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Asymptotics of spacing distributions
50 years later

PETER J. FORRESTER

In 1962 Dyson used a physically based, macroscopic argument to deduce
the first two terms of the large spacing asymptotic expansion of the gap
probability for the bulk state of random matrix ensembles with symmetry
parameter β. In the ensuing years, the question of asymptotic expansions
of spacing distributions in random matrix theory has shown itself to have a
rich mathematical content. As well as presenting the main known formulas,
we give an account of the mathematical methods used for their proofs, and
provide some new formulas. We also provide a high precision numerical
computation of one of the spacing probabilities to illustrate the accuracy of
the corresponding asymptotics.

1. Introduction

Random matrices were introduced in physics by Wigner in the 1950s; see
[Porter 1965]. Wigner’s original hypothesis was that the statistical properties
of energy levels of complex nuclei could be reproduced by considering an
ensemble of systems rather than a single system in which all interactions are
completely described. This allowed for an entirely mathematical approach where
statistical properties of the spectrum of an ensemble of random matrices were
considered. But coming from physics, the aim was to use mathematics to compute
experimentally measurable statistical quantities, and to compare against the data.

One viewpoint on a real spectrum from a random matrix is as a point process on
the real line. As such, perhaps the most natural statistical characterization is that
of the distribution of the eigenvalue spacing. This choice of statistic becomes even
more compelling when one considers that in many cases of interest, eigenvalue
spectra can be “unfolded”. This means that unlike many statistical mechanical
systems, the density is not an independent control variable, but rather fixes
the length scale only. Unfolding then is scaling the eigenvalues in the bulk of
the spectrum so that the mean density is unity. It is indeed the bulk spacing
distribution for the Gaussian orthogonal ensemble of real symmetric matrices —
albeit in an approximate form known as the Wigner surmise (see, e.g., [Mehta
1991]) — which was compared against the empirical spacing distribution for the
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energy level of highly excited nuclei (again, see [Mehta 1991], and references
therein).

Fixing length scales at the edge of the spectrum is, as a practical exercise,
a more difficult task. In addition to the bulk, we will have interest in the soft
and hard spectrum edges when the eigenvalue spectrum exhibits a square root
profile and inverse square root profile, respectively. To specify realizations of the
bulk and edge regions of the eigenvalue spectrum, we recall (see, e.g., [Forrester
2010]) that the so-called classical random matrix ensembles have their eigenvalue
probability density functions (PDFs) of the form

1
C

N∏
l=1

g(λl)
∏

1≤ j<k≤N

|λk − λ j |
β, (1-1)

with β corresponding to the underlying global symmetry (β = 1, 2 or 4 for
invariance under orthogonal, unitary or symplectic unitary transformations, re-
spectively); C denotes the normalization. This is extended to general β>0, giving
the β-ensembles [Dumitriu and Edelman 2002] as specified by the eigenvalue
PDF (1-1), to be denoted MEN ,β(g(λ)). In particular the choice g(λ)= e−βλ

2/2

defines the Gaussian β-ensemble and the choice g(λ) = λβa/2e−βλ/2, (λ > 0),
defines the Laguerre β-ensemble.

The bulk state can be realized by scaling λl 7→ xl/
√

2N in the Gaussian
β-ensemble. The soft edge is realized by the scalings

λl 7→
√

2N +
xl

√
2N 1/6

and λl 7→ 4N + 2
√

2xl

in the Gaussian and Laguerre β-ensembles, respectively [Forrester 1993]. Only
the Laguerre β-ensemble has a hard edge, as it requires the eigenvalue density
to be strictly zero on one side; it is realized by the scaling λl 7→ xl/(4N ). In
all cases the limit N →∞ needs to be taken after the scaling. At an edge, the
spacing between consecutive eigenvalues is not the natural observable. Instead,
it is most natural to measure the distribution of the largest, second largest, etc.,
eigenvalue (or smallest, second smallest etc.). It is well known, and easy to
verify, that all these quantities can be expressed in terms of the (conditional) gap
probabilities E ( · )β (n; J ) for there being exactly n eigenvalues in the interval J ,
for the scaled state ( · ) = bulk, soft or hard indexed by β. In the case of the
hard edge, the probability depends on the exponent βa/2 in the Laguerre weight
λβ/2e−βλ/2, so we write Ehard

β (n; J ; aβ/2).
Our interest in this review is on the asymptotic form of spacing distributions

in the bulk, and of the distribution of large and small eigenvalues at the edge.
This is a topic which (in the bulk case) occupied the attention of Dyson in one
of the pioneering papers on random matrix theory in the early 1960s [Dyson
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1962], and is still being written on as we stand today some 50 years later. We
are seeking to catalog both the results and the methods which underlie them,
and also to contribute some new formulas. Section 2 deals with results founded
on Dyson’s heuristic physical hypothesis; these are in the form of conjectures.
The various mathematical techniques which can both prove, and build on these
asymptotic expressions, are covered in Section 3. A numerical illustration of
the accuracy of the asymptotic form is given in Section 4, as is a discussion
of asymptotic results for the gap probability in the case that each eigenvalue is
independently deleted with probability (1− ξ).

2. Macroscopic heuristics

2.1. Zero eigenvalues in the gap. The eigenvalue PDF (1-1) can be interpreted
as the Boltzmann factor of a classical log-gas system interacting at inverse
temperature β. The particles repel via the logarithmic potential and are subject
to a one body potential with Boltzmann factor g(λ)= e−βV (λ). This interpreta-
tion led Dyson [1962] to hypothesize an ansatz for the asymptotic form of the
gap probability Eβ(0; (−α, α);CβEN ), where CβEN denotes Dyson’s circular
ensembles (see, e.g., [Forrester 2010, Chapter 2]) of random unitary matrices
(all eigenvalues are therefore on the unit circle; the interval (−α, α) refers to a
sector of the circumference specified by its angles):

Eβ(0; (−α, α);CβEN ) ∼
N→∞

e−βδF. (2-1)

Here and below the symbol ∼ is used to denote that the right-hand side gives
leading terms, up to some order to be further specified, of the asymptotic ex-
pansion of the left-hand side. In (2-1) δF is the energy cost of conditioning the
equilibrium particle density so that ρ(1)(θ)= 0 for θ ∈ (−α, α). This energy cost
consists of an electrostatic energy

V1 =−
1
2

∫ 2π

0

∫ 2π

0

(
ρ(1)(θ1)−N/2π

)(
ρ(1)(θ2)−N/2π

)
log |eiθ1−eiθ2 | dθ1 dθ2

(2-2)
and an entropy term

V2 =

(
1
β
−

1
2

)∫ 2π

0
ρ(1)(θ) log

ρ(1)(θ)

