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tures were aimed at mathematicians and mathematical physicists working in
combinatorics, probability, and random matrix theory. The first lecture was a
staged rediscovery of free independence from first principles, the second dealt
with the additive calculus of free random variables, and the third focused on
random matrix models.
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Introduction

These are notes from a three-lecture mini-course on free probability given at
MSRI in the Fall of 2010 and repeated a year later at Harvard. The lectures were
aimed at mathematicians and mathematical physicists working in combinatorics,
probability, and random matrix theory. The first lecture was a staged rediscovery
of free independence from first principles, the second dealt with the additive
calculus of free random variables, and the third focused on random matrix
models.

Most of my knowledge of free probability was acquired through informal
conversations with my thesis supervisor, Roland Speicher, and while he is an
expert in the field the same cannot be said for me. These notes reflect my own
limited understanding and are no substitute for complete and rigorous treatments,
such as those of Voiculescu, Dykema and Nica [Voiculescu et al. 1992], Hiai
and Petz [2000], and Nica and Speicher [2006]. In addition to these sources, the
expository articles of Biane [2002], Shlyakhtenko [2005] and Tao [2010] are
very informative.

I would like to thank the organizers of the MSRI semester “Random Matrix
Theory, Interacting Particle Systems and Integrable Systems” for the opportunity
to participate as a postdoctoral fellow. Special thanks are owed to Peter Forrester
for coordinating the corresponding MSRI book series volume in which these
notes appear. I am also grateful to the participants of the Harvard random matrices
seminar for their insightful comments and questions.

I am indebted to Michael LaCroix for making the illustrations which accom-
pany these notes.

1. Lecture one: discovering the free world

1.1. Counting connected graphs. Let mn denote the number of simple, undi-
rected graphs on the vertex set [n] = {1, . . . , n}. We have mn = 2(

n
2), since each

pair of vertices is either connected by an edge or not. A more subtle quantity
is the number cn of connected graphs on [n]. The sequence (cn)n≥1 is listed
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Figure 1. Thirty-eight of sixty-four graphs on four vertices are connected.

as A01187 in Sloane’s Online Encyclopedia of Integer Sequences; its first few
terms are

1, 1, 4, 38, 728, 26 704, 1 866 256, . . . .

Perhaps surprisingly, there is no closed formula for cn . However, cn may be
understood in terms of the transparent sequence mn in several ways, each of
which corresponds to a combinatorial decomposition.

First, we may decompose a graph into two disjoint subgraphs: the connected
component of a distinguished vertex, say n, and everything else, i.e., the induced
subgraph on the remaining vertices. Looking at this the other way around, we
may build a graph as follows. From the vertices 1, . . . , n− 1 we can choose k
of these in

(n−1
k

)
ways, and then build an arbitrary graph on these vertices in

mk ways. On the remaining n− 1− k vertices together with n, we may build a
connected graph in cn−k ways. This construction produces different graphs for
different values of k, since the size of the connected component containing the
pivot vertex n will be different. Moreover, as k ranges from 1 to n− 1 we obtain
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all graphs in this fashion. Thus we have

mn =

n−1∑
k=0

(n−1
k

)
mkcn−k,

or equivalently

cn = mn −

n−1∑
k=1

(n−1
k

)
mkcn−k .

While this is not a closed formula, it allows the efficient computation of cn given
c1, . . . , cn−1.

A less efficient but ultimately more useful recursion can be obtained by viewing
a graph as the disjoint union of its connected components. We construct a graph
by first choosing a partition of the underlying vertex set into disjoint nonempty
subsets B1, . . . , Bk , and then building a connected graph on each of these, which
can be done in c|B1| . . . c|Bk | ways. This leads to the formula

mn =
∑
π∈P(n)

∏
B∈π

c|B|,

where the summation is over the set of all partitions of [n]. We can split off the
term of the sum corresponding to the partition [n] = [n] to obtain the recursion

cn = mn −
∑
π∈P(n)
b(π)≥2

∏
B∈π

c|B|,

in which we sum over partitions with at least two blocks.
The above reasoning is applicable much more generally. Suppose that mn is

the number of “structures” which can be built on a set of n labelled points, and
that cn is the number of “connected structures” on these points of the same type.
Then the quantities mn and cn will satisfy the above (equivalent) relations. This
fundamental enumerative link between connected and disconnected structures
is ubiquitous in mathematics and the sciences; see [Stanley 1999, Chapter 5].
Prominent examples come from enumerative algebraic geometry [Roth 2009],
where connected covers of curves are counted in terms of all covers, and quan-
tum field theory [Etingof 2003], where Feynman diagram sums are reduced to
summation over connected terms.

1.2. Cumulants and connectedness. The relationship between connected and
disconnected structures is well-known to probabilists, albeit from a different
point of view. In stochastic applications, mn = mn(X)= E[Xn

] is the moment
sequence of a random variable X , and the quantities cn(X) defined by either of
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the equivalent recurrences

and

mn(X)=
n−1∑
k=0

(n−1
k

)
mk(X)cn−k(X)

mn(X)=
∑
π∈P(n)

∏
B∈π

c|B|(X)

are called the cumulants of X . This term was suggested by Harold Hotelling and
subsequently popularized by Ronald Fisher and John Wishart in an influential
article [1932]. Cumulants were, however, investigated as early as 1889 by the
Danish mathematician and astronomer Thorvald Nicolai Thiele, who called them
half-invariants. Thiele introduced the cumulant sequence as a transform of the mo-
ment sequence defined via the first of the above recurrences, and some years later
arrived at the equivalent formulation using the second recurrence. The latter is
now called the moment-cumulant formula. Thiele’s contributions to statistics and
the early theory of cumulants have been detailed by Anders Hald [1981; 2000].

Cumulants are now well-established and frequently encountered in probability
and statistics, sufficiently so that the first four have been given names: mean,
variance, skewness, and kurtosis.1 The formulas for mean and variance in terms
of moments are simple and familiar:

c1(X)= m1(X),

c2(X)= m2(X)−m1(X)2,

whereas the third and fourth cumulants are more involved:

c3(X)= m3(X)− 3m2(X)m1(X)+ 2m1(X)3,

c4(X)= m4(X)− 4m3(X)m1(X)− 3m2(X)2+ 12m2(X)m1(X)2− 6m1(X)4.

It is not immediately clear why the cumulants of a random variable are of
interest. If the distribution of a random variable X is uniquely determined by its
moments, then we may think of the moment sequence

(m1(X),m2(X), . . . ,mn(X), . . . )

as coordinatizing the distribution of X . Passing from moments to cumulants then
amounts to a (polynomial) change of coordinates. Why is this advantageous?

As a motivating example, let us compute the cumulant sequence of the most
important random variable, the standard Gaussian X . The distribution of X has

1In practice, statisticians often define skewness and kurtosis to be the third and fourth cumulants
scaled by a power of the variance.
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Figure 2. The Gaussian density.

density given by the bell curve

µX (dt)=
1
√

2π
e−t2/2 dt,

depicted in Figure 2.
We will now determine the moments of X . Let z be a complex variable, and

define

MX (z) :=
∫

R

et zµX (dt).

Since e−t2/2 decays rapidly as |t | →∞, MX (z) is a well-defined entire function
of z whose derivatives can be computed by differentiation under the integral
sign:

M ′X (z)=
∫

R

tet zµX (dt), M ′′X (z)=
∫

R

t2et zµX (dt), . . . .

In particular, the n-th derivative of MX (z) at z = 0 is

M (n)
X (0)=

∫
R

tnµX (dt)= mn(X),

so we have the Maclaurin series expansion

MX (z)=
∞∑

n=0

mn(X)
zn

n!
.

Thus, the integral MX (z) acts as an exponential generating function for the
moments of X . On the other hand, this integral may be explicitly evaluated.
Completing the square in the exponent of the integrand we find that

MX (z)= ez2/2
∫

R

e−(t−z)2/2 dt
√

2π
,
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whence

MX (z)= ez2/2
=

∞∑
k=0

z2k

2kk!

for real z by translation invariance of Lebesgue measure, and hence for all z ∈ C.
We conclude that the odd moments of X vanish, while the even ones are given
by the formula

m2k(X)=
(2k)!
2kk!
= (2k− 1) · (2k− 3) · · · · · 5 · 3 · 1.

This is the number of partitions of the set [2k] into blocks of size two, also called
“pairings”: we have 2k − 1 choices for the element to be paired with 1, then
2k−3 choices for the element to be paired with the smallest remaining unpaired
element, etc. Alternatively, we may say that mn(X) is equal to the number of
1-regular graphs on n labelled vertices. It now follows from the fundamental
link between connected and disconnected structures that the cumulant cn(X) is
equal to the number of connected 1-regular graphs. Consequently, the cumulant
sequence of a standard Gaussian random variable is simply

(0, 1, 0, 0, 0, . . . )

That the universality of the Gaussian distribution is reflected in the simplicity
of its cumulant sequence signals cumulants as a key concept in probability theory.
In Thiele’s own words [Hald 2000],

This remarkable proposition has originally led me to prefer the half-
invariants over every other system of symmetrical functions.

This sentiment persists amongst modern-day probabilists. To quote Terry Speed
[1983],

In a sense which it is hard to make precise, all of the important aspects of
distributions seem to be simpler functions of cumulants than of anything
else, and they are also the natural tools with which transformations of
systems of random variables can be studied when exact distribution
theory is out of the question.

1.3. Cumulants and independence. The importance of cumulants stems, ulti-
mately, from their relationship with stochastic independence. Suppose that X
and Y are a pair of independent random variables whose moment sequences have
been given to us by an oracle, and our task is to compute the moments of X +Y .
Since E[XaY b

] = E[Xa
] E[Y b

], this can be done using the formula

mn(X + Y )=
n∑

k=0

(n
k

)
mk(X)mn−k(Y ),



316 JONATHAN NOVAK

which is conceptually clear but computationally inefficient because of its depen-
dence on n. For example, if we want to compute m100(X +Y ) we must evaluate
a sum with 101 terms, each of which is a product of three factors. Computations
with independent random variables simplify dramatically if one works with
cumulants rather than moments. Indeed, Thiele called cumulants “half-invariants”
because

X, Y independent =⇒ cn(X + Y )= cn(X)+ cn(Y ) ∀n ≥ 1.

Thanks to this formula, if the cumulant sequences of X and Y are given, then
each cumulant of X + Y can be computed simply by adding two numbers. The
mantra to be remembered is that

cumulants linearize addition of independent random variables.

For example, this fact together with the computation we did above yields that
the sum of two iid standard Gaussians is a Gaussian of variance two.

In order to precisely understand the relationship between cumulants and inde-
pendence, we need to extend the relationship between moments and cumulants to
a relationship between mixed moments and mixed cumulants. Mixed moments
are easy to define: given a set of (not necessarily distinct) random variables
X1, . . . , Xn ,

mn(X1, . . . , Xn) := E[X1 . . . Xn].

It is clear that mn(X1, . . . , Xn) is a symmetric, multilinear function of its argu-
ments. The new notation for mixed moments is related to our old notation for
pure moments by

mn(X)= mn(X, . . . , X),

which we may keep as a useful shorthand.
We now define mixed cumulants recursively in terms of mixed moments using

the natural extension of the moment-cumulant formula:

mn(X1, . . . , Xn)=
∑
π∈P(n)

∏
B∈π

c|B|(X i : i ∈ B).

For example, we have

m2(X1, X2)= c2(X1, X2)+ c1(X1)c1(X2),

from which we find that the second mixed cumulant of X1 and X2 is their
covariance,

c2(X1, X2)= m2(X1, X2)−m1(X1)m2(X2).
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More generally, the recurrence

cn(X1, . . . , Xn)= mn(X1, . . . , Xn)−
∑
π∈P(n)
b(π)≥2

∏
B∈π

c|B|(X i : i ∈ B)

facilitates a straightforward inductive proof that cn(X1, . . . , Xn) is a symmetric,
n-linear function of its arguments, which explains Thiele’s reference to cumulants
as his preferred system of symmetric functions.

The fundamental relationship between cumulants and stochastic independence
is the following: X and Y are independent if and only if all their mixed cumulants
vanish:

c2(X, Y )= 0,

c3(X, X, Y )= c3(X, Y, Y )= 0,

c4(X, X, X, Y )= c4(X, X, Y, Y )= c4(X, Y, Y, Y )= 0,
...

The forward direction of this theorem,

X, Y independent =⇒ mixed cumulants vanish,

immediately yields Thiele’s linearization property, since by multilinearity we
have

cn(X + Y )= cn(X + Y, . . . , X + Y )

= cn(X, . . . , X)+ mixed cumulants + cn(Y, . . . , Y )

= cn(X)+ cn(Y ).

Conversely, let X, Y be a pair of random variables whose mixed cumulants
vanish. Let us check in a couple of concrete cases that this condition forces X and
Y to obey the algebraic identities associated with independent random variables.
In the first nontrivial case, n = 2, vanishing of mixed cumulants reduces the
extended moment-cumulant formula to

m2(X, Y )= c1(X)c1(Y )= m1(X)m1(Y ),

which is consistent with the factorization rule E[XY ]=E[X ] E[Y ] for independent
random variables. Now let us try an n= 4 example. We compute m4(X, X, Y, Y )
directly from the extended moment cumulant formula. Referring to Figure 3, we
find that vanishing of mixed cumulants implies

m4(X, X, Y, Y )= c2(X, X)c2(Y, Y )+ c2(X, X)c1(Y )c1(Y )

+ c2(Y, Y )c1(X)c1(X)+ c1(X)c1(X)c1(Y )c1(Y ),
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X X Y Y

X X Y Y XX Y Y YX X Y YX X Y Y YX X X YX Y X YX Y

Y YXX YX YX YYX X YX YX YXX Y YXX Y

YYXX

Figure 3. Graphical evaluation of m4(X, X, Y, Y ).

X Y X Y

X Y X Y YX X Y XX Y Y YX Y X X YX Y Y YX X Y XX Y

X YYX YY XX YXX Y XY YX XYX Y YYX X

YXYX

Figure 4. Graphical evaluation of m4(X, Y, X, Y ).

which reduces to the factorization identity E[X2Y 2
] = E[X2

] E[Y 2
].

Of course, if we compute m4(X, Y, X, Y ) using the extended moment-cumu-
lant formula we should get the same answer, and indeed this is the case, but it is
important to note that the contributions to the sum come from different partitions,
as indicated in Figure 4.

1.4. Central limit theorem by cumulants. We can use the theory of cumulants
presented thus far to prove an elementary version of the central limit theorem.
Let X1, X2, X3 . . . be a sequence of iid random variables, and let X be a standard
Gaussian. Suppose that the common distribution of the variables X i has mean
zero, variance one, and finite moments of all orders. Put

SN :=
X1+ · · ·+ X N
√

N
.

Then, for each positive integer n,

lim
N→∞

mn(SN )= mn(X).
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Since moments and cumulants mutually determine one another, in order to
prove this CLT it suffices to prove that

lim
N→∞

cn(SN )= cn(X)

for each n ≥ 1. Now, by the multilinearity of cn and the independence of the X i ,
we have

cn(SN )= cn(N−1/2(X1+ · · ·+ X N ))

= N−n/2(cn(X1)+ · · ·+ cn(X N ))

= N 1−n/2cn(X1),

where the last line follows from the fact that the X i are equidistributed. Thus: if
n = 1,

c1(SN )= N 1/2c1(X1)= 0;

if n = 2,
c2(SN )= c2(X1)= 1;

if n > 2,
cn(SN )= N negative numbercn(X1).

We conclude that
lim

N→∞
cn(SN )= δn2,

which we have already identified as the cumulant sequence of a standard Gaussian
random variable.

1.5. Geometrically connected graphs. Let us now consider a variation on our
original graph-counting question. Given a graph G on the vertex set [n], we may
represent its vertices by n distinct points on the unit circle (say, the n-th roots of
unity) and its edges by straight line segments joining these points. This is how
we represented the set of four-vertex graphs in Figure 1. We will denote this
geometric realization of G by |G|. The geometric realization of a graph carries
extra structure which we may wish to consider. For example, it may happen that
|G| is a connected set of points in the plane even if the graph G is not connected
in the usual sense of graph theory. Let κn denote the number of geometrically
connected graphs on [n]. This is sequence A136653 in Sloane’s database; its
first few terms are

1, 1, 4, 39, 748, 27 162, 1 880 872, . . . .

Since geometric connectivity is a weaker condition than set-theoretic connectivity,
κn grows faster than cn; these sequences diverge from one another at n= 4, where
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1

2

3

4

Figure 5. The crosshairs graph.

the unique disconnected but geometrically connected graph is the “crosshairs”
graph shown in Figure 5.

Consider now the problem of computing κn . As with cn , we can address this
problem by means of a combinatorial decomposition of the set of graphs with n
vertices. However, this decomposition must take into account the planar nature
of geometric connectivity, which our previous set-theoretic decompositions do
not. Consequently, we must formulate a new decomposition.

Given a graph G on [n], let π(G) denote the partition of [n] induced by the
connected components of G (i and j are in the same block of π(G) if and
only if they are in the same connected component of G), and let π(|G|) denote
the partition of [n] induced by the geometrically connected components of |G|
(i and j are in the same block of π(|G|) if and only if they are in the same
geometrically connected component of |G|). How are π(G) and π(|G|) related?
To understand this, let us view our geometric graph realizations as living in the
hyperbolic plane rather than the Euclidean plane. Thus Figure 1 depicts line
systems in the Klein model, in which the plane is an open disc and straight
lines are chords of the boundary circle. We could alternatively represent a graph
in the Poincaré disc model, where straight lines are arcs of circles orthogonal
to the boundary circle, or in the Poincaré half-plane model, where space is an
open-half plane and straight lines are arcs of circles orthogonal to the boundary
line. The notion of geometric connectedness does not depend on the particular
realization chosen. The half-plane model has the useful feature that the geometric
realization |G| essentially coincides with the pictorial representation of π(G),
and we can see clearly that crossings in |G| correspond exactly to crossings in
π(G). Thus, π(|G|) is obtained by fusing together crossing blocks of π(G). The
resulting partition π(|G|) no longer has any crossings — by construction, it is a
noncrossing partition; see Figure 6.

