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Exact solutions of the Kardar–Parisi–Zhang
equation and weak universality for directed

random polymers
JEREMY QUASTEL

We survey recent results of convergence to random matrix distributions of
directed random polymer free energy fluctuations in the intermediate disor-
der regime. These are obtained by passing through the exact formulas for
fluctuations of KPZ at finite time.

1. Directed random polymers

Directed random polymers were introduced in the mid eighties as models of defect
lines in media with impurities (see [Kardar 2007] for a review). They became
popular in physics because besides their applicability as models and inherent
interest, they are a case where the replica methods developed for the more difficult
spin glass models give consistent answers. We will be interested in the 1+ 1
dimensional case. We are given a random environment ξ(i, j) of independent
identically distributed real random variables for i, j in Z+ × Z. Given the
environment, the energy of an n-step nearest neighbour walk x = (x1, . . . , xn) is

H ξ
n (x)=

n∑
i=1

ξ(i, xi ). (1)

The polymer measure on such walks starting at 0 at time 0 and ending at x at
time n is then defined by

Pβ,ξn,x (x)=
1

Zβ,ξ (n, x)
e−βH ξ

n (x) P(x). (2)

The parameter β > 0, which measures how much the path prefers to travel
through areas of low energy, is called the inverse temperature. P is the uniform
probability measure on such walks, and Z(n, x) is the partition function

Zβ,ξ (n, x)=
∑

x
e−βH ξ

n (x)P(x). (3)
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This is the point-to-point free energy. If we do not specify the endpoint, we get
the point-to-line free energy, which we denote by Zβ,ξ (n).

What happens is that for large n that path is localized about a path which is
special for that n; it has lateral fluctuations of size n2/3. In terms of the free
energy, the key conjecture is that its fluctuations are of size n1/3 and given by
Tracy–Widom distributions. More precisely, as long as E[ξ(i, j)5

−
]<∞, it is

expected [Biroli et al. 2007] that there exist c and σ depending on β > 0 and the
distribution of the environment such that

log Zβ,ξ (n, x)− cn
σn1/3 ⇒ FGUE. (4)

Here FGUE is the Tracy–Widom limiting distribution of the largest eigenvalue
from the Gaussian orthogonal ensemble. For the point-to-line free energy Zβ,ξ (n),
the analogous statement is conjectured to hold except that now the asymptotic
fluctuations are governed by the GOE Tracy–Widom distribution.

Remarkably, not a single case was known. The conjecture is extrapolation
from the β =∞ case with exponential or geometric distribution, where exact
calculations are possible [Johansson 2000].

2. Continuum random polymer

The (point-to-point) continuum random polymer is the probability measure Pβ,ξT,x
on continuous functions x(t) on [0, T ] with x(0)= 0 and x(T )= x and formal
density

exp
(
−β

∫ T

0
ξ(t, x(t)) dt − 1

2

∫ T

0
|ẋ(t)|2 dt

)
, (5)

where ξ(t, x), t ≥ 0, x ∈ R is space-time white noise.1 One can think of it as an
elastic band in a random energy background.

One can also think of the continuum random polymer as having a density

exp
(
−β

∫ T

0
ξ(t, x(t)) dt

)
(6)

with respect to the Brownian bridge. Neither prescription makes mathematical
sense; however, if one smooths out the noise, so that it does make sense, and
removes the smoothing, there is a limiting measure on continuous functions
C[0, T ] which we call Pβ,ξT,x . Of course, the measure depends on the background
randomness ξ just as in the discrete case. So it is a random probability measure
on C[0, T ]. In fact, it is a Markov process, and one can define it directly as

1That is, the distribution valued Gaussian variable such that for smooth functions ϕ of compact
support in R+×R, 〈ϕ, ξ〉 :=

∫
R+×Rϕ(t, x)ξ(t, x) dx dt are mean zero Gaussian with covariance

E[〈ϕ1, ξ〉〈ϕ1, ξ〉] = 〈ϕ1, ϕ2〉.
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follows. Let z(s, x, t, y) denote the solution of the stochastic heat equation after
time s ≥ 0 starting with a delta function at x ,

∂t z = 1
2∂

2
y z−βξ z, t > s, y ∈ R, (7)

z(s, x, s, y)= δx(y). (8)

It is important that they are all using the same noise ξ . Note that the stochastic heat
equation is well-posed [Walsh 1986]. The solutions look locally like exponential
Brownian motion in space. They are Hölder 1

2 − δ for any δ > 0 in x and 1
4 − δ

for any δ > 0 in t . In fact, exponential Brownian motion eB(x) is invariant up
to multiplicative constants, that is, if one starts (7) with eB(x) where B(x) is a
two-sided Brownian motion, then there is a (random) C(t) so that C(t)z(t, x) is
another exponential of two sided Brownian motion [Bertini and Giacomin 1997].

