white noise &, by vs = A and I' = A?A/2 with A = D/2v [Takeuchi and Sano
2012].

Distribution function. The random variable x in (2) turned out to be identical
to the variable x» = xgug obeying the GUE Tracy—Widom distribution for the
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Figure 2. One-point distribution of the rescaled local height ¢ =
(h —veot)/ (T't)'/3 for the circular and flat interfaces. (a) Probability
density of ¢ measured at different times, + = 10 s and 30 s for the
circular interfaces (solid symbols) and + = 20 s and 60 s for the flat
ones (open symbols), from right to left. The dashed and dotted curves
show the GUE and GOE Tracy—Widom distributions, respectively
(with the factor 27%/3 for the latter). (b,c) Finite-time correction in the
mean. The figures are reprinted from [Takeuchi and Sano 2012] with
adaptations, with kind permission from Springer Science+Business
Media.

circular interfaces, and to y; = 2-2/3 xcoe With xgog being the GOE Tracy—
Widom random variable for the flat interfaces, in the limit # — oo. This is in
agreement with the analytical results for all the above-mentioned solvable models
[Kriecherbauer and Krug 2010; Sasamoto and Spohn 2010a; Corwin 2012]. It was
shown by plotting histograms of the rescaled height g = (h — voot)/(I't)1/3 ~ x
[Figure 2(a)] using the experimentally measured values of the parameters veo
and I'. The slight horizontal shifts visible in Figure 2(a) are due to finite-time
correction in the mean (g), which decays by a power law (g) — (x;) ~ =173
[Figure 2(b,c)] with i = 1 (flat) or 2 (circular). These finite-time corrections will
be revisited in Section 3.

Spatial correlation function. In the solvable case, it is analytically proved that
the two-point spatial correlation function

Cs(l; ) = (h(x +1,0)h(x, 1)) — (h(x +1, 1)) (h(x, 1)) 3)

is given by the covariance of the Airy; process «{(«) for the flat interfaces and
the Airy, process s, (u) for the curved ones [Kriecherbauer and Krug 2010;
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Figure 3. Two-point spatial correlation function C(/; ¢) in the rescaled
units. The symbols are the experimental data at t = 10 s and 30 s for
the circular case and r = 20 s and 60 s for the flat one (from bottom
to top for each pair). The dashed and dashed-dotted curves indicate
the covariance of the Airy, and Airy; processes, respectively. The
inset shows the finite-time correction for the circular case, expressed in
terms of the integral Ci"(1)= fooo Cli(¢;t)d¢ and gi2mz fooo g (¢)de.
The figure is reprinted from [Takeuchi and Sano 2012] with adaptations,
with kind permission from Springer Science+Business Media.

Sasamoto and Spohn 2010a; Corwin 2012], through the single expression
Co(l; 1) = (Tt)y* g (FAL(T) ). 4)

Here, g; (¢) = (A (u+) A (u)) —(A; (1))? and the Airy processes are normalized
to have the same variance as x;, (&diz (), =« X,-z) .- The experimental data at large
times also indicate (4) for both flat and circular interfaces (Figure 3), providing
information on finite-time corrections as well.

Extreme-value statistics. Analytical studies of the curved PNG interface, or
the related mathematical problems of the vicious walker and the directed poly-
mer, have also successfully solved the asymptotic distribution for the maximal
height Hy.x and, very recently, its position X« in this model [Johansson 2003;
Moreno Flores et al. 2013; Schehr 2012]. In the rescaled units, the two extremal
quantities are described as

