
Commutative Algebra and Noncommutative Algebraic Geometry, I
MSRI Publications
Volume 67, 2015

Syzygies, finite length modules,
and random curves

CHRISTINE BERKESCH AND FRANK-OLAF SCHREYER

We apply the theory of Gröbner bases to the computation of free resolutions
over a polynomial ring, the defining equations of a canonically embedded curve,
and the unirationality of the moduli space of curves of a fixed small genus.

Introduction

While a great deal of modern commutative algebra and algebraic geometry has
taken a nonconstructive form, the theory of Gröbner bases provides an algorithmic
approach. Algorithms currently implemented in computer algebra systems, such
as Macaulay2 [Grayson and Stillman] and Singular [Decker et al. 2011], already
exhibit the wide range of computational possibilities that arise from Gröbner
bases.

In these lectures, we focus on certain applications of Gröbner bases to syzygies
and curves. In Section 1, we use Gröbner bases to give an algorithmic proof
of Hilbert’s syzygy theorem, which bounds the length of a free resolution over
a polynomial ring. In Section 2, we prove Petri’s theorem about the defining
equations for canonical embeddings of curves. We turn in Section 3 to the
Hartshorne–Rao module of a curve, showing by example how a module M
of finite length can be used to explicitly construct a curve whose Hartshorne–
Rao module is M . Section 4 then applies this construction to the study of the
unirationality of the moduli space Mg of curves of genus g.

1. Hilbert’s syzygy theorem

Let R := K[x1, . . . , xn] be a polynomial ring in n variables over a field K. A
free resolution of a finitely generated R-module M is a complex of free modules
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· · · → Rβ2 → Rβ1 → Rβ0 such that the following is exact:

· · · → Rβ2 → Rβ1 → Rβ0 → M→ 0.

Hilbert’s syzygy theorem (Theorem 1.1). Let R = K[x1, . . . , xn] be a polyno-
mial ring in n variables over a field K. Every finitely generated R-module M has
a finite free resolution of length at most n.

In this section, we give an algorithmic Gröbner basis proof of Hilbert’s syzygy
theorem, whose strategy is used in modern computer algebra systems like
Macaulay2 and Singular for syzygy computations. Gröbner bases were intro-
duced by Gordan [1899] to provide a new proof of Hilbert’s basis theorem. We
believe that Gordan could have given the proof of Hilbert’s syzygy theorem
presented here.

Definition 1.2. A (global) monomial order on R is a total order > on the set of
monomials in R such that:

(1) if xα > xβ , then xγ xα > xγ xβ for all γ ∈ Nn; and

(2) xi > 1 for all i .

Given a global monomial order, the leading term of a nonzero polynomial
f =

∑
α fαxα ∈ R is defined to be

L( f ) := fβxβ, where xβ :=max
α
{xα | fα 6= 0}.

For convenience, set L(0) := 0.

Theorem 1.3 (division with remainder). Let > be a global monomial order on
R, and let f1, . . . , fr ∈ R be nonzero polynomials. For every g ∈ R, there exist
uniquely determined g1, . . . , gr ∈ R and a remainder h ∈ R such that:

(1) g = g1 f1+ · · ·+ gr fr + h.

(2a) No term of gi L( fi ) is divisible by any L( f j ) with j < i .

(2b) No term of h is a multiple of L( fi ) for any i .

Proof. The result is obvious if f1, . . . , fr are monomials, or more generally, if
each fi has only a single nonzero term. Thus there is always a unique expression

g =
r∑

i=1

g(1)i L( fi )+ h(1),

if we require that g(1)1 , . . . , g(1)r and h(1) satisfy (2a) and (2b). By construction,
the leading terms of the summands of the expression

r∑
i=1

g(1)i fi + h(1)
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are distinct, and the leading term in the difference g(1)= g−(
∑r

i=1 g(1)i fi+h(1))
cancels. Thus L(g(1)) < L(g), and recursion applies. �

The remainder h of the division of g by f1, . . . , fr depends on the order of
f1, . . . , fr , since the partition of the monomials in R given by (2a) and (2b)
depends on this order. Even worse, it might not be the case that if g∈〈 f1, . . . , fr 〉,
then h = 0. A Gröbner basis is a system of generators for which this desirable
property holds.

Definition 1.4. Let I ⊂ R be an ideal. The leading ideal of I (with respect to a
given global monomial order) is

L(I ) := 〈L( f ) | f ∈ I 〉.

