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Random matrices:
the four-moment theorem
for Wigner ensembles

TERENCE TAO AND VAN VU

We survey some recent progress on rigorously establishing the universality of
various spectral statistics of Wigner random matrix ensembles, focussing in
particular on the four-moment theorem and its applications.

1. Introduction

This paper surveys the four-moment theorem and its applications in understanding
the asymptotic spectral properties of random matrix ensembles of Wigner type.
Due to limitations of space, this survey will be far from exhaustive; an extended
version will appear elsewhere. (See also [Erd6s 2011; Guionnet 2011; Schlein
2011] for some recent surveys in this area.)

To simplify the exposition (at the expense of stating the results in maximum
generality), we shall restrict attention to a model class of random matrix en-
sembles, in which we assume somewhat more decay and identical distribution
hypotheses than are strictly necessary for the main results.

Definition 1 (Wigner matrices). Let n > 1 be an integer (which we view as a
parameter going off to infinity). An n x n Wigner Hermitian matrix M, is defined
to be a random Hermitian n x n matrix M, = (§;;)1<i, j<n» in Which the &;; for
1 <i < j < n are jointly independent with &;; = sTJ (in particular, the &; are
real-valued). For 1 <i < j < n, we require that the &; have mean zero and
variance one, while for 1 <i = j < n we require that the &;; have mean zero
and variance o2 for some o2 > 0 independent of i, j, n. To simplify some of the
statements of the results here, we will also assume that the &;; = & are identically
distributed for i < j, and the &; = &’ are also identically distributed for i = j,
and furthermore that the real and imaginary parts of £ are independent. We refer
to the distributions Re &, Im &, and &’ as the atom distributions of M,,.
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We say that the Wigner matrix ensemble obeys Condition CO if we have the
exponential decay condition

P& =) <e™
forall 1 <i, j <mandt¢> C’, and some constants C, C’ (independent of i, j, n).

We refer to the matrix W, := (1//n)M,, as the coarse-scale normalised
Wigner Hermitian matrix, and A, := /nM,, as the fine-scale normalised Wigner
Hermitian matrix.

Example 2 (invariant ensembles). An important special case of a Wigner Hermit-
ian matrix M, is the gaussian unitary ensemble (GUE), in which &;; = N (0, 1)c
are complex gaussians with mean zero and variance one for i # j, and §; =
N (0, 1)g are real gaussians with mean zero and variance one for 1 <i < n (thus
o2 =1 in this case). Another important special case is the gaussian orthogonal
ensemble (GOE), in which &;; = N (0, 1)g are real gaussians with mean zero and
variance one for i # j, and &; = N (0, 2)r are real gaussians with mean zero
and variance 2 for 1 <i < n (thus 02 = 2 in this case). These ensembles obey
Condition C0. These ensembles are invariant with respect to conjugation by
unitary and orthogonal matrices respectively.

Given an n x n Hermitian matrix A, we will denote its n eigenvalues in
increasing order as
)‘«I(A) == )“M(A)a

and write A(A) := (L1(A), ..., X,(A)). We also let u1(A), ..., u,(A) € C" be
an orthonormal basis of eigenvectors of A with Au;(A) = A;(A)u;(A).
We also introduce the eigenvalue counting function

Ni(A) = {1 <i<n:hi(A) e} (1)

for any interval I C R. We will be interested in both the coarse-scale eigen-
value counting function N;(W,) and the fine-scale eigenvalue counting function
Ni(Ap).

2. The local semicircular law

The most fundamental result about the spectrum of Wigner matrices is the
Wigner semicircular law. We state here a powerful local version of this law, due
to Erdés, Schlein, and Yau [Erdds et al. 2009a; 2009b; 2010d] (see also [Erdds
et al. 2012a; 2012c; 2012d; 2013] for further refinements). Denote by p,. the
semicircle density function with support on [—2, 2]:

1
prex) =5 -4 — )2 )
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Theorem 3 (local semicircle law). Let M,, be a Wigner matrix obeying Condition
CO, let ¢ > 0, and let I C R be an interval of length |1| > n~= e Then with
overwhelming probability," one has®

Ni(W,) Zn/psc(x)dx+0(nlll)- (3)
1

Proof. See, for example, [Tao and Vu 2010, Theorem 1.10]. For the most
precise estimates currently known of this type (and with the weakest decay
hypotheses on the entries), see [Erdés et al. 2013]. The proofs are based on the
Stieltjes transform method; see [Bai and Silverstein 2006] for an exposition of
this method. O

A variant of Theorem 3, established subsequently® in [Erdds et al. 2012d], is
the extremely useful eigenvalue rigidity property