i = (Hmax — o)/ (TD)'? — max(sy (u) — ),
X ax = (AXmax/2)/(T1)*3 — argmax(sda(u) — u?)
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in the limit + — oo. It was proved [Johansson 2003; Moreno Flores et al. 2013;
Schehr 2012] in particular that the asymptotic distribution for the rescaled maxi-
mal height is given by the GOE Tracy—Widom distribution (with the factor 272/3);
in other words, Hpax = Voof + (I't)1/3 x with x identical to x;. Experimentally,
this maximal height must be measured with respect to a fictitious flat substrate
that includes the origin of the growing cluster, and hence Hp,x = max (A sin ¢)
with the azimuth ¢. In this way the GOE Tracy—Widom distribution was in-
deed identified in the experimental data for Hyp,x, with finite-time correction
<q§£‘§x> —{x1) ~ t~1/3 [Takeuchi and Sano 2012]. The position Xp.x Was also
measured correspondingly and in the rescaled unit it was shown to approach the
asymptotic analytical solution in [Moreno Flores et al. 2013; Schehr 2012] with

increasing time [Takeuchi and Sano 2012].

3. Experimental fact for analytically unsolved properties

Finite-time corrections. The experimental data were obviously obtained at finite
times and therefore allow studying the finite-time corrections from the analytical
expressions derived in the asymptotic limit. For the one-point distribution, the
corrections in the nth-order cumulants were found to be (¢"). —(x;"). ~ 0@t~"/3)
up to n =4 for both flat and circular cases, except that the second- and fourth-order
cumulants for the circular interfaces were too small to identify any systematic
variation in time [Takeuchi and Sano 2012]. Although one can show the same
exponents O(t ~"/3) up to n = 4 for the curved exact solution of the KPZ equation
[Sasamoto and Spohn 2010c; 2010b; Takeuchi and Sano 2012], for the TASEP,
PASEP, and PNG model, only the corrections in the n-th-order moments were
evaluated: O(+~'/3) for n = 1 and O(+=2/3) for n > 2 [Ferrari and Frings 2011;
Baik and Jenkins 2013]. It would be useful to show if the corrections in the
cumulants are in the order of O(+~"/3) or 0(+~2/3) for these solvable models.
From the numerical side, circular interfaces of an off-lattice Eden model showed
corrections in the order of O(z~%/3) for both first- and second-order cumulants
within the time window of the simulation [Takeuchi 2012]. Although one cannot
exclude the possibility of crossover to O(t~!/3) for the first-order cumulant,
one could also speculate that this leading term is somehow absent in the off-
lattice Eden model because of some sort of symmetry. To add, in contrast to
the exponents, the coefficients for these finite-time corrections are understood
to be model-dependent. Indeed, that for the first-order cumulant, or the mean,
(q) — (xi), is negative for the curved solution of the KPZ equation [Sasamoto and
Spohn 2010c; 2010b] but positive for the TASEP [Ferrari and Frings 2011; Baik
and Jenkins 2013], the simulation of the off-lattice Eden model [Takeuchi 2012],
and the liquid-crystal experiment [Takeuchi and Sano 2012]. See Figure 2(b,c).
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Similar data analysis was performed for the maximal height Hy,,x and found,
for the mean, the same exponent as for the one-point distribution:

(@) — () ~ 0™
for the experiment [Takeuchi and Sano 2012] and

@™y — (x1) ~ 0@

qmax

for the off-lattice Eden simulation [Takeuchi 2012]. Concerning the distribution
of the position Xpax, opposite signs of the corrections were found for the second-
and fourth-order cumulants between the experiment and the numerically solved
PNG droplet [Takeuchi and Sano 2012]. These finite-time distributions of the
extremal quantities remain inaccessible by analytic means.

The finite-time corrections were also measured experimentally for the spatial
correlation function Cg(/; t) [Takeuchi and Sano 2012]. The corrections were
quantified in terms of the integral of the rescaled correlation function, Ci"(t) =
Jo" Clilg; ndg with C(£; 1) = Co(l; 1)/(D'1)*? and ¢ = (Al/2)(T't)~*/3. For
the circular interfaces, it was shown to approach the value of the Airy, covariance
gt = [ g2(¢)d¢ as g — Cint ~ O(¢~!/3) [Takeuchi and Sano 2012] (Figure 3
inset). The same exponent was also found numerically in the circular interfaces
of the off-lattice Eden model [Takeuchi 2012], though the way the function
C.(¢; t) approaches g»(¢) appears to be different. It is therefore important to
have analytical solutions for the spatial correlation function at finite times, which
are not yet obtained in a controlled manner in any solvable models.