A finite set f1, . . . , fr of polynomials is a Gröbner basis when

〈L(〈 f1, . . . , fr 〉)〉 = 〈L( f1), . . . ,L( fr )〉.

Gordan’s proof of Hilbert’s basis theorem now follows from the easier state-
ment that monomial ideals are finitely generated. In combinatorics, this result is
called Dickson’s lemma [1913].

If f1, . . . , fr is a Gröbner basis, then by definition, a polynomial g lies in
〈 f1, . . . , fr 〉 if and only if the remainder h under division of g by f1, . . . , fr

is zero. In particular, in this case, the remainder does not depend on the order
of f1, . . . , fr , and the monomials xα /∈ 〈L( f1), . . . ,L( fr )〉 represent a K-vector
space basis of the quotient ring R/〈 f1, . . . , fr 〉, a fact known as Macaulay’s
theorem [1916]. For these reasons, it is desirable to have a Gröbner basis on
hand.

The algorithm that computes a Gröbner basis for an ideal is due to Buchberger
[1965; 1970]. Usually, Buchberger’s criterion is formulated in terms of so-called
S-pairs. In the treatment below, we do not use S-pairs; instead, we focus on the
partition of the monomials of R induced by L( f1), . . . ,L( fr ) via (2a) and (2b)
of Theorem 1.9.

Given polynomials f1, . . . , fr , consider the monomial ideals

Mi := 〈L( f1), . . . ,L( fi−1)〉 : L( fi ) for i = 1, . . . , r . (1-1)

For each minimal generator xα of an Mi , let h(i,α) denote the remainder of xα fi

divided by f1, . . . , fr (in this order).

Buchberger’s criterion (Theorem 1.5) [Buchberger 1970]. Let f1, . . . , fr ∈ R
be a collection of nonzero polynomials. Then f1, . . . , fr form a Gröbner basis if
and only if all of the remainders h(i,α) are zero.

We will prove this result after a few more preliminaries.
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Example 1.6. Consider the ideal generated by the 3× 3 minors of the matrixx1 x2 x3 x4 x5

y1 y2 y3 y4 y5

z1 z2 z3 z4 z5

 .
Using the lexicographic order on K[x1, . . . , z5], the leading terms of the maximal
minors of this matrix and the minimal generators of the corresponding monomial
ideals Mi are listed in the following table.

x1 y2z3 M1 = 0
x1 y2z4 M2 = 〈z3〉

x1 y3z4 M3 = 〈y2〉

x2 y3z4 M4 = 〈x1〉

x1 y2z5 M5 = 〈z3, z4〉

x1 y3z5 M6 = 〈y2, z4〉

x2 y3z5 M7 = 〈x1, z4〉

x1 y4z5 M8 = 〈y2, y3〉

x2 y4z5 M9 = 〈x1, y3〉

x3 y4z5 M10 = 〈x1, x2〉

Note that only 15 of the possible
(10

2

)
= 45 S-pairs are needed to test Buchberger’s

criterion.

Exercise 1.7. Show that the maximal minors of the matrix in Example 1.6 form
a Gröbner basis by using the Laplace expansions of suitable 4× 4 matrices.

In order to prove Hilbert’s syzygy theorem and Buchberger’s criterion, we
now extend the notion of a monomial order to vectors of polynomials.

Definition 1.8. A monomial of a free module Rr with basis e1, . . . , er is an ex-
pression xαei . A (global) monomial order on Rr is a total order of the monomials
of Rr such that:

(1) if xαei > xβe j , then xγ xαei > xγ xβe j for all i, j and γ ∈ Nn;

(2) xαei > ei for all i and α 6= 0.

Usually, it is also the case that xαei > xβei if and only if xαe j > xβe j , i.e.,
the order on the monomials in the components induce a single monomial order
on R.

Thanks to Definition 1.8, we may now speak of the leading term of a vector
of polynomials. In this situation, the division theorem still holds.

Theorem 1.9 (division with remainder for vectors of polynomials). Let > be a
global monomial order on Rr0 , and let F1, . . . , Fr ∈ Rr0 be nonzero polynomial
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vectors. For every G ∈ Rr0 , there exist uniquely determined g1, . . . , gr ∈ R and
a remainder H ∈ Rr0 such that:

(1) G = g1 F1+ · · ·+ gr Fr + H.

(2a) No term of gi L(Fi ) is a multiple of an L(F j ) with j < i .

(2b) No term of H is a multiple of L(Fi ) for any i . �

Definition 1.10. Generalizing the earlier definition, given a global monomial or-
der on Rr , the leading term of a nonzero vector of polynomials F = ( f1, . . . , fr )

is defined to be the monomial

L(F) := fβi x
βi ei , where xβi =max

αi
{xαi | fαi x

αi is a nonzero term of fi }.