A (W) = A8 (W) + O (n™1F9), (4)

valid with overwhelming probability in the bulk range én <i < (1 — §)n for
any fixed § > 0 (and assuming Condition CO0). This result is key in some of the
strongest applications of the theory. Here the classical location Afl(Wn) of the
i-th eigenvalue is the element of [—2, 2] defined by the formula

A (W) i
[ ey ==
-2 n

Roughly speaking, results such as Theorem 3 and (4) control the spectrum of
W, at scales n~ !¢ and above. However, they break down at the fine scale n~l
indeed, for intervals I of length |/| = O(1/n), one has n f, Psc(x)dx = 0(1),
while N;(W,) is clearly a natural number, so that one can no longer expect an
asymptotic of the form (3). Nevertheless, local semicircle laws are an essential
part of the fine-scale theory. One particularly useful consequence of these laws
is that of eigenvector delocalisation, first established in [Erd6s et al. 2010d]:

Corollary 4 (eigenvector delocalisation). Let M,, be a Wigner matrix obeying
Condition CO, and let ¢ > 0. Then with overwhelming probability, one has
u(Wy)e; = O~ Y2 for all 1 < i, j < n, where the ey, ..., e, are the
standard basis of C".

1By this, we mean that the event occurs with probability 1 — O 4 (n=*) for each A > 0.

ZWe use the asymptotic notation o(X) to denote any quantity that goes to zero as n — 0o
when divided by X, and O (X) to denote any quantity bounded in magnitude by C X, where C is a
constant independent of n.

3The result in [Erdés et al. 2012d] actually proves a more precise result that also gives sharp
results in the edge of the spectrum, though due to the sparser nature of the A?I(Wn) in that case,
the error term O (n_H'a ) must be enlarged.
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Note from Pythagoras’ theorem that Z?:l |u,‘(M,1)"‘ej|2 = |lu;(M)|* = 1;
thus Corollary 4 asserts, roughly speaking, that the coefficients of each eigenvec-
tor are as spread out (or delocalised) as possible.

Corollary 4 can be established in a number of ways. One particularly slick
approach proceeds via control of the resolvent (or Green’s function) (W, —z/ )1,
taking advantage of the identity

n

Im((W, —20)"")j; =)

i=1

n
(i (Wy) — E)? +n?

lu; (Wy)*e;|?

for z = E 4+ +/—1n; it turns out that the machinery used to prove Theorem 3 also
can be used to control the resolvent. See for instance [ErdGs 2011] for details of
this approach.

3. GUE and gauss divisible ensembles

We now turn to the question of the fine-scale behaviour of eigenvalues of Wigner
matrices, starting with the model case of GUE. Here, it is convenient to work
with the fine-scale normalisation A, := /nM,,. For simplicity we will restrict
attention to the bulk region of the spectrum, which in the fine-scale normalisation
corresponds to eigenvalues A; (A,) of A, that are near nu for some fixed —2<u <2
independent of .

A basic object of study are the k-point correlation functions

R® =R®(A,) :RF - RT,

defined via duality to be the unique symmetric function (or measure) for which
one has

/F(xl,...,xk)R,(lk)(xl,...,xk)dxl...dxk
Rk
=kl > EFQq(Ap)..... % (A)) (5)

1<iy<--<iy

for all symmetric continuous compactly supported functions F : R¥ — R. Alter-
natively, one can write

|

" —.k)! /[R"k On(X1, ..oy Xp) dXpyy ... dx,,
where p, := (1/ n!)R,(,") is the symmetrised joint probability distribution of all n
eigenvalues of A,,.

From the semicircular law, we expect that at the energy level nu for some
—2 < u <2, the eigenvalues of A,, will be spaced with average spacing 1/psc(u4).

R,(,k)(xh .. .,xk) =
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It is thus natural to consider the normalised k-point correlation function p,ﬁ"; =

o) (Ap) : R¥ — R™, defined by the formula

(k) i plh) X1 Xk
P (X1, ..., xx) =R (nu—i— R T ) (6)
i " Psc(U) Osc (1)

It has been generally believed (and in many cases explicitly conjectured; see
e.g., [Mehta 1967, p. 9]) that the asymptotic statistics for the quantities mentioned
above are universal, in the sense that the limiting laws do not depend on the
distribution of the atom variables (assuming of course that they have been nor-
malised as stated in Definition 1). This phenomenon was motivated by examples
of similarly universal laws in physics, such as the laws of thermodynamics or of
critical percolation; see, for example, [Mehta 1967; Deift 1999; Deift 2007] for
further discussion.

It is clear that if one is able to prove the universality of a limiting law, then
it suffices to compute this law for one specific model in order to describe the
asymptotic behaviour for all other models. A natural choice for the specific
model is GUE, as for this model, many limiting laws can be computed directly
thanks to the availability of an explicit formula for the joint distribution of the
eigenvalues, as well as the useful identities of determinantal processes. For
instance, one has Ginibre’s formula

1 2
:On(xlvw-sxn):We Il"/2n l_[ lxi —x; 7, @)

I<i<j<n

for the joint eigenvalue distribution, as can be verified from a standard calculation;
see [Ginibre 1965]. From this formula, the theory of determinantal processes,
and asymptotics for Hermite polynomials, one can then obtain the limiting law

: (k) _ B
Lm0, (X1 s Xk) = Pgine (X1 -+ Xk) ®)
locally uniformly in xi, ..., x; where
k
Plime X1, -+ X0 1= det(Ksine (X7, X)))154,j <k

and Ksipe is the Dyson sine kernel

sin(7w (x — y))

Ksine(x,y) :== 2t — )

(with the usual convention that Smx equals 1 at the origin); see [Ginibre 1965;
Mehta 1967]. *

Using a general central limit theorem for determinantal processes due to Costin
and Leibowitz [1995] and Soshnikov [2002], one can then give a limiting law for
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N;(A,) in the case of the macroscopic intervals I = [nu, +00). More precisely,
one has the central limit theorem

N[nu,+oo) (An) —n fuoo psc()’) dy

‘/#logn

in the sense of probability distributions, for any —2 < u < 2; see [Gustavsson
2005]. By using the counting functions N, +«0) to solve for the location of
individual eigenvalues A; (A,), one can then conclude the central limit theorem

2i(Ay) — A8 (A,)
Viogn /27 / pec(u)

whenever Afl(An) = nkfl(Wn) is equal to n(# +o0(1)) for some fixed —2 <u < 2;
see [Gustavsson 2005].

Much of the above analysis extends to many other classes of invariant ensem-
bles (such as GOE), for which the joint eigenvalue distribution has a form similar
to (7); see [Deift 1999] for further discussion. Another important extension of
the above results is to the gauss divisible ensembles, which are Wigner matrices
M, of the form

— N, Dr

— N(0, Dg &)

My=e"'?M)+(1—e )G,

where G, is a GUE matrix independent of M. In particular, the random matrix
M! is distributed as M? for t = 0 and then continuously deforms towards the
GUE distribution as t — 4-00. By using explicit formulae for the eigenvalue
distribution of a gauss divisible matrix, Johansson [2001] was able* to extend
the asymptotic (8) for the k-point correlation function from GUE to the more
general class of gauss divisible matrices with fixed parameter ¢ > 0 (independent
of n).

It is of interest to extend this analysis to as small a value of ¢ as possible,
since if one could set # = 0 then one would obtain universality for all Wigner
ensembles. By optimising Johansson’s method (and taking advantage of the
local semicircle law), Erdds, Péché, Ramirez, Schlein, and Yau [Erdds et al.
2010a] was able to extend the universality of (8) (interpreted in a suitably weak
convergence topology, such as vague convergence) to gauss divisible ensembles
for ¢ as small as n~'*¢ for any fixed & > 0.

An important alternate approach to these results was developed by Erdés et
al. [2010c; 2011; 2012b], based on a stability analysis of the Dyson Brownian
motion [Dyson 1970] governing the evolution of the eigenvalues of a matrix

4Some additional technical hypotheses were assumed in [Johansson 2001], namely that the
diagonal variance o2 was equal to 1, that the real and imaginary parts of each entry of M), were
independent, and that the matrix entries had bounded Cp-th moment for some Cq > 6.
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Ornstein—Uhlenbeck process. We refer to [Erdés 2011] for a discussion of this
method. Among other things, this argument reproves a weaker version of the
result in [Erd6s et al. 2010a] mentioned earlier, in which one obtained universality
for the asymptotic (8) after an additional averaging in the energy parameter u.
However, the method was simpler and more flexible than that in [Erdés et al.
2010a], as it did not rely on explicit identities, and has since been extended to
many other types of ensembles, including the real symmetric analogue of gauss
divisible ensembles in which the role of GUE is replaced instead by GOE.

4. The four-moment theorem

The results discussed above for invariant or gauss divisible ensembles can be
extended to more general Wigner ensembles via a powerful swapping method
known as the Lindeberg exchange strategy, introduced in Lindeberg’s classic
proof [1922] of the central limit theorem, and first applied to Wigner ensembles
in [Chatterjee 2006]. This method can be used to control expressions such as
EF(M,) — F(M,), where M,,, M, are two (independent) Wigner matrices. If
one can obtain bounds such as

EF(M,)—EF(M,) =o(1/n)

when M,, is formed from M,, by replacing5 one of the diagonal entries &; of M,
by the corresponding entry &/ of M, and bounds such as

EF(M,) —EF(M,) = o(1/n%

when M, is formed from M, by replacing one of the off-diagonal entries & ; of
M, with the corresponding entry Sl./j of M, (and also replacing &;; = &; with
& j/.i = Si’j, to preserve the Hermitian property), then on summing an appropriate
telescoping series, one would be able to conclude asymptotic agreement of the

statistics EF (M,,) and EF (M)):
EF(M,,)—EF(M,D:O(I). (10)

The four-moment theorem asserts, roughly speaking, that we can obtain con-
clusions of the form (10) for suitable statistics F' as long as M,,, M, match to
fourth order. More precisely, we have

5Technically, the matrices M, formed by such a swapping procedure are not Wigner matrices
as defined in Definition 1, because the diagonal or upper-triangular entries are no longer identically
distributed. However, all of the relevant estimates for Wigner matrices can be extended to the
nonidentically distributed case at the cost of making the notation slightly more complicated. As
this is a relatively minor issue, we will not discuss it further here.
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Definition 5 (matching moments). Let k > 1. Two complex random variables
£, £ are said to match to order k if one has ERe(£)¢ Im(£)? = ERe(¢)* Im(¢')?
whenever a, b > 0 are integers such that a + b < k.

In the model case when the real and imaginary parts of & or of &' are
independent, the matching moment condition simplifies to the assertion that
ERe(£)” =ERe(¢)* and EIm(§)? = EIm(¢')? forall 0 < a, b <k.

Theorem 6 (four-moment theorem). Let ¢y > 0 be a sufficiently small constant.
Let M, = (&j)1<i,j<n and M), = (Ei’j)lf,-,jin be two Wigner matrices obeying
Condition CO. Assume furthermore that for any 1 <i < j <n, §;; and ";‘{i match
to order 4 and for any 1 <i <n, &; and éi/i match to order 2. Set A, := /nM,
and A}, := \/nM], let 1 <k <n® be an integer, and let G : R — R be a smooth
function obeying the derivative bounds

IV/G(x)| < n® (11)

forall0 < j <5 andx € R*. Then for any 1 <iy <is--- < iy <n, and for n
sufficiently large we have

|E(G(Ai, (An), . 2 (A)) —E(G Ay, (A)), ..., Ay (AL))| <n . (12)

A preliminary version of Theorem 6 was first established by the authors in [Tao
and Vu 2011b], in the case® of bulk eigenvalues (thus én <iy, ..., i <(1—¥8)n
for some absolute constant § > 0). In [Tao and Vu 2010], the restriction to the
bulk was removed; and in [Tao and Vu 2012a], Condition CO was relaxed to a
finite moment condition. We will discuss the proof of this theorem in Section 5.
There is strong evidence that the condition of four matching moments is necessary
to obtain the conclusion (12); see [Tao and Vu 2011a].

A key technical result used in the proof of the four-moment theorem, which
is also of independent interest, is the gap theorem:

Theorem 7 (gap theorem). Let M,, be a Wigner matrix obeying Condition CO.
Then for every co > 0 there exists a ¢| > 0 (depending only on cqy) such that

P(JAit1(Ay) —Ai(A) <n ) <«n™
foralll <i <n.

For reasons of space we will not discuss the proof of this theorem here,
but refer the reader to [Tao and Vu 2011b; 2012a]. Among other things, the
gap theorem tells us that eigenvalues of a Wigner matrix are usually simple.
Closely related level repulsion estimates were established (under an additional

SIn the paper, k was held fixed, but an inspection of the argument reveals that it extends without
difficulty to the case when k is as large as n“0, for ¢( small enough.
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smoothness hypothesis on the atom distributions) in [Erdés et al. 2010d].

Another variant of the four-moment theorem was subsequently introduced in
[Erdds et al. 2012c¢], in which the eigenvalues 1;,(A,) appearing in Theorem 6
were replaced by the components of the resolvent (or Green’s function) (W, -7,
but with slightly different technical hypotheses on the matrices M,, M; see
[Erd6s et al. 2012c] for full details. As the resolvent-based quantities are averaged
statistics that sum over many eigenvalues, they are far less sensitive to the
eigenvalue repulsion phenomenon than the individual eigenvalues, and as such
the version of the four-moment theorem for Green’s function has a somewhat
simpler proof (based on resolvent expansions rather than the Hadamard variation
formulae and Taylor expansion). Conversely, though, to use the four-moment
theorem for Green’s function to control individual eigenvalues, while possible,
requires a significant amount of additional argument; see [Knowles and Yin
2013]. Finally, we remark that the four-moment theorem has also been extended
to cover eigenvectors as well as eigenvalues; see [Tao and Vu 2012b; Knowles
and Yin 2013] for details.

5. Sketch of proof of the four-moment theorem

In this section we discuss the proof of Theorem 6, following the arguments that
originated in [Tao and Vu 2011b] and refined in [Tao and Vu 2012a].

In addition to Theorem 7, a key ingredient is the following truncated version of
the four-moment theorem, in which one removes the event that two consecutive
eigenvalues are too close to each other. For technical reasons, we need to
introduce quantities

1
0i(Ay) = ; (A — M (AP

fori =1, ..., n, which is a regularised measure of extent to which A;(A,) is
close to any other eigenvalue of A,,.

Theorem 8 (truncated four-moment theorem). Let cg > 0 be a sufficiently small
constant. Let M,, = (&) 1<i, j<n and M, = (Si’j-)lf,-,jin be two Wigner matrices
obeying Condition CO. Assume furthermore that forany 1 <i < j <n, &;; and

l./j match to order 4 and for any 1 <i < n, &; and &/, match to order 2. Set

Ap = /nM, and A, := /nM], let 1 <k < n® be an integer, and let

G=Gijs s ki Qigs - -5 Qi)

be a smooth function from R* x [R{l_i to R that is supported in the region

Qi\s-.., Qi =<n® (13)
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and obeys the derivative bounds
IVIG iy, ooy higs Qi vy Qi) <0 (14)
forall0 < j <5. Then

EGi (An), ..., Ai (Ap), Qi (Ap), ..., Qi (Ay))
=EGM,(A), ..., ki (AL), Qi (AL), ..., Qi (AL)) + O (n~ /20y (15)

We will discuss the proof of this theorem shortly. Using Theorem 7, one
can then deduce Theorem 6 from Theorem 8 by smoothly truncating in the Q
variables: see [Tao and Vu 2011b, Section 3.3].

It remains to establish Theorem 8. To simplify the exposition slightly, let us
assume that the matrices M,, M, are real symmetric rather than Hermitian.

As indicated in Section 4, the basic idea is to use the Lindeberg exchange
strategy. To illustrate the idea, let M,, be the matrix formed from M,, by replacing
a single entry &, of M, with the corresponding entry &, q Of M, for some p < g,
with a similar swap also being performed at the &,, entry to keep M,, Hermitian.
Strictly speaking, M, is not a Wigner matrix as defined in Definition 1, as the
entries are no longer identically distributed, but this will not significantly affect
the arguments. (One also needs to perform swaps on the diagonal, but this can
be handled in essentially the same manner.)

Set An = ﬁM,, as usual. We will sketch the proof of the claim that

E G()\'ll(An)7 B )"ik (An)s Qil(An)’ ) th(An»
=EGMi,(Ay), ..., ki, (An), Qi (An), ..., Qi (Ap)) + O(n/2T0),

by telescoping together O (n?) estimates of this sort one can establish (15). (For
swaps on the diagonal, one only needs an error term of O (n~3/270()) gince
there are only O (n) swaps to be made here rather than O (n?). This is ultimately
why there are two fewer moment conditions on the diagonal than off it.)

We can write A, = A(§,), A, = A(é;q), where

A(t) = A(0) +1tA'(0)

is a (random) Hermitian matrix depending linearly’ on a real parameter ¢, with
A(0) being a Wigner matrix with one entry (and its adjoint) zeroed out, and

If we were working with Hermitian matrices rather than real symmetric matrices, then one
could either swap the real and imaginary parts of the &;; separately (exploiting the hypotheses
that these parts were independent), or else repeat the above analysis with # now being a complex
parameter (or equivalently, two real parameters) rather than a real one. In the latter case, one
needs to replace all instances of single variable calculus below (such as Taylor expansion) with
double variable calculus, but aside from notational difficulties, it is a routine matter to perform this
modification.
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A’(0) is the explicit elementary Hermitian matrix
A0) = epe; +epeq. (16)

We note the crucial fact that the random matrix A(0) is independent of both &,
and & ;,q. Note from Condition CO that we expect &4, & 1/161 to have size O (n?(0))
most of the time, so we should (heuristically at least) be able to restrict attention

to the regime t = O (n?()). If we then set
F(t) ;=BG (i, (AD). ... ki (AD), Qi (AD). ..., Qi (A®))  (17)
then our task is to show that
EF (5, =EF(£),)+ O(n™>/?t0), (18)

Suppose that we have Taylor expansions of the form

4
i (A1) = 1y (A0)) + > ey jt! + O (™13 (19)
j=1

forall t = O(n°“)) andl = 1,..., k, where the Taylor coefficients ¢; ; have
size ¢/, j = O(n=//?70(0) and similarly for the quantities Q;, (A(#)). Then by
using the hypothesis (14) and further Taylor expansion, we can obtain a Taylor

expansion
4

F(t)=F©O)+Y_ fit! + 0(n /20
j=1

for the function F(r) defined in (17), where the Taylor coefficients f; have
size f; = O (n=J/2+0()) Setting t equal to & pq and taking expectations, and
noting that the Taylor coefficients f; depend only on F and A(0) and is thus
independent of &;;, we conclude that

4
EF(£5) =EF(0)+ > Ef)EE))+ 00 /0@,
j=1

and similarly for EF (5;,[1). If §,, and 5;’@ have matching moments to fourth
order, this gives (18).

It remains to establish (19) (as well as the analogue for Q;,(A(¢)), which turns
out to be analogous). We abbreviate i; simply as i. By Taylor’s theorem with
remainder, it would suffice to show that

%Ai (A(1)) = O(n /2100y (20)
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for j=1,...,5. Asitturns out, this is not quite true as stated, but it becomes true
(with overwhelming probabilityg) if one can assume that Q; (A(z)) is bounded
by n2(0)_ In principle, one can reduce to this case due to the restriction (13) on
the support of G, although there is a technical issue because one will need to
establish the bounds (20) for values of 7 other than &, or § pq- This difficulty can
be overcome by a continuity argument; see [Tao and Vu 2011b]. For the purposes
of this informal discussion, we shall ignore this issue and simply assume that we
may restrict to the case where

Qi (A(t)) € n% ). Q1)

In particular, the eigenvalue A;(A(¢)) is simple, which ensures that all quantities
depend smoothly on ¢ (locally, at least).

To prove (20), one can use the classical Hadamard variation formulae for
the derivatives of A;(A(?)), which can be derived for instance by repeatedly
differentiating the eigenvector equation A(#)u; (A(t)) = A; (A(¢))u;(A(t)). The
formula for the first derivative is

d
E)Li (A1) = ui (A@1)" A" (O)u; (A(1)).
But recall from eigenvalue delocalisation (Corollary 4) that with overwhelming
probability, all coefficients of u; (A(¢)) have size O (n~ /2oy, given the nature
of the matrix (16), we can then obtain (20) in the j = 1 case.
Now consider the j =2 case. The second derivative formula reads

P2 ~ i (A(D)* A’ Oyt ; (AD))?
ariAn) = _2; 3 (AG) — M (A(D)

Using eigenvalue delocalisation as before, we see with overwhelming probability
that the numerator is O (n~'T°W). To deal with the denominator, one has to
exploit the hypothesis (21) and the local semicircle law (Theorem 3). Using these
tools, one can conclude (20) in the j = 2 case with overwhelming probability.

It turns out that one can continue this process for higher values of j, although
the formulae for the derivatives for A;(A(¢)) (and related quantities, such as
P;(A(t)) and Q;(A(¢))) become increasingly complicated, being given by a
certain recursive formula in j. See [Tao and Vu 2011b] for details.

8Tf:chnically, each value of ¢ has a different exceptional event of very small probability for
which the estimates fail. Since there are uncountably many values of ¢, this could potentially cause
a problem when applying the union bound. In practice, though, it turns out that one can restrict ¢
to a discrete set, such as the multiples of 7100 in which case the union bound can be applied
without difficulty. See [Tao and Vu 2011b] for details.
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6. Distribution of individual eigenvalues

One of the simplest applications of the above machinery is to extend the central
limit theorem (9) of Gustavsson [2005] for eigenvalues A;(A,) in the bulk from
GUE to more general ensembles:

Theorem 9. The gaussian fluctuation law (9) continues to hold for Wigner
matrices obeying Condition C0O, and whose atom distributions match that of GUE
to second order on the diagonal and fourth order off the diagonal; thus, one has

3i(An) = 28 (A,)
V9ogn/2m [ psc(u)

whenever Xfl(A,,) =n(u+o(1)) for some fixed —2 < u < 2.

— N, Dr

Proof. Let M), be drawn from GUE, thus by (9) one already has
Ai(A}) —A(A)
Viogn/2m [ psc(u)

(note that kfl(An) = Afl(A;l)). To conclude the analogous claim for A, it suffices
to show that

— N, Dr

Pi(A) el )—n"<PRi(A) el) <PRi(A) el)+n"" (22
for all intervals I = [a, b], and n sufficiently large, where
I =[a—n"1 p4p=0/1% and [_:=[a+n""0 p—p=/19],

We will just prove the second inequality in (22), as the first is very similar. We
define a smooth bump function G : R — R* equal to one on /_ and vanishing
outside of /. Then we have

P(Li(Ay) € ) <EG(%i(A,) and EG(i(A)) <P(Qi(A) € ).
On the other hand, one can choose G to obey (11). Thus by Theorem 6 we have
IEG(1i(A) —EGi(A)| <n™,

and the second inequality in (22) follows from the triangle inequality. The first
inequality is similarly proven using a smooth function that equals 1 on /_ and
vanishes outside of /. 0

Remark 10. In [Gustavsson 2005] the asymptotic joint distribution of k& distinct
eigenvalues A;, (Mp), ..., A, (M,) in the bulk of a GUE matrix M, was computed
(it is a gaussian k-tuple with an explicit covariance matrix). By using the above
argument, one can extend that asymptotic for any fixed k to other Wigner matrices,
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so long as they match GUE to fourth order off the diagonal and to second order
on the diagonal.

If one could extend the results in [Gustavsson 2005] to broader ensembles of
matrices, such as gauss divisible matrices, the same argument would allow some
of the moment matching hypotheses to be dropped, using tools such as Lemma 13.

Remark 11. In [Doering and Eichelsbacher 2011], a moderate deviations prop-
erty of the distribution of the eigenvalues A; (A,) was established first for GUE,
and then extended to the same class of matrices considered in Theorem 9 by
using the four-moment theorem. An analogue of Theorem 9 for real symmetric
matrices (using GOE instead of GUE) was established in [O’Rourke 2010].

There are similar results at the edge of the spectrum, though with several
additional technicalities; see [Soshnikov 1999; Ruzmaikina 2006; Khorunzhiy
2012; Tao and Vu 2010; Johansson 2012; Erdés et al. 2012d].

7. The Wigner-Dyson—Mehta conjecture

We now consider the extent to which the asymptotic (8), which asserts that the
normalised k-point correlation functions p,(,kb)t converge to the universal limit péli?le,
can be extended to more general Wigner ensembles. A long-standing conjecture
of Wigner, Dyson, and Mehta (see, e.g., [Mehta 1967]) asserts (informally
speaking) that (8) is valid for all fixed k, all Wigner matrices and all fixed energy
levels —2 < u < 2 in the bulk. However, to make this conjecture precise one
has to specify the nature of convergence in (8). For GUE, the convergence is
quite strong (in the local uniform sense), but one cannot expect such strong
convergence in general, particularly in the case of discrete ensembles in which
p,gk,i is a discrete probability distribution (i.e., a linear combination of Dirac
masses) and thus is unable to converge uniformly or pointwise to the continuous
limiting distribution pgi?le. We will thus instead settle for the weaker notion of
vague convergence. More precisely, we say that (8) holds in the vague sense if

one has
/k F(xl,...,xk)pfllf;(xl,...,xk)dxl coodxy
R

= /k F(xi, ..o X0 pe) (X1, ..., x)dxy .. .dxg  (23)
R

for all continuous, compactly supported functions F : R — R. By the Stone—
Weierstrass theorem we may take F to be a test function (i.e., smooth and
compactly supported) without loss of generality.

The Wigner-Dyson—Mehta conjecture is largely resolved in the vague con-
vergence category, in the case of Hermitian Wigner matrices whose variances
match those of GUE:
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Theorem 12 (Wigner—-Dyson—Mehta conjecture for Hermitian matrices in the
vague sense). Let M, be a Wigner matrix obeying Condition COand which
matches GUE to second order (i.e., the real and imaginary parts of the off-
diagonal entries have variance 1/2, an the diagonal entries have variance 1),
and let =2 < u <2 and k > 1 be fixed. Then (8) holds in the vague sense.

This theorem, proven in [Tao and Vu 2011c] (in fact the CO condition can
be relaxed to a finite moment condition [Tao and Vu 2011c]), builds upon a
long sequence of partial results towards the Wigner—Dyson—Mehta conjecture
[Johansson 2001; Erdds et al. 2010a; 2010b; 2010c; 2012¢; 2012d; Tao and Vu
2011b], which we will summarise (in a slightly nonchronological order) below.
An alternate proof of the result (and a strengthening to the case of matrices
with variable variance) was then established in [Erdés and Yau 2012]. The
analogous problem for matrices matching GOE (i.e., real symmetric matrices
whose diagonal entries have variance 2) remains open, unless one performs an
additional averaging in the energy parameter.

As recalled in Section 3, the asymptotic (8) for GUE (in the sense of locally
uniform convergence, which is far stronger than vague convergence) follows
as a consequence of the Gaudin—Mehta formula and the Plancherel-Rotach
asymptotics for Hermite polynomials.’

The next major breakthrough was by Johansson [2001], who, as discussed
previously, established (8) for gauss divisible ensembles at some fixed time
parameter ¢ > 0 independent of n, obtained (8) in the vague sense (in fact, the
slightly stronger convergence of weak convergence was established in that paper,
in which the function F in (23) was allowed to merely be L°>° and compactly
supported, rather than continuous and compactly supported). The main tool used
in [Johansson 2001] was an explicit determinantal formula for the correlation
functions in the gauss divisible case, essentially due to Brézin and Hikami [1997].

In Johansson’s result, the time parameter ¢ > 0 had to be independent of
n. It was realised by Erdés, Ramirez, Schlein, and Yau that one could obtain
many further cases of the Wigner—Dyson—Mehta conjecture if one could extend
Johansson’s result to much shorter times ¢ that decayed at a polynomial rate
in n. This was first achieved (again in the context of weak convergence) for
t > n3/*¢ for an arbitrary fixed ¢ > 0 in [Erd6s et al. 2010c], and then to the
essentially optimal case ¢ > n~!*¢ (for weak convergence, and (implicitly) in
the local L! sense as well) in [Erdés et al. 2010a]. By combining this with the
method of reverse heat flow discussed in Section 4, the asymptotic (8) (again in

9Analogous results are known for much wider classes of invariant random matrix ensembles,
see, for example, [Deift et al. 1999; Pastur and Shcherbina 1997; Bleher and Its 1999]. However,
we will not discuss these results further here, as they do not directly impact on the case of Wigner
ensembles.
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the sense of weak convergence) was established for all Wigner matrices whose
distribution obeyed certain smoothness conditions (e.g., when k = 2 one needs a
C® type condition), and also decayed exponentially. The methods used in [Erd&s
et al. 2010a] were an extension of those in [Johansson 2001], combined with an
approximation argument (the “method of time reversal”) that approximated a
continuous distribution by a gauss divisible one (with a small value of ¢); the
arguments in [Erd6s et al. 2010c] are based instead on an analysis of the Dyson
Brownian motion.

By combining the above observation with the moment matching lemma
presented below, one immediately concludes Theorem 12 assuming that the
off-diagonal atom distributions are supported on at least three points.

Lemma 13 (moment matching lemma). Let & be a real random variable with
mean zero, variance one, finite fourth moment, and which is supported on at
least three points. Then there exists a gauss divisible, exponentially decaying
real random variable &' that matches & to fourth order.

For a proof of this lemma, see [Tao and Vu 2011b, Lemma 28]. The require-
ment of support on at least three points is necessary; indeed, if £ is supported in
just two points a, b, then E(§ — a)*(§ —b)?> =0, and so any other distribution
that matches & to fourth order must also be supported on a, b and thus cannot be
gauss divisible.

To remove the requirement that the atom distributions be supported on at least
three points, one can observe from the proof of the four-moment theorem that
one only needs the moments of M, and M, to approximately match to fourth
order in order to be able to transfer results on the distribution of spectra of
M, to that of M. In particular, if # = n~!*¢ for some small & > 0, then the
gauss divisible matrix M/ associated to M, at time ¢ is already close enough to
matching the first four moments of M,, to apply (a version of) the four-moment
theorem. The results of [ErdSs et al. 2010a] give the asymptotic (8) for M, and
the eigenvalue rigidity property (4) then allows one to transfer this property to
M, giving Theorem 12.

Remark 14. The above presentation (drawn from the most recent paper [Tao and
Vu 2011c]) is somewhat ahistorical, as the arguments used above emerged from
a sequence of papers, which obtained partial results using the best technology
available at the time. In [Tao and Vu 2011b], where the first version of the
four-moment theorem was introduced, the asymptotic (8) was established under
the additional assumptions of Condition CO, and matching the GUE to fourth
order; the former hypothesis was due to the weaker form of the four-moment
theorem known at the time, and the latter was due to the fact that the eigenvalue
rigidity result (4) was not yet established (and was instead deduced from the
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results of [Gustavsson 2005] combined with the four-moment theorem, thus
necessitating the matching moment hypothesis). For related reasons, the paper
in [Erd6s et al. 2010b] (which first introduced the use of an approximate four-
moment theorem) was only able to establish (8) after an additional averaging
in the energy parameter u (and with Condition C0O). The subsequent progress
in [Erd6s et al. 2011] via heat flow methods gave an alternate approach to
establishing (8), but also required an averaging in the energy and a hypothesis
that the atom distributions be supported on at least three points, although the
latter condition was then removed in [Erdés et al. 2012d]. In a very recent paper
[Erdds et al. 2012a], Condition CO has been relaxed to finite (4 + &)-th moment
of the entries for any fixed ¢ > 0, though still at the cost of averaging in the
energy parameter. Some generalisations in other directions (e.g., to covariance
matrices, or to generalised Wigner ensembles with nonconstant variances) were
also established in [Ben Arous and Péché 2005; Tao and Vu 2012a; Erdés et al.
2012a; 2012b; 2012c; 2012d; 2013; Wang 2012].

Remark 15. While Theorem 12 is the “right” result for discrete Wigner ensem-
bles, one expects stronger notions of convergence when one has more smoothness
hypotheses on the atom distribution; in particular, one should have local uniform
convergence of the correlation functions when the distribution is smooth enough.
Some very recent progress in this direction in the k = 1 case was obtained by
Maltsev and Schlein [2011a; 2011b].
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