Spatial persistence probability. Although it is considered that the spatial profile
of the growing interfaces itself is given by the corresponding Airy process, to the
knowledge of the author, statistical quantities other than the two-point correlation
function have not been explicitly calculated in the analytical studies. In other
words, measuring such quantities on the spatial correlation of the interfaces can
also shed light on the temporal correlation of the Airy processes, as well as
that for the largest eigenvalue in Dyson’s Brownian motion for GUE random
matrices, which is equivalent to the Airy; process [Johansson 2003].

This strategy was also pursued in the liquid-crystal experiment [Takeuchi and
Sano 2012], in which the persistence property of the height fluctuation §i(x, ¢) =
h(x,t) — (h) was measured. The spatial persistence probability Pf') (I;1) is
defined as the probability that a positive (4) or negative (—) fluctuation continues
over length / in a spatial profile of the interfaces at time ¢. The experimental
data then indicated, within the experimental accuracy, exponential decay

PO 1) ~ e e, (5)
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with ¢ = (Al/2)(I't)~2/3 for both flat and circular interfaces [Takeuchi and Sano

2012]. The decay coefficients Kj(f) were however different between the two cases:

K =1.07(8)

® =193
{/c+ 3) O — 0876 (circular),  (6)

K(_S) —2.003) (flat) and {
where the numbers in the parentheses indicate the range of error expected in the
last digit of the estimates. The exponential decay (5) in the spatial persistence
probability was also identified numerically for the circular interfaces of the off-
lattice Eden model, which gave «\” = 0.90(2) and «* = 0.89(4) [Takeuchi and
Sano 2012]. Since a similar set of the coefficients was numerically found in the
temporal persistence probability of the GUE Dyson Brownian motion [Takeuchi
and Sano 2012], namely K_(:) =0.90(8) and /cis) =0.90(6), the author considers
that the experimental value of KJ(FS) for the circular interfaces is somewhat affected
by finite-time effect and/or experimental error. To resolve this issue, it is impor-
tant to derive a theoretical expression for this persistence probability, whether
rigorously or approximatively, and to provide a direct numerical evaluation
with the aid of, e.g., Bornemann’s method [2010] to estimate the Fredholm
determinant numerically.

Temporal correlation. In contrast to the spatial correlation of the interfaces
which can be dealt with in terms of the Airy processes, their temporal correlation
remains inaccessible in analytical studies. Given that it is also expected to be
universal in the scaling limit, explicit information provided by experimental and
numerical studies may hint at the form of the solution that should be reached, if
reachable, on the temporal correlation of solvable growth models.

The two-point temporal correlation function

Ci(t, 10) = (h(x, )h(x, 19)) — (h(x, D)) {h(x, 1)) )

was experimentally measured along the characteristic lines, or in the vertical and
radial direction for the flat and circular interfaces, respectively, and turned out
to be very different between the two cases [Takeuchi and Sano 2012]. For the
flat case, it is governed by the scaling form Ci(z, 7p) >~ (T2to1)1/3 F(t/ty) with a
scaling function Fy(¢/ty) ~ (t/ty) ™" and A = 1. In contrast, for the circular case,
the raw correlation function C (¢, fo) does not decay to zero, presumably even
in the limit t+ — oo. The author found that the experimental curve for C(z, ty)
at each fy is proportional to the functional form obtained by Singha after rough
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theoretical approximations [Singha 2005]:

Ci(,

% I~ C([O)FSingha([/to; b(l())), (t ;ﬁ f), (8)
PA-1VDr(2/3, b(1 — 1

Fsingha(T; b) = ¢ (r‘{2/3)( /\/?))’ ©)

with the upper incomplete Gamma function I' (s, x), the Gamma function I"(s),
and unknown parameters b(fy) and c(fy) which turned out to depend on f
[Takeuchi and Sano 2012]. This functional form also indicates

tlim Ci(t, tp) > 0,
—00

as suggested by the experimental data. The ever-lasting temporal correlation in
the circular case formally implies A = 1/3, in contrast with A = 1 for the flat case.
This supports Kallabis and Krug’s conjecture [1999] that the autocorrelation
exponent A derived for the linear growth equations:
= {,3 +d/z (flat),

A=

B (circular), (10)

where d is the spatial dimension, also applies to the KPZ universality class. This
conjecture, as well as the interesting functional form for the temporal correlation
of the circular interfaces, need to be explained on the basis of more refined,
hopefully rigorous, theoretical arguments.

The temporal correlation was also characterized in terms of the persistence
probability. Along the characteristic lines, the temporal persistence probability
Py (t, ty) is defined as the joint probability that the interface fluctuation 54 (x, t)
is positive (4) or negative (—) at time 7y and maintains the same sign until time
t. Experimentally, it was found to decay algebraically

Py(t, to) ~ (t/t9) % (11)

with different sets of the exponents 6 for the flat and circular interfaces [Takeuchi
and Sano 2012]:

F+=13ﬂ$
6_ = 1.85(10)

0, =0.81(2)

6. —0.80(2) (circular). (12)

(flat) and !
It is interesting to note that 6, and 6_ are asymmetric in the flat case, which had
also been reported in numerical work [Kallabis and Krug 1999] and associated
with the nonlinearity in the KPZ equation, whereas this asymmetry is somehow
canceled for the circular interfaces. This latter statement was also confirmed
by the simulation of the off-lattice Eden model, which gave 6, = 0.81(3) and
6_ = 0.77(4) [Takeuchi 2012]. Theoretical accounts should hopefully be made
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on how the asymmetry 6 7 6_, which is present in the flat case, is canceled for
the circular interfaces.

4. Concluding remarks

We have briefly overviewed the main experimental results obtained for the grow-
ing interfaces of the liquid-crystal turbulence [Takeuchi and Sano 2010; 2012;
Takeuchi et al. 2011]. On the one hand, this experiment provides an interesting
situation where the deep and beautiful mathematical concepts developed in
random matrix theory and other domains of mathematical physics arise in a real
phenomenon (Section 2). It would be remarkable that we can directly look at the
Tracy—Widom distributions and the Airy processes by our eyes, or more precisely
by a microscope, all the more because there is no random matrix which explicitly
arises in this problem. On the other hand, and more importantly for future
developments, such an experimental study allows us to access statistical properties
that remain unsolved in the rigorous analytical treatments (Section 3). The author
believes that providing proof or theoretical accounts for those unsolved statistical
properties in any solvable model will further advance our understanding on the
KPZ universality class, as well as in the wide variety of related mathematical
fields in this context. Finally, the author would like to refer the interested readers
to the article [Takeuchi and Sano 2012], in which one can find much more
complete descriptions on the experiment and the results.

Note added in proof

After submission of this article, Ferrari and Frings [2013] derived analytic
expressions for the persistence probability of negative fluctuations for the Airy;
and Airy, processes (corresponding to the spatial persistence probability r®
for the interfaces). They numerically evaluated the decay coefficient «® for the
Airy; process and found it in agreement with the experimental value. However,
in my viewpoint, two problems remain open:

(1) The persistence probability of positive fluctuations remains to be solved.

(2) The present article reported Kk ~ K_(:) with the sign of the fluctuations
defined with respect to the mean value (&), while Ferrari and Frings showed
that «* depends continuously on the reference value ¢ used to define the sign:
specifically, k" decreases with increasing c. For KJ(:), one naturally expects that
it increases with c. Thus, it is not known whether and why «® and KJ(:) take the
same value at ¢ = (h), or they just happen to be close.

Likewise, after submission of the article, Alves et al. [2013] reported results of

extensive simulations of the off-lattice Eden model and showed that the peculiar
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finite-time correction of O(r~%/3) for the mean height of this model is replaced
by the usual scaling O(r~'/3) at larger times. Other open problems on finite-time
corrections mentioned in Section 3 remain unsolved to the knowledge of the
author.
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