A finite set F1, . . . , Fs of vectors of polynomials in Rr is a Gröbner basis when

〈L(〈F1, . . . , Fs〉)〉 = 〈L(F1), . . . ,L(Fs)〉.

Proof of Buchberger’s criterion. The forward direction follows by definition. For
the converse, assume that all remainders h(i,α) vanish. Then for each minimal
generator xα in an Mi , there is an expression

xα fi = g(i,α)1 f1+ · · ·+ g(i,α)r fr (1-2)

such that no term of g(i,α)j L( f j ) is divisible by an L( fk) for every k < j , by
condition (2a) of Theorem 1.3. (Of course, for a suitable j < i , one of the terms
of g(i,α)j L( f j ) coincides with xαL( fi ). This is the second term in the usual S-pair
description of Buchberger’s criterion.) Now let e1, . . . , er ∈ Rr denote the basis
of the free module, and let ϕ : Rr

→ R be defined by ei 7→ fi . Then by (1-2),
elements of the form

G(i,α)
:= −g(i,α)1 e1+ · · ·+ (xα − g(i,α)i )ei + · · ·+(−g(i,α)r )er (1-3)

are in the kernel of φ. In other words, the G(i,α)’s are syzygies between
f1, . . . , fr .

We now proceed with a division with remainder in the free module Rr , using
the induced monomial order >1 on Rr defined by

xαei >1 xβe j ⇐⇒ xαL( fi ) > xβL( f j ) or
xαL( fi )= xβL( f j ) (up to a scalar) with i > j.

(1-4)

With respect to this order,
L(G(i,α))= xαei

because the term cxβL( f j ) that cancels against xαL( fi ) in (1-2) satisfies j < i ,
and all other terms of any g(i,α)k L( fk) are smaller.
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Now consider an arbitrary element

g = a1 f1+ · · ·+ ar fr ∈ 〈 f1, . . . , fr 〉.

We must show that L(g) ∈ 〈L( f1), . . . ,L( fr )〉. Let g1e1 + · · · + gr er be the
remainder of a1e1+ · · ·+ ar er divided by the collection of G(i,α) vectors. Then

g = a1 f1+ · · ·+ ar fr = g1 f1+ · · ·+ gr fr

because the G(i,α) are syzygies, and g1, . . . , gr satisfy (2a) of Theorem 1.3
when a1, . . . , an are divided by f1, . . . , fr , by the definition of the Mi in (1-1).
Therefore, the nonzero initial terms

L(g j f j )= L(g j )L( f j )

are distinct and no cancellation can occur among them. The proof is now complete
because

L(g) :=max
j
{L(g j )L( f j )} ∈ 〈L( f1), . . . ,L( fr )〉. �

Corollary 1.11 [Schreyer 1980]. If F1, . . . , Fr1 ∈ Rr0 are a Gröbner basis, then
the G(i,α) of (1-3) form a Gröbner basis of ker(ϕ1 : Rr1 → Rr0) with respect
to the induced monomial order >1 defined in (1-4). In particular, F1, . . . , Fr1

generate the kernel of ϕ1.

Proof. As mentioned in the proof of Buchberger’s criterion, the coefficients
g1, . . . , gr of a remainder g1e1+· · ·+ gr er resulting from division by the G(i,α)

satisfy condition (2a) of Theorem 1.3 when divided by f1, . . . , fr . Hence, no
cancellation can occur in the sum g1L( f1)+· · ·+gr L( fr ), and g1 f1+· · · gr fr =0
only if g1 = . . . = gr = 0. Therefore, the collection of L(G(i,α)) generate the
leading term ideal L(kerϕ1). �

We have reached the goal of this section, an algorithmic proof of Hilbert’s syzygy
theorem.

Proof of Hilbert’s syzygy theorem. Let M be a finitely generated R-module with
presentation

Rr ϕ
→ Rr0 → M→ 0.