We can now obtain a recurrence for κn . We construct a graph by first choosing
a noncrossing partition of the underlying vertex set into blocks B1, . . . , Bk and
then building a geometrically connected graph on each block, which can be done
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Figure 6. Partition fusion accounts for geometric connectedness.

in κ|B1| . . . κ|Bk | ways. This leads to the formula

mn =
∑

π∈NC(n)

∏
B∈π

κ|B|,

where the summation is over noncrossing partitions of [n]. Just as before, we
can split off the term of the sum corresponding to the partition with only one
block to obtain the recursion

κn = mn −
∑

π∈NC(n)
b(π)≥2

∏
B∈π

κ|B|,

in which we sum over noncrossing partitions with at least two blocks.

1.6. Noncrossing cumulants. We have seen above that the usual graph theoretic
notion of connectedness manifests itself probabilistically as the cumulant concept.
We have also seen that graph theoretic connectedness has an interesting geometric
variation, which we called geometric connectedness. This begs the question:

Is there a probabilistic interpretation of geometric connectedness?

Let X be a random variable, with moments mn(X). Just as the classical cumulants
cn(X) were defined recursively using the relation between all structures and
connected structures, we define the noncrossing cumulants of X recursively
using the relation between all structures and geometrically connected structures:

mn(X)=
∑
NC(n)

∏
B∈π

κ|B|(X).

We will call this the noncrossing moment-cumulant formula. Since connectedness
and geometric connectedness coincide for structures of size n = 1, 2, 3, the first
three noncrossing cumulants of X are identical to its first three classical cumulants.
However, for n ≥ 4, the noncrossing cumulants become genuinely new statistics
of X .
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Our first step in investigating these new statistics is to look for a noncrossing
analogue of the most important random variable, the standard Gaussian. This
should be a random variable whose noncrossing cumulant sequence is

0, 1, 0, 0, . . . .

If this search leads to something interesting, we may be motivated to further
investigate noncrossing probability theory.

From the noncrossing moment-cumulant formula, we find that the moments
of the noncrossing Gaussian X are given by

mn(X)=
∑

π∈NC(n)

∏
B∈π

δ|B|,2 =
∑

π∈NC2(n)

1.

That is, mn(X) is equal to the number of partitions in NC(n) all of whose blocks
have size 2, i.e., noncrossing pairings of n points. We know that there are no
pairings at all on an odd number of points, so the odd moments of X must be
zero, which indicates that X likely has a symmetric distribution. The number
of pairings on n = 2k points is given by a factorial going down in steps of two,
(2k−1)!! = (2k−1) · (2k−3) · · · ·5 ·3 ·1, so the number of noncrossing pairings
must be smaller than this double factorial.

In order to count noncrossing pairings on 2k points, we construct a function
f from the set of all pairings on 2k points to length 2k sequences of ±1. This
function is easy to describe: if i < j constitute a block of π , then the i-th
element of f (π) is +1 and the j-th element of f (π) is −1. See Figure 7 for an
illustration of this function in the case k = 3. By construction, f is a surjection
from the set of pairings on 2k points onto the set of length 2k sequences of±1 all
of whose partial sums are nonnegative and whose total sum is zero. We leave it
to the reader to show that the fibre of f over any such sequence contains exactly
one noncrossing pairing, so that f restricts to a bijection from noncrossing
pairings onto its image. The image sequences can be neatly enumerated using
the Dvoretzky–Motzkin–Raney cyclic shift lemma, as in [Graham et al. 1989,
Section 7.5]. They are counted by the Catalan numbers

Catk =
1

k+ 1

(2k
k

)
,

which are smaller than the double factorials by a factor of 2k/(k + 1)!. In
fact, since Catk < 4k , we can conclude that the distribution of X is compactly
supported.

We have discovered that

mn(X)=
{

0 if n is odd,
Catn/2 if n even.
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(1,1,1,-1,-1,-1)

Figure 7. Construction of the function f from pairings to bitstrings.

The Catalan numbers are ubiquitous in enumerative combinatorics (see [Stanley
1999, Exercise 6.19] as well as [Stanley 2013]), and their appearance in this
context is the first sign that we are onto something interesting. We are now faced
with an inverse problem: we are not trying to calculate the moments of a random
variable given its distribution, rather we know that the moment sequence of X is

0, Cat1, 0, Cat2, 0, Cat3, 0, . . . .

and we would like to write down its distribution µX . Equivalently, we are looking
for an integral representation of the entire function

MX (z)=
∞∑

n=0

Catn
z2n

(2n)!
=

∞∑
n=0

z2n

n!(n+ 1)!

which has the form

MX (z)=
∫

R

et zµX (dt),

with µX a probability measure on the real line. The solution to this problem can
be extracted from the classical theory of Bessel functions.

The modified Bessel function Iα(z) of order α is one of two linearly indepen-
dent solutions to the modified Bessel equation(

z2 d2

dz2 + z
d
dz
− (z2

+α2)

)
F = 0,

the other being the Macdonald function

Kα(z)=
π

2
I−α(z)− Iα(z)

sin(απ)
.
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The modified Bessel equation (and hence the functions Iα, Kα) appears in many
problems of physics and engineering since it is related to solutions of Laplace’s
equation with cylindrical symmetry. An excellent reference on this topic is
[Andrews et al. 1999, Chapter 4].

Interestingly, Bessel functions also occur in the combinatorics of permutations:
a remarkable identity due to Ira Gessel asserts that

det[Ii− j (2z)]ki, j=1 =

∞∑
n=0

lisk(n)
z2n

(n!)2
,

where lisk(n) is the number of permutations in the symmetric group S(n) with
no increasing subsequence of length k + 1. Gessel’s identity was the point
of departure in the work of Jinho Baik, Percy Deift and Kurt Johansson who,
answering a question posed by Stanislaw Ulam, proved that the limit distribution
of the length of the longest increasing subsequence in a uniformly distributed
random permutation is given by the (β = 2) Tracy–Widom distribution. This
nonclassical distribution was isolated and studied by Craig Tracy and Harold
Widom in a series of works on random matrix theory in the early 1990s where
it emerged as the limiting distribution of the top eigenvalue of large random
Hermitian matrices. It has a density which may also be described in terms of
Bessel functions, albeit indirectly. Consider the ordinary differential equation

d2

dx2 u = 2u3
+ xu

for a real function u = u(x), which is known as the Painlevé II equation after the
French mathematician (and two-time Prime Minister of France) Paul Painlevé. It
is known that this equation has a unique solution, called the Hastings–McLeod
solution, with the asymptotics u(x)∼−Ai(x) as x→∞, where

Ai(x)=
1
π

√
x
3

K 1
3
(2

3 x3/2)

is a scaled specialization of the Macdonald function known as the Airy function.
Define the Tracy–Widom distribution function by

F(t)= e−
∫
∞

t (x−t)u(x)2dx ,

where u is the Hastings–McLeod solution to Painlevé II. The theorem of Baik,
Deift and Johansson asserts that

lim
n→∞

1
n!

lis2
√

n+tn1/6(n)= F(t)

for any t ∈ R. From this one may conclude, for example, that the probability a
permutation drawn uniformly at random from the symmetric group S(n2) avoids
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the pattern 1 2 . . . 2n+1 converges to F(0)=0.9694 . . . . We refer the interested
reader to Richard Stanley’s survey [2007] for more information on this topic.

Nineteenth century mathematicians knew how to describe the modified Bessel
function both as a series,

Iα(z)=
∞∑

n=0

( z
2)

2n+α

n!0(n+ 1+α)
,

and as an integral,

Iα(z)=
( z

2)
α

√
π0(α+ 1

2)

∫ π

0
e(cos θ)z(sin θ)2α dθ.

From the series representation we find that

MX (z)=
I1(2z)

z
,

and consequently we have the integral representation

MX (z)=
2
π

∫ π

0
e2(cos θ)z sin2 θ dθ.

This is one step removed from what we want: it tells us that the Catalan numbers
are the even moments of the random variable X = 2 cos(Y ), where Y is a random
variable with distribution

µY (dθ)=
2
π

sin2 θ dθ

supported on the interval [0, π]. However, this is a rather interesting intermediate
step since the above measure appears in number theory, where it is called the
Sato–Tate distribution; see Figure 8.

The Sato–Tate distribution arises in the arithmetic statistics of elliptic curves.
The location of integer points on elliptic curves is a classical topic in number

0.1

0.2

0.3

0.4

0.5

0.6

0.0 1.0 2.0 3.0 π
π

2

Figure 8. The Sato–Tate density.
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Figure 9. Diophantine perspectives on twenty-six.

theory. For example, Diophantus of Alexandria wrote that the equation

y2
= x3
− 2

has the solution x = 3, y = 5, and in the 1650s Pierre de Fermat claimed that
there are no other positive integer solutions. This is the striking assertion that 26
is the only number one greater than a perfect square and one less than a perfect
cube (see Figure 9). That this is indeed the case was proved by Leonhard Euler
in 1770, although according to some sources Euler’s proof was incomplete and
the solution to this problem should be attributed to Axel Thue in 1908.

Modern number theorists study solutions to elliptic Diophantine equations by
reducing modulo primes. Given an elliptic curve

y2
= x3
+ ax + b, a, b ∈ Z,

let 1=−16(4a3
+ 27b2) be sixteen times the discriminant of x3

+ ax + b, and
let Sp be the number of solutions of the congruence

y2
≡ x3
+ ax + b mod p

where p is a prime which does not divide 1. In his 1924 doctoral thesis, Emil
Artin conjectured that

|Sp − p| ≤ 2
√

p

for all such good reduction primes. This remarkable inequality states that the
number of solutions modulo p is roughly p itself, up to an error of order

√
p.

Artin’s conjecture was proved by Helmut Hasse in 1933. Around 1960, Mikio
Sato and John Tate became interested in the finer question of the distribution of
the centred and scaled solution count (Sp − p)/

√
p for typical elliptic curves E

(meaning those without complex multiplication) as p ranges over the infinitely
many primes not dividing the discriminant of E . Because of Hasse’s theorem,
this amounts to studying the distribution of the angle θp defined by

Sp − p
√

p
= 2 cos θp

in the interval [0, π]. Define a sequence µE
N of empirical probability measures
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associated to E by

µE
N =

1
π(N )

∑
p≤N

δθp ,

where π(N ) is the number of prime numbers less than or equal to N . Sato and
Tate conjectured that, for any elliptic curve E without complex multiplication, µE

N
converges weakly to the Sato–Tate distribution as N→∞. This is a universality
conjecture: it posits that certain limiting behaviour is common to a large class of
elliptic curves irrespective of their fine structural details. Major progress on the
Sato–Tate conjecture has been made within the last decade; we refer the reader
to the surveys of Barry Mazur [2006] and Ram Murty and Kumar Murty [2009]
for further information.

The random variable we seek is not the Sato–Tate variable Y , but twice
its cosine, X = 2 cos Y . Making the substitution s = arccos θ in the integral
representation of MX (z) obtained above, we obtain

MX (z)=
2
π

∫ 1

−1
e2sz

√
1− s2 ds,

and further substituting t = 2s this becomes

MX (z)=
1

2π

∫ 2

−2
et z
√

4− t2 dt.

Thus the random variable X with even moments the Catalan numbers and van-
ishing odd moments

µX (dt)=
1

2π

√
4− t2 dt,

which is both symmetric and compactly supported. This is another famous
distribution: it is called the Wigner semicircle distribution after the physicist
Eugene Wigner, who considered it in the 1950s in a context ostensibly unrelated
to elliptic curves. The density of µX is shown in Figure 10 — note that it is not
a semicircle, but rather half an ellipse of semi-major axis two and semi-minor
axis 1/π .

Wigner was interested in constructing models for the energy levels of complex
systems, and hit on the idea that the eigenvalues of large symmetric random
matrices provide a good approximation. Wigner considered N × N symmetric
matrices X N whose entries X N (i j) are independent random variables, up to the
symmetry constraint X N (i j)= X N ( j i). Random matrices of this form are now
known as Wigner matrices, and their study remains a topic of major interest
today. Wigner studied the empirical spectral distribution of the eigenvalues of
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Figure 10. The Wigner semicircle density.

X N , i.e., the probability measure

µN =
1
N

N∑
k=1

δλk(N )

which places mass 1/N at each eigenvalue of X N . Note that, unlike in the setting
above where we considered the sequence of empirical measures associated to a
fixed elliptic curve E , the measure µN is a random measure since X N is a random
matrix. Wigner showed that the limiting behaviour of µN does not depend on
the details of the random variables which make up X N . In [Wigner 1958], he
made the following hypotheses:

(1) Each X N (i j) has a symmetric distribution.

(2) Each X N (i j) has finite moments of all orders, each of which is bounded by
a constant independent of N , i, j .

(3) The variance of X N (i j) is 1/N .

Wigner proved that, under these hypotheses, µN converges weakly to the semi-
circle law which now bears his name. We will see a proof of Wigner’s theorem
for random matrices with (complex) Gaussian entries in Lecture Three. The
universality of the spectral structure of real and complex Wigner matrices holds
at a much finer level, and under much weaker hypotheses, both at the edges of the
semicircle [Soshnikov 1999] and in the bulk [Erdős et al. 2011; Tao and Vu 2011].

1.7. Noncrossing independence. Our quest for the noncrossing Gaussian has
brought us into contact with interesting objects (random permutations, ellip-
tic curves, random matrices) and the limit laws which govern them (Tracy–
Widom distribution, Sato–Tate distribution, Wigner semicircle distribution). This
motivates us to continue developing the rudiments of noncrossing probability
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theory — perhaps we have hit on a framework within which these objects may
be studied.

Our next step is to introduce a notion of noncrossing independence. We know
that classical independence is characterized by the vanishing of mixed cumulants.
Imitating this, we will define noncrossing independence via the vanishing of
mixed noncrossing cumulants. Like classical mixed cumulants, the noncrossing
mixed cumulant functionals are defined recursively via the multilinear extension
of the noncrossing moment-cumulant formula,

mn(X1, . . . , Xn)=
∑

π∈NC(n)

∏
B∈π

κ|B|(X i : i ∈ B).

The recurrence

κn(X1, . . . , Xn)= mn(X1, . . . , Xn)−
∑

π∈NC(n)

∏
B∈π

κ|B|(X i : i ∈ B)

and induction establish that κn(X1, . . . , Xn) is a symmetric multilinear func-
tion of its arguments. Two random variables X, Y are said to be noncrossing
independent if their mixed noncrossing cumulants vanish:

κ2(X, Y )= 0,

κ3(X, X, Y )= κ3(X, Y, Y )= 0,

κ4(X, X, X, Y )= κ4(X, X, Y, Y )= κ4(X, Y, Y, Y )= 0,
...

An almost tautological consequence of this definition is that

X, Y noncrossing independent =⇒ κn(X + Y )= κn(X)+ κn(Y ) ∀n ≥ 1.

Thus, just as classical cumulants linearize the addition of classically independent
random variables,

noncrossing cumulants linearize addition
of noncrossing independent random variables.

We can also note that the semicircular random variable X , whose noncrossing
cumulant sequence is 0, 1, 0, 0, . . . , plays the role of the standard Gaussian with
respect to this new notion of independence. For example, since noncrossing
cumulants linearize noncrossing independence, the sum of two noncrossing
independent semicircular random variables is a semicircular random variable of
variance two. The noncrossing analogue of the central limit theorem asserts that, if
X1, X2, . . . is a sequence of noncrossing independent and identically distributed
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random variables with mean zero and variance one, then the moments of

SN =
X1+ · · ·+ X N
√

N

converge to the moments of the standard semicircular X as N →∞. The proof
of this fact is identical to the proof of the classical central limit theorem given
above, except that classical cumulants are replaced by noncrossing cumulants.

Of course, we don’t really know what noncrossing independence means.
For example, if X and Y are noncrossing independent, is it true that E[XY ] =
E[X ] E[Y ]? The answer is yes, since classical and noncrossing mixed cumulants
agree up to and including order three,

c1(X)= κ1(X), c2(X, Y )= κ2(X, Y ), c3(X, Y, Z)= κ3(X, Y, Z).

But what about higher order mixed moments?
We observed above that, in the classical case, vanishing of mixed cumulants

allows us to recover the familiar algebraic identities governing the expectation of
independent random variables. We do not have a priori knowledge of the algebraic
identities governing the expectation of noncrossing independent random variables,
so we must discover them using the vanishing of mixed noncrossing cumulants.
Let us see what this implies for the mixed moment m4(X, X, Y, Y )= E[X2Y 2

].
Referring to Figure 11 we see that in this case the noncrossing moment-cumulant
formula reduces to

m4(X, X, Y, Y )= κ2(X, X)κ2(Y, Y )+ κ2(X, X)κ1(Y )κ1(Y )

+ κ2(Y, Y )κ1(X)κ1(X)+ κ1(X)κ1(X)κ1(Y )κ1(Y ),

which is exactly the formula we obtained for classically independent random
variables using the classical moment-cumulant formula.

X X Y Y

X X Y Y XX Y Y YX X Y YX X Y Y YX X X YX Y

Y YXX YX YX YYX X YX YX YXX Y YXX Y

YYXX

Figure 11. Graphical evaluation of m4(X, X, Y, Y ) using noncrossing
cumulants.
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X Y X Y

X Y X Y YX X Y XX Y Y YX Y X X YX Y Y XX Y

X YYX YY XX YXX Y XY YX XYX Y YYX X

YXYX

Figure 12. Graphical evaluation of m4(X, Y, X, Y ) using noncrossing
cumulants.