Pβ,ξT,x is then defined to be the probability measure on continuous functions
x(t) on [0, T ] with x(0)= 0 and x(T )= x and finite dimensional distributions

Pβ,ξT,x (x(t1) ∈ dx1, . . . , x(tn) ∈ dxn)

=
z(0,0, t1, x1)z(t1, x1, t2, x2) · · · z(tn−1, xn−1, tn, xn)z(tn, xn,T, x)

z(0,0,T, x)
dx1 · · · dxn

for 0< t1 < t2 < · · ·< tn < T .
One can check these are a.s. a consistent family of finite dimensional distribu-

tions. It is basically because of the Chapman–Kolmogorov equation∫
R

z(s, x, τ, u)z(τ, u, t, y) du = z(s, x, t, y), (9)

which is a consequence of the linearity of the stochastic heat equation.
We can also define the joint measure P

β

T,x = Pβ,ξT,x ⊗ Q(ξ) where Q is the
distribution of the ξ , that is, the probability measure of the white noise.

Theorem 2.1 [Alberts et al. 2014]. (i) The measures Pβ,ξT,x and P
β

T,x are well-
defined (the former, almost surely).

(ii) Pβ,ξT,x is a Markov process supported on Hölder continuous functions of
exponent 1

2 − δ for any δ > 0, for Q almost every ξ .

(iii) Let tn
k = k2−n . Then with P

β

T,x probability one, we have that for all 0≤ t ≤ 1,

b2n tc∑
k=1

(x(tn
k )− x(tn

k−1))
2
→ t (10)

as n →∞; i.e., the quadratic variation exists, and is the same as P0
T,x

(Brownian bridge).

(iv) Pβ,ξT,x is singular with respect to P0
T,x (Brownian bridge) for almost every ξ .
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So the continuum random polymer looks locally like, but is singular with
respect to, Brownian motion. One can also define the point-to-line continuum
random polymer P

β

T , in the same way as in the discrete case. For large T , one
expects Var

P
β
T
(x(T ))∼ T 4/3 in the point-to-line case or Var

P
β

T,0
(x(T/2))∼ T 4/3

in the point-to-point case. Here the variance is over the random background as
well as Pβ,ξT,x . The conditional variance given ξ should be much smaller.

3. Connection with KPZ

In the previous section we saw that if z(t, x) is the solution of (7) with initial
data (8) then h(t, x)=−β−1 log z(t, x) can be thought of as the free energy of
the point-to-point continuum random polymer2. It is also the Hopf–Cole solution
of the Kardar–Parisi–Zhang equation

∂t h =− 1
2β
−1(∂x h)2+ 1

2∂
2
x h+ ξ. (11)

The equation was introduced by Kardar, Parisi and Zhang [1986], and has
become the canonical model for random interface growth in physics. Formally,
it is equivalent to the stochastic Burgers equation

∂t u =− 1
2β
−1∂x u2

+
1
2∂

2
x u+ ∂xξ, (12)

which, if things were nice, would be satisfied by u = ∂x h. Since log z(t, x) looks
locally like Brownian motion, (11) is not well-posed (see [Hairer 2013] for recent
progress on this question). If ξ were smooth, then the Hopf–Cole transformation
takes (7) to (11). For white noise ξ , we take h(t, x) = −β−1 log z(t, x) with
z(t, x) a solution of (7) to be the definition of the solution of (11). It is known
that these are the solutions one obtains if one smooths the noise, solves the
equation, and takes a limit as the smoothing is removed.3 They are also the
solutions obtained as the limit of discrete models in the weakly asymmetric limit.