Regard ϕ as a matrix and, thus, its columns as a set of generators for imϕ.
Starting from these generators, compute a minimal Gröbner basis F1, . . . , Fr1

for imϕ with respect to some global monomial >0 order on Rr0 . Now consider
the induced monomial order >1 on Rr1 , and let G(i,α)

∈ Rr1 denote the syzygies
obtained by applying Buchberger’s criterion to F1, . . . , Fr1 . By Corollary 1.11,
the G(i,α) form a Gröbner basis for the kernel of the map ϕ1 : Rr1 → Rr0 , so we
may now repeat this process.
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Let ` be the maximal k such that the variable xk occurs in some leading term
L(F j ). Sort F1, . . . , Fr1 so that whenever j < i , the exponent of x` in L(F j )

is less than or equal to the exponent of x` in L(Fi ). In this way, none of the
variables x`, . . . , xn will occur in a leading term L(G(i,α)). Thus the process
will terminate after at most n steps. �

Note that there are a number of choices allowed in the algorithm in the proof
of Hilbert’s syzygy theorem. In particular, we may order each set of Gröbner
basis elements as we see fit.

Example 1.12. Consider the ideal I = 〈 f1, . . . , f5〉 ⊂ R = K[w, x, y, z] gener-
ated by the polynomials

f1 = w
2
− xz, f2 = wx − yz, f3 = x2

−wy, f4 = xy− z2, f5 = y2
−wz.

To compute a finite free resolution of M = R/I using the method of the proof
of Hilbert’s syzygy theorem, we use the degree reverse lexicographic order on
R. The algorithm successively produces three syzygy matrices ϕ1, ϕ2, and ϕ3,
which we present in a compact way as follows.

w2
− xz −x y 0 z 0 −y2

+wz
wx− yz w −x −y 0 z z2

x2
−wy −z w 0 −y 0 0

x y− z2 0 0 w x −y yz
y2
−wz 0 0 −z −w x w2

0 y −x w −z 1
−y2
+wz z2

−wy yz −w2 x

All initial terms are printed in bold. The first column of this table is the
transpose of the matrix ϕ1. It contains the original generators for I which,
as Buchberger’s criterion criterion shows, already form a Gröbner basis for I .
The syzygy matrix ϕ2 resulting from the algorithm is the 5× 6 matrix in the
middle of our table. Note that, for instance, M4 = 〈w, x〉 can be read from the
4th row of ϕ2.

By Corollary 1.11, we know that the columns of ϕ2 form a Gröbner basis for
ker(ϕ1)with respect to the induced monomial order on R5. Buchberger’s criterion
criterion applied to these Gröbner basis elements yields a 6× 2 syzygy matrix
ϕ3, whose transpose is printed in the two bottom rows of the table above. Note
that there are no syzygies on the two columns of ϕ3 because the initial terms of
these vectors lie with different basis vectors.

To summarize, we obtain a free resolution of the form

0−→ R2 ϕ3
−→ R6 ϕ2

−→ R5 ϕ1
−→ R −→ R/I −→ 0.
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Observe that, in general, once we have the initial terms of a Gröbner basis for
I , we can easily compute the initial terms of the Gröbner bases for all syzygy
modules, that is, all bold face entries of our table. This gives us an idea on the
amount of computation that will be needed to obtain the full free resolution.

If the polynomial ring is graded, say R = S =K[x0, . . . , xn] is the homoge-
neous coordinate ring of Pn , and M is a finitely generated graded S-module,
then the resolution computed through the proof of Hilbert’s syzygy theorem is
homogeneous as well. However, this resolution is typically not minimal. In
Example 1.12, the last column of ϕ2 is in the span of the previous columns, as
can be seen from the first row of ϕt

3.

Example 1.13. Recall that in Example 1.6, we considered the ideal I of 3× 3
minors of a generic 3×5 matrix over S=K[x1, . . . , z5]with the standard grading.
The algorithm in the proof of Definition 1.2 produces a resolution of S/I of the
form

0−→ S(−5)6 −→ S(−4)15
−→ S(−3)10

−→ S −→ S/I −→ 0

because I is generated by 10 Gröbner basis elements, there are altogether 15
minimal generators of the Mi ideals, and 6 of the monomial ideal Mi have 2
generators. In this case, the resolution is minimal for degree reasons.

Exercise 1.14. Let I be a Borel-fixed monomial ideal. Prove that in this case,
the algorithm in the proof of Hilbert’s syzygy theorem produces a minimal free
resolution of I . Compute the differentials explicitly and compare your result
with the complex of S. Eliahou and Kervaire [1990] (see also [Peeva and Stillman
2008]).

2. Petri’s Theorem

One of the first theoretical applications of Gröbner bases is Petri’s analysis of
the generators of the homogeneous ideal of a canonically embedded curve. Petri
was the last student of Max Noether, and he acknowledges help from Emmy
Noether in his thesis. As Emmy Noether was a student of Gordan, it is quite
possible that Petri became aware of the concept of Gröbner bases through his
communication with her, but we do not know if this was the case.