N/2π
dθ. (2-3)

The density is chosen to minimize V1 and then V1 and V2 evaluated, and we have

δF = (V1+ V2). (2-4)
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Proposition 1 [Dyson 1962]. With the requirements that ρ(1)(θ) = 0 for θ ∈
(−α, α) and

∫ 2π
0 ρ(1)(θ) dθ = N , V1 is minimized by

ρ(1)(θ)=
N
2π

sin θ/2
√

sin2 θ/2− sin2 α/2
. (2-5)

We then have

βV1 =−
β

2
N 2 log cos α

2
, βV2 =

(
1− β

2

)
N log

(
sec α

2
+ tan α

2

)
. (2-6)

We remark that explicit calculations in [Dyson 1962] showed that requiring
ρ(1)(θ) to minimize V1+V2 (rather than V1) results in a correction to βV2 which
for large N is of order log(Nα), indicating that the asymptotic expansion (2-1)
will not correctly give terms of this order.

Substituting (2-6) in (2-4), and substituting the result in (2-1) gives a large
deviation formula, telling us (as a conjecture) the probability of there being no
eigenvalues in the interval (−α, α). This probability decays as a Gaussian in
N . An O(1) expression should result from choosing the excluded interval as
(−πs/N , πs/N ), as then there are O(1) eigenvalues in the gap. Replacing α
by πα/2 in (2-6), then taking N →∞ (this is a double scaling limit) gives the
prediction

lim
N→∞

Eβ(0; (−πs/N , πs/N );CβEN )∼ e−β(πs)2/16+(β/2−1)πs/2. (2-7)

Dyson was well aware that the ∼ symbol should be interpreted as agreeing in
the large s asymptotic expansion to the order given. But the left-hand side is the
definition of Ebulk

β (0; (−s/2, s/2)), thus providing the following conjecture.

Conjecture 2 [Dyson 1962]. We have

Ebulk
β (0; (0, s)) ∼

s→∞
e−β(πs)2/16+(β/2−1)πs/2. (2-8)

As remarked above, Dyson [1962] carried through the details of the mini-
mization of V1+ V2, resulting in a logarithmic correction to the exponent of the
right-hand side of (2-8): ((1− β/2)2/(2β)) log s. However, this was later put
in doubt by Mehta and des Cloizeaux [1972], who, using a method based on
eigenvalues (see Section 3.3 below), obtained −1

8 , − 1
4 and − 1

8 for the prefactor
of log s for β = 1, 2 and 4, respectively. Dyson himself [1976] used inverse
scattering methods applied to the Fredholm determinant form of Ebulk

1 (0; (0, s))
(see Section 3.1) to also give the prediction −1

8 for the prefactor in the case
β = 1. In fact the correct extension of (2-8) for general β, as proved for the
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Gaussian β ensemble, is [Valkó and Virág 2010]:

Ebulk
β (0; (0, s)) ∼

s→∞
exp

(
−β(πs)2/16+ (β/2− 1)πs/2

+
1
4(β/2+ 2/β − 3) log s+ O(1)

)
. (2-9)

Its derivation will be reviewed in Section 3.2.
The ansatz (2-1) was applied to the gap probability at the hard edge of the

Laguerre ensemble by Chen and Manning [1994]. They considered the probability
of there being no eigenvalues in an interval (0, t).

Proposition 3 [Chen and Manning 1994]. For the Laguerre ensemble specified
by (1-1) with g(λ) = λae−λ, with the eigenvalues constrained to the interval
(t, b), with t > 0 given, the minimizing solution for the level density ρ(1)(x) is

ρ(1)(x)=
1
πβ

√
b− x
x − t

(
1−

a
x

√
t
b

)
. (2-10)

Normalization of the density requires that b is related to N by

N =
b− t
2β
+

a
β

(√
t
b
− 1

)
. (2-11)

Using (2-10) appropriate analogues of (2-2) and (2-3) were computed (see
also [Chen and Manning 1996]), thus giving a prediction for the large N form
of Eβ(0; (0, t);MEN ,β(λ

αe−λ)). This is exponentially small in N . But with
t = s/(4N ), the number of eigenvalues in (0, t) will be O(1). With the resulting
expression interpreted as the large s asymptotic form of Ehard

β (0; (0, s); a) (s
must be scaled s 7→ (β/2)2s to account for the latter being defined as the large N
limit of Eβ(0; (0, s/(4N ));MEN ,β(λ

ae−βλ/2))), the following conjecture was
obtained.

Conjecture 4 [Chen and Manning 1994]. We have

Ehard
β (0;(0,s);a) ∼

s→∞
exp

(
−
βs
8
+a
√

s−
a2

2β
logs+

(
1−β

2

) a
2β

logs
)
. (2-12)

This asymptotic had already been proved in [Forrester 1994] for a ∈ Z≥0 and
2/β ∈ Z>0 before the work of Chen and Manning [1994]. Moreover, [Forrester
1994], which was based on a-dimensional integral forms for Ehard

β (0; (0, s); a),
gave the explicit form of the constant term in the extension of (2-12) to next
order (see Section 3.4).

The first application of the log-gas ansatz (2-1) at the soft edge was due to
Dean and Majumdar [2006; 2008].

Proposition 5 [Dean and Majumdar 2006]. Consider the Gaussian β-ensemble
MEβ,N (e−βN x2

). Suppose the eigenvalues are confined to the interval (−b, t)
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where t < 1 and b > 0 is determined by charge neutrality. The corresponding
density is given by

ρ(1)(x)=
2N
π

(
l − t + x

t − x

)1/2( l
2
− x

)
,

where l := b+ t = 2
3(t +

√
t2+ 3).

Only the corresponding form of V1 was computed, and this gave the large
deviation formula

Eβ(0; (t,∞);MEβ,N (e−βN x2
)) ∼

N→∞

exp
(
−βN 2

(
2t2

3
−

t4

27
−

5
18

t
√

3+t2−
1
27

t3
√

3+t2−
1
2

log
t+
√

t2+3
3

))
, (2-13)

and thus, upon the appropriate soft edge scaling
√

2N (1− t)=− s
√

2N 1/6
, the

asymptotic formula

E soft
β (0; (s,∞)) ∼

s→−∞
e−β|s|

3/24. (2-14)

This latter prediction was already implied in [Forrester 1993; Tracy and Widom
1994a].