To understand the weakly asymmetric limit we consider how the KPZ equation
(11) rescales. Let

hε(t, x)= εah(ε−zt, ε−1x). (13)

Recall the white noise has the distributional scale invariance

ξ(t, x) dist
= ε(z+1)/2ξ(εzt, ε1x). (14)

Hence, setting β = 1 for clarity,

∂t hε =− 1
2ε

2−z−a(∂x hε)2+ 1
2ε

2−z∂2
x hε + εa− 1

2 z+ 1
2 ξ. (15)

2Because of the conditioning it is perhaps more appropriate to call h(t, x)− x2

2t − log
√

2π t
the free energy.

3After subtraction of a diverging constant.
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Because the paths of h are locally Brownian in x we are forced to take a = 1
2 to

see nontrivial limiting behaviour. This forces us to take

z = 3
2 . (16)

The nontrivial limiting behaviour of models in the KPZ universality class are all
obtained in this scale.

On the other hand, if we started with KPZ with a weak asymmetry

∂t h =− 1
2ε

1/2(∂x h)2+ 1
2∂

2
x h+ ξ, (17)

then a diffusive scaling,

hε(t, x)= ε1/2h(ε−2t, ε−1x), (18)

would bring us back to the standard KPZ equation (11). In this way, KPZ and
the continuum random polymer can be obtained from discrete models having an
adjustable asymmetry.

4. Invariance principle for directed random polymers

Consider the distribution of the rescaled polymer path

xε(t) := εxbε−2tc, 0≤ t ≤ T (19)

under the measure Pε
1/2β,ξ

ε−2T,0 from (2). Note that the asymmetry here is the temper-
ature which has been scaled into a crossover regime near zero. Again we have a
joint measure on paths and noise which we call P

β,ε

T,0.

Theorem 4.1 [Alberts et al. 2014]. Assume that E[ξ ] = 0 and E[ξ 8
−
]<∞. Then

the P
β,ε

T,0, ε > 0 are a tight family and the limiting measure is the continuum
random polymer P

21/2β

T,0 . In particular, for the free energy (3),

log Z ε
1/2β,ξ (bε−2tc, 0)−ε−2λ̂(ε1/2β)t+ 1

2 log(ε−2/4)→ log z21/2β(t, x), (20)

where zβ is the solution of the stochastic heat equation ∂t z = 1
2∂

2
y z−βξ z with

initial data zβ(0, x)= δ0(x), and

λ̂(β)= 1
2 E[ξ 2

]β2
+

1
3!E[ξ

3
]β3
+

1
4!E[ξ

4
]β4 (21)

are the first four terms in the expansion of the log-moment generating function of
the random variables ξ = ξ(i, j).

The condition E[ξ 8
−
] < ∞ is not optimal. One expects it to be true if

E[ξ 6
−
]<∞ and false otherwise. The reason is that there are O(ε−3) sites at play

in the heat cone. Each −ξ should not be larger than ε−1/2 or else it becomes an
attractive point for the polymer. By Chebyshev inequality P(ξ <−ε−1/2)=o(ε3),
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if E[ξ 6
−
]<∞, so we do not observe any such attractive points in the heat cone.

The reason for the condition E[ξ 8
−
]<∞ is that there are no more than O(ε−4)

sites in all, so the argument becomes easier because we don’t have to do tight
estimates at the edge of the heat cone. Similar arguments, together with the
conjectured localization of the polymer path lead to the conjectured E[ξ 5

−
]<∞

condition for the strong noise limit (4).

5. Asymmetric simple exclusion

The asymmetric simple exclusion process is a Markov process whose state
space consists of particle configurations on Z with at most one particle per site.
Each particle attempts to walk as a continuous time simple random walk on Z,
independently of the other particles, attempting jumps to the left as a Poisson
process with rate q and to the right as a Poisson process with rate p = 1− q.
However, the jumps only take place if the target site is unoccupied. Because of
the continuous time one does not have to face the issue of possible ties. The
process can be thought of as a height function hASEP(t, x) given as

hASEP(t, x)=


2N (t)+

∑
0<y≤x η̂(t, y), x > 0,

2N (t), x = 0,
2N (t)−

∑
0<y≤x η̂(t, y), x < 0,

(22)

where N (t) records the net number of particles to cross from site 1 to site 0
in time t and where η̂(t, x) equals 1 if there is a particle at x at time t and
−1 otherwise. The state space is now random walk paths in x , and the special
definition with the N (t) means that the entire dynamics for the height function
is that local maxima become local minima at rate q and local minima become
local maxima at rate p, independently for different nearest neighbour pairs.