Let C be a smooth projective curve of genus g over C. Let

ω1, . . . , ωg ∈ H 0(C, ωC)

be a basis of the space of holomorphic differential forms on C and consider the
canonical map

ι : C→ Pg−1 given by p 7→ [ω1(p) : · · · : ωg(p)].
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The map ι is an embedding unless C is hyperelliptic. We will assume that C is
not hyperelliptic. Let S := C[x1, . . . , xg] be the homogeneous coordinate ring
of Pg−1, and let IC ⊂ S be the homogeneous ideal of C .

Petri’s theorem (Theorem 2.1) [Petri 1923]. The homogeneous ideal of a canon-
ically embedded curve is generated by quadrics unless

• C is trigonal (i.e., there is a 3:1 holomorphic map C→ P1) or

• C is isomorphic to a smooth plane quintic. In this case, g = 6.

Petri’s theorem received much attention through the work of Mark Green
[1984], who formulated a conjectural generalization to higher syzygies of canoni-
cal curves in terms of the Clifford index. We will not report here on the impressive
progress made on this conjecture in the last two decades, but refer instead to
[Aprodu and Farkas 2011; Aprodu and Nagel 2010; Aprodu and Voisin 2003;
Green and Lazarsfeld 1986; Hirschowitz and Ramanan 1998; Mukai 1992;
Schreyer 1986; 1991; 2003; Voisin 1988; 2002; 2005] for further reading.

In the cases of the exceptions in Petri’s theorem, also Babbage [1939] observed
that the ideal cannot be generated by quadrics alone. If D := p1 + · · · + pd

is a divisor of degree d on C , then the linear system |ωC(−D)| is cut out by
hyperplanes through the span D of the points pi ∈ C ⊂ Pg−1. Thus Riemann–
Roch implies that

h0(C,OC(D))= d + 1− g+ codim D = d − dim D.

Hence the three points of a trigonal divisor span only a line, and by Bézout’s
theorem, we need cubic generators in the generating set of its vanishing ideal.

Similarly, in the second exceptional case, the 5 points of a g2
5 are contained

in a unique conic in the plane they span, and quadrics alone do not cut out the
curve.

The first step of Petri’s analysis builds upon a proof by Max Noether.

Theorem 2.1 [Noether 1880]. A nonhyperelliptic canonical curve C ⊂ Pg−1 is
projectively normal, i.e., the maps

H 0(Pg−1,O(n))→ H 0(C, ω⊗n
C )

are surjective for every n.

Proof. Noether’s proof is a clever application of the basepoint-free pencil trick.
This is a method which, according to Mumford, Zariski taught to all of his
students. Let |D| be a basepoint-free pencil on a curve, and let L be a further
line bundle on C . Then the Koszul complex

0→32 H 0(OC(D))⊗L(−D)→ H 0(OC(D))⊗L→ L(D)→ 0
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is an exact sequence. To see this, note that locally, at least one section of the line
bundle OC(D) does not vanish. Thus the kernel of the multiplication map

H 0(OC(D))⊗ H 0(L)→ H 0(L(D))

is isomorphic with H 0(L(−D)). (Note32 H 0(OC(D))∼=C, as h0(OC(D))= 2.)
Consider p1, . . . , pg general points on C and the divisor D= p1+· · ·+ pg−2

built from the first g − 2 points. Then the images of these points span Pg−1

and the span of any subset of less than g− 1 points intersects the curve in no
further points. Choose a basis ω1, . . . , ωg ∈ H 0(ωC) that is, up to scalars, dual
to these points, i.e., ωi (p j )= 0 for i 6= j and ωi (pi ) 6= 0. Then |ωC(−D)| is a
basepoint-free pencil spanned by ωg−1, ωg. If we apply the basepoint-free pencil
trick to this pencil and L= ωC , then we obtain the sequence

0→32 H 0ωC(−D)⊗ H 0OC(D)→ H 0ωC(−D)⊗ H 0ωC −→
µ H 0ω⊗2

C (−D),

and the image of

µ : H 0(ωC(−D))⊗ H 0(ωC)→ H 0(ω⊗2
C (−D)) (2-1)

is 2g− 1 dimensional because h0(ωC(−D))= 2 and h0(OC(D))= 1. Thus µ
in (2-1) is surjective, since h0(ω⊗2

C (−D)) = 2g − 1 holds by Riemann–Roch.
On the other hand,

ω⊗2
1 , . . . , ω⊗2

g−2 ∈ H 0(ω⊗2
C )

represent linearly independent elements of H 0(ω⊗2
C )/H 0(ω⊗2

C (−D)), hence rep-
resent a basis, and the map H 0(ωC)⊗H 0(ωC)→ H 0(ω⊗2

C ) is surjective as well.
This proves quadratic normality.

The surjectivity of the multiplication maps

H 0(ω⊗n−1
C )⊗ H 0(ωC)→ H 0(ω⊗n

C )

for n ≥ 3 is similar, but easier: ω⊗n
1 , . . . , ω⊗n

g−2 ∈ H 0(ω⊗n
C ) are linearly indepen-

dent modulo the codimension g− 2 subspace H 0(ω⊗n
C (−D)), and the map

H 0(ω⊗n−1
C )⊗ H 0(ωC(−D))→ H 0(ω⊗n

C (−D))

is surjective simply because H 1(ω⊗n−2
C (D))= 0 for n ≥ 3. �

Corollary 2.2. The Hilbert function of the coordinate ring of a canonical curve
takes the values

dim(S/IC)n=


1 if n = 0

g if n = 1

(2n− 1)(g− 1) if n ≥ 2. �
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Proof of Petri’s theorem. Petri’s analysis begins with the map µ in (2-1) above.
Choose homogeneous coordinates x1, . . . , xg such that xi 7→ωi . Since ωi⊗ω j ∈

H 0(ω⊗2
C (−D)) for 1≤ i < j ≤ g− 2, we find the polynomials

fi j := xi x j −

g−2∑
r=1

ar
i j xr − bi j ∈ IC , (2-2)

where the ar
i j and bi j are linear and quadratic, respectively, in C[xg−1, xg]. We

may choose a monomial order such that L( fi j )= xi x j . Since
(g−2

2

)
=
(g+1

2

)
−

(3g − 3), these quadrics span (IC)2. On the other hand, they do not form a
Gröbner basis for IC because the (g− 2)

(n+1
2

)
+ (n+ 1) monomials xk

i x`g−1xm
g

with i = 1, . . . , g − 2 and k + `+m = n represent a basis for (S/〈xi x j | 1 ≤
i < j ≤ g− 2〉)n , which is still larger. We therefore need g− 3 further cubic
Gröbner basis elements. To find these, Petri considers the basepoint-free pencil
trick applied to |ωC(−D)| and L= ω⊗2

C (−D). The cokernel of the map

H 0(ωC(−D))⊗ H 0(ω⊗2
C (−D))→ H 0(ω⊗3

C (−2D)) (2-3)

has dimension h1(ωC)= 1. To find the missing element in H 0(ω⊗3
C (−2D)), Petri

considers the linear form αi =αi (xg−1, xg) in the pencil spanned by xg−1, xg that
defines a tangent hyperplane to C at pi . Then αiω

⊗2
i ∈ H 0(ω⊗3

C (−2D)) because
ω⊗2

i vanishes quadratically at all points p j 6= pi , while αi vanishes doubly at pi .
Not all of these elements can be contained in the image of (2-3), since otherwise
we would find g− 2 further cubic Gröbner basis elements of type

αi x2
i + lower order terms,

where a lower order term is a term that is at most linear in x1, . . . , xg−2. As this
is too many, at least one of the αiω

⊗2
i spans the cokernel of the map (2-3).

We now argue by uniform position. Since C is irreducible, the behavior of
αiω
⊗2
i with respect to spanning of the cokernel is the same for any general choice

of points p1, . . . , pg. So for general choices, each of these elements span the
cokernel, and after adjusting scalars, we find that

Gk` := αk x2
k −α`x

2
` + lower order terms (2-4)

are in IC . Note that Gk` = −G`k and Gk` + G`m = Gkm . So this gives only
g − 3 further equations with leading terms x2

k xg−1 for k = 1, . . . , g − 3 up
to a scalar. The last Gröbner basis element is a quartic H with leading term
L(H)= x3

g−2xg−1, which we can obtain as a remainder of the Buchberger test
applied to xg−2Gk,g−2. There are no further Gröbner basis elements, because
the quotient S/J of S by
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J := 〈xi x j , x2
k xg−1, x3

g−2xg−1 | 1≤ i < j ≤ g− 2, 1≤ k ≤ g− 3〉

has the same Hilbert function as S/IC . Hence L(IC)= J .
We now apply Buchberger’s test to xk fi j for a triple of distinct indices 1 ≤

i, j, k ≤ g− 2. Division with remainder yields a syzygy

xk fi j − x j fik +
∑
r 6=k

ar
i j frk −

∑
r 6= j

ar
ik fr j + ρi jk Gk j = 0 (2-5)

for a suitable coefficient ρi jk ∈ C. (Moreover, comparing coefficients, we find
that ak

i j = ρi jkαk holds. In particular, Petri’s coefficients ρi jk are symmetric in
i, j, k, since ak

i j is symmetric in i, j .) Since C is irreducible, we have that for a
general choice of p1, . . . , pg, either all coefficients ρi jk 6= 0 or all ρi jk = 0. In
the first case, the cubics lie in the ideal generated by the quadrics.

In the second case, the fi j are a Gröbner basis by themselves. Thus the zero
locus V ( fi j |1≤ i < j ≤ g− 2) of the quadrics fi j define an ideal of a scheme
X of dimension 2 and degree g− 2. Since C is irreducible and nondegenerate,
the surface X is irreducible and nondegenerate as well. Thus X ⊂ Pg−2 is a
surface of minimal degree. These were classified by Bertini; see, for instance,
[Eisenbud and Harris 1987b]. Either X is a rational normal surface scroll, or
X is isomorphic to the Veronese surface P2 ↪→ P5. In the case of a scroll, the
ruling on X cuts out a g1

3 on C by Riemann–Roch. In the case of the Veronese
surface, the preimage of C in P2 is a plane quintic. �

Perhaps the most surprising part of Petri’s theorem is this: either IC is gen-
erated by quadrics or there are precisely g− 3 minimal cubic generators. It is
a consequence of the irreducibility of C that no value in between 0 and g− 3
is possible for the number of cubic generators. If we drop the assumption of
irreducibility, then there are canonical curves with 1, . . . , g− 5 or g− 3 cubic
generators. For example, if we take a stable curve C = C1 ∪ C2 with two
smooth components of genus gi ≥ 1 intersecting in three points, so that C has
genus g = g1+ g2+ 2, then the dualizing sheaf ωC is very ample and the three
intersection points lie on a line by the residue theorem. For general curves
C1 and C2 of genus gi ≥ 3 for i ∈ {1, 2}, the ideal IC has precisely one cubic
generator; see [Schreyer 1991]. However, we could not find such an example
with precisely g−4 generators. For genus g= 5, one cubic generator is excluded
by the structure theorem of Buchsbaum–Eisenbud, and obstructions for larger g
are unclear to us.

Conjecture 2.3. Let A = S/I be a graded artinian Gorenstein algebra with
Hilbert function {1, g− 2, g− 2, 1}. Then I has 0, 1, . . . , g− 5 or g− 3 cubic
minimal generators.
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The veracity of this conjecture would imply the corresponding statement for
reducible canonical curves because the artinian reduction A := S/(IC +〈`1, `2〉)

of S/IC , for general linear forms `1, `2, has Hilbert function {1, g− 2, g− 2, 1}.
Petri’s analysis has been treated by Mumford [1975], and also in [Arbarello

et al. 1985; Saint-Donat 1973; Shokurov 1971]. From our point of view, Gröbner
bases and the use of uniform position simplify and clarify the treatment quite
a bit. Mumford [1975] remarks that we now have seen all curves at least once,
following a claim made in [Petri 1923]. We disagree with him on this point. If
we introduce indeterminates for all of the coefficients in Petri’s equations, then
the scheme defined by the condition on the coefficients that fi j ,Gkl , and H form
a Gröbner basis can have many components [Schreyer 1991; Little 1998]. It is
not clear to us how to find the component corresponding to smooth curves, much
less how to find closed points on this component.

3. Finite length modules and space curves

In the remaining part of these lectures, we report on how to find all curves in a
Zariski open subset of the moduli space Mg of curves of genus g for small g. In
Section 4, we report on the known unirationality results for these moduli spaces.
But first, we must discuss a method to explicitly construct space curves.

In this section, a space curve C ⊂ P3 will be a Cohen–Macaulay subscheme
of pure dimension 1; in particular, C has no embedded points. We denote by IC

the ideal sheaf of C and by IC =
∑

n∈Z H 0(P3, IC(n)) the homogeneous ideal
of C . The goal of this section is to construct a curve C of genus g and degree d .
To do so, we will use work of Rao, who showed that the construction of C is
equivalent to the creation of its Hartshorne–Rao module (see Rao’s theorem).

Definition 3.1. The Hartshorne–Rao module of C is the finite length module

M = MC :=
∑
n∈Z

H 1(P3, IC(n))⊂
∑
n∈Z

H 0(P3,O(n))∼= S := K[x0, .., x3].

The Hartshorne–Rao module measures the deviation of C from being projectively
normal. Furthermore, MC plays an important role in liaison theory of curves in
P3, which we briefly recall now.

Let S := K[x0, . . . , x3] and SC := S/IC denote the homogeneous coordinate
ring of P3 and C ⊂ P3, respectively. By the Auslander–Buchsbaum–Serre
formula [Eisenbud 1995, Theorem 19.9], SC has projective dimension pdS SC ≤3.
Thus its minimal free resolution has the form

0← SC ← S← F1← F2← F3← 0,
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with free graded modules Fi = ⊕S(− j)βi j . By the same formula in the local
case, we see that the sheafified G := ker(F̃1→OP3) is always a vector bundle,
and

0←OC ←OP3 ←

⊕
j

OP3(− j)β1 j ← G← 0 (3-1)

is a resolution by locally free sheaves. If C is arithmetically Cohen–Macaulay,
then F3 = 0 and G splits into a direct sum of line bundles. In this case, the
ideal IC is generated by the maximal minors of F1← F2 by the Hilbert–Burch
theorem [Hilbert 1890; Burch 1968; Eisenbud 1995]. In general, we have

MC ∼=
∑
n∈Z

H 2(P3,G(n)) and
∑
n∈Z

H 1(P3,G(n))= 0. (3-2)

We explain now why curves linked by an even number of liaison steps have,
up to a twist, the same Hartshorne–Rao module, thus illustrating its connection
to liaison theory. We will then mention Rao’s theorem, which states that the
converse also holds.

Suppose that f, g ∈ IC are homogeneous forms of degree d and e without
common factors. Let X := V ( f, g) denote the corresponding complete inter-
section, and let C ′ be the residual scheme defined by the homogeneous ideal
IC ′ := ( f, g) : IC [Peskine and Szpiro 1974]. The locally free resolutions of OC

and OC ′ are closely related, as follows. Applying Ext2(−, ωP3) to the sequence

0→ IC/X →OX →OC → 0

gives
0← Ext2(IC/X , ωP3)← ωX ← ωC ← 0.

From ωX ∼=OX (d + e− 4), we conclude that Ext2(IC/X ,OP3(−d − e))∼=OC ′ ,
and hence IC ′/X ∼= ωC(−d − e+ 4). Now the mapping cone of

0 OCoo OP3oo
⊕

j OP3(− j)β1 joo Goo 0oo

0 OXoo

OO

OP3oo

∼=

OO

OP3(−d)⊕OP3(−e)oo

OO

OP3(−d − e)oo

OO

0oo

dualized with Hom(−,OP3(−d − e)) gives

0→OP3(−d − e) //

∼=

��

⊕
j OP3( j − d − e)β1 j //

��

G∗(−d − e)

��

// // IC ′/X

��

0→OP3(−d − e) // OP3(−e)⊕OP3(−d) // OP3 // // OX ,
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which yields the following locally free resolution of OC ′ :

0→
⊕

j OP3( j − d − e)β1 j → G∗(−d − e)⊕OP3(−e)⊕OP3(−d)
→OP3 →OC ′→ 0.

In particular, after truncating this complex to resolve IC ′ , one sees that

MC ′ :=
∑
n∈Z

H 1(P3, IC ′(n))∼=
∑
n∈Z

H 1(P3,G∗(n− d − e))

∼=

∑
n∈Z

H 2(P3,G(d + e− 4− n))∗ ∼= HomK(MC ,K)(4− d − e).

Thus curves that are related via an even number of liaison steps have the same
Hartshorne–Rao module up to a twist. Rao’s famous result says that the converse
is also true.

Rao’s theorem (Theorem 3.2) [Rao 1978]. The even liaison classes of curves
in P3 are in bijection with finite length graded S- modules up to twist. �

Therefore the difficulty in constructing the desired space curve C (of degree d
and genus g) lies completely in the construction of the appropriate Hartshorne–
Rao module M = MC . Upon constructing M , we may then obtain the desired
ideal sheaf IC as follows. Assume that we have a free S-resolution of MC ,

0← MC ← F0← F1← F2← F3← F4← 0,

with Fi =
⊕

j S(− j)βi j . Let F := Ñ be the sheafification of N := ker(F1→ F0),
the second syzygy module of M . In this case, F will be a vector bundle without
line bundle summands such that H 1

∗
(F) ∼= H 1

∗
(IC) and H 2

∗
(F) = 0. