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Asymptotic analysis of the two-matrix model
with a quartic potential

MAURICE DUITS, ARNO B. J. KUIJLAARS AND MAN YUE MO

We give a summary of the recent progress made by the authors and collab-
orators on the asymptotic analysis of the two-matrix model with a quartic
potential. The paper also contains a list of open problems.

1. Two-matrix model: introduction

The Hermitian two-matrix model is the probability measure

Le—n TV (MO+W (M) =t MiM2) g\ d M, (1-1)

Zn
defined on pairs (M1, M) of n x n Hermitian matrices. Here V' and W are two
polynomial potentials, T # 0 is a coupling constant, and

7y = [e—nTr(V(M1)+W(M2)—fM1Mz) dM, dM,

is a normalization constant in order to make (1-1) a probability measure.

In recent works of the authors and collaborators [Duits et al. 2011; 2012;
Duits and Kuijlaars 2009; Mo 2009] the model was studied with the aim to gain
understanding in the limiting behavior of the eigenvalues of M as n — oo, and
to find and describe new types of critical behaviors.

The results should be compared with the well known results for the Hermitian

one-matrix model
1

e—n Tr(V(M)) dM (1_2)
Zn ’

which we briefly summarize here. The eigenvalues of the random matrix M
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from (1-2) have the explicit joint pdf

= 1‘[<xk—x»2 1‘[e e,

nj<k

which yields that the eigenvalues are a determinantal point process with correla-
tion kernel

n—1
Kn(x.y) = Ve O VeV O) S g (3) pre(9),
k=0

where (pk )k is the sequence of orthonormal polynomials with respect to the
weight function eV (X) on the real line. As n — oo the empirical eigenvalue
distributions have an a.s. weak limit!

1 n
; ZSX]' g /’L*’
j=1

where ©1* is a nonrandom probability measure that is characterized as the mini-
mizer of the energy functional (Coulomb gas picture)

B = [ / log

when taken over all probablhty measures on the real line. For a polynomial V'

— () du(y) + / Ve dut)  (13)

the minimizer p* is supported on a finite union of intervals [Deift et al. 1998].
In addition there is a polynomial Q of degree deg V' — 2 such that

) = V() — /’“‘1“)

is the solution of a quadratic equation

E2—V'(2)E+ Q(z) =0. (1-4)

From this it follows that u] has a density with respect to Lebesgue measure that
is real analytic in the interior of any of the intervals and that can be written as

d *
pley= B L

where ¢~ denotes the negative part of the polynomial

’ 2
a0 = (52) - 0w

IThat is, for any bounded continuous function f’, we have hm < ZI 1 f(xj) = [ fdu*
almost surely.

g~ (x), xeR,
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2. Limiting eigenvalue distribution

2.1. Vector equilibrium problem. Guionnet [2004] showed that the eigenvalues
of the matrices M and M in the two-matrix model (1-1) have a limiting
distribution as 7 — oo. The results of [Guionnet 2004] are in fact valid for
a much greater class of random matrix models. The limiting distribution is
characterized as the minimizer of a certain functional, which is however very
different from the energy functional (1-3) for the one matrix model.

Our aim is to develop an analogue of the Coulomb gas picture for the eigen-
values of the matrices in the two-matrix model (1-1). We have been successful
in doing this for the eigenvalues of M in the case of even polynomial potentials
V and W with W of degree 4. Thus our assumptions are:

e V is an even polynomial with positive leading coefficient.
s W(y)=1y*+ %y witha e R.

e 7 > () (without loss of generality).

We recall some notions from logarithmic potential theory [Saff and Totik
1997]: the mutual logarithmic energy

I(u,v) = // log |xiy| dp(x)dv(y)

of two measures p and v, and the logarithmic energy

I(pw) = I(p, 1)

of a measure w. Then the limiting mean distribution of the eigenvalues of M is
characterized by a vector equilibrium problem for three measures. This involves
an energy functional

E(pr, o, w3) = I(py) + I(po) + () — 1w, o) — (2, p13)
+ / Vi (o) dpuy (x) + / Vo) dps(x) (2-1)

defined on three measures (41, (42, (3. Note that there is an attraction between
the measures jt; and @, and between the measures j, and (3, while there is no
direct interaction between the measures (1 and p3. This type of interaction is
characteristic for a Nikishin system [Nikishin and Sorokin 1991].

The energy functional (2-1) depends on the external fields V; and Vj that act
on the measures 1 and @3 in (2-1). The vector equilibrium problem will also
have an upper constraint o, for the measure ;. These input data take a very
special form that we describe next.
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External field V7. The external field that acts on j; is defined by
Vilx)=V(x)+ mi[gn(W(s) —TXS), (2-2)
se

where we recall that W(s) = %s“ + %sz. For the case a = 0, this is simply
Vilx) =V(x)— %|rx|4/3.

External field V3. The external field that acts on the third measure is absent if
a>0,ie.,
V3(x) =0 ifa=>0.

The function s € R — W(s) — txs has a global minimum at s = s7(x)
and this value plays a role in the definition of V7, see (2-2). For o < 0, and
x € (—x*(a), x*(«)), where

x*(a) = %(_Ta)yz, a <0,

the function s € R — W(s) — txs has another local minimum at s = s,(x), and
a local maximum at s = s3(x).
Then Vj; is defined by

V3(x) = (W(s3(x)) — txs3(x)) — (W(s2(x)) — Tx52(x)) (2-3)
if x € (—x*(«), x*(«)), and V3(x) = 0 otherwise.

Upper constraint o5. The upper constraint o, that acts on the second measure
is the measure on the imaginary axis with the density
doy(z) 7

=— max Res, ze€iR. 2-4)
|dz| T s34as=tz

In case @ = 0 this simplifies to

d 3
02 £I4/3|Z|1/3.

ldz| ~ 2m

If o < 0 then the density of o7 is positive and real analytic on the full imaginary
axis. If & > 0 then the support of o, has a gap around 0:

supp(02) = (—ioo, —iy™ ()] U [iy* (@), i00),
where
y¥(@) = %(%)3/2, a> 0.

Theorem 1 [Duits et al. 2012, Theorem 1.1]. There is a unique minimizer
(U7, 15, 1u3) of the energy functional (2-1) subject to the following conditions,
with input data V1, V3, and o (as described above):
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(a) w1 is a measure on R with ;11 (R) = 1.
(b) o is a measure on iR with u,(iR) = %
(c) w3 is a measure on R with 3 (R) = %
(d) pu2 =o02.

The proof of the existence of a minimizer was completed and simplified in
[Hardy and Kuijlaars 2012]; see Section 4.2 below.

Now that we have existence and uniqueness, it is natural to ask about further
properties of the minimizer. The three measures j7, o—u5 and w7 are absolutely
continuous with respect to the Lebesgue measure with densities that are real
analytic in the interior of their supports, except possibly at the origin. Furthermore,
denoting by S'(u) the support of a measure u, we have:

* The support of 7 is a finite union of bounded intervals on the real line.

* There exists ¢; > 0 such that S(0; — u3) = iR\ (=icz,ic3), and if ¢; > 0
the density of o, — 3 vanishes like a square root at £ic;.

* There exists c3 > 0 such that S(u3) = R\ (—¢3,c3), and if c3 > 0 the
density of u3 vanishes like a square root at %c3.

In a generic situation, the density of ,u’f is strictly positive in the interior
of its support and vanishes like a square root at endpoints. In addition strict
inequality holds in the variational inequality outside the support S(;.}). More-
over, generically if ¢; = 0 the density of o — ] is positive at the origin, and
likewise if c3 = 0 the density of 13 is positive at the origin. If we are in such a
generic situation, then we say that (V, W, 1) is regular. See [Duits et al. 2012,
Section 1.5] for more details and a discussion on the singular situations that may
occur.

Theorem 2 [Duits et al. 2012, Theorem 1.4]. Let 7 be the first component of
the minimizer in Theorem 1, and assume that (V, W, t) is regular, then as n — o0
withn =0 (mod 3), the mean eigenvalue distribution of My convergences to ii7.

We are convinced that the theorem is also valid in the singular cases, which
correspond to phase transitions in the two-matrix model. The condition that n is
a multiple of three is nonessential as well. It is imposed for convenience in the
analysis.

In [Duits et al. 2012] only the convergence of mean eigenvalue distributions
was considered, which is a rather weak form of convergence. However, when
combined with the results of [Guionnet 2004] it will actually follow that the
empirical eigenvalue distributions of M tend to u} almost surely.

The analysis of [Duits et al. 2012] also proves the usual universality results
for local eigenvalue statistics in Hermitian matrix ensembles, given by the sine
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kernel in the bulk of the spectrum and by the Airy kernel at edge points. In
nonregular situations one may find Pearcey and Painlevé II kernels, while in
multicritical cases new kernels may appear. This was indeed proved recently in
[Duits and Geudens 2013]; see Section 4.1 below.

2.2. Riemann surface. A major ingredient in the asymptotic analysis in [Duits
et al. 2012] is the construction of an appropriate Riemann surface (or spectral
curve), which plays a role similar to the algebraic equation (1-4) in the one-
matrix model. The existence of such a Riemann surface is implied by the work of
Eynard [2005] on the formal two-matrix model. Our approach is different from
the one of Eynard, in that we use the vector equilibrium problem to construct
the Riemann surface, and in a next step we define a meromorphic function on it.

The main point is that the supports S(u}), S(o —u3) and S(u3) associated
to the minimizer in Theorem 1 determine the cut structure of a Riemann surface

4
R = UQR,-
j=1

with four sheets: _
Ry =C\ S(uy).

Ry = C\ (S(u7) U S(02 —p3)),
PR3 =C\ (S(02 — u3)US(13)),
Rq =C\ S(u3).

The sheet R; is glued to the next sheet R; 1 along the common cut in the usual
crosswise manner. The meromorphic function on R arises in the following way:

Proposition 3 ([Duits et al. 2012, Proposition 4.8]). The function
dp ()

zZ—X

§e=ve- [ e,
extends to a meromorphic function on the Riemann surface R whose only poles
are at infinity. There is a pole of order deg V' at infinity on the first sheet, and a
simple pole at the other point at infinity.

The proof of Proposition 3 follows from the Euler-Lagrange variational con-
ditions that are associated with the vector equilibrium problem. See Section 4.2
of [Duits et al. 2012] for explicit expressions for the meromorphic continuation
of &1 to the other sheets.

It follows from Proposition 3 that &; is one of the solutions of a quartic
equation, which is the analogue of the quadratic equation (1-4) that is relevant in
the one-matrix model.
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3. About the proof

We describe the main tools that are used in the proof of Theorem 2.

3.1. Biorthogonal polynomials. We make use of the integrable structure of the
two-matrix model that is described in terms of biorthogonal polynomials. In this
context the biorthogonal polynomials are two sequences of monic polynomials
(pj,n)j and (qx n)k (depending on n) with deg p;j » = j and deg g , = k, that
satisfy

oo (e ¢]
f / Pin ()i (p)e " VEIIOITTD) G dy = hye 8 1
o0 o

see [Bertola 2011; Bertola et al. 2002; 2003; Ercolani and McLaughlin 2001;
Eynard and Mehta 1998]. These polynomials uniquely exist, have real and simple
zeros [Ercolani and McLaughlin 2001], and in addition the zeros of p; , and
Dj+1,n interlace, as well as those of gi ,, and g 41 ,; see [Duits et al. 2011].

There is an explicit expression for the joint pdf of the eigenvalues of M; and
M 2.

1,1 1,2
1 KD, xp) KA e )
— det .1 2.2) (3-1)
(n) Ko (1, 37) Ko7 (s ),

with four kernels that are expressed in terms of the biorthogonal polynomials

and their transformed functions

00
Qk’n(x):/ qk’n(y)e—n(V(x)+W(y)—rxy) dy,
00

Pin(y) = /‘°° Dj 2 () MV T =x) g
o0

as follows:
n—1 1
K’gl’l)(XI,X2) = Z hz—Pk,n(xl)Qk,n(XZ)»
k=0 "k.n
n—1 1
K,(ll’z)(x, y) = Z hz_Pk,n(x)Qk,n(y)’
k=0 "k.n (3-2)
n—1
1 _ —
KPP (0020 = Y o Pen(0) Qi) — "I,
k=0 k,n
n—1 1
KPP (0= w2 DenO)dicn(2).
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The joint pdf (3-1) is determinantal, which means that eigenvalue correlation
functions have determinantal expressions with the same kernels K ,(,i’j ), i,j=1,2.
In particular, after averaging out the eigenvalues of M, we get that the eigenvalues
of M are a determinantal point process with kernel K| ,(,1’1).

A natural first step to compute the asymptotic behavior of the polynomials and
hence the kernels, is to formulate a Riemann—Hilbert problem (= RH problem) for
the polynomials. Several different formulations exist in the literature [Bertola et al.
2003; Ercolani and McLaughlin 2001; Kapaev 2003; Kuijlaars and McLaughlin
2005]. The analysis in [Duits and Kuijlaars 2009; Duits et al. 2012; Mo 2009]
is based on the RH problem in [Kuijlaars and McLaughlin 2005] that we will
discuss in the next subsection.

3.2. Riemann—Hilbert problem. It turns out that the kernel (3-2) has a special
structure which relates it to multiple orthogonal polynomials and the eigenvalues
of M, (after averaging over M,) are an example of a multiple orthogonal
polynomial ensemble [Kuijlaars 2010]. This is due to the following observation
of Kuijlaars and McLaughlin [2005].

Proposition 4. Suppose W is a polynomial of degree v + 1, and let

(e 0]
Wi () 2/ Ykt VWO =tx9) gy ke =0,...,r —1.
[ee]

Then the biorthogonal polynomial p; , satisfies

o0 ‘_k
/ pin()x W (x)dx =0, 1=0,.... (—f ] 1, (3-3)
00 r

fork=0,...,r—1.

The conditions (3-3) are known as multiple orthogonality conditions [Aptekarev
1998], and they characterize the biorthogonal polynomials.

The advantage of the formulation as multiple orthogonality is that these
polynomials are characterized by a RH problem of size (r + 1) x (r + 1),
[Van Assche et al. 2001], which we state here for the case r = 3 and for j = n
with 7 a multiple of three. Then the RH problem has size 4 x 4 and it asks for a
4 x 4 matrix valued function Y on C \ R satisfying these conditions:

(@) Y :C\ R — C** is analytic.

(b) For x e R,
1 wO,n(x) wl,n(x) w2,n(x)
0 1 0 0
0 0 0 1
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where Y4 (x) (Y—(x)) denotes the limiting value of Y (z) as z — x from
the upper (lower) half-plane.

(c) As z — o0,

0 0 0

Zn
1 0 z7"3 0 0
Y(Z):(14+O(Z)) 0 0 3 o
0 0 0 /3

The RH problem has a unique solution, given by

Pn,n C(pn,nwo,n) C(pn,nwl,n) C(pn,nwz,n)

2 C(pOwon) CpMw1 ) CPOws )

P Cpiwen) CpSawi ) C(pSawa.n)

P C(pEAwon) CpSHwin) C(pirwan)

where py , is the n-th degree biorthogonal polynomial, p,(,?,),, p,(:,),, p,(,z,), are

three polynomials of degree < n — 1 that satisfy certain multiple orthogonal
conditions and C f is the Cauchy transform

L[ /)

Cf@) ==

270 J—oo X —Z

dx.

By using the Christoffel-Darboux formula for multiple orthogonal polynomials
[Bleher and Kuijlaars 2004; Daems and Kuijlaars 2004] the correlation kernel
K ,(,1’1) for the eigenvalues of M; can be expressed in terms of the solution of
the RH problem:

Y () Y4 (x)

KD, 9) = (0 wou(y) wia(y) wan(y)) 2mi(x —y)

. (34

S O O =

Multiple orthogonal polynomials and RH problems are also used for random
matrices with external source [Bleher et al. 2011; Bleher and Kuijlaars 2004] and
models of nonintersecting paths [Kuijlaars et al. 2009]. In these cases, correlation
kernels for the relevant statistical quantities are also expressed in terms of the
corresponding RH problem through (3-4).

3.3. Steepest descent analysis. The remaining part of the proof of Theorem 2
is an asymptotic analysis of the RH problem via an extension of the Deift—
Zhou steepest descent method [Deift et al. 1999; Deift and Zhou 1993]. The
vector equilibrium problem and the Riemann surface play a crucial role in the
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transformations in this analysis. For the precise transformations and the many
details that are involved we refer the reader to [Duits et al. 2012]. Following the
effect of the transformations on the kernel (3-4), one finds that

_ dpi ()

1
im — K@D
nhm K, (x,x) ,

which is what is needed to establish the theorem.

A somewhat similar steepest descent analysis is done in [Bleher et al. 2011] for
a random matrix model with external source, where vector equilibrium problems
and Riemann surfaces also play an important role.

4. Further developments

4.1. Critical behavior in the quadratic/quartic model. For the case V(x)= %xz
the spectral curve can be computed and a classification of all possible cases can
be made explicitly.
Case I: 0 € S(ui)NS(u3)and 0 & S(03 — p13).
Case II: 0 € S(u3) and 0 ¢ S(u) U S(02 — p13).
Case III: 0 € S(0z —u3) and 0 & S(p}) U S(13).
Case IV: 0 € S(u}) and 0 & S(0p — pu3) U S(13).
Phase transitions between the regular cases represent the critical cases.
The quadratic/quartic model depends on two parameters, namely the coupling

constant T and the number « in the quartic potential W(y) = y*/4 + ay?/2.
Figure 1 (taken from [Duits et al. 2011]) shows the phase diagram in the o-t

plane. Critical behavior takes place on the curves 2> = @ + 2 and at? = —1.
T
Pearcey
transition
Case II
?=a+2

Painlevé II
transition

Case III

Case |

at?=-1

Case IV ‘
-2 —1
Figure 1. Phase diagram for the quadratic case V(x) = %xz.
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On the parabola 72 = o + 2 a gap appears around 0 in the support of either
,u’f (if one moves from Case I to Case II) or M;‘ (if from Case I to Case 1V).
This is a transition of Painlevé II type which also appears in the opening of
gaps in one-matrix models [Bleher and Its 2003; Claeys and Kuijlaars 2006].
On the curve at? = —1 a gap appears in the support of either u7 (if one moves
from Case IV to Case III) or ,u’; (if one moves from Case II to Case III), while
simultaneously the gap in the support of 05 — w3 closes. This is a transition
of Pearcey type, which was observed before in the random matrix model with
external source and in the model of nonintersecting Brownian motions [Bleher
and Kuijlaars 2007; Brézin and Hikami 1998; Tracy and Widom 2006].

The phase diagram has a very special point « = —1, T = 1 which is on both
critical curves, and where all four regular cases come together. For these special
values, the density of 7 vanishes like a square root at the origin, which is an
interior point of S(u7). The local analysis at this point was done very recently
by Duits and Geudens [2013]. They found that in the asymptotic limit, the local
eigenvalue correlation kernels around 0 are closely related to the limiting kernels
that describe the tacnode behavior for nonintersecting Brownian motions [Adler
et al. 2013; Delvaux et al. 2011; Johansson 2013]. More precisely, the kernels
can be expressed in terms of an extension of the same 4 x 4 RH problem in
[Delvaux et al. 2011]. However, they are constructed in a different way out of
this 4 x 4 RH problem and, as a result, these kernels are not the same.

4.2. Vector equilibrium problems. The analysis in [Duits et al. 2012] of the
vector equilibrium problem was not fully complete, since the lower semicontinuity
of the energy functional (2-1) was implicitly assumed but not established in [Duits
et al. 2012].

In [Beckermann et al. 2013; Hardy and Kuijlaars 2012] the vector equilibrium
problem was studied in a more systematic way, in the more general context of
an energy functional for n measures

Euy, o) = ) > cijl (i i) + Z/ Vi(x)duj(x), (41
j=1

i=1j=1

where C = (cij)Zj=1

et al. 2013] also semidefinite interaction matrices are considered). The external
fields V; : ¥; — R U {oo} are lower semicontinuous with domains X; that are

is areal symmetric positive definite matrix (in [Beckermann

closed subsets of C. Let m1, ..., m;, be given positive numbers and assume that
foreveryi =1,...,n,
n
lim inf (V,'(x) — (Z cl-jm]') log(1 + |x|2)) > —00.
|x|—00 ,

Jj=1
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Under these assumptions it is shown in [Hardy and Kuijlaars 2012] that the
energy functional (4-1), restricted to the set of measures with p;(X;) = m; for
j=1,...,n,

(a) has compact sublevel sets { £ < «} for every @ € R, (so E is in particular
lower semicontinuous), and

(b) is strictly convex on the subset where it is finite.

This guarantees existence and uniqueness of a minimizer of (4-1), provided
that E is not identically infinite. Existence and uniqueness of a minimizer
readily extends to situations where the domain of E is further restricted by upper
constraints uj < oj for j = 1,...,n, again provided that E is not identically
infinite on this domain. In particular, this applies to the energy functional (2-1)
for the two-matrix model with quartic potential with the constraint @, < oj
described in Section 2.

4.3. Open problems. Numerous intriguing questions and open problems arise
out of our analysis.

(a) What is the motivation for the central vector equilibrium problem? In the one-
matrix model there is a direct way to come from the joint eigenvalue probability
density to the equilibrium problem. We do not have this direct link for the
two-matrix model.

(b) How is the vector equilibrium problem related to the variational problem
from [Guionnet 2004]?

(c) A possibly related question: is there a large deviation principle associated
with the vector equilibrium problem? See, for example, [Anderson et al. 2010] for
the large deviations interpretation of the equilibrium problem for the one-matrix
model.

(d) Our analysis is restricted to even potentials V' and W. This restriction
provides a symmetry of the problem around zero, which is the reason why
the second measure (15 in the vector equilibrium problem is supported on the
imaginary axis. If we remove the symmetry then probably we would have to
look for a contour that replaces the imaginary axis. It is likely that such a contour
would be an S-curve in a certain external field, but at this moment we do not
know how to handle this situation. See [Martinez-Finkelshtein and Rakhmanov
2011; Rakhmanov 2012] for important recent developments around S'-curves for
scalar equilibrium problems.

(e) Extension to higher degree W is wide open. If deg W = d then one would
expect a vector equilibrium problem for d — 1 measures. It may be that S-curves
are needed for d > 6, even in the case of even potentials.
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(f) Exploration of further critical phenomena in the two-matrix model.
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