The special case in which the initial data has all sites to the right of the origin
occupied and all sites to the left unoccupied is called the corner growth model.

Theorem 5.1 (Tracy–Widom ASEP formula [Tracy and Widom 2009]). Con-
sider the corner growth model with q > p such that q + p = 1. Let γ = q − p
and τ = p/q. For m = b 1

2(s+ x)c, t ≥ 0 and x ∈ Z,

P(hγ (t, x)≥ s)=
∫

Sτ+

dµ
µ

∞∏
k=0

(1−µτ k) det(I +µJt,m,x,µ)L2(0η), (23)

where Sτ+ is a positively oriented circle centred at zero of radius strictly between
τ and 1, and where the kernel of the determinant is given by

Jt,m,x,µ(η, η
′)=

∫
0ζ

exp{9t,m,x(ζ )−9t,m,x(η
′)}

f (µ, ζ/η′)
η′(ζ − η)

dζ. (24)
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Here η and η′ are on 0η, a circle centred at zero of radius strictly between τ
and 1; the ζ integral is on 0ζ , a circle centred at zero of radius strictly between 1
and τ−1; and

f (µ, z)=
∞∑

k=−∞

τ k

1− τ kµ
zk,

9t,m,x(ζ )=3t,m,x(ζ )−3t,m,x(ξ),

3t,m,x(ζ )=−x log(1− ζ )+
tζ

1− ζ
+m log ζ.

(25)

6. Weakly asymmetric limit and KPZ crossover formula

It has been known since [Bertini and Giacomin 1997] that KPZ can be obtained
as the weakly asymmetric limit of simple exclusion. In our case, we need this
for the corner growth initial conditions which is not covered by their results.

Theorem 6.1 [Amir et al. 2011]. For the corner growth model,

ε1/2hASEP
q−p=ε1/2(ε

−2t, ε−1x)− 1
2ε
−3/2
−

1
8ε
−1/2
− log(1

2ε
−1/2) → −log z(t, x),

(26)
where z(t, x) is the solution of the stochastic heat equation (7) with z(0, x) =
δ0(x) and β = 1.

The expression h(t, x)=−log z(t, x) is called the narrow wedge solution of
KPZ and governs growth models with curved initial data.

In February 2010, Amir, Corwin and the author [Amir et al. 2011] and
Sasamoto and Spohn [2010] independently studied the limit (26) of (24) by
steepest descent. The methods were basically the same, however Amir et al.
supply a mathematical proof, while Sasamoto and Spohn used physical arguments
at various points. This gives the following exact formula for KPZ. Consider
the solution of the stochastic heat equation with z(0, x)= δ0(x) and β = 1 and
define At by

z(t, x)= 1
√

2π t
exp

(
−

x2

2t
+

t
24
+ t1/3At(t−2/3x)

)
. (27)

It is not hard to check that for each t , At(x) is stationary in x . It is called the
crossover Airy2 process.

Theorem 6.2 [Amir et al. 2011; Sasamoto and Spohn 2010].

P(t1/3At(x)≤ s)=
∫
∞

−∞

e−es−a
det(I−Kt)Tr((I−Kt)

−1 ProjAi)L2(t−1/3a,∞) da,

where

Kt(x, y)=
∫
∞

−∞

1
1− e−t1/3s

Ai(x + s)Ai(y+ s) ds. (28)
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In particular,
P(At(x)≤ s)

t→∞
−→ FGUE(s). (29)

From (20) and (29) we obtain:

Corollary 6.3 (weak universality for directed random polymers in 1+ 1 dimen-
sions). Assume that ω are i.i.d. with E[ξ 8

−
]<∞. Then as n→∞ followed by

β→∞,

log Zn−1/4β,ξ (n, 0)− nλ̂(βn−1/4)+ log
√
πn/2+ 2β4/3

2β4/3
(d)
−→ FGUE.

Here λ̂ is defined in (21). As explained before the corollary is expected to be
true exactly under the condition E[ξ 6

−
]<∞ which we hope to achieve in future

work.
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