However, when we use the noncrossing moment-cumulant formula to evaluate
the same mixed moment with its arguments permuted, we instead get

m4(X, Y, X, Y )= κ2(X, X)κ1(Y )κ1(Y )

+ κ2(Y, Y )κ1(X)κ1(X)+ κ1(X)κ1(X)κ1(Y )κ1(Y );

see Figure 12. Since m4(X, X, Y, Y ) = m4(X, Y, X, Y ), we are forced to con-
clude that the two expressions obtained are equal, which in turn forces

κ2(X, X)κ2(Y, Y )= 0.

Thus, if X, Y are noncrossing independent random variables, at least one of them
must have vanishing variance, and consequently must be almost surely constant.
The converse is also true — one can show that a (classical or noncrossing) mixed
cumulant vanishes if any of its entries are constant random variables. So we have
classified pairs of noncrossing independent random variables: they look like
{X, Y } = {arbitrary, constant}. Such pairs of random variables are of no interest
from a probabilistic perspective. It would seem that noncrossing probability is a
dead end.

1.8. The medium is the message. If � is a compact Hausdorff space then the
algebra A(�) of continuous functions X :�→ C is a commutative C∗-algebra.
This means that in addition to its standard algebraic structure (pointwise addition,
multiplication and scalar multiplication of functions) A(�) is equipped with a
norm satisfying the Banach algebra axioms and an antilinear involution which is
compatible with the norm, ‖X∗X‖ = ‖X‖2. The norm comes from the topology
of the source, ‖X‖= supω |X (ω)|, and the involution comes from the conjugation
automorphism of the target, X∗(ω)= X (ω). Conversely, a famous theorem of
Israel Gelfand asserts that any unital commutative C∗-algebra A can be realized
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as the algebra of continuous functions on a compact Hausdorff space �(A) in an
essentially unique way. In fact, �(A) may be constructed as the set of maximal
ideals of A equipped with a suitable topology. The associations � 7→ A(�)

and A 7→ �(A) are contravariantly functorial and set up a dual equivalence
between the category of compact Hausdorff spaces and the category of unital
commutative C∗-algebras.

There are many situations in which one encounters a category of spaces dually
equivalent to a category of algebras. In a wonderful book [Nestruev 2003],
the mathematicians collectively known as Jet Nestruev develop the theory of
smooth real manifolds entirely upside-down: the theory is built in the dual
algebraic category, whose objects Nestruev terms smooth complete geometric
R-algebras, and then exported to the geometric one by a contravariant functor.
In many situations, given a category of spaces dually equivalent to a category of
algebras it pays to shift our stance and view the algebraic category as primary.
In particular, the algebraic point of view is typically easier to generalize. This is
the paradigm shift driving Alain Connes’ noncommutative geometry programme,
and the reader is referred to [Connes 1994] for much more information.

This paradigm shift is precisely what is needed in order to salvage non-
crossing probability theory. In probability theory, the notion of space is that
of a Kolmogorov triple (�,F, P) which models the probability to observe a
stochastic system in a given state or collection of states. The dual algebraic object
associated to a Kolmogorov triple is L∞(�,F, P), the algebra of essentially
bounded complex random variables X :�→C. Just like in the case of continuous
functions on a compact Hausdorff space, this algebra has a very special structure:
it is a commutative von Neumann algebra equipped with a unital faithful tracial
state, τ [X ] =

∫
�

X dP . Moreover, there is an analogue of Gelfand’s theorem
in this setting which says that any commutative von Neumann algebra can be
realized as the algebra of bounded complex random variables on a Kolmogorov
triple in an essentially unique way. This is the statement that the categories of
Kolmogorov triples and commutative von Neumann algebras are dual equivalent.

Noncrossing independence was rendered trivial by the commutativity of
random variables. We can rescue it from the abyss by following the lead of
noncommutative geometry and dropping commutativity in the dual category: we
shift our stance and define a noncommutative probability space to be a pair (A, τ )
consisting of a possibly noncommutative complex associative unital algebra A

together with a unital linear functional τ :A→ C. If we reinstate commutativity
and insist that A is a von Neumann algebra and τ a faithful tracial state, we are
looking at essentially bounded random variables on a Kolmogorov triple, but a
general noncommutative probability space need not be an avatar of any classical
probabilistic entity.
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As a nod to the origins of this definition, and in order to foster analogies with
classical probability, we refer to the elements of A as random variables and call
τ the expectation functional. This prompts some natural questions. Before this
subsection we only discussed real random variables — complex numbers crept
in with the abstract nonsense. What is the analogue of the notion of real random
variable in a noncommutative probability space? Probabilists characterize random
variables in terms of their distributions. Can we assign distributions to random
variables living in a noncommutative probability space? Is it possible to give
meaning to the phrase “the distribution of a bounded real random variable living
in a noncommutative probability space is a compactly supported probability
measure on the line”? We will deal with some of these questions at the end of
Lecture Two. For now, however, we remain in the purely algebraic framework,
where the closest thing to the distribution of a random variable X ∈ A is its
moment sequence mn(X)= τ [Xn

]. As in [Voiculescu et al. 1992, p. 12]:

The algebraic context is not used in the pursuit of generality, but rather
of transparence.

1.9. A brief history of the free world. Having cast off the yoke of commutativity,
we are free — free to explore noncrossing probability in the new framework
provided by the noncommutative probability space concept. Noncrossing prob-
ability has become free probability, and will henceforth be referred to as such.
Accordingly, noncrossing cumulants will now be referred to as free cumulants,
and noncrossing independence will be termed free independence.

The reader is likely aware that free probability is a flourishing area of con-
temporary mathematics. This first lecture has been historical fiction, and is
essentially an extended version of [Novak and Śniady 2011]. Free probability
was not discovered in the context of graph enumeration problems, or by tampering
with the cumulant concept, although in retrospect it might have been. Rather,
free probability theory was invented by Dan-Virgil Voiculescu in the 1980s in
order to address a famous open problem in the theory of von Neumann algebras,
the free group factors isomorphism problem. The problem is to determine when
the von Neumann algebra of the free group on a generators is isomorphic to the
von Neumann algebra of the free group on b generators. It is generally believed
that these are isomorphic von Neumann algebras if and only if a = b, but this
remains an open problem. Free probability theory (and its name) originated in
this operator-algebraic context.

Voiculescu’s definition of free independence, which was modelled on the free
product of groups, is the following: random variables X, Y in a noncommutative
probability space (A, τ ) are said to be freely independent if

τ [ f1(X)g1(Y ) . . . fk(X)gk(Y )] = 0
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whenever f1, g1, . . . , fk, gk are polynomials such that

τ [ f1(X)] = τ [g1(X)] = · · · = τ [ fk(X)] = τ [gk(Y )] = 0.

This should be compared with the definition of classical independence: random
variables X, Y in a noncommutative probability space (A, τ ) are said to be
classically independent if they commute, XY = Y X , and if

τ [ f (X)g(Y )] = 0

whenever f and g are polynomials such that τ [ f (X)] = τ [g(Y )] = 0. These two
definitions are antithetical: classical independence has commutativity built into
it, while free independence becomes trivial if commutativity is imposed. Never-
theless, both notions are accommodated within the noncommutative probability
space framework.

The precise statement of equivalence between classical independence and
vanishing of mixed cumulants is due to Gian-Carlo Rota [1964]. In the 1990s,
knowing both of Voiculescu’s new free probability theory and Rota’s approach to
classical probability theory, Roland Speicher made the beautiful discovery that
by excising the lattice of set partitions from Rota’s foundations and replacing
it with the lattice of noncrossing partitions, much of Voiculescu’s theory could
be recovered and extended by elementary combinatorial methods. In particular,
Speicher showed that free independence is equivalent to the vanishing of mixed
free cumulants. The combinatorial approach to free probability is exhaustively
applied in [Nica and Speicher 2006], while the original analytic approach of
Voiculescu is detailed in [Voiculescu et al. 1992].

2. Lecture two: exploring the free world

Lecture One culminated in the notion of a noncommutative probability space and
the realization that this framework supports two types of independence: classical
independence and free independence. From here we can proceed in several ways.
One option is to prove an abstract result essentially stating that these are the
only notions of independence which can occur. This result, due to Speicher,
places classical and free independence on equal footing. Another possibility is to
present concrete problems of intrinsic interest where free independence naturally
appears. We will pursue the second route, and examine problems emerging from
the theory of random walks on groups which can be recast as questions about
free random variables. In the course of solving these problems we will develop
the calculus of free random variables and explore the terrain of the free world.

2.1. Random walks on the integers. The prototypical example of a random
walk on a group is the simple random walk on Z: a walker initially positioned
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at zero tosses a fair coin at each tick of the clock — if it lands heads he takes a
step of +1, if it lands tails he takes a step of −1. A random walk is said to be
recurrent if it returns to its initial position with probability one, and transient if
not. Is the simple random walk on Z recurrent or transient?

Let α(n) denote the number of walks which return to zero for the first time
after n steps, and let φ(n)= 2−nα(n) denote the corresponding probability that
the first return occurs at time n. Note that α(0)= φ(0)= 0, and define

F(z)=
∞∑

n=0

φ(n)zn.

Then

F(1)=
∞∑

n=0

φ(n)≤ 1

is the probability we seek. The radius of convergence of F(z) is at least one, and
by Abel’s theorem

F(1)= lim
x→1

F(x)

as x approaches 1 in the interval [0, 1).
Let λ(n) denote the number of length n loops on Z based at 0, and let ρ(n)=

2−nλ(n) be the corresponding probability of return at time n (regardless of
whether this is the first return or not). Note that λ(0)= ρ(0)= 1. We have

λ(n)=
{

0 if n is odd,( n
n/2

)
if n is even.

.

From Stirling’s formula, we see that

ρ(2k)∼
1
√
πk

as k→∞. Thus the radius of convergence of

R(z)=
∞∑

n=0

ρ(n)zn

is 1.
We can decompose the set of loops of given length according to the number

of steps taken to the first return. This produces the equation

λ(n)=
n∑

k=0

α(k)λ(n− k).
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Equivalently, since all probabilities are uniform,

ρ(n)=
n∑

k=0

φ(k)ρ(n− k).

Summing on z, this becomes the identity

R(z)− 1= F(z)R(z)

in the algebra of holomorphic functions on the open unit disc in C. Since R(z)
has nonnegative coefficients, it is nonvanishing for x ∈ [0, 1) and we can write

F(x)= 1−
1

R(x)
, 0≤ x < 1.

Thus

F(1)= lim
x→1

F(x)= 1−
1

limx→1 R(x)
.

If R(1) < ∞, then by Abel’s theorem limx→1 R(x) = R(1) and we obtain
F(1) < 1. On the other hand, if R(1)=∞, then limx→1 R(x)=∞ and we get
F(1)= 1. Thus the simple random walk is transient or recurrent according to
the convergence or divergence of the series

∑
ρ(n). From the Stirling estimate

above we find that this sum diverges, so the simple random walk on Z is recurrent.

2.2. Pólya’s theorem. In the category of abelian groups, coproducts are direct
sums: ∐

i∈I

Gi =
⊕
i∈I

Gi .

George Pólya [1921] proved that the simple random walk on

Zd
= Z⊕ · · ·⊕Z︸ ︷︷ ︸

d

is recurrent for d = 1, 2 and transient for d > 2. This striking result can be
deduced solely from an understanding of the simple random walk on Z.

Let us give a proof of Pólya’s theorem. Let λd(n) denote the number of length
n loops on Zd based at 0d . Let ρd(n) denote the probability of return to 0d after
n steps,

ρd(n)=
1

(2d)n
λd(n).

As above, the simple random walk on Zd is recurrent if the sum
∑
ρd(n) diverges,

and transient otherwise. Form the loop generating function

Ld(z)=
∞∑

n=0

λd(n)zn.
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We aim to prove that

Ld

(
1

2d

)
=

∞∑
n=0

ρd(n)

diverges for d = 1, 2 and converges for d > 2.
While the ordinary loop generating function is hard to analyze directly, the

exponential loop generating function

Ed(z)=
∞∑

n=0

λd(n)
zn

n!

is quite accessible. Indeed, as in the last subsection we have

λ1(n)=
{

0 if n is odd,( n
n/2

)
if n is even,

so that

E1(z)=
∞∑

k=0

z2k

k! k!
= I0(2z)

is precisely the modified Bessel function of order zero. Since a loop on Zd is just
a shuffle of loops on Z, the product formula for exponential generating functions
[Stanley 1999] yields

Ed(z)= E1(z)d = I0(2z)d .

What we have is the exponential generating function for the loop counts λd(n),
and what we want is the ordinary generating function of this sequence. The
integral transform

L f (z)=
∫
∞

0
f (t z)e−t dt,

which looks like the Laplace transform of f but with the z-parameter in the
wrong place, converts exponential generating functions into ordinary generating
functions. This can be seen by differentiating under the integral sign and using
the fact that the moments of the exponential distribution are the factorials,∫

∞

0
tne−t dt = n! .

This trick is constantly used in quantum field theory in connection with Borel
summation of divergent series [Etingof 2003]. In particular, we have

Ld(z)=
∫
∞

0
Ed(t z)e−t dt =

∫
∞

0
I0(2t z)de−t dt.
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Thus it remains only to show that the integral

Ld

(
1

2d

)
=

∫
∞

0
I0

(
t
d

)d

e−t dt

is divergent for d = 1, 2 and convergent for d > 2. This in turn amounts to
understanding the asymptotics of I0(t/d) as t→∞ along the real line.

We already encountered Bessel functions in Lecture One, and we know that

I0(t/d)=
1
π

∫ π

0
et ( cos θ

d ) dθ.

This is an integral of Laplace type,∫ b

a
et f (θ) dθ,

and Laplace integrals localize as t→∞ with asymptotics given by the classical
steepest descent formula (maximum at an endpoint case),∫ b

a
et f (θ) dθ ∼

√
π

2t | f ′′(a)|
et f (a).

For our integral, this specializes to

I0(t/d)∼

√
1

2π3/2t
et/d , t→∞,

from which it follows that Ld((2d)−1) diverges or converges according to the
divergence or convergence of the integral∫

∞

1
t−d/2 dt.

This integral diverges for d = 1, 2 and converges for d ≥ 3, which proves Pólya’s
result. In fact, the probability that the simple random walk on Z3 returns to its
initial position is already less than thirty five percent.

2.3. Kesten’s problem. The category of abelian groups is a full subcategory of
the category of groups. In the category of groups, coproduct is free product:∐

i∈I

Gi = ∗i∈I Gi .

Thus one could equally well ask about the recurrence or transience of the simple
random walk on

Fd = Z ∗ · · · ∗Z,
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Figure 13. Balls of increasing radius in F2.

the free group on d generators. Whereas the Cayley graph of the abelian group
Zd is the (2d)-regular hypercubic lattice, the Cayley graph of the free group
Fd is the (2d)-regular tree; see Figure 13. What is the free analogue of Pólya’s
theorem? We will see that the random walk on Fd can be understood entirely in
terms of the random walk on F1 = Z, just as in the abelian category. However,
the tools we will use are quite different, and the concept of free random variables
plays the central role.

The study of random walks on groups was initiated by Harry Kesten in his
1958 Ph.D. thesis, with published results appearing in [Kesten 1959]. A good
source of information on this topic, with many pointers to the literature, is
Laurent Saloff-Coste’s survey article [2001]. Kesten related the behaviour of
the simple random walk on a finitely-generated group G to other properties of
G, such as amenability. A countable group is said to be amenable if it admits a
finitely additive G-invariant probability measure. The notion of amenability was
introduced by John von Neumann in 1929. Finite groups are amenable since they
can be equipped with the uniform measure P(g) = |G|−1. For infinite groups
the situation is not so clear, and many different characterizations of amenability
have been derived. For example, Alain Connes showed that a group is amenable
if and only if its von Neumann algebra is hyperfinite. Kesten proved that G is
nonamenable if and only if the probability ρG(n) that the simple random walk on
G returns to its starting point at time n decays exponentially in n. We saw above
that for G= Z the return probability has square root decay, so Z is amenable. In
fact, amenability is preserved by direct sum so all abelian groups are amenable.
Is the free group Fd amenable? Let λd(n) denote the number of length n loops
on Fd based at id. We will refer to the problem of finding an explicit expression
for the loop generating function

Ld(z)= 1+
∞∑

n=1

λd(n)zn

as Kesten’s problem. Presumably, if we can obtain an explicit expression for this
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function then we can read off the asymptotics of ρd(n), which is the coefficient
of zn in Ld(z/2d), via the usual methods of singularity analysis of generating
functions.

We begin at the beginning: d=2. Let A and B denote the generators of F2, and
let A=A[F2] be the group algebra consisting of formal C-linear combinations
of words in these generators and their inverses, A−1 and B−1. The identity
element of A is the empty word, which is identified with id ∈ F2. Introduce the
expectation functional

τ [X ] = coefficient of id in X

for each X ∈ A. Then (A, τ ) is a noncommutative probability space. A loop
id→ id in F2 is simply a word in A, A−1, B, B−1 which reduces to id. Thus the
number of length n loops in F2 is

λ2(n)= mn(X + Y )= τ [(X + Y )n],

where X, Y ∈A are the random variables

X = A+ A−1, Y = B+ B−1.

We see that the loop generating function for F2 is precisely the moment generating
function for the random variable X+Y in the noncommutative probability space
(A, τ ),

L2(z)= 1+
∞∑

n=1

mn(X + Y )zn.

We want to compute the moments of the sum X + Y of two noncommutative
random variables, and what we know are the moments of its summands:

mn(X)= mn(Y )=
{

0 if n is odd,( n
n/2

)
if n is even

.

Now we make the key observation: the random variables X, Y are freely inde-
pendent. Indeed, suppose that f1, g1, . . . , fk, gk are polynomials such that

τ [ f1(X)] = τ [g1(Y )] = · · · = τ [ fk(X)] = τ [gk(Y )] = 0.

This means that fi (X)= fi (A+ A−1) is a Laurent polynomial in A with zero
constant term, and g j (Y ) = g j (B + B−1) is a Laurent polynomial in B with
zero constant term. Since there are no relations between A and B, an alternating
product of polynomials of this form cannot produce any occurrences of the empty
word, and we have

τ [ f1(X)g1(Y ) . . . fk(X)gk(Y )] = 0.
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This is precisely Voiculescu’s definition of free independence.
We conclude that the problem of computing λ2(n) is a particular case of the

problem of computing the moments mn(X + Y ) of the sum of two free random
variables given their individual moments, mn(X) and mn(Y ). This motivates us
to solve a fundamental problem in free probability theory:

Given a pair of free random variables X and Y , compute the moments
of X + Y in terms of the moments of X and the moments of Y .

We can, in principle, solve this problem using the fact that free cumulants
linearize the addition of free random variables, κn(X + Y ) = κn(X)+ κn(Y ).
This solution is implemented as the following recursive algorithm.

Input: κ1(X), . . . , κn−1(X), κ1(Y ), . . . , κn−1(Y ).

Step 1: Compute mn(X),mn(Y ).

Step 2: Compute κn(X), κn(Y ) using

κn(X)= mn(X)−
∑

π∈NC(n)
b(π)≥2

∏
B∈π

κ|β|(X)

κn(Y )= mn(Y )−
∑

π∈NC(n)
b(π)≥2

∏
B∈π

κ|β|(Y ).

Step 3: Add:
κn(X + Y )= κn(X)+ κn(Y ).

Step 4: Compute mn(X + Y ) using

mn(X + Y )= κn(X + Y )+
∑

π∈NC(n)
b(π≥2

∏
B∈π

κ|B|(X + Y ).

Output: mn(X + Y ).

This recursive algorithm is conceptually simple but virtually useless as is.
In particular, it is not clear how to coax it into computing the loop generating
function L2(z). We need to develop an additive calculus of free random variables
which parallels the additive calculus of classically independent random variables.

2.4. The classical algorithm. If X, Y are classically independent random vari-
ables, we can compute the moments of their sum X + Y using the recursive
algorithm above, replacing free cumulants with classical cumulants. But this is
not what probabilists do in their daily lives. They have a much better algorithm
which uses analytic function theory to efficiently handle the recursive nature of the
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naive algorithm. The classical algorithm associates to X and Y analytic functions
MX (z) and MY (z) which have the property that MX+Y (z) := MX (z)MY (z)
encodes the moments of X + Y as its derivatives at z = 0. We will give a
somewhat roundabout derivation of this algorithm, which is presented in this
way specifically to highlight the analogy with Voiculescu’s algorithm presented
in the next section.

The classical algorithm for summing two random variables is developed in two
stages. In the first stage, the relation between the moments and classical cumulants
of a random variable is packaged as an identity in the ring of formal power series
C[[z]]. Suppose that (mn)

∞

n=1 and (cn)
∞

n=1 are two numerical sequences related
by the chain of identities

mn =
∑
π∈P(n)

∏
B∈π

c|B|, n ≥ 1.

The π-th term of the sum on the right only depends on the “spectrum” of π ,
i.e., the integer vector 3(π) = (1b1(π), 2b2(π), . . . , nbn(π)), where bi (π) is the
number of blocks of size i in π . We may view 3(π) as the Young diagram with
bi rows of length i . Consequently, we can perform a change of variables to push
the summation forward onto a sum over Young diagrams with n boxes provided
we can compute the “Jacobian” of the map 3 : P(n)→ Y(n) sending π on its
spectrum:

mn =
∑

b1+2b2+···+nbn=n

cb1
1 cb2

2 . . . c
bn
n |3

−1(1b1, 2b2, . . . , nbn )|.

The volume of the fibre of 3 over any given Young diagram can be explicitly
computed to be

|3−1(1b1, 2b2, . . . , nbn )| =
n!

(1!)b1(2!)b2 . . . (n!)bn b1! b2! . . . bn!
,

so that we have the chain of identities

mn

n!
=

∑
b1+2b2+···+nbn=n

(c1/1!)b1(c2/2!)b2 . . . (cn/n!)bn

b1! b2! . . . bn!
, n ≥ 1.

We can bundle these identities as a single relation between power series. Summing
on z we obtain

1+
∞∑

n=1

mn
zn

n!
= 1+

∞∑
n=1

( ∑
b1+2b2+···+nbn=n

(c1/1!)b1(c2/2!)b2 . . . (cn/n!)bn

b1! b2! . . . bn!

)
zn

= 1+
1
1!

( ∞∑
n=1

cn
zn

n!

)1

+
1
2!

( ∞∑
n=1

cn
zn

n!

)2

+ · · · = exp
( ∞∑

n=1

cn
zn

n!

)
.
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We conclude that the chain of moment-cumulant formulas is equivalent to the
single identity M(z)= eC(z) in C[[z]], where

M(z)= 1+
∞∑

n=1

mn
zn

n!
, C(z)=

∞∑
n=1

cn
zn

n!

This fact is known in enumerative combinatorics as the exponential formula. In
other branches of science it goes by other names, such as the polymer expansion
formula or the linked cluster theorem. In the physics literature, the exponential
formula is often invoked using colourful phrases such as “connected vacuum
bubbles exponentiate” [Samuel 1980]. The exponential formula seems to have
been first written down precisely by Adolf Hurwitz [1891].

The exponential formula becomes particularly powerful when combined with
complex analysis. Suppose that X, Y are classically independent random vari-
ables living in a noncommutative probability space (A, τ ). Suppose moreover
that an oracle has given us probability measures µX , µY on the real line which
behave like distributions for X, Y insofar as

τ [Xn
] =

∫
R

tnµX (dt), τ [Y n
] =

∫
R

tnµY (dt), n ≥ 1.

Let us ask for even more, and insist that µX , µY are compactly supported. Then
the functions2

MX (z)=
∫

R

et zµX (dt), MY (z)=
∫

R

et zµY (dt)

are entire, and their derivatives can be computed by differentiation under the
integral sign. Consequently, we have the globally convergent power series
expansions

MX (z)= 1+
∞∑

n=1

mn(X)
zn

n!
,

MY (z)= 1+
∞∑

n=1

mn(Y )
zn

n!
.

Since MX (0) = MY (0) = 1 and the zeros of holomorphic functions are dis-
crete, we can restrict to a complex domain D containing the origin on which
MX (z),MY (z) are nonvanishing. Let Hol(D) denote the algebra of holomorphic
functions on D. The following algorithm produces a function MX+Y (z)∈Hol(D)
whose derivatives at z = 0 are the moments of X + Y .

2The restriction of MX to the real axis, MX (−x), is the two-sided Laplace transform, while
the restriction of MX to the imaginary axis, MX (−iy), is the Fourier transform.
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Input: µX and µY .

Step 1: Compute

MX (z)=
∫

R

et zµX (dt), MY (z)=
∫

R

et zµY (dt).

Step 2: Solve

MX (z)= eCX (z), MY (z)= eCY (z)

in Hol(D) subject to CX (0)= CY (0)= 0.

Step 3: Add:

CX+Y (z) := CX (z)+CY (z).

Step 4: Exponentiate:

MX+Y (z) := eCX+Y (z).

Output: MX+Y (z).

In Step 1, we try to compute the integral transforms MX (z),MY (z) in terms of
elementary functions, like ez, log(z), sin(z), cos(z), sinh(z), cosh(z), . . . etc, or
other classical functions like Bessel functions, Whittaker functions, or anything
else that can be looked up in [Andrews et al. 1999]. This is often feasible if
the distributions µX , µY have known densities, and we saw some examples in
Lecture One.

The equations in Step 2 have unique solutions. The required functions
CX (z),CY (z) ∈ Hol(D) are the principal branches of the logarithms of MX (z)
and MY (z) on D, and can be represented as contour integrals:

CX (z)= log MX (z)=
∮ z

0

M ′X (ζ )
MX (ζ )

dζ, CY (z)= log MY (z)=
∮ z

0

M ′Y (ζ )
MY (ζ )

dζ

for z ∈D. Since log has the usual formal properties associated with the logarithm,
if Step 1 outputs a reasonably explicit expression then so will Step 2.

Step 2 is the crux of the algorithm. It is performed precisely to change
gears from a moment computation to a cumulant computation. Appealing to the
exponential formula, we conclude that the holomorphic functions CX (z),CY (z)
passed to Step 3 by Step 2 have Maclaurin series

CX (z)=
∞∑

n=1

cn(X)
zn

n!
, CY (z)=

∞∑
n=1

cn(Y )
zn

n!
,

where cn(X), cn(Y ) are the cumulants of X and Y . Since cumulants linearize
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the addition of independent random variables, the new function CX+Y (z) :=
CX (z)+CY (z) defined in Step 3 encodes the cumulants of X+Y as its derivatives
at z = 0.

In Step 4 we define a new function MX+Y (z)∈Hol(D) by MX+Y (z) :=eCX+Y (z).
The exponential formula and the moment-cumulant formula now combine in the
reverse direction to tell us that the Maclaurin series of MX+Y (z) is

MX+Y (z)= 1+
∞∑

n=1

mn(X + Y )
zn

n!
.

In summary, assuming that X, Y are classically independent random variables
living in a noncommutative probability space (A, τ ) with affiliated distributions
µX , µY having nice properties, the classical algorithm takes these distributions
as input and outputs a function MX+Y (z) analytic at z = 0 whose derivatives
are the moments of X + Y . It works by combining the exponential formula
and the moment-cumulant formula to convert the moment problem into the
(linear) cumulant problem, adding, and then converting back to moments. An
optional Step 5 is to extract the distribution µX+Y from MX+Y (z) using the
Fourier inversion formula:

µX+Y ([a, b])= lim
T→∞

1
2π

∫ T

−T

e−iat
− e−ibt

i t
MX+Y (i t) dt.

2.5. Voiculescu’s algorithm. We wish to develop a free analogue of the classical
algorithm. Suppose that X, Y are freely independent random variables living
in a noncommutative probability space (A, τ ) possessing compactly supported
real distributions µX , µY . The free algorithm should take these distributions as
input, build a pair of analytic functions which encode the moments of X and
Y respectively, and then convolve these somehow to produce a new analytic
function which encodes the moments of X + Y . A basic hurdle to be overcome
is that, even assuming we know how to construct µX and µY , we don’t know
what to do with them. We could repeat Step 1 of the classical algorithm to obtain
analytic functions MX (z),MY (z) whose derivatives at z = 0 are the moments of
X and Y . If we then perform Step 2 we obtain analytic functions CX (z),CY (z)
whose derivatives encode the classical cumulants of X and Y . But classical
cumulants do not linearize addition of free random variables.

The classical algorithm is predicated on the existence of a formal power series
identity equivalent to the chain of classical moment-cumulant identities. We
need a free analogue of this, namely a power series identity equivalent to the
chain of numerical identities

mn =
∑

π∈NC(n)

∏
B∈π

κ|B|, n ≥ 1.
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Proceeding as in the classical case, rewrite this in the form

mn =
∑

b1+2b2+···+nbn=n

κ
b1
1 κ

b2
2 . . . κbn

n |3
−1(1b1, 2b2, . . . , nbn )∩NC(n)|,

where as above 3 : P(n)→ Y(n) is the surjection which sends a partition π
with bi blocks of size i to the Young diagram with bi rows of length i . Now we
have to compute the volume of the fibres of 3 intersected with the noncrossing
partition lattice. The solution to this enumeration problem is again known in
explicit form,

|3−1(1m1,2m2, . . . ,nmn )∩NC(n)| =
n!

(n+1−(b1+b2+·· ·+bn))!b1!b2! . . .bn!
.

This formula allows us to obtain the desired power series identity, though the
manipulations required are quite involved and require either the use of Lagrange
inversion or an understanding of the poset structure of NC(n). In any event, what
ultimately comes out of the computation is the fact that two numerical sequences
satisfy the chain of free moment-cumulant identities if and only if the ordinary
(not exponential) generating functions

L(z)= 1+
∞∑

n=1

mnzn, K (z)= 1+
∞∑

n=1

κnzn

solve the equation
L(z)= K (zL(z))

in the formal power series ring C[[z]]. This is the free analogue of the exponential
formula.

As in the classical case, we wish to turn this formal power series encoding into
an analytic encoding. Suppose that X, Y admit distributions µX , µY supported
in the real interval [−r, r ]. We then have |mn(X)|, |mn(Y )| ≤ rn , so the moment
generating functions

L X (z)= 1+
∞∑

n=1

mn(X)zn, LY (z)= 1+
∞∑

n=1

mn(Y )zn,

are absolutely convergent in the open disc D(0, 1
r ). One can use the relation

between moments and free cumulants to show that the free cumulant generating
functions

K X (z)= 1+
∞∑

n=1

κn(X)zn, KY (z)= 1+
∞∑

n=1

κn(Y )zn

are also absolutely convergent on a (possibly smaller) neighbourhood of z = 0.
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However, it turns out that the correct environment for the free algorithm is a
neighbourhood of infinity rather than a neighbourhood of zero. This is because
what we really want is an integral transform which realizes ordinary generat-
ing functions in the same way as the Fourier (or Laplace) transform realizes
exponential generating functions. Access to such a transform will allow us to
obtain closed forms for generating functions by evaluating integrals, just like in
classical probability. Such an object is well-known in analysis, where it goes
by the name of the Cauchy (or Stieltjes) transform. The Cauchy transform of a
random variable X with real distribution µX is

G X (z)=
∫

R

1
z− t

µX (dt).

The Cauchy transform is well-defined on the complement of the support of µX ,
and differentiating under the integral sign shows that G X (z) is holomorphic on
its domain of definition. In particular, if µX is supported in [−r, r ] then G X (z)
admits the convergent Laurent expansion

G X (z)=
1
z

∞∑
n=0

∫
tnµX (dt)

zn =

∞∑
n=0

mn(X)
zn+1

on |z|> r . This is an ordinary generating function for the moments of X with
z−1 playing the role of the formal variable.

To create an interface between the free moment-cumulant formula and the
Cauchy transform, we must rewrite the formal power series identity L(z) =
K (zL(z)) as an identity in C((z)) = Quot C[[z]], the field of formal Laurent
series. Introduce the formal Laurent series

G(z)= 1
z

L
(1

z

)
=

∞∑
n=0

mn

zn+1 .

The automorphism z 7→ 1
z

transforms the noncrossing exponential formula into
the identity

K (G(z))
G(z)

= z.

Setting

V (z)=
K (z)

z
=

1
z
+

∞∑
n=0

κn+1zn,

this becomes the identity
V (G(z))= z

in C((z)).
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We have now associated two analytic functions to X . The first is the Cauchy
transform G X (z), which is defined as an integral transform and admits a con-
vergent Laurent expansion in a neighbourhood of infinity in the z-plane. The
second is the Voiculescu transform VX (w), which is defined by the convergent
Laurent series

VX (w)=
1
w
+

∞∑
n=0

κn+1w
n

in a neighbourhood of zero in the w-plane. The Voiculescu transform is a mero-
morphic function with a simple pole of residue one atw=0. The Voiculescu trans-
form less its principal part, RX (w)= VX (w)−

1
w

, is an analytic function known
as the R-transform of X . From the formal identities V (G(z))= z, G(V (w))=w
and the asymptotics G X (z) ∼ 1

z as |z| → ∞ and VX (w) ∼
1
w

as |w| → 0, we
expect to find a neighbourhood D∞ of infinity in the z-plane and a neighbourhood
D0 of zero in the w-plane such that G X : D∞ → D0 and VX : D0 → D∞ are
mutually inverse holomorphic bijections. The existence of the required domains
hinges on identifying regions where the Cauchy and Voiculescu transforms are
injective, and this can be established through a complex-analytic argument; see
[Mingo and Speicher ≥ 2014, Chapter 4].

With these pieces in place, we can state Voiculescu’s algorithm for the addition
of free random variables.

Input: µX and µY .

Step 1: Compute

G X (z)=
∫

R

1
z− t

µX (dt), GY (z)=
∫

R

1
z− t

µY (dt)

Step 2: Solve the first Voiculescu functional equations,

(G X ◦ VX )(w)= w, (GY ◦ VY )(w)= w

subject to VX (w)∼
1
w

near w = 0.

Step 3: Remove principal part:

RX (w)= VX (w)−
1
w
, RY (w)= VY (w)−

1
w
;

add:
RX+Y (w) := RX (w)+ RY (w);

restore principal part:

VX+Y (w) := RX+Y (w)+
1
w
.
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Step 4: Solve the second Voiculescu functional equation,

(VX+Y ◦G X+Y )(z)= z,

subject to G X+Y (z)∼
1
z

near z =∞.

Output: G X+Y (z).

Voiculescu’s algorithm is directly analogous to the classical algorithm pre-
sented in the previous section. The analogy can be succinctly summarized by
saying that

the R-transform is the free analogue of the log of the Fourier transform.

In Step 1, we try to compute the integral transforms G X (z),GY (z) in terms
of elementary functions.

Step 2 changes gears from a moment computation to a cumulant computation.
Since free cumulants linearize the addition of free random variables, the new
function VX+Y (w) := RX (w)+ RY (w)+

1
w

defined in Step 3 encodes the free
cumulants of κn(X + Y ) as its Laurent coefficients of nonnegative degree.

In Step 4 we define a new function G X+Y (z) by solving the second Voiculescu
functional equation. The free exponential formula and the free moment-cumulant
formula combine in the reverse direction to tell us that the Laurent series of
G X+Y (z) is

G X+Y (z)=
∞∑

n=0

mn(X + Y )
zn+1 .

An optional fifth step is to extract the distribution µX+Y from G X+Y (z) using
the Stieltjes inversion formula:

µX+Y (dt)=−
1
π

lim
ε→0
=G X+Y (t + iε).

2.6. Solution of Kesten’s problem. Our motivation for building up the additive
theory of free random variables came from Kesten’s problem: explicitly determine
the loop generating function of the free group F2, and more generally of the free
group Fd , d ≥ 2. This amounts to computing the moment generating function

Ld(z)= 1+
∞∑

n=1

mn(Sd)zd

of the sum

Sd = X1+ · · ·+ Xd
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of fid (free identically distributed) random variables with moments

τ [Xn
i ] =

{
0 if n is odd,( n

n/2

)
if n is even.

Voiculescu’s algorithm gives us the means to obtain this generating function
provided we can feed it the required input, namely a compactly supported
probability measure on R with moment sequence

0,
(2

1

)
, 0,

(4
2

)
, 0,

(6
3

)
, 0, . . . .

As we saw above, the exponential generating function of this moment sequence,

M(z)=
∞∑

k=0

z2k

k! k!
= I0(2z),

coincides with the modified Bessel function of order zero. From the integral
representation

I0(2z)=
1
π

∫ π

0
e2(cos θ)z dθ

we conclude that a random variable X with odd moments zero and even moments
the central binomial coefficients is given by X = 2 cos(Y ), where Y has uniform
distribution over [0, π]. Making the same change of variables that we did in
Lecture One, we obtain

MX (z)=
1
π

∫ 2

−2
et z 1
√

4− t2
dt,

so that µX is supported on [−2, 2] with density

µX (dt)=
1

π
√

4− t2
dt.

This measure is known as the arcsine distribution because its cumulative distri-
bution function is ∫ x

−2
µX (dt)=

1
2
+

arcsin x
2

π
.

So to obtain the loop generating function L2(z) for the simple random walk
on F2, we should run Voiculescu’s algorithm with input µX = µY = arcsine.

Let us warm up with an easier computation. Suppose that X, Y are not fid
arcsine random variables, but rather fid ±1-Bernoulli random variables:

µX = µY =
1
2δ−1+

1
2δ+1.
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Figure 14. The arcsine density.

We will use Voiculescu’s algorithm to obtain the distribution of X + Y . If
X, Y were classically iid Bernoullis, we would of course obtain the binomial
distribution

µX+Y =
1
4δ−2+

1
2δ0+

1
4δ+2

giving the distribution of the simple random walk on Z at time two. The result
is quite different in the free case.

Step 1. Obtain the Cauchy transform:

G X (z)= GY (z)=
1
2

(
1

z+ 1
+

1
z− 1

)
=

z
z2− 1

=

∞∑
n=0

1
z2n+1 .

Step 2. Solve the first Voiculescu functional equation. From Step 1, this is

wV 2(w)− V (w)−w = 0,

which has roots

1+
√

1+ 4w2

2w
=

1
w
+w−w3

+ 2w5
− 5w7

+ · · · ,

1−
√

1+ 4w2

2w
=−w+w3

− 2w5
+ · · · .

We identify the first of these as the Voiculescu transform VX (w)= VY (w).

Step 3. Compute the R-transform:

RX (w)= RY (w)=
1+
√

1+ 4w2

2w
−

1
w
=

√
1+ 4w2− 1

2w
,
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and sum to obtain

RX+Y (w)= RX (w)+ RY (w)=

√
1+ 4w2− 1

w
.

Now restore the principal part:

VX+Y (w)= RX+Y (w)+
1
w
=

√
1+ 4w2

w
.

Step 4. Solve the second Voiculescu functional equation. From Step 3, this is
the equation √

1+ 4G(z)2

G(z)
= z,

which has roots

±1
√

z2− 4
=
±1
z
+
±2
z3 +

±6
z5 +

±20
z7 +

±70
z9 +

±252
z11 + · · · .

The positive root is identified as G X+Y (z).

Finally, we perform the optional fifth step to recover the distribution µX+Y

whose Cauchy transform is G X+Y (z). This can be done in two ways. First,
we could notice that the nonzero Laurent coefficients of G X+Y are the central
binomial coefficients

(2k
k

)
, and we just determined that these are the moments of

the arcsine distribution. Alternatively we could use Stieltjes inversion:

µX+Y (dt)=−
1
π

lim
ε→0

1√
(t + iε)2− 4

=−
1
π
=

1
√

t2− 4
=

1

π
√

4− t2
δ|t |≤2.

We conclude that the sum of two fid Bernoulli random variables has arcsine
distribution. Note the surprising feature that the outcome of a free coin toss has
continuous distribution over [−2, 2]. More generally, we can say that the sum

Sd = X1+ · · ·+ X2d

of 2d fid ±1-Bernoulli random variables, i.e., the sum of 2d free coin tosses,
encodes all information about the simple random walk on Fd in its moments.

Let us move on to the solution of Kesten’s problem for F2. Here X, Y are fid
arcsine random variables.

Step 1. The Cauchy transform G X (z)= GY (z) is the output of our last applica-
tion of the algorithm, namely

G X (z)= GY (z)=
1

√
z2− 4

.
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Step 2. Solve the first Voiculescu functional equation to obtain

VX (w)= VY (w)=

√
1+ 4w2

w
=

1
w
+ 2w− 2w3

+ · · · .

Step 3. Switch to R-transforms, add, switch back to get the Voiculescu transform
of X + Y :

VX+Y (w)=
2
√

1+ 4w2− 1
z

=
1
w
+ 4w− 4w3

+ · · · .

Step 4. Solve the second Voiculescu functional equation to obtain

G X+Y (z)=
−z+ 2

√
z2− 12

z2− 16
=

1
z
+

4
z3 +

28
z5 +

232
z7 +

2092
z9 + · · · .

We can now calculate the loop generating function for F2:

L2(z)=
1
z

G X+Y

(1
z

)
=
−1+ 2

√
1− 12z2

1− 16z2 = 1+ 4z2
+ 28z4

+ 232z6
+ 2092z8

+ · · · .

More generally, we can run through the above steps for general d to obtain the
loop generating function

Ld(z)=
−(d − 1)+ d

√
1− 4(2d − 1)z2

1− 16z2

for the free group Fd , d ≥ 2, which in turn leads to the probability generating
function

Ld

(
z

2d

)
=

−(d − 1)+ d
√

1− (2d − 1)( z
d )

2

1− 4( z
d )

2 .

Applying standard methods from analytic combinatorics [Flajolet and Sedgewick
2009], this expression leads to the asymptotics

ρd(n)∼ constd · n−3/2
(

2
√

d
d + 1

)n

for the return probability of the simple random walk on Fd , d ≥ 2. From this
we can conclude that the simple random walk on Fd is transient for all d ≥ 2,
and indeed that Fd is nonamenable for all d ≥ 2.
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2.7. Spectral measures and free convolution. Voiculescu’s algorithm outputs
a function G X+Y (z) which encodes the moments of the sum of two freely inde-
pendent random variables X and Y . As input, it requires a pair of compactly
supported real measures µX , µY which act as distributions for X and Y in the
sense that

τ [Xn
] =

∫
R

tnµX (dt), τ [Y n
] =

∫
R

tnµY (dt).

In our applications of Voiculescu’s algorithm we were able to find such measures
by inspection. Nevertheless, it is of theoretical and psychological importance to
determine sufficient conditions guaranteeing the existence of measures with the
required properties.

If X :�→C is a random variable defined on a Kolmogorov triple (�,F, P),
its distribution µX is the pushforward of P by X ,

µX (B)= (X∗P)(B)= P(X−1(B))

for any Borel (or Lebesgue) set B ⊆ C. One has the general change of variables
formula

E[ f (X)] =
∫

C

f (z)µX (dz)

for any reasonable f : C→ C. If X is essentially bounded and real-valued,
µX is compactly supported in R. As a random variable X living in an abstract
noncommutative probability space (A, τ ) is not a function, one must obtain µX

by some other means.
The existence of distributions is too much to expect within the framework of

a noncommtative probability space, which is a purely algebraic object. We need
to inject some analytic structure into (A, τ ). This is achieved by upgrading A to
a ∗-algebra, i.e., a complex algebra equipped with a map ∗ :A→A satisfying

(X∗)∗ = X, (αX +βY )∗ = αX∗+βY ∗, (XY )∗ = Y ∗X∗.

This map, which is an abstraction of complex conjugation, is required to be
compatible with the expectation τ in the sense that

τ [X∗] = τ [X ].

A noncommutative probability space equipped with this extra structure is called
a noncommutative ∗-probability space.

In the framework of a ∗-probability space we can single out a class of random
variables analogous to real random variables in classical probability. These
are the fixed points of ∗, X∗ = X . A random variable with this property is
called self-adjoint. Self-adjoint random variables have real expected values,
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τ [X ] = τ [X∗] = τ [X ], and more generally τ [ f (X)] ∈ R for any polynomial f
with real coefficients.

The identification of bounded random variables requires one more upgrade.
Given a ∗-probability space (A, τ ), we can introduce a Hermitian form B :
A×A→ C defined by

B(X, Y )= τ [XY ∗].

If we require that τ has the positivity property τ [X X∗] ≥ 0 for all X ∈A, then
we obtain a seminorm

‖X‖ = B(X, X)1/2

on A, and we can access the Cauchy–Schwarz inequality

|B(X, Y )| ≤ ‖X‖‖Y‖.

Once we have Cauchy–Schwarz, we can prove the monotonicity inequalities

|τ [X ]| ≤ |τ [X2
]|

1/2
≤ |τ [X4

]|
1/4

|τ [X3
]| ≤ |τ [X4

]|
1/4
≤ |τ [X6

]|
1/6

|τ [X5
]| ≤ |τ [X6

]|
1/6
≤ |τ [X8

]|
1/8

...

from which the chain of inequalities

|τ [X ]| ≤ |τ [X2
]|

1/2
≤ |τ [X4

]|
1/4
≤ |τ [X6

]|
1/6
≤ |τ [X8

]|
1/8
≤ · · ·

can be extracted. From this we conclude that the limit

ρ(X) := lim
k→∞
|τ [X2k

]|
1/(2k)

exists in R≥0 ∪ {∞}. This limit is called the spectral radius of X . A random
variable X ∈A is said to be bounded if its spectral radius is finite, ρ(X) <∞.

In the framework of a noncommutative ∗-probability space (A, τ ) with non-
negative expectation, bounded self-adjoint random variables play the role of
essentially bounded real-valued random variables in classical probability theory.
With some work, one may deduce from the Riesz representation theorem that to
each bounded self-adjoint X corresponds a unique Borel measure µX supported
in [−ρ(X), ρ(X)] such that

τ [ f (X)] =
∫

R

f (t)µX (dt)

for all polynomial functions f :C→C. The details of this argument, in which a
reverse-engineered Cauchy transform plays the key role, are given in Tao’s notes
[Tao 2010]. The measureµX is often called the spectral measure of X , but we will
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refer to it as the distribution of X . There is also a converse to this result: given any
compactly supported measure µ on R, there exists a bounded self-adjoint random
variable X living in some noncommutative ∗-probability space (A, τ ) whose
distribution is µ. Consequently, given two compactly supported real probability
measures µ, ν we may define a new measure µ� ν as “the distribution of the
random variable X + Y , where X and Y are freely independent bounded self-
adjoint random variables with distributions µ and ν, respectively.” Since the
sum of two bounded self-adjoint random variables is again bounded self-adjoint,
µ�ν is another compactly supported real probability measure. Moreover, µ�ν
does not depend on the particular random variables chosen to realize µ and ν.
Thus we get a bona fide binary operation � on the set of compactly supported
real measures, which is known as the additive free convolution. For example,
we computed above that

Bernoulli�Bernoulli= Arcsine.

The additive free convolution of measures is induced by the addition of free
random variables. As such, it is the free analogue of the classical convolution
of measures induced by the addition of classically independent random vari-
ables. Like classical convolution, free convolution can be defined for unbounded
measures, but this requires more work [Bercovici and Voiculescu 1993].

2.8. Free Poisson limit theorem. Select positive real numbers λ and α. Consider
the measure

µN = (1−
λ

N
)δ0+

λ

N
δα

which consists of an atom of mass 1− λ
N placed at zero and an atom of mass λ

N
placed at α. For N sufficiently large, µN is a probability measure. Its moment
sequence is

mn(µN )=
λ

N
αn, n ≥ 1.

The N -fold classical convolution of µN with itself,

µ∗N
N = µN ∗ · · · ∗µN︸ ︷︷ ︸

N

,

converges weakly to the Poisson measure of rate λ and jump size α as N →∞.
This is a classical limit theorem in probability known as the Poisson limit theorem,
or the law of rare events.
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Let us obtain a free analogue of the Poisson limit theorem. This should be a
limit law for the iterated free convolution

µ�N
N = µN � · · ·�µN︸ ︷︷ ︸

N

.

From the free moment-cumulant formula, we obtain the estimate

κn(µN )= mn(µN )+ O
(

1
N 2

)
=
λ

N
αn
+ O

(
1

N 2

)
.

Since free cumulants linearize free convolution, we have

κn(µ
�N
N )= Nκn(µN )= λα

n
+ O

(
1
N

)
.

Thus
lim

N→∞
κn(µN )= λα

n,

and it remains to determine the measure µ with this free cumulant sequence.
The Voiculescu transform of µ is

Vµ(w)=
1
w
+

∞∑
n=0

λαn+1wn
=

1
w
+

λα

1−αw
,

so the second Voiculescu functional equation Vµ(Gµ(z))= z yields

1
Gµ(z)

+
λα

1−αGµ(z)
= z.

This equation has two solutions, and the one which behaves like 1/z for |z|→∞
is the Cauchy transform of µ. We obtain

Gµ(z)=
z+α(1− λ)−

√
(z−α(1+ λ))2− 4λα2

2αz
.

Applying Stieltjes inversion, we find that the density of µ is given by

µ(dt)=
{
(1− λ)δ0+ λm(t) dt, 0≤ λ≤ 1
m(t) dt, λ > 1

where

m(t)=
1

2παt

√
4λα2− (t −α(1+ λ))2.

This measure is known as the Marchenko–Pastur distribution after the Ukrainian
mathematical physicists Vladimir Marchenko and Leonid Pastur, who discovered
it in their study of the asymptotic eigenvalue distribution of a certain class of
random matrices.
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2.9. Semicircle flow. Given r >0, letµr be the semicircular measure of radius r :

µr (dt)=
2
πr2

√
r2− t2 dt.

Taking r = 2 yields the standard semicircular distribution. Let µ be an arbitrary
compactly supported probability measure on R. The function

fµ : {positive real numbers} → {compactly supported real measures}

defined by
fµ(r)= µ�µr

is called the semicircle flow. The semicircle flow has very interesting dynamics:
in one of his earliest articles on free random variables, Voiculescu [1986] showed
that

∂G(r, z)
∂r

+G(r, z)
∂G(r, z)
∂z

= 0,

where G(r, z) is the Cauchy transform of fµ(r)=µ�µr . Thus the free analogue
of the heat equation is the complex inviscid Burgers equation. For a detailed
analysis of the semicircle flow, see [Biane 1997].

3. Lecture three: modelling the free world

Free random variables are of interest for many reasons. First and foremost,
Voiculescu’s free probability theory is an intrinsically appealing subject worthy
of study from a purely esthetic point of view. Adding to this are the many
remarkable connections between free probability and other parts of mathematics,
including operator algebras, representation theory, and random matrix theory.
This lecture is an exposition of Voiculescu’s discovery that random matrices
provide asymptotic models of free random variables. We follow the treatment of
Nica and Speicher [2006].

3.1. Algebraic model of a free arcsine pair. In Lecture Two we gave a group-
theoretic construction of a pair of free random variables each of which has an
arcsine distribution. In this example, the algebra of random variables is the group
algebra A=A[F2] of the free group on two generators A, B, and the expectation
τ is the coefficient-of-id functional. We saw that the random variables

X = A+ A−1, Y = B+ B−1

are freely independent, and each has an arcsine distribution:

τ [Xn
] = τ [Y n

] =

{
0 if n is odd,( n

n/2

)
if n is even.

.
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3.2. Algebraic model of a free semicircular pair. We can give a linear-algebraic
model of a pair of free random variables each of which has a semicircular
distribution. The ingredients in this construction are a complex vector space V

and an inner product B :V×V→C. Our random variables will be endomorphisms
of the tensor algebra over V,

F(V)=

∞⊕
n=0

V⊗n,

which physicists and operator algebraists call the full Fock space over V after the
Russian physicist Vladimir Fock. We view the zeroth tensor power V⊗0 as the
line spanned by a distinguished unit vector v∅ called the vacuum vector; v∅ is an
abstract vector which is not an element of V. Let A= EndF(V ). This is a unital
algebra, with unit the identity operator I : F(V )→ F(V ). To make A into a
noncommutative probability space we need an expectation. We get an expectation
by lifting the inner product on V to the inner product F(B) : F(V)×F(V)→ C

defined by

F(B)(v1⊗ · · ·⊗ vm,w1⊗ · · ·⊗wn)= δmn B(v1,w1) . . . B(vn,wn).

Note that this inner product makes A = EndF(B) into a ∗-algebra: for each
X ∈A, X∗ is that linear operator for which the equation

F(B)(Xs, t)= F(B)(s, X∗t)

holds true for every pair of tensors s, t∈F(V). The expectation on A is the linear
functional τ :A→ C defined by

τ [X ] = F(B)(Xv∅, v∅).

This functional is called vacuum expectation. It is unital because

τ [I ] = F(B)(Iv∅, v∅)= B(v∅, v∅)= 1.

Thus (A, τ ) is a noncommutative ∗-probability space.
To construct a semicircular element in (A, τ ), notice that to every nonzero

vector v∈V is naturally associated a pair of linear operators Rv, Lv :F(V )→F(V )
whose action on decomposable tensors is defined by tensoring:

Rv(v∅)= v,

Rv(v1⊗ · · ·⊗ vn)= v⊗ v1⊗ · · ·⊗ vn, n ≥ 1,

and insertion-contraction:
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Lv(v∅)= 0,

Lv(v1)= B(v1, v)v∅,

Lv(v1⊗ v2⊗ · · ·⊗ vn)= B(v1, v)v2⊗ · · ·⊗ vn, n ≥ 2.

Since Rv maps V⊗n
→ V⊗n+1 for each n ≥ 0, it is called the raising (or creation)

operator associated to v. Since Lv maps V⊗n
→ V⊗n−1 for each n ≥ 1 and kills

the vacuum, it is called the lowering (or annihilation) operator associated to v.
We have R∗v = Lv, and also

LvRw = B(w, v)I

for any vectors v,w ∈ V.
Let v ∈ V be a unit vector, B(v, v)= 1, and consider the self-adjoint random

variable
Xv = Lv+ Rv.

We claim that Xv has a semicircular distribution:

mn(Xv)= τ [Xn
v ] =

{
0 if n is odd,
Catn/2 if n is even.

To see this, we write the expansion

τ [Xn
v ] = τ [(Xv+ Yv)

n
] =

∑
W∈{Lv,Rv}

n

τ [W ],

where the summation is over all words of length n in the operators Lv, Rv. Only
a very small fraction of these words have nonzero vacuum expectation. Using
the relation LvRv = I to remove occurrences of the substring LvRv, we see that
any such word can be placed in normally ordered form

W = Rv . . . Rv︸ ︷︷ ︸
a

Lv . . . Lv︸ ︷︷ ︸
b

with a+ b ≤ n. Since the lowering operator kills the vacuum vector, the vacuum
expectation of W can only be nonzero if b = 0. On the other hand, since V⊗a is
F(B)-orthogonal to V⊗0 for a > 0, we must also have a = 0 to obtain a nonzero
contribution. Thus the only words which contribute to the above sum are those
whose normally ordered form is that of the identity operator. If we replace each
occurrence of Lv in W with a +1 and each occurrence of Rv in W with a −1,
the condition that W reduces to I becomes the condition that the corresponding
bitstring has total sum zero and all partial sums nonnegative. There are no such
bitstrings for n odd, and as we saw in Lecture One when n is even the required
bitstrings are counted by the Catalan number Catn/2.
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Now let V1 and V2 be B-orthogonal vector subspaces of V, each of dimension
at least one, and choose unit vectors x ∈ V1, y ∈ V2. According to the above
construction, the random variables

X = Lx+ Rx, Y = Ly+ Ry

are semicircular. In fact, they are freely independent. To prove this, we must
demonstrate that

τ [ f1(X)g1(Y ) . . . fk(X)gk(Y )] = 0

whenever f1, g1, . . . , fk, gk are polynomials such that

τ [ f1(X)] = τ [g1(Y )] = · · · = τ [ fk(X)] = τ [gk(Y )] = 0.

This hypothesis means that fi (X)= fi (Lx+ Rx) is a polynomial in Lx, Rx none
of whose terms are words which normally order to I , and similarly g j (Y ) =
g j (Ly + Ry) is a polynomial in Ly, Ry none of whose terms are words which
normally order to I . Consequently, the alternating product

f1(X)g1(Y ) . . . fk(X)gk(Y )

is a polynomial in the operators Lx, Rx, Ly, Ry whose terms are words W of the
form

W 1
x W 1

y . . .W
k
x W k

y ,

with W i
x a word in Lx, Rx which does not normally order to I and W j

y a word in
Ly, Ry which does not normally order to I . Thus the only way that W can have
a nonzero vacuum expectation is if we can use the relations LxRy = B(y, x)I
and LyRx = B(x, y)I to normally order W as

B(x, y)m B(y, x)n I,

with m, n nonnegative integers at least one of which is positive. But, since x, y

are B-orthogonal, this is the zero element of A, which has vacuum expectation
zero.

3.3. Algebraic versus asymptotic models. We have constructed algebraic mod-
els for a free arcsine pair and a free semicircular pair. Perhaps these should be
called examples rather than models, since the term model connotes some degree
of imprecision or ambiguity and algebra is a subject which allows neither.

Suppose that X, Y are free random variables living in an abstract noncommu-
tative probability space (A, τ ). An approximate model for this pair will consist
of a sequence (AN , τN ) of concrete or canonical noncommutative probability
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spaces together with a sequence of pairs X N , YN of random variables from these
spaces such that X N models X and YN models Y , i.e.,

τ [ f (X)] = lim
N→∞

τ [ f (X N )], τ [g(Y )] = lim
N→∞

τ [g(YN )]

for any polynomials f, g, and such that free independence holds in the large N
limit, i.e.,

lim
N→∞

τ [ f1(X N )g1(YN ) . . . fk(X N )gk(YN )] = 0

whenever f1, g1, . . . , fk, gk are polynomials such that

lim
N→∞

τN [ f1(X N )] = lim
N→∞

τN [g1(YN )] = · · · = lim
N→∞

τN [ fk(X N )]

= lim
N→∞

τN [gk(YN )] = 0.

The question of which noncommutative probability spaces are considered
concrete or canonical, and could therefore serve as potential models, is sub-
jective and determined by individual experience. Three examples of concrete
noncommutative probability spaces are:

Group probability spaces: (A, τ ) consists of the group algebra A = A[G]
of a group G, and τ is the coefficient-of-identity expectation. This noncom-
mutative probability space is commutative if and only if G is abelian.

Classical probability spaces: (A, τ ) consists of the algebra of complex ran-
dom variables A = L∞−(�,F, P) =

⋂
∞

p=1 L p(�,F, P) defined on a
Kolmogorov triple which have finite absolute moments of all orders, and τ
is the classical expectation τ [X ] = E[X ]. Classical probability spaces are
always commutative.

Matrix probability spaces: (A, τ ) consists of the algebra A = MN (C) of
N × N complex matrices X = [X (i j)], and expectation is the normalized
trace:

τ [X ] = trN [X ] =
X (11)+ · · ·+ X (N N )

N
.

This noncommutative probability space is commutative if and only if N = 1.

The first class of model noncommutative probability spaces, group probability
spaces, is algebraic and we are trying to move away from algebraic examples.
The second model class, classical probability spaces, has genuine randomness
but is commutative. The third model class, matrix probability spaces, has a
parameter N that can be pushed to infinity but has no randomness. By combining
classical probability spaces and matrix probability spaces we arrive at a class of
model noncommutative probability spaces which incorporate both randomness
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and a parameter which can be made large. Thus we are led to consider random
matrices.

The space of N × N complex random matrices is the noncommutative proba-
bility space (AN , τN )= (L∞−(�,F, P)⊗MN (C), E⊗ trN ). A random variable
X N in this space may be viewed as an N × N matrix whose entries X N (i j)
belong to the algebra L∞−(�,F, P). The expectation τN [X N ] is the expected
value of the normalized trace:

τN [X N ] = (E⊗ trN )[X N ] = E

[
X N (11)+ · · ·+ X N (N N )

N

]
.

We have already seen indications of a connection between free probability
and random matrices. The fact that Wigner’s semicircle law assumes the role of
the Gaussian distribution in free probability signals a connection between these
subjects. Another example is the occurrence of the Marchenko–Pastur distribution
in the free version of the Poisson limit theorem — this distribution is well-known
in random matrix theory in connection with the asymptotic eigenvalue distribution
of Wishart matrices. In Lecture One, we were led to free independence when
we tried to solve a counting problem associated to graphs drawn in the plane.
The use of random matrices to enumerate planar graphs has been a subject of
much interest in mathematical physics since the seminal work of Edouard Brézin,
Claude Itzykson, Giorgio Parisi and Jean-Bernard Zuber [Brézin et al. 1978],
which built on insights of Gerardus ’t Hooft. Then, when we examined the
dynamics of the semicircle flow, we found that the free analogue of the heat
equation is the complex Burgers equation. This partial differential equation
actually appeared in [Voiculescu 1986] before it emerged in random matrix
theory [Matytsin 1994] and the discrete analogue of random matrix theory, the
dimer model [Kenyon and Okounkov 2007].

In the remainder of these notes, we will model a pair of free random variables
X, Y living in an abstract noncommutative probability space using sequences
X N , YN of random matrices living in random matrix space. This is first carried out
in the important special case where X, Y are semicircular random variables, then
adapted to allow Y to have arbitrary distribution while X remains semicircular,
and finally relaxed to allow X, Y to have arbitrary specified distributions. The
random matrix models of free random variables which we describe below were
used by Voiculescu in order to resolve several previously intractable problems
in the theory of von Neumann algebras; see [Mingo and Speicher ≥ 2014;
Voiculescu et al. 1992] for more information. Random matrix models which ap-
proximate free random variables in a stronger sense than that described here were
subsequently used by Uffe Haagerup and Steen Thorbjørnsen [2005] to resolve
another operator algebras conjecture, this time concerning the Ext-invariant of
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the reduced C∗-algebra of F2. An important feature of the connection between
free probability and random matrices is that it can sometimes be inverted to
obtain information about random matrices using the free calculus. For each of
the three matrix models constructed we give an example of this type.

3.4. Random matrix model of a free semicircular pair. In this subsection we
construct a random matrix model for a free semicircular pair X, Y .

In Lecture One, we briefly discussed Wigner matrices. A real Wigner matrix
is a symmetric matrix whose entries are centred real random variables which
are independent up to the symmetry constraint. A complex Wigner matrix is a
Hermitian matrix whose entries are centred complex random variables which
are independent up to the complex symmetry constraint. Our matrix model for
a free semicircular pair will be built out of complex Wigner matrices of a very
special type: they will be GUE random matrices.

To construct a GUE random matrix X N , we start with a Ginibre matrix Z N .
Let (�,F, P) be a Kolmogorov triple. The N 2 matrix elements Z N (i j) ∈
L∞−(�,F, P) of a Ginibre matrix are iid complex Gaussian random variables
of mean zero and variance 1/N . Thus Z N is a random variable in the noncom-
mutative probability space (AN , τN )= (L∞−(�,F, P)⊗MN (C), E⊗ trN ). The
symmetrized random matrix X N =

1
2(Z N + Z∗N ) is again a member of random

matrix space. The joint distribution of the eigenvalues of X N can be explicitly
computed, and is given by

P(λN (1) ∈ I1, . . . , λN (N ) ∈ IN )∝

∫
I1

. . .

∫
IN

e−N 2H(λ1,...,λN ) dλ1 . . . dλN

for any intervals I1, . . . , IN ⊆ R, where H is the log-gas Hamiltonian [Forrester
2010]

H(λ1, . . . , λN )=
1
N

N∑
i=1

λ2
i

2
−

1
N 2

∑
1≤i 6= j≤N

log |λi − λ j |.

The random point process on the real line driven by this Hamiltonian is known as
the Gaussian Unitary Ensemble, and X N is termed a GUE random matrix. GUE
random matrices sit at the nexus of the two principal strains of complex random
matrix theory: they are simultaneously Hermitian Wigner matrices and unitarily
invariant matrices. The latter condition means that the distribution of a GUE
matrix in the space of N × N Hermitian matrices is invariant under conjugation
by unitary matrices. The spectral statistics of a GUE random matrix can be
computed in gory detail from knowledge of the joint distribution of eigenvalues,
and virtually any question can be answered. The universality programme in
random matrix theory seeks to show that, in the limit N →∞ and under mild
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hypotheses, Hermitian Wigner matrices as well as unitarily invariant Hermitian
matrices exhibit the same spectral statistics as GUE matrices.

Given the central role of the GUE in random matrix theory, it is fitting that our
matrix model for a free semicircular pair is built from a pair of independent GUE
matrices. The first step in proving this is to show that a single GUE matrix X N in
random matrix space (AN , τN ) is an asymptotic model for a single semicircular
random variable X living in an abstract noncommutative probability space (A, τ ).
In other words, we need to prove that

lim
N→∞

τN [Xn
N ] = lim

N→∞
(E⊗ trN )[Xn

N ] =

{
0 if n is odd,
Catn/2 if n is even.

In order to establish this, we will not need access to the eigenvalues of X N .
Rather, we work with the correlation functions of its entries.

Let X N = [X N (i j)] be a GUE random matrix. Mixed moments of the random
variables X N (i j), i.e., expectations of the form

E

[ n∏
k=1

X N (i(k) j (k))
]

where i, j are functions [n] → [N ], are called correlation functions. All correla-
tions may be computed in terms of pair correlations (i.e., covariances)

E[X N (i j)X N (kl)] = E[X N (i j)X N (lk)] =
δikδ jl

N
using a convenient combinatorial formula known as Wick’s formula. This for-
mula, named for the Italian physicist Gian-Carlo Wick, is yet another manifesta-
tion of the moment-cumulant/exponential formulas. It asserts that

E

[ n∏
k=1

X N (i(k) j (k)))
]
=

∑
π∈P2(n)

∏
{r,s}∈π

E[X N (i(r) j (r))X N (i(s) j (s))]

for any integer n ≥ 1 and functions i, j : [n] → [N ]. The sum on the right hand
side is taken over all pair partitions of [n], and the product is over the blocks
of π . For example,

E[X N (i(1) j (1))X N (i(2) j (2))X N (i(3) j (3))] = 0

since there are no pairings on three points, whereas

E[X N (i(1) j (1))X N (i(2) j (2))X N (i(3) j (3))X N (i(4) j (4))]

= E[X N (i(1) j (1))X N (i(2) j (2))] E[X N (i(3) j (3))X N (i(4) j (4))]

+ E[X N (i(1) j (1))X N (i(3) j (3))] E[X N (i(2) j (2))X N (i(4) j (4))]

+ E[X N (i(1) j (1))X N (i(4) j (4))] E[X N (i(2) j (2))X N (i(3) j (3))],
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corresponding to the three pair partitions

{1, 2} t {3, 4}, {1, 3} t {2, 4}, {1, 4} t {2, 3}

of [4]. The Wick formula is a special feature of Gaussian random variables
which, ultimately, is a consequence of the moment formula

E[Xn
] =

∑
π∈P2(n)

1

for a single standard real Gaussian X which we proved in Lecture One. A proof
of the Wick formula may be found in Alexandre Zvonkin’s article [1997].

We now compute the moments of the trace of a GUE matrix X N using the
Wick formula, and then take the N →∞ limit. We have

τN [Xn
N ] =

1
N

∑
i :[n]→[N ]

E[X N (i(1)i(2))X N (i(2)i(3))) . . . X N (i(n)i(1))]

=
1
N

∑
i :[n]→[N ]

E

[ n∏
k=1

X N (i(k)iγ (k))
]
,

where γ = (1 2 . . . n) is the full forward cycle in the symmetric group S(n). Let
us apply the Wick formula to each term of this sum, and then use the covariance
structure of the matrix elements. We obtain

E

[ n∏
k=1

X N (i(k)iγ (k))
]
=

∑
π∈P2(n)

∏
{r,s}∈π

E[X N (i(r)iγ (r))X N (i(s)iγ (s))]

= N−n/2
∑

π∈P2(n)

∏
{r,s}∈π

δi(r)iγ (s)δi(s)iγ (r).

Now, any pair partition of [n] can be viewed as a product of disjoint two-cycles
in S(n). For example, the three pair partitions of [4] enumerated above may be
viewed as the fixed-point-free involutions

(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)

in S(4). This is a useful shift in perspective because partitions are inert combi-
natorial objects whereas permutations are functions which act on points. Our
computation above may thus be rewritten as

E

[ n∏
k=1

X N (i(k)iγ (k))
]
= N−n/2

∑
π∈P2(n)

n∏
k=1

δi(k)iγπ(k).

Putting this all together and changing order of summation, we obtain
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τN [Xn
N ] = N 1−n/2

∑
i :[n]→[N ]

∑
π∈P2(n)

n∏
k=1

δi(k)iγπ(k)

= N 1−n/2
∑

π∈P2(n)

∑
i :[n]→[N ]

n∏
k=1

δi(k)iγπ(k),

from which we see that the internal sum is nonzero if and only if the function
i : [n] → [N ] is constant on the cycles of the permutation γπ ∈ S(n). In order
to build such a function, we must specify one of N possible values to be taken
on each cycle. We thus obtain

τN [Xn
N ] =

∑
π∈P2(n)

N c(γ π)−1−n/2,

where c(σ ) denotes the number of cycles in the disjoint cycle decomposition of
a permutation σ ∈ S(n). For example, when n = 3 we have τn[X3

N ] = 0 since
there are no fixed-point-free involutions in S(3). In order to compute τN [X4

N ],
we first compute the product of γ with all fixed-point-free involutions in S(4),

(1 2 3 4)(1 2)(3 4)= (1 3)(2)(4)

(1 2 3 4)(1 3)(2 4)= (1 4 3 2)

(1 2 3 4)(1 4)(2 3)= (2 4)(1)(3),

and from this we obtain

τN [X4
N ] = 2+

1
N 2 .

More generally, τN [Xn
N ] = 0 whenever n is odd since there are no pairings on

an odd number of points. When n = 2k is even the product γπ has the form

γπ = (1 2 . . . 2k)(s1 t1)(s2 t2) . . . (sk tk).

In this product, each transposition factor (si ti ) acts either as a “cut” or as a
“join”, meaning that it may either cut a cycle of (1 2 . . . 2k)(s1 t1) . . . (si−1 ti−1)

in two, or join two disjoint cycles together into one. More geometrically, we can
view the product γπ as a walk of length k on the (right) Cayley graph of S(2k);
this walk is nonbacktracking and each step taken augments the distance from the
identity permutation by ±1 (see Figure 15).

A cut (step towards the identity) occurs when si and ti reside on the same
cycle in the disjoint cycle decomposition of (1 2 . . . 2k)(s1 t1) . . . (si−1 ti−1),
while a join (step away from the identity) occurs when si and ti are on different
cycles. In general, the number of cycles in the product will be

c(γ π)= 1+ #cuts− #joins,
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Figure 15. Walks corresponding to the products γπ in S(4).

so c(γ π) is maximal at c(γ π)= 1+k when it is acted on by a sequence of k cut
transpositions. In this case we get a contribution of N 1+k−1−k

= N 0 to τ [Xn
N ].

In fact, we always have

#cuts− #joins= k− 2g

for some nonnegative integer g, leading to a contribution of the form N−2g and
resulting in the formula

τN [X2k
N ] =

∑
g≥0

εg(2k)
N 2g

where εg(2k) is the number of products γπ of the long cycle with a fixed-point-
free involution in S(2k) which terminate at a point of the sphere ∂B(id, 2k −
1− 2g). We are only interested in the first term of this expansion, ε0(2k), which
counts fixed-point-free involutions in S(2k) entirely composed of cuts. It is not
difficult to see that (s1 t1) . . . (sk tk) is a sequence of cuts for γ if and only if it
corresponds to a noncrossing pair partition of [2k], and as we know the number
of these is Catk .

We have now shown that

lim
N→∞

τN [Xn
N ] = lim

N→∞
(E⊗ trN )[Xn

N ] =

{
0 if n is odd,
Catn/2 if n is even.

for a GUE matrix X N . This establishes that X N is an asymptotic random matrix
model of a single semicircular random variable X . It remains to use this fact to
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construct a sequence of pairs of random matrices which model a pair X, Y of
freely independent semicircular random variables.

What should we be looking for? Let X (1), X (2) be a pair of free semicircular
random variables. Let e : [n] → [2] be a function, and apply the free moment-
cumulant formula to the corresponding mixed moment:

τ [X (e(1)) . . . X (e(n))
] =

∑
π∈NC(n)

∏
B∈π

κ|B|(X (e(i))
: i ∈ B)

=

∑
π∈NC2(n)

∏
{r,s}∈π

δe(r)e(s).

This reduction occurs because X (1), X (2) are free, so that all mixed free cumulants
in these variables vanish. Moreover, these variables are semicircular so only
order two pure cumulants survive. We can think of the function e as a bicolouring
of [n]. The formula for mixed moments of a semicircular pair then becomes

τ [X (e(1)) . . . X (e(n))
] =

∑
π∈NC

(e)
2 (n)

1,

where π ∈ NC
(e)
2 (n) is the set of noncrossing pair partitions of [n] which pair

elements of the same colour. This is very much like the Wick formula for
Gaussian expectations, but with Gaussians replaced by semicirculars and sum-
mation restricted to noncrossing pairings. We need to realize this structure in the
combinatorics of GUE random matrices.

This construction goes as follows. Let Z (e)N (i j), 1 ≤ e ≤ 2, 1 ≤ i, j ≤ N
be a collection of 2N 2 iid centred complex Gaussian random variables of vari-
ance 1/N . Form the corresponding Ginibre matrices Z (1)N = [Z

(1)
N (i j)], Z (2)N =

[Z (2)N (i j)] and GUE matrices X (1)
N =

1
2(Z

(1)
N +(Z

(1)
N )∗), X (2)

N =
1
2(Z

(2)
N +(Z

(2)
N )∗).

The resulting covariance structure of matrix elements is

E[X (p)
N (i j)X (q)

N (kl)] = E[X (p)
N (i j)X (q)

N (lk)] =
δikδ jlδpq

N
.

We can prove that X (1)
N , X (2)

N are asymptotically free by showing that

lim
N→∞

τN [X
(e(1))
N . . . X (e(n))

N ] = |NC
(e)
2 (n)|,

and this can in turn be proved using the Wick formula and the above covariance
structure. Computations almost exactly like those appearing in the one-matrix
case lead to the formula

τN [X
(e(1))
N . . . X (e(n))

N ] =

∑
π∈P

(e)
2 (n)

N c(γ π)−1−n/2,
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with the summation being taken over the set P(e)2 (n) of pairings on [n] which
respect the colouring e : [n]→ [2]. Arguing as above, each such pairing makes a
contribution of the form N−2g for some g≥0, and those which make contributions
on the leading order N 0 correspond to sequences of cut transpositions for the
full forward cycle π , which we know come from noncrossing pairings. So in the
limit N →∞ this expectation converges to |NC(e)2 (n)|, as required.

3.5. Random matrix model of a free pair with one semicircle. In the previous
subsection we modelled a free pair of semicircular random variables X, Y liv-
ing in an abstract noncommutative probability space (A, τ ) using a sequence
of independent GUE random matrices X N , YN living in random matrix space
(AN , τN ).

It is reasonable to wonder whether we have not overlooked the possibility of
modelling X, Y in a simpler way, namely using deterministic matrices. Indeed,
we have

τ [Xn
] =

∫
R

tnµX (dt)

with

µX (dt)=
1

2π

√
4− t2 dt

the Wigner semicircle measure, and this fact leads to a deterministic matrix
model for X . For each N ≥ 1, define the N -th classical locations L N (1) <
L N (2) < · · ·< L N (N ) of µX implicitly by∫ L N (i)

−2
µX (dt)=

i
N
.

That is, we start at t =−2 and integrate along the semicircle until a mass of i/N
is achieved, at which time we mark off the corresponding location L N (i) on the
t-axis. The measure µN which places mass 1/N at each of the N -th classical
locations converges weakly to µX as N→∞. Consequently, the diagonal matrix
X N with entries X N (i j)= δi j L N (i) is a random variable in deterministic matrix
space (MN (C), trN ) which models X ,

lim
N→∞

trN [Xn
N ] = τ [X

n
].

Since X and Y are equidistributed, putting YN := X N we have that X N models
X and YN models Y . However, X N and YN are not asymptotically free. Indeed,
asymptotic freeness of X N and YN would imply that

lim
N→∞

trN [X N YN ] = lim
N→∞

trN [X N ] lim
N→∞

trN [X N ] = 0,
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but instead we have

trN [X N YN ] =
L N (1)2+ · · ·+ L N (N )2

N
,

the mean squared classical locations of the Wigner measure, which is strictly
positive and increasing in N . Thus while X N and YN model X and Y respectively,
they cannot model the free relation between them. However, this does not
preclude the possibility that a pair of free random variables can be modelled by
one random and one deterministic matrix.

Let X and Y be a pair of free random variables with X semicircular, and Y of
arbitrary distribution. Let X N be a sequence of GUE matrices modelling X , and
suppose that YN is a sequence of deterministic matrices modelling Y ,

lim
N→∞

trN [Y n
N ] = τ [Y

n
].

X N lives in random matrix space (AN , τN )= (L∞−(�,F, P)⊗MN (C), E⊗trN )

while YN lives in deterministic matrix space (MN (C), trN ), so a priori it is
meaningless to speak of the potential asymptotic free independence of X N and
YN . However, we may think of a deterministic matrix as a random matrix whose
entries are constant random variables in L∞−(�,F, P). This corresponds to
an embedding of deterministic matrix space in random matrix space satisfying
τN |MN (C) = (E⊗ trN )|MN (C) = trN . From this point of view, YN is a random
matrix model of Y and we can consider the possibility that X N , YN ∈ AN are
asymptotically free with respect to τN . We now show that this is indeed the case.

As in the previous subsection, we proceed by identifying the combinatorial
structure governing the target pair X, Y and then looking for this same structure in
the N→∞ asymptotics of X N , YN . Our target is a pair of free random variables
with X semicircular and Y arbitrary. Understanding their joint distribution means
understanding the collection of mixed moments

τ [X p(1)Y q(1) . . . X p(n)Y q(n)
],

with n ≥ 1 and p, q : [n]→ {0, 1, 2, . . . }. This amounts to understanding mixed
moments of the form

τ [XY q(1) . . . XY q(n)
],

since we can artificially insert copies of Y 0
= 1A to break up powers of X greater

than one. We can expand this expectation using the free moment-cumulant
formula and simplify the resulting expression using the fact that mixed cumulants
in free random variables vanish. Further simplification results from the fact that,
since X is semicircular, its only nonvanishing pure cumulant is κ2(X)= 1. This
leads to a formula for τ [XY q(1) . . . XY q(n)

] which is straightforward but whose
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statement requires some notions which we have not covered (in particular, the
complement of a noncrossing partition; see [Nica and Speicher 2006]). However,
in the case where τ is a tracial expectation, meaning that τ [AB] = τ [B A], the
formula in question can be stated more simply as

τ [XY q(1) . . . XY q(n)
] =

∑
π∈NC2(n)

τπγ [Y q(1), . . . , Y q(n)
].

Here, as in the last subsection, we think of a pair partition π ∈ P2(n) as a product
of disjoint two-cycles in the symmetric group S(n), and γ is the full forward
cycle (1 2 . . . n). Given a permutation σ ∈S(n), the expression τσ [A1, . . . , AN ]

is defined to be the product of τ extended over the cycles of σ . For example,

τ(1 6 2)(4 5)(3)[A1, A2, A3, A4, A5, A6] = τ [A1 A6 A2]τ [A4 A5]τ [A3].

This definition is kosher since τ is tracial. We now have our proof strategy: we
will prove that X N , YN are asymptotically free by showing that

lim
N→∞

τN [X N Y q(1)
N . . . X N Y q(n)

N ] =

∑
π∈NC2(n)

τπγ [Y q(1), . . . , Y q(n)
].

The computation proceeds much as in the last section — we expand everything
in sight and apply the Wick formula. We have

τN [X N Y q(1)
N . . . X N Y q(n)

N ]

=
1
N

∑
a

E
[
X N (a(1)a(2))Y

q(1)
N (a(2)a(3)) · · ·

× X N (a(2n− 1)a(2n))Y q(n)
N (a(2n)a(1))

]
,

the summation being over all functions a : [2n] → [N ]. Let us reparametrize
each term of the sum with i, j : [n] → [N ] defined by

(a(1), a(2), . . . , a(2n− 1), a(2n))= (i(1), j (1), . . . , i(n), j (n)).

Our computation so far becomes

τN [X N Y q(1)
N . . . X N Y q(n)

N ]

=
1
N

∑
i, j

E

[ n∏
k=1

X N (i(k) j (k))
] n∏

k=1

Y q(k)
N ( j (k)iγ (k)).

Applying the Wick formula, the calculation evolves as follows:
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τN [X N Y q(1)
N . . . X N Y q(n)

N ]

=
1
N

∑
i, j

∑
π∈P2(n)

∏
{r,s}∈π

E[X N (i(r) j (r))X N (i(s) j (s))]
n∏

k=1

Y q(k)
N ( j (k)iγ (k))

= N−1−n/2
∑
i, j

∑
π∈P2(n)

n∏
k=1

δi(k) jπ(k)Y
q(k)
N ( j (k)iγ (k))

= N−1−n/2
∑

π∈P2(n)

∑
j

n∏
k=1

Y q(k)
N ( j (k) jπγ (k))

= N−1−n/2
∑

π∈P2(n)

Trπγ [Y
q(1)
N , . . . , Y q(n)

N ]

=

∑
π∈P2(n)

N c(πγ )−1−n/2 trπγ [Y
q(1)
N , . . . , Y q(n)

N ].

As in the previous subsection, the dominant contributions to this sum are of order
N 0 and come from those pair partitions π ∈ P2(n) for which c(πγ ) is maximal,
and these are the noncrossing pairings. Hence we obtain

lim
N→∞

τN [X N Y q(1)
N . . . X N Y q(n)

N ] =

∑
π∈NC2(n)

τπγ [Y q(1), . . . , Y q(n)
],

as required.

3.6. Random matrix model of an arbitrary free pair. In the last section we
saw that a pair of free random variables can be modelled by one random and
one deterministic matrix provided that at least one of the target variables is
semicircular. In this case, the semicircular target is modelled by a sequence of
GUE random matrices.

In this section we show that any pair of free random variables can be modelled
by one random and one deterministic matrix, provided each target variable can
be individually modelled by a sequence of deterministic matrices. The idea is to
randomly rotate one of the deterministic matrix models so as to create the free
relation.

Let X, Y be a pair of free random variables living in an abstract noncommuta-
tive probability space (A, τ ). We make no assumption on their moments. What
we assume is the existence of a pair of deterministic matrix models

τ [Xn
] = lim

N→∞
trN [Xn

N ], τ [Y n
] = lim

N→∞
trN [Y n

N ].

If X, Y happen to have distributions µX , µY which are compactly supported
probability measures on R, then such models can always be constructed. In
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particular, this will be the case if X, Y are bounded self-adjoint random variables
living in a ∗-probability space.

As in the previous subsection, we view X N , YN as random matrices with
constant entries so that they reside in random matrix space (AN , τN ), with the E

part of τN = E⊗ trN acting trivially. As we saw above, there is no guarantee that
X N , YN are asymptotically free. On the other hand, we also saw that special pairs
of free random variables can be modelled by one random and one deterministic
matrix. Therefore it is reasonable to hope that making X N genuinely random
might lead to asymptotic freeness. We have to randomize X N in such a way that
its moments will be preserved. This can be achieved via conjugation by a unitary
random matrix UN ∈AN ,

X N 7→UN X N U∗N .

The deterministic matrix X N and its randomized version UN X N U∗N have the
same moments since

τN [(UN X N U∗N )
n
] = (E⊗ trN )[(UN X N U∗N )

n
]

= (E⊗ trN )[UN Xn
N U∗N ]

= (E⊗ trN )[U∗N UN Xn
N ]

= (E⊗ trN )[Xn
N ]

= τN [Xn
N ].

Consequently, the sequence UN X N U∗N is a random matrix model for X .
We aim to prove that UN X N U∗N and YN are asymptotically free. Since we are

making no assumptions on the limiting variables X, Y , we cannot verify this by
looking for special structure in the limiting mixed moments of UN X N U∗N and
YN , as we did above. Instead, we must verify asymptotic freeness directly, using
the definition:

lim
N→∞

τN [ f1(UN X N U∗N )g1(YN ) . . . fn(UN X N U∗N )gn(YN )] = 0

whenever f1, g1, . . . , fn, gn are polynomials such that

lim
N→∞

τN [ f1(UN X N U∗N )] = lim
N→∞

τn[g1(YN )] = · · ·

= lim
N→∞

τN [ fn(UN X N U∗N )] = lim
N→∞

τn[gn(YN )] = 0.

Though the brute force verification of this criterion may seem an impossible task,
we will see that it can be accomplished for a well-chosen sequence of unitary
random matrices UN . Let us advance as far as possible before specifying UN

precisely.
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As an initial reduction, note the identity

τN [ f1(UN X N U∗N )g1(YN ) . . . fn(UN X N U∗N )gn(YN )]

= τN [UN f1(X N )U∗N g1(YN ) . . .UN fn(X N )U∗N gn(YN )].

Since the fi and g j are polynomials and τN is linear, the right hand side of this
equation may be expanded as a sum of monomial expectations,

τN [UN f1(X N )U∗N g1(YN ) . . .UN fn(X N )U∗N gn(YN )]

=

∑
p,q

c(pq)τN [UN X p(1)
N U∗N Y q(1)

N . . .UN X p(n)
N U∗N Y q(n)

N ]

weighted by some scalar coefficients c(pq), the sum being over functions p :
[n] → {0, . . . ,max deg fi }, q : [n] → {0, . . . ,max deg g j }. Each monomial
expectation can in turn be expanded as

τN [UN X p(1)
N U∗N Y q(1)

N . . .UN X p(n)
N U∗N Y q(n)

N ]

=
1
N

∑
a

E
[
UN (a(1)a(2))X

p(1)
N (a(2)a(3)) . . .

×U∗N (a(4n− 1)a(4n))Y q(n)
N (a(4n)a(1))

]
=

1
N

∑
a

E
[
UN (a(1)a(2))X

p(1)
N (a(2)a(3)) . . .

×U N (a(4n)a(4n− 1))Y q(n)
N (a(4n)a(1))

]
.

Let us reparametrize the summation index a : [4n] → [N ] by a quadruple of
functions i, j, i ′, j ′ : [n] → [N ] according to

(a(1), a(2), a(3), a(4), . . . , a(4n− 3), a(4n− 2), a(4n− 1), a(4n))

= (i(1), j (1), j ′(1), i ′(1), . . . , i(n), j (n), j ′(n), i ′(n)).

Our monomial expectations then take the more streamlined form

τN [UN X p(1)
N U∗N Y q(1)

N . . .UN X p(n)
N U∗N Y q(n)

N ]

=
1
N

∑
i, j,i ′, j ′

E

[ n∏
k=1

UN (i(k) j (k))U N (i ′(k) j ′(k))
]

×

n∏
k=1

X p(k)
N ( j (k) j ′(k))Y q(k)

N (i ′(k)iγ (k)),

where as always γ = (1 2 . . . n) is the full forward cycle in the symmetric group
S(n). In order to go any further with this calculation, we must deal with the
correlation functions
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E

[ n∏
k=1

UN (i(k) j (k))U N (i ′(k) j ′(k))
]
.

of the matrix elements of UN . We would like to have an analogue of the Wick
formula which will enable us to address these correlation functions. A formula
of this type is known for random matrices sampled from the Haar probability
measure on the unitary group U(N ).

Haar-distributed unitary matrices are the second most important class of ran-
dom matrices after GUE matrices. Like GUE matrices, they can be constructively
obtained from Ginibre matrices. Let Z̃ N =

√
N Z N be an N × N random matrix

whose entries Z̃ N (i j) are iid complex Gaussian random variables of mean zero
and variance one. This is a renormalized version of the Ginibre matrix which
we previously used to construct a GUE random matrix. The Ginibre matrix Z̃ N

is almost surely nonsingular. Applying the Gram–Schmidt orthonormalization
procedure to the columns of Z̃ N , we obtain a random unitary matrix UN whose
distribution in the unitary group U(N ) is given by the Haar probability measure.
The entries UN (i j) are bounded random variables, so UN is a noncommutative
random variable living in random matrix space (AN , τN ). The eigenvalues
λN (1) = eiθN (1), . . . , λN (N ) = eiθN (N ), 0 ≤ θN (1) ≤ · · · ≤ θN (N ) ≤ 2π of UN

form a random point process on the unit circle with joint distribution

P(θN (1) ∈ I1, . . . , θN (N ) ∈ IN )∝

∫
I1

. . .

∫
IN

e−N 2H(θ1,...,θN ) dθ1 . . . dθN

for any intervals I1, . . . , IN ⊆ [0, 2π ], where H is the log-gas Hamiltonian
[Forrester 2010]

H(θ1, . . . , θN )=−
1

N 2

∑
1≤i 6= j≤N

log |eiθi − eiθ j |.

The random point process on the unit circle driven by this Hamiltonian is known
as the Circular Unitary Ensemble, and UN is termed a CUE random matrix. As
with GUE random matrices, almost any question about the spectrum of CUE
random matrices can be answered using this explicit formula; see, for example,
[Diaconis 2003] for a survey of many interesting results.

We are not interested in the eigenvalues of CUE matrices, but rather in the
correlation functions of their matrix elements. These can be handled using
a Wick-type formula known as the Weingarten formula, after the American
physicist Donald H. Weingarten.3 Like the Wick formula, the Weingarten formula
is a combinatorial rule which reduces the computation of general correlation

3Further information on Weingarten and his colleagues in the first Fermilab theory group may
be found at http://bama.ua.edu/∼lclavell/Weston/.
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functions to the computation of a special class of correlations. Unfortunately,
the Weingarten formula is more complicated than the Wick formula. It reads

E

[ n∏
k=1

UN (i(k) j (k))U N (i ′(k) j ′(k))
]

=

∑
ρ,σ∈S(n)

δiσ,i ′δ jρ, j ′E

[ n∏
k=1

UN (kk)U N (kρ−1σ(k))
]
.

Note that his formula only makes sense when N ≥ n, and instead of a sum
over fixed-point-free involutions we are faced with a double sum over all of
S(n). Worse still, the Weingarten formula does not reduce our problem to
the computation of pair correlators, but only to the computation of arbitrary
permutation correlators

E

[ n∏
k=1

UN (kk)U N (kπ(k))
]
, π ∈ S(n),

and these have a rather complicated structure. Their computation is the subject of
a large literature both in physics and mathematics, a unified treatment of which
may be found in [Collins et al. ≥ 2014]. We delay dealing with these averages
for the moment and press on in our calculation.

We return to the expression

τN [UN X p(1)
N U∗N Y q(1)

N . . .UN X p(n)
N U∗N Y q(n)

N ]

=
1
N

∑
i, j,i ′, j ′

E

[ n∏
k=1

UN (i(k) j (k))U N (i ′(k) j ′(k))
]

×

n∏
k=1

X p(k)
N ( j (k) j ′(k))Y q(k)

N (i ′(k)iγ (k)),

and apply the Weingarten formula. The calculation evolves as follows:

τN [UN X p(1)
N U∗N Y q(1)

N . . .UN X p(n)
N U∗N Y q(n)

N ]

=
1
N

∑
i, j,i ′, j ′

∑
ρ,σ∈S(n)

δiσ,i ′δ jρ, j ′E

[ n∏
k=1

UN (kk)U N (kρ−1σ(k))
]

×

n∏
k=1

X p(k)
N ( j (k) j ′(k))Y q(k)

N (i ′(k)iγ (k))

=
1
N

∑
ρ,σ∈S(n)

E

[ n∏
k=1

UN (kk)U N (kρ−1σ(k))
]

×

∑
i ′, j

n∏
k=1

X p(k)
N ( j (k) jρ(k))Y q(k)

N (i ′(k)iσ−1γ (k))



378 JONATHAN NOVAK

=
1
N

∑
ρ,σ∈S(n)

E

[ n∏
k=1

UN (kk)U N (kρ−1σ(k))
]

×Trρ(X
p(1)
N , . . . , X p(n)

N )Trσ−1γ (Y
p(1)
N , . . . , Y p(n)

N )

=

∑
ρ,σ∈S(n)

E

[ n∏
k=1

UN (kk)U N (kρ−1σ(k))
]

N c(ρ)+c(σ−1γ )−1 trρ(X
p(1)
N , . . . , X p(n)

N )

× trσ−1γ (Y
p(1)
N , . . . , Y p(n)

N ).

At this point we are forced to deal with the permutation correlators

E

[ n∏
k=1

UN (kk)U N (kπ(k))
]
.

Perhaps the most appealing presentation of these expectations is as a power series
in N−1. It may be shown [Novak 2010] that

E

[ n∏
k=1

UN (kk)U N (kπ(k))
]
=

1
N n

∞∑
r=0

(−1)r
cn,r (π)

N r ,

for any π ∈S(n), where the coefficient cn,r (π) equals the number of factorizations

π = (s1 t1) . . . (sr tr )

of π into r transpositions (si ti ) ∈ S(n), si < ti , which have the property that

t1 ≤ · · · ≤ tr .

This series is absolutely convergent for N ≥ n, but divergent for N < n. This
will not trouble us since we are looking for N →∞ asymptotics with n fixed.
Indeed, let |π | = n− c(π) denote the distance from the identity permutation to
π in the Cayley graph of S(n). Then, since any permutation is either even or
odd, we have

E

[ n∏
k=1

UN (kk)U N (kπ(k))
]
=

1
N n

∞∑
r=0

(−1)r
cn,r (π)

N r

=
(−1)|π |

N n+|π |

∞∑
g=0

cn,|π |+2g(π)

N 2g

=
a(π)

N n+|π | + O
(

1
N n+|π |+2

)
,

where a(π)= (−1)|π |cn,|π |(π) is the leading asymptotics. We may now continue
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our calculation:

τN [UN X p(1)
N U∗N Y q(1)

N . . .

τN [UN X p(1)
N U∗N Y q(1)

N . . .UN X p(n)
N U∗N Y q(n)

N ]

=

∑
ρ,σ∈S(n)

(
a(ρ−1σ))

N n+|ρ−1σ |
+ O

(
1

N n+|ρ−1σ |+2

))
N c(ρ)+c(σ−1γ )−1

× trρ(X
p(1)
N , . . . , X p(n)

N ) trσ−1γ (Y
p(1)
N , . . . , Y p(n)

N )

=

∑
ρ,σ∈S(n)

(
a(ρ−1σ)+ O

(
1

N 2

))
N |γ |−|ρ|−|ρ

−1σ |−|σ−1γ |

× trρ(X
p(1)
N , . . . , X p(n)

N ) trσ−1γ (Y
p(1)
N , . . . , Y p(n)

N ).

Putting everything together, we have shown that

τN [UN f1(X N )U∗N g1(YN ) . . .UN fn(X N )U∗N gn(YN )]

=

∑
ρ,σ∈S(n)

(
a(ρ−1σ)+ O

(
1

N 2

))
N |γ |−|ρ|−|ρ

−1σ |−|σ−1γ |

× trρ( f1(X N ), . . . , fn(X N )) trσ−1γ (g1(YN ), . . . , gn(YN )),

and it remains to show that the N →∞ limit of this complicated expression is
zero. To this end, consider the order |γ | − |ρ| − |ρ−1σ | − |σ−1γ | of the ρ, σ
term in this sum. The positive part, |γ | = n − 1, is simply the length of any
geodesic joining the identity permutation to γ in the Cayley graph of S(n). The
negative part, −|ρ| − |ρ−1σ | − |σ−1γ |, is the length of a walk from the identity
to γ made up of three legs: a geodesic from id to ρ, followed by a geodesic from
ρ to σ , followed by a geodesic from σ to γ . Thus the order of the ρ, σ term is
at most N 0, and this occurs precisely when ρ and σ lie on a geodesic from id
to γ ; see Figure 16. Thus

lim
N→∞

τN [UN f1(X N )U∗N g1(YN ) . . .UN fn(X N )U∗N gn(YN )]

=

∑
|ρ|+|ρ−1σ |+|σ−1γ |=|γ |

a(ρ−1σ)τρ( f1(X), . . . , fn(X))τσ−1γ (g1(Y ), . . . , gn(Y )).

Since
τ [ f1(X)] = τ [g1(Y )] = · · · = τ [ fn(X)] = τ [gn(Y )] = 0,

in order to show that the sum on the right has all terms equal to zero it suffices to
show that the condition |ρ| + |ρ−1σ | + |σ−1γ | = |γ | forces either ρ or σ−1γ to
have a fixed point. This is because τρ and τσ−1γ are products determined by the
cycle structure of the indexing permutation. Since ρ, σ lie on a geodesic id→ γ ,
we have |ρ|+ |σ−1γ | ≤ |γ | = n− 1, so that one of ρ or σ−1γ is a product of at
most (n− 1)/2 transpositions. In the extremal case, all of these transpositions
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ρ

σ

γ

id

ρ

σ

γ

id

n-1

Figure 16. Only geodesic paths survive in the large N limit.

are joins, leading to a permutation consisting of an (n − 1)-cycle and a fixed
point.

3.7. GUE+GUE. Imagine that we had been enumeratively lazy in our construc-
tion of the GUE matrix model of a free semicircular pair, and had only shown
that two iid GUE matrices X (1)

N , X (2)
N are asymptotically free without determining

their individual limiting distributions. We could then appeal to the free central
limit theorem to obtain that the limit distribution of the random matrix

SN =
X (1)

N + · · ·+ X (n)
N

√
N

,

where the X (i)
N are iid GUE samples, is standard semicircular. On the other hand,

since the matrix elements of the X (i)
N are independent Guassians whose variances

add, we see that the rescaled sum SN is itself an N × N GUE random matrix
for each finite N . Thus we recover Wigner’s semicircle law (for GUE matrices)
from the free central limit theorem.

3.8. GUE+deterministic. Let X N be an N×N GUE random matrix. Let YN be
an N × N deterministic Hermitian matrix whose spectral measure νN converges
weakly to a compactly supported probability measure ν. Let σ be the limit
distribution of the random matrix X N + YN . Since X N , YN are asymptotically
free, we have

σ = µ� ν,

where µ is the Wigner semicircle.
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3.9. Randomly rotated + diagonal. Consider the 2N × 2N diagonal matrix

D2N =


1
−1

. . .

1
−1


whose diagonal entries are the first 2N terms of an alternating sequence of ±1,
all other entries being zero. Let U2N be a 2N × 2N CUE random matrix, and
consider the random Hermitian matrix

A2N =U2N D2N U∗2N + D2N .

Let µ2N denote the spectral measure of A2N . We claim that µ2N converges
weakly to the arcsine distribution

µ(dt)=
1

π
√

4− t2
dt, t ∈ [−2, 2],

as N →∞.
Proof: Set X2N =U2N D2N U∗2N and Y2N = D2N . Then X N , YN is a random

matrix model for a pair of free random variables X, Y each of which has the
±1-Bernoulli distribution

1
2
δ−1+

1
2
δ+1.

Thus the limit distribution of their sum is

Bernoulli�Bernoulli= Arcsine.
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[Novak and Śniady 2011] J. Novak and P. Śniady, “What is. . . a free cumulant?”, Notices Amer.
Math. Soc. 58:2 (2011), 300–301.

[Pólya 1921] G. Pólya, “Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die
Irrfahrt im Straßennetz”, Math. Ann. 84:1-2 (1921), 149–160.

[Rota 1964] G.-C. Rota, “On the foundations of combinatorial theory, I: theory of Möbius
functions”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340–368.

[Roth 2009] M. Roth, “Counting covers of an elliptic curve”, 2009, http://www.mast.queensu.ca/
~mikeroth/notes/covers.pdf.

[Saloff-Coste 2001] L. Saloff-Coste, “Probability on groups: random walks and invariant diffu-
sions”, Notices Amer. Math. Soc. 48:9 (2001), 968–977.

[Samuel 1980] S. Samuel, “U(N ) integrals, 1/N , and the De Wit–’t Hooft anomalies”, J. Math.
Phys. 21:12 (1980), 2695–2703.

[Shlyakhtenko 2005] D. Shlyakhtenko, “Notes on free probability theory”, preprint, 2005. arXiv
0504063

[Soshnikov 1999] A. Soshnikov, “Universality at the edge of the spectrum in Wigner random
matrices”, Comm. Math. Phys. 207:3 (1999), 697–733.

[Speed 1983] T. P. Speed, “Cumulants and partition lattices”, Austral. J. Statist. 25:2 (1983),
378–388.

[Stanley 1999] R. P. Stanley, Enumerative combinatorics, vol. 2, Cambridge Studies in Advanced
Mathematics 62, Cambridge University Press, Cambridge, 1999.

[Stanley 2007] R. P. Stanley, “Increasing and decreasing subsequences and their variants”, pp.
545–579 in International Congress of Mathematicians, I, edited by J. L. V. Marta Sanz-Solé,
Javier Soria and J. Verdera, Eur. Math. Soc., Zürich, 2007.

[Stanley 2013] R. P. Stanley, “Catalan addendum”, 2013, http://www-math.mit.edu/~rstan/ec/
catadd.pdf.

[Tao 2010] T. Tao, “254A, notes 5: free probability”, 2010, http://terrytao.wordpress.com/2010/
02/10/245a-notes-5-free-probability.

[Tao and Vu 2011] T. Tao and V. Vu, “Random matrices: universality of local eigenvalue statistics”,
Acta Math. 206:1 (2011), 127–204.

[Voiculescu 1986] D. Voiculescu, “Addition of certain noncommuting random variables”, J. Funct.
Anal. 66:3 (1986), 323–346.

[Voiculescu et al. 1992] D. V. Voiculescu, K. J. Dykema, and A. Nica, Free random variables,
CRM Monograph Series 1, American Mathematical Society, Providence, RI, 1992.

[Wigner 1958] E. P. Wigner, “On the distribution of the roots of certain symmetric matrices”, Ann.
of Math. (2) 67 (1958), 325–327.

[Zvonkin 1997] A. Zvonkin, “Matrix integrals and map enumeration: an accessible introduction”,
Math. Comput. Modelling 26:8-10 (1997), 281–304.

jnovak@math.mit.edu Department of Mathematics, Massachusetts Institute
of Technology, 77 Massachusetts Avenue,
Cambridge, 02139-4307, United States

http://dx.doi.org/10.4064/bc89-0-14
http://www.ams.org/notices/201102/rtx110200300p.pdf
http://dx.doi.org/10.1007/BF01458701
http://dx.doi.org/10.1007/BF01458701
http://dx.doi.org/10.1007/BF00531932
http://dx.doi.org/10.1007/BF00531932
http://www.mast.queensu.ca/~mikeroth/notes/covers.pdf
http://www.ams.org/notices/200109/fea-saloff.pdf
http://www.ams.org/notices/200109/fea-saloff.pdf
http://dx.doi.org/10.1063/1.524386
http://msp.org/idx/arx/0504063
http://msp.org/idx/arx/0504063
http://dx.doi.org/10.1007/s002200050743
http://dx.doi.org/10.1007/s002200050743
http://dx.doi.org/10.1111/j.1467-842X.1983.tb00391.x
http://dx.doi.org/10.1017/CBO9780511609589
http://dx.doi.org/10.4171/022-1/21
http://www-math.mit.edu/~rstan/ec/catadd.pdf
http://terrytao.wordpress.com/2010/02/10/245a-notes-5-free-probability
http://dx.doi.org/10.1007/s11511-011-0061-3
http://dx.doi.org/10.1016/0022-1236(86)90062-5
http://dx.doi.org/10.2307/1970008
http://dx.doi.org/10.1016/S0895-7177(97)00210-0
mailto:jnovak@math.mit.edu



	Introduction
	1. Lecture one: discovering the free world
	1.1. Counting connected graphs
	1.2. Cumulants and connectedness
	1.3. Cumulants and independence
	1.4. Central limit theorem by cumulants
	1.5. Geometrically connected graphs
	1.6. Noncrossing cumulants
	1.7. Noncrossing independence
	1.8. The medium is the message
	1.9. A brief history of the free world

	2. Lecture two: exploring the free world
	2.1. Random walks on the integers
	2.2. Pólya's theorem
	2.3. Kesten's problem
	2.4. The classical algorithm
	2.5. Voiculescu's algorithm
	2.6. Solution of Kesten's problem
	2.7. Spectral measures and free convolution
	2.8. Free Poisson limit theorem
	2.9. Semicircle flow

	3. Lecture three: modelling the free world
	3.1. Algebraic model of a free arcsine pair
	3.2. Algebraic model of a free semicircular pair
	3.3. Algebraic versus asymptotic models
	3.4. Random matrix model of a free semicircular pair
	3.5. Random matrix model of a free pair with one semicircle
	3.6. Random matrix model of an arbitrary free pair
	3.7. GUE+GUE
	3.8. GUE+deterministic
	3.9. Randomly rotated+diagonal

	References