2.2. Loop equations. Borot, Eynard, Majumdar and Nadal [Borot et al. 2011]
gave an alternative heuristic formalism to the Dyson log-gas ansatz, for purposes
of computing the soft edge gap probability. This in based on the so-called loop
equations associated with the large N form of the multiple integral definition
of the latter. The approach allows for the Dyson ansatz (2-1) to be extended to
include higher order terms; in practice two new terms are computed — one is
termed the Polyakov anomaly, and the following result is obtained.

Conjecture 6 [Borot et al. 2011]. We have

E soft
β (0; (s,∞)) ∼

s→−∞
exp

(
−β
|s|3

24
+

√
2(β/2− 1)

3
|s|3/2

+
β/2+2/β−3

8
log |s| + log τ soft

β + O(|s|−3/2)

)
, (2-15)

where

log τ soft
β =

( 17
8 −

25
24(β/2+ 2/β)

)
log 2−

log 2π
2
−

logβ/2
2
+ κβ/2, (2-16)

with κβ the constant term in the large N expansion of

F(N + 1) :=
N∑

j=1

log0(1+ jβ/2).
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(Note that in [Borot et al. 2011] what we call β/2 is written as β.)

In [Borot et al. 2011], for β rational, κβ was evaluated in terms of the Barnes
G-function, while for general β > 0 it was shown that

κβ/2 =
log 2π

4
+
β

2

(
1
12
− ζ ′(−1)

)
+
γ

6β

+

∫
∞

0

1
eβs/2− 1

(
s

es − 1
− 1+

s
2
−

s2

12

)
ds,

where γ denotes Euler’s constant. In fact κβ/2 can be expressed in terms of the
so-called Stirling modular form ρ2(1, τ ), which from a computational viewpoint
can be defined by the infinite product [Shintani 1980]

ρ2(1, τ )= (2π)3/4τ−1/4+(τ+1/τ)/12eP(τ )
∞∏

n=1

eQ(nτ)

0(1+ nτ)
,

where

P(τ )=−
γ

12τ
−
τ

12
+ τζ ′(−1), Q(x)=

( 1
2 + x

)
log x− x+ log

√
2π +

1
12x

.

The quantity ρ2(1, τ ) is fundamental to the theory of the Barnes double gamma
function 02(z; 1, τ ) [Barnes 1904], the latter being related to the usual gamma
function through the two functional equations

1
02(z+ 1; 1, τ )

=
τ z/τ−1/2
√

2π

0(z/τ)
02(z; 1, τ )

,

1
02(z+ τ ; 1, τ )

=
1
√

2π

0(z)
02(z; 1, τ )

,

(2-17)

and furthermore is normalized by requiring lim
z→0

z02(z; 1, τ )= 1.

Proposition 7. Let τ = 2/β and specify F(N + 1) and κβ/2 as in Conjecture 6.
We have

F(N + 1)= (2π)N/2τ−(N
2
−N (1−τ))/2τ 0(N )0(1+ N/τ)

02(N ; 1, τ )
, (2-18)

κ1/τ =−
1
2 log τ + log 2π − log ρ2(1, τ ), (2-19)

with the latter equation substituted into (2-16) giving

log τ soft
β =

(17
8 −

25
24(β/2+ 2/β)

)
log 2+

log 2π
2
− log ρ2(1, 2/β). (2-20)

Equation (2-18) has appeared in [Brini et al. 2011]; it follows immediately by
characterizing F(N+1) as a first order recurrence, and using (2-17). The formula
for κ1/τ then follows by extracting the term independent of N in the corresponding
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asymptotic expansion. Here one uses the fact that for log02(N ; 1, τ ) this is
log ρ2(1, τ ) [Quine et al. 1993]. A consequence of (2-20) is that

log
τ soft
β/2

τ soft
2/β
=− log

ρ2(1, 2/β)
ρ2(1, β/2)

=
β/2+2/β−3

8

(
log

β

2

)2/3

−
1
2

log
β

2
, (2-21)

where the final equality follows from the inversion formula for the Stirling
modular form [Katayama and Ohtsuki 1998, Proposition 7(iv)]. Using this in
(2-15) gives that (cf. [Borot et al. 2011, Equation (6.2)])

E soft
β (0; (s,∞)) ∼

s→−∞

( 2
β

)1/2
Ẽ soft

4/β

(
0;
((β

2

)2/3
s,∞

))
, (2-22)

where Ẽ soft
β refers to the right-hand side of (2-15) with |s|3/2 replaced by −|s|3/2.

2.3. Conditioning n eigenvalues in the gap. Dyson [1995], and independently
Fogler and Shklovskii [1995], further developed the log-gas argument by the
consideration of the setting that the gap (−t, t) is required to contain exactly n
eigenvalues, with 0� n� t . Moreover, a change of viewpoint was introduced:
the log-gas was taken to be infinite in extent, with the bulk state characterized
by a uniform density, normalized to unity. The n eigenvalues are modeled as
a continuous conductive fluid occupying the interval (−b, b) ⊂ (−t, t). The
electrostatic potential in this region must therefore be equal to a constant −v say,
v > 0, with the potential in the other conducting region R\(−t, t) taken to be
zero. The explicit form of the density was determined, and this substituted in
the appropriate modification of (2-2) and (2-3) gave after some calculation the
simple results

V1 =−
nv
2
+
π2

4
(t2
− b2), V2 = v. (2-23)

The end point b is determined by n via a certain elliptic integral, and similarly v
in terms of an elliptic integral of modulus b/t . Expansion of these quantities for
t→∞, and substitution in (2-1) provides a generalization of (2-9).

Conjecture 8 [Dyson 1995; Fogler and Shklovskii 1995]. For 0� n � s we
have

log Ebulk
β (n; (0, s)) ∼

s→∞
−β

(πs)2

16
+

(
βn+

β

2
− 1

)
πs
2

+

{
n
2

(
1−

β

2
−
βn
2

)
+

1
4

(
β

2
+

2
β
− 3

)}
log s. (2-24)

(Here we have added the n = 0 contribution to the term log s as implied by
(2-9) — we then expect (2-24) to hold for 0≤ n� s; this is not a consequence
of the calculations in [Dyson 1995; Fogler and Shklovskii 1995].)
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Only very recently has this infinite log-gas formalism been applied to predict
the asymptotic forms of the conditioned gap probabilities at the hard and soft
edges [Forrester and Witte 2012]. Since the system is (semi-) infinite, this relies
on characterizing these edges in terms of the respective background densities:
√

x/π for the soft edge, and 1/(2π
√

x) for the hard edge. In both cases the
coordinates are chosen so that the edge occurs at x = 0. It was found in [Forrester
and Witte 2012] that applying the ansatz (2-1) with δF given by (2-4) in this
setting to the n = 0 case gave results inconsistent with both (2-12) and its soft
edge analogue in the second order term. Thus the ansatz (2-1) with δF given
by (2-4) is incorrect in the infinite log-gas formalism applied to the hard and
soft edges. On the other hand, it was observed that replacing V2 by the potential
drop v in going from the region containing the infinite mobile log-charges, to the
region containing the n charges — which, according to (2-23), is an identity for
the bulk — restores the correct value for these terms. Making this replacement
for general n then gives the following predictions.

Conjecture 9 [Forrester and Witte 2012]. We have, for 0� n� |s| (or more
strongly 0≤ n� |s|),

log Ehard
β (n; (0, s);βa/2)

∼
s→∞
−β

{
s
8
−
√

s
(

n+
a
2

)
+

[
n2

2
+

na
2
+

a(a− 1)
4

+
a

2β

]
log s1/2

}
(2-25)

and

log E soft
β (n; (s,∞)) ∼

s→−∞
−
β|s|3

24
+

2
√

2
3
|s|3/2

(
βn+

β

2
− 1

)
+

[
β

2
n2
+

(
β

2
− 1

)
n+

1
6

(
1−

2
β

(
1−

β

2

)2)]
log |s|−3/4. (2-26)

(As for (2-24), the results coming from the log-gas calculation have, in the
case of the logarithmic term, been supplemented by knowledge of the asymptotic
expansion at that order for n = 0.)

We remark that a check on (2-24)–(2-26) is that they obey certain asymp-
totic functional equations, implied by exact functional equations for spacing
distributions obtained in [Forrester 2009]. For example, at the hard edge one
requires

Ehard
β (n; (0, s/s̃β);βa/2) ∼

s→∞
n�t

Ehard
4/β

( 1
2β(n+ 1)− 1; (0, s/s̃4/β); a− 2+ 4/β

)
,

where s̃β is an arbitrary length scale that satisfies s̃4/β(β/2)2= s̃β . This is indeed
a property of (2-25).
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Precise asymptotic statements can also be made concerning the asymptotic
form of E ( · )β (n; J ), for |J | → ∞ and n ≈ 〈n J 〉, where n J (〈n J 〉) denotes the
number (expected number) of particles in J for the unconstrained system. Thus
macroscopic heuristics applied to this linear statistic (see, e.g., [Forrester 2012,
§14.5.1]) predict that (n J −〈n J 〉)/

√
Var n J has a Gaussian distribution with zero

mean and unit variance, and so suggesting the following result.

Conjecture 10. For n ≈ 〈n J 〉,

E ( · )β (n; J ) ∼
|J |→∞

1
(2πVar n J )1/2

e−(n−〈n J 〉)
2/2Var n J. (2-27)

Moreover, for ( · )= bulk, soft and hard we have

〈n(0,s)〉 ∼
s→∞

s, 〈n(s,∞)〉 ∼
s→−∞

2(−s)3/2

3π
, 〈n(0,s)〉 ∼

s→∞

s1/2

π
, (2-28)

and

Var n(0,s) ∼
s→∞

2
π2β

log s, Var n(s,∞) ∼
s→−∞

1
π2β

log |s|3/2,

Var n(0,s) ∼
s→∞

1
π2β

log s1/2. (2-29)

The results (2-28) are immediate consequences of the corresponding asymp-
totic density profiles (recall the second sentence below Conjecture 8), while
(2-29) can be derived heuristically from knowledge of the asymptotic form of the
two-point correlation function (see [Forrester 2010, paragraph below (14.87)]).
In the case of ( · )= bulk, (2-27), with the corresponding values of 〈n(0,s)〉 and
Var n J as implied by (2-28) and (2-29), was derived in the context of the infinite
log-gas formalism by Dyson [1995] and by Fogler and Shklovskii [1995].

3. Rigorous methods

3.1. Toeplitz/Hankel asymptotics. It is a fundamental result in random matrix
theory (see, e.g., [Forrester 2010, § 9.1]) that in the scaled limit ( · ) equal to
bulk, hard or soft, and β = 2 the probability of there being no eigenvalues in
an interval J , may be written in terms of a determinant of a Fredholm integral
operator

E ( · )2 (0; J )= det(1− K ( · )
J ),

where K ( · )
J ) is the integral operator on the interval J with well known sine,

Bessel and Airy kernels (see, e.g., [Forrester 2010] for the precise definitions).
This is related to the fact that for β = 2 the gap probabilities can be written
in terms of either Toeplitz or Hankel determinants. For example, the Toeplitz
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determinant of a function f (θ), integrable over the unit circle, is defined as

Dn( f ) := det
(

1
2π

∫ 2π

0
e−i( j−k)θ f (θ) dθ

)n−1

j,k=0
, (3-1)

and one has the well known formula

E2(0; (−α, α);CUEN )= DN ( fα), fα =
{

1, θ ∈ (α, 2π −α),
0, otherwise.

In particular limn→∞ Dn( f2s/n)= det(I−K bulk
s ), allowing for a strategy whereby

the s → ∞ behavior can be extracted from the asymptotics of the Toeplitz
determinant. On the other hand the Toeplitz determinant has a representation in
terms of quantities associated with orthonormal polynomials φk(z)= χkzk

+· · ·

with weight f (θ) on the unit circle; explicitly Dn( f )=
∏n−1

k=0 χ
−2
k . Krasovsky

[2004] used a Riemann–Hilbert formulation to compute the large n form of
d

dµ ln Dn( fµ), uniformly in µ, providing both a proof and refinement of (2-8) in
the case β = 2.

Theorem 11 [Krasovsky 2004; Ehrhardt 2006]. We have

log Ebulk
2 (0; (0, s))=−

(πs)2

8
−

1
4 log πs

2
+

1
12 log 2+3ζ ′(−1)+O

(1
s

)
, (3-2)

where ζ(z) is the Riemann zeta function.

We remark that up to the constant term this result, deduced by Dyson [Dyson
1976] using a scaling argument from known Toeplitz determinant asymptotics,
was first rigorously proved by Deift, Its and Zhou [Deift et al. 1997]; also
the proof of Ehrhardt [2006] is operator theoretic, and does not make use of
orthogonal polynomials.

Analogous strategies can be used to analyze the hard and soft edges for
β = 2, giving the following results, proving and extending (2-12) and (2-14),
respectively.

Theorem 12. We have

log E soft
2 (0; (s,∞))=− 1

12 |s|
3
−

1
8 log |s|+ 1

24 ln 2+ ζ ′(−1)+O
(
|s|−

3
2
)

(3-3)

for s→−∞ (see [Deift et al. 2008]), and

logEhard
2 (0; (0, s);a)=−

s
4
+a
√

s−
a2

4
log s+ log

G(1+ a)
(2π)a/2

+O
(
s−

1
2
)

(3-4)

for s→∞ (see [Deift et al. 2011]), where G(x) denotes the Barnes G-function.

An alternative proof of (3-3) has been given by Baik, Buckingham and
DiFranco [Baik et al. 2008], using the Painlevé form of E soft

2 (0; (s,∞)) [Tracy
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and Widom 1994a]. This method carries over to the cases β = 1 and 4, and in
[Baik et al. 2008] the expansion (2-15) with

log τ soft
1 =−

11 log 2
48

+
ζ ′(−1)

2
,

log τ soft
4 =−

37 log 2
48

+
ζ ′(−1)

2
,

(3-5)

was obtained. These confirm the values implied by (2-20).
With regards to (3-4), as noted above, for a ∈ Z≥0 it was first proved by

Forrester [1994]. More recently a proof of (3-4) valid for |a| < 1 was given
by Ehrhardt [2010]. Furthermore, let the next order (constant) term in the
exponent of (2-12) be included by adding log τ hard

a,β . We read off from (3-4)
that τ hard

a,2 = G(1+ a)/(2π)a/2. For a ∈ Z≥0 a multiple integral form for Ehard
1

[Forrester and Witte 2002], and an identity [Forrester and Rains 2001] relating
Ehard

4 to Ehard
2 and Ehard

1 for general a >−1 tells us that

τa,1 = 2−a(a+1/2) G(3/2)G(2a+ 2)
G(a+ 3/2)G(a+ 2)

,

τa+1,4 = 2−a(a+1)/4−1 τa,2

τ(a−1)/2,1
.

(3-6)

In the case of bulk scaling, include a constant term by adding log τ bulk
β to the

exponent of (2-9) with s replaced by s/π (thus the bulk density is now 1/π ). It
follows from (3-2) that log τ bulk

2 =
1
3 log 2+3ζ ′(−1). And interrelations between

the bulk gap probability for β = 1 and 4 with β = 2 quantities give that [Basor
et al. 1992]

τ bulk
1 = 25/12e(3/2)ζ

′(−1), τ bulk
4 = 2−29/24e(3/2)ζ

′(−1). (3-7)

We observe that (3-7) is consistent with a relation analogous to (2-20).

Conjecture 13. Let ρ2(1, τ ) denote the Stirling modular form. We have

log τ bulk
β/2 =

(
3− 4

3(β/2+ 2/β)
)

log 2+ 3
( 1

2 log 2π − log ρ2(1, 2/β)
)
, (3-8)

and consequently

log
τ bulk
β/2

τ bulk
2/β
=−3 log

ρ2(1, 2/β)
ρ2(1, β/2)

,

Ebulk
β (0; (0, s/π)) ∼

s→∞

( 2
β

)3/2
Ẽbulk

4/β

(
0;
(

0,
β

2
s/π

))
,

(3-9)

where Ẽbulk
β refers to the right-hand side of (2-9) with s replaced by −s in the

second term.
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3.2. Stochastic differential equations. The Gaussian and Laguerre β-ensemble,
defined as eigenvalue PDFs below (1-1), admit realizations as real symmetric
tridiagonal matrices [Dumitriu and Edelman 2002]. In the scaled N →∞ limit,
this in turn leads to explicit characterization of gap probabilities in terms of
stochastic differential equations. The first result of this type was done for the
soft edge, by Ramirez, Rider and Valkó [Ramírez et al. 2011a]. With N fixed, it
relies on expressing the number of eigenvalues greater than µ as the number of
sign changes of the shooting vector for the tridiagonal matrix. Similarly at the
hard edge [Ramírez and Rider 2009]. In the bulk, the shooting eigenvector must
be parametrized in terms of the corresponding Prüfer phase [Killip and Stoiciu
2009; Valkó and Virág 2009]. The following results are obtained.

Proposition 14. Let bt denote standard Brownian motion. At the soft edge,
define a diffusion by the Ito process by (see [Ramírez et al. 2011a]):

dp(t)=
2
√
β

dbt + (λ+ t − p2(t)) dt, p(0)=∞;

at the hard edge with parameter β(a+ 1)/2− 1 by (see [Ramírez et al. 2011b])

dp(t)= dbt +
( 1

4β
(
a+ 1

2

)
−

1
2β
√
λe−βt/8 cosh p(t)

)
dt, p(0)=∞;

and in the bulk (see [Valkó and Virág 2010]) by

dp(t)= dbt +
( 1

2 tanh p(t)− 1
8βλe−βt/4 cosh p(t)

)
dt, p(0)=∞.

Let J = (0, s/2π) for ( · ) = bulk, J = (0, s) for ( · ) = hard, and J = (s,∞)
for ( · )= soft. We have

E ( · )β (0; J )= Pr
(

p(t) >−∞ for all t ∈ R+ ∪ {∞}
)
. (3-10)

The utility of these characterizations for the purpose of asymptotics is that,
via the Cameron–Martin–Girsanov formula, they allow (3-10) to be rewritten as
the expectation of a functional of a transformed stochastic process. In contrast
to (3-10), this functional allows for a systematic, rigorous s→∞ asymptotic
analysis resulting in a proof of (2-9) — giving in the process the correct form
of the general β > 0, log s term, for the first time — and a proof of (2-12) for
general β > 0 and a >−1. At the soft edge only the leading asymptotic form
(2-14) has been proved using this approach [Ramírez et al. 2011a].

For the large N limit of the circular β-ensemble, the Prüfer phase has been
used to prove the analogue of the Gaussian fluctuation formula (2-27), namely

Eβ(n, (−α, α);CβEN )∼ (1/(2πVar n(−α,α))) exp
(
−
(n− Nα/π)2

2Var n(−α,α)

)
,

where Var n(−α,α) ∼
1
π2β

log N [Killip 2008].
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3.3. Fredholm determinant/eigenvalue forms for E( · )
β
(n, J)/E( · )

β
(0,J). With

( · ) denoting bulk, soft or hard, let E ( · )β (J ; ξ) be the generating function for
{E ( · )β (n; J )}, so that

E ( · )β (J ; ξ)=
∞∑

n=0

(1− ξ)n E ( · )β (n; J ). (3-11)

Generalizing the Fredholm determinant expressions for E ( · )β (0;J) from Section 3.1,
one has that for β = 2

E ( · )2 (J ; ξ)= det(1− ξK ( · )
J )=

∞∏
l=0

(1− ξλl), (3-12)

where 1> λ0 > λ1 > λ2 > · · ·> 0 are the eigenvalues of K ( · )
J . Consequently

E ( · )2 (n; J )

E ( · )2 (0; J )
=

∑
0≤ j1<···< jn

λ j1 . . . λ jn

(1− λ j1) . . . (1− λ jn )
. (3-13)

It has been known since the work of Gaudin [1961] that associated with K bulk
(0,s) is

a commuting differential operator. Furthermore, the work of Fuchs [1964] uses
this, together with a WKB asymptotic analysis, to deduce the s→∞ asymptotic
form of λ j ( j fixed). It was noted by Tracy and Widom [1993] that the latter
implies the term with ( j1, j2, . . . , jn)= (0, 1, . . . , n− 1) dominates as t→∞.
These authors carried out a similar analysis in the soft and hard edge cases
[Tracy and Widom 1994a; 1994b], so arriving at the following result (stated as
Proposition 9.6.6 in [Forrester 2010]).

Proposition 15. Let G(x) denote the Barnes G-function. For n fixed,

Ebulk
2 (n; (0, s))

Ebulk
2 (0; (0, s))

∼
s→∞

G(n+ 1)π−n/22−n2
−n(πs)−n2/2enπs,

E soft
2 (n; (0, s))

E soft
2 (0; (0, s))

∼
s→∞

G(n+ 1)
πn/22(5n2+n)/2

(−s/2)−3n2/4 exp
(

8n
3

(
−

s
2

)3/2)
,

Ehard
2 (n; (0, s))

Ehard
2 (0; (0, s))

∼
s→∞

G(a+ n+ 1)G(n+ 1)
G(a+ 1)

π−n2−n(2n+2a+1)s−n2/2−an/2e2n
√

s .

(3-14)

In [Forrester 2010, § 9.6.2], as t→∞, Ebulk
1 (n; t) and Ebulk

4 (n; t) are related
to Ehard

2 ( · ; · ) for particular choices of the parameters. The asymptotics of the
latter are known as noted in the above proposition, allowing us to extend the first
result in (3-14) to β = 1 and 4 [Forrester 2010, Equations (9.100) and (9.102)].
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Proposition 16. For n fixed and β = 1 and 4 we have

Ebulk
β (n; (0, s))

Ebulk
β (0; (0, s))

= cβ,n
eβnπs/2

(πs)βn2/4+(β/2−1)n/2

(
1+ O

(1
s

))
, (3-15)

where

c1,n =
G(n/2+ 1/2)G(n/2+ 1)

G(1/2)
π−n/22−n(n+1)/4,

c4,n =
G(n+ 3/2)G(n+ 1)

G(3/2)
π−n2−2n(n+1).

According to the first asymptotic formula in (3-14), (3-15) is, for a specific
c2,n , valid too for β = 2. Furthermore the functional form (3-15) for general
β > 0 coincides with the log-gas prediction (2-26), and thus validates the latter
for β = 1, 2 and 4, and furthermore extends it by the evaluation of cβ,n .

We would like to extend Proposition 16 to the soft and hard edge cases. For
this, let

V ( · )

J̃
for ( · )= soft, hard

and J̃ = (0,∞), (0, 1), respectively, denote the integral operators on J̃ , dependent
on a parameter s, with kernels Ai(x + y+ s) and

√
s

2 Ja(
√

sxy ). Write

E ( · )± (ξ ; J )= det
(
I∓

√
ξV ( · )

J̃

)
,

and define

E ( · )± (n; J ) :=
(−1)n

n!
∂n

∂ξ n E ( · )± (ξ ; J )
∣∣
ξ=1.

Results contained in [Forrester 2006], and further refined in [Bornemann 2010b],
tell us that for s→∞

E soft
1 (2k; (s,∞))= E soft

+
(k; (s,∞))+ · · · ,

E soft
1 (2k+ 1; (s,∞))= 1

2 E soft
−
(; (s,∞))+ · · · ,

E soft
4 (k; (s,∞))= E soft

1 (2k+ 1; (22/3s,∞))+ · · · .

(3-16)

Here terms not written on the right-hand side are exponentially smaller (in s)
than the given term. To proceed further requires a property of the eigenvalues of
V ( · )

J̃
which although supported by numerical computations, to our knowledge is

yet to be proven.

Conjecture 17. Let υ( · )j ( j =0, 1, 2, . . .) denote the eigenvalues of V ( · )

J̃
, ordered

so that
|υ
( · )
0 |< |υ

( · )
1 |< |υ

( · )
2 |< · · · .

Then υ( · )2 j > 0 while υ( · )2 j+1 < 0 for each j = 0, 1, 2, . . . .
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It is well known, and easy to verify (see, e.g., [Forrester 2010, § 9.6.1]) that
(υ
( · )
j )2 = λ

( · )
j , where {λ( · )j } are the eigenvalues of K ( · )

J . This fact, together with
Conjecture 17 and the analogue of (3-13) relating toE soft

±
(k; (s,∞)), tells us that

for s→∞
E soft

1 (2k; (s,∞))

E soft
1 (0; (s,∞))

=
1

(1− λs
0)(1− λ

s
2) . . . (1− λ

s
2k−2)

+ · · · ,

E soft
1 (2k+ 1; (s,∞))

E soft
4 (0; (s/22/3,∞))

=
1

(1− λs
1)(1− λ

s
3) . . . (1− λ

s
2k−1)

+ · · · .

(3-17)

Knowledge of the explicit asymptotic form of λs
j from [Tracy and Widom 1994a],

together with the asymptotic form of E soft
1 (0; (s,∞))/E soft

4 (0; (s/22/3,∞)) im-
plied by (2-15) and (3-5) then allows us to extend the second result of (3-14) to
β = 1 and 4.

Proposition 18 (under the assumption of Conjecture 17). We have

E soft
1 (n; (s,∞))

Ehard
1 (0; (s,∞)

∼
s→−∞

G(n/2+1/2)G(n/2+1)
πn/2G(1/2)

2−
5
8 n2
+

1
8 n(−s)−

3
8 n2
+

3
8 n

× exp
(4n

3

(
−

s
2

)3/2)
,

E soft
4 (n; (s/22/3,∞))

E soft
4 (0; (s/22/3,∞))

∼
s→−∞

√
2e−

√
2

3 (−s)3/2 E soft
1 (2n+ 1; (s,∞))

E soft
1 (0; (s,∞))

. (3-18)

At the hard edge, formulas structurally identical to (3-16) hold [Forrester 2006;
Bornemann 2010b], with the important qualification that the additional label
need to specify the hard edge gap probabilities is (a− 1)/2 on the left-hand side
of the first two equations, and a+ 1 on the left-hand side of the third equation;
on the right-hand sides it is a, a and a−1, respectively, and in the third equation
s is scaled by 4 instead of 22/3. The analogue of (3-17) then allows the analogue
of Proposition 18 to be deduced.

Proposition 19 (under the assumption of Conjecture 17). We have

Ehard
1 (n; (0, s); (a− 1)/2)

Ehard
1 (0; (0, s); (a− 1)/2)

∼
s→∞

2−n(n−1+a)/2(2π)−n

×

2∏
p=1

G((n+ p)/2)G((n+ p+ a)/2)
G(p/2)G((p+ a)/2)

s−(n
2
+n(a−1))/4en

√
s,

Ehard
4 (n; (0, s/4); a+ 1)

Ehard
4 (0; (0, s/4); a+ 1)

∼
s→∞

e−
√

ssa/4 2(a+1)/2(2π)1/2

0((a+ 1)/2)

×
Ehard

1 (2n+ 1; (0, s); (a− 1)/2)

Ehard
1 (0; (0, s); (a− 1)/2)

.
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As a final point in this subsection, we remark that the Gaussian fluctuation
formula (2-27) can be proved for β = 2, using only the determinantal structure
(3-12) and the fact that Var nJ →∞ [Costin and Lebowitz 1995; Soshnikov
2000].

3.4. Hard edge: generalized hypergeometric functions. In the case that a∈Z+

and general β > 0, the hard edge gap probability Ehard
β (0; (0, s); a) permits

evaluation in terms of a generalized hypergeometric function based on Jack
polynomials P (α)κ (z1, . . . , zN ). The latter are labeled by a partition

κ1 ≥ κ2 ≥ · · · ≥ κN ≥ 0

of nonnegative integers, and depend on the parameter α. For α = 1 they are the
Schur polynomials, while for α= 2 they are the zonal polynomials of mathemati-
cal statistics; their precise definition can be found in, e.g., [Forrester 2010, § 12.6].
Defining C (a)

κ (z1, . . . , zN ) as proportional to P (α)κ (z1, . . . , zN ) with a specific
proportionality depending on α and κ [Forrester 2010, Equation (13.1)], and the
generalized Pochhammer symbol [u](a)κ [Forrester 2010, Equation (12.46)], the
generalized hypergeometric function p F (α)q is specified by (see, e.g., [Forrester
2010, § 13.1])

p F (α)q (a1, . . . , ap; b1, . . . , bq; x1, . . . , xm)

:=

∑
κ

1
|κ|!

[a1]
(α)
κ . . . [ap]

(α)
κ

[b1]
(α)
κ . . . [bq ]

(α)
κ

C (α)
κ (x1, . . . , xm). (3-19)

Like their classical counterpart, these exhibit the confluence property

lim
ap→∞

p F (α)q

(
a1, . . . , ap; b1, . . . , bq;

x1

ap
, . . . ,

xm

ap

)
= p−1 F (α)q (a1, . . . , ap−1; b1, . . . , bq; x1, . . . , xm).

Using this in the case p = q = 1, together with an integral expression for 1 F1

[Forrester 2010, § 13.2.5] we can readily express the conditional gap probability
Ehard
β (n; (0, s); a) for a, β ∈ Z≥0 in terms of the generalized hypergeometric

function 0 Fβ/21 , extending the n = 0 result of [Forrester 1994].

Proposition 20. Let βa/2, β ∈ Z≥0. We have

Ehard
β (n; (0, s);βa/2)= Aβ(n, a)sn+(β/2)n(n+a−1)e−βs/8

×

∫ 1

0
dy1 . . .

∫ 1

0
dyn

n∏
j=1

(1− y j )
βa/2

∏
1≤ j<k≤n

|yk − y j |
β

× 0 F (β/2)1

(
_; a+ 2n; (s/4)βa/2, (sy1/4)β, . . . , (syn/4)β

)
,

(3-20)



216 PETER J. FORRESTER

where

Aβ(n, a)=
2−2n

n!

(
β

2

)n(
β

4

)n(a+n−1)β
(0(1+β/2))n∏2n−1

j=0 0(aβ/2+ 1+ jβ/2)
, (3-21)

and in the argument of 0 Fβ/21 the notation (u)r means u repeated r times. Fur-
thermore, in the case n = 0, this remains valid for general β > 0.

An integral representation of 0 F (β/2)1 allows for the rigorous determination
of the x →∞ asymptotic expansion of 0 F (β/2)1 (_; c+ 2(m − 1)/β; (x)m) for
c, 2/β ∈ Z+ [Forrester 1994], implying the corresponding asymptotic form of
Ehard
β (0; (0, s)).

Proposition 21 [Forrester 1994]. Let 2/β ∈ Z+, and aβ/2 = m ∈ Z≥0. For
s→∞ we have

Ehard
β (0; (0, s);m)= τm,β

(1
s

)m(m+1)/2β−m/4
e−βs/8+ms

1
2

(
1+O

(
1

s1/2

))
, (3-22)

where

τ hard
m,β = 2(2/β−1)m

(
1

2π

)m/2 m∏
j=1

0(2 j/β). (3-23)

We see that (3-22) is in agreement with the log-gas prediction (2-12) for
general a >−1, β > 0, and furthermore gives the explicit form of the constant
in the asymptotic expansion (to use (3-23) for m /∈ Z≥0 and check for example
(3-6) requires an appropriate rewrite of the product using (2-17)).

In the case β = 4 of 0 Fβ/21 , an integral representation not available for general
β shows that, for s→∞ and y1, . . . , yn ≈ 1 (see [Muirhead 1978]),

0 F (β/2)1

(
_; c; (s/4)βa/2, (sy1/4)β, . . . , (syn/4)β

)
= 0 F (β/2)1 (_; c; (s/4)β(a+2n)/2)eβ

√
s
∑n

j=1(1−y j )/2
(

1+ O
(

1
s1/2

))
. (3-24)

This, substituted in (3-20), implies, as a conjecture, the extension of the asymp-
totic formula (2-26) to include the constant term.

Conjecture 22. For βn ∈ Z≥0, let

τ hard
βa/2,β(n)

=
2−(a+n)βn

n!

(
β

2

)n(a+n−1)β/2 βn∏
j=1

0(a+ 2 j/β)
(2π)1/2

∏n−1
j=0 0(1+ ( j + 1)β/2)∏2n−1

j=n 0(1+ ( j + a)β/2)
.
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For s→∞ we have

Ehard
β (n; (0, s);βa/2)

Ehard
β (0; (0, s);βa/2)

=

τ hard
βa/2,β(n) exp

(
−β

{
−
√

sn+
(n2

2
+

na
2

)
log s1/2

})(
1+O

(
1

s1/2

))
. (3-25)

We can check that (3-25) is consistent with the results of Proposition 19.

3.5. Approach to unity of E( · )
β
(0; J) for |J| → 0. Generally the gap proba-

bility is given in terms of the k-point correlation functions {ρ( · )(k) } according
to

E ( · )β (0; J )= 1−
∫

J
ρ
( · )
(1) (x) dx +

1
2!

∫
J

∫
J
ρ
( · )
(2) (x, y) dx dy− · · · .

Thus the leading |J | → 0 asymptotic form of E ( · )β (0; J ) is determined by the
asymptotic form of ρhard

(1) (x) for x→ 0, ρsoft
(1) (x) for x→∞ and ρbulk

(2) (x, y) for
x, y→ 0 (for ( · ) = bulk, ρ(1)(x)= 1 and so gives no distinguishing information).
The calculation of the first and third is elementary [Forrester 1992; 1994], while
direct calculation of ρsoft

(1) (x) is only known for β = 1, and β even [Desrosiers
and Forrester 2006]. Collecting these together, we have the following result.

Proposition 23. Let

Aa,β = 4−(a+1)(β/2)2a+1 0(1+β/2)
0(1+ a)0(1+ a+β/2)

,

Bβ = (πβ)β
(0(β/2+ 1))3

0(β + 1)0(3β/2+ 1)
.

For t→ 0,

Ehard
β (0; (0, t); a)= 1−Aa,β

∫ t

0
sa ds+O(ta+2),

Ebulk
β (0; (0, t))= 1−t+ 1

2 Bβ

∫ t

0

∫ t

0
(s1−s2)

β ds1 ds2+O(tβ+3),

(3-26)

while for t→∞,

E soft
β (0; (t,∞))

= 1−
0(1+β/2)
π(4β)β/2

∫
∞

t

e−2βX3/2/3

X3β/4−1/2 dX + O
(∫

∞

t

e−2βX3/2/3

X3β/4+1 dX
)
. (3-27)

Two distinct derivations of (3-27) for general β > 0 are known, both involving
use of a nonrigorous double scaling limit [Forrester 2012; Borot and Nadal 2011].
In [Dumaz and Virág 2011], the stochastic differential equation characterization
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(recall Section 3.2) is used to give a rigorous proof for general β > 0, but without
determining the prefactor of the integral.

4. Other aspects

4.1. Numerical results. Bornemann [2010a; 2010b] has given a detailed study
of the numerical analysis relating to the precise numerical evaluation of spacing
distributions for β = 1, 2 and 4, working from the Fredholm determinant forms.
As an end product he has provided a suite of Matlab programs implementing
the theoretical procedures. The implementation in Matlab, with the arithmetic
done in the hardware, means that the tails of the spacing distributions cannot be
computed: their numerical values written as decimals are typically smaller than
10−15, and so double precision arithmetic typically truncates significant nonzero
digits, leading to unreliable results. But with there being numerous exact and
conjectured results relating to the asymptotics of spacing distributions, there is
much interest in implementing the theory of [Bornemann 2010a; 2010b] using
an arbitrary precision package. As a start, we have done this for the Fredholm
determinant form for Ebulk

2 (0; (0, s)) (in fact we have modified the procedure of
[Bornemann 2010a; 2010b] by using instead of Gauss–Legendre or Clenshaw–
Curtis quadrature rules, the tanh-sinh quadrature rule (see, e.g., [Ye 2006])). As
a result we are able to tabulate

r(s)=
Eb,as

2 (0; (0, s))

Ebulk
2 (0; (0, s))

, (4-1)

where Eb,as
2 (0; (0, s)) is the asymptotic form of Ebulk

2 (0; (0, s)) as given by (3-2),
extended to the next two terms: 1/(8(πs)2)+5/(8(πs)4) (these follow from the
Painlevé transcendent characterization of Ebulk

2 (0; (0, s)) (see, e.g., [Forrester
2010, § 9.6.7])). The values in Table 1 clearly illustrate the accuracy of the
asymptotic expansion, even for relatively small values of s.

4.2. Diluted spectra. For a general one-dimensional point process, the gener-
ating function (3-11) can also be interpreted as the probability that there are
no eigenvalues in the interval J , given that each eigenvalue has independently
been deleted with probability (1− ξ). In this setting the |J | →∞ asymptotics
can readily be deduced, by making use of a heuristic analysis based on (2-27)
[Bohigas and Pato 2004].

Conjecture 24. For 0< ξ < 1 we have

E ( · )β (J ; ξ) ∼
|J |→∞

e〈n J 〉 log(1−ξ), (4-2)

where 〈n J 〉 is given by (2-28) for ( · )= bulk, soft and hard.
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s r(s)

1 1.0046735914726577
2 0.9998383226940526
3 0.9999753765440204
4 0.9999961026171116
5 0.9999991096965057
6 0.9999997235559452
7 0.9999998946139279
8 0.9999999537746553
9 0.9999999775313906

10 0.9999999881794448

Table 1. Tabulation of the ratio of the asymptotic to exact bulk gap
probability for β = 2.

We see from (2-28) and (2-8), (2-12), (2-14) that as a function of s the decay
exhibited by (4-2) is proportional to the square root of the leading decay of E ( · )β .
A method to prove (4-2) for β = 2, making use of (3-12), has been given in
[Pastur and Shcherbina 2011]. Alternatively, for this β, (4-2) can be verified by
using known asymptotics of the Painlevé transcendent evaluations, as done for
( · )= soft in [Bohigas et al. 2009].

An interesting feature of the asymptotic expansion of the relevant Painlevé
transcendents with 0< ξ < 1 is that they contain oscillatory terms, in contrast
to their asymptotic expansion with ξ = 1. It is indeed the case that oscillations
can clearly be seen in plots of (d/ds)E soft

2 ((s,∞); ξ) with 0< ξ < 1 [Bohigas
et al. 2009]. Dyson [1995] has combined Coulomb gas and Painlevé theory to
deduce the asymptotic form Ebulk

2 ((0, s); ξ) when ξ → 1 and simultaneously
s →∞, which is shown to involve an elliptic theta function; for fixed ξ the
asymptotic expansion of the relevant Painlevé transcendent [McCoy and Tang
1986] involves only trigonometric functions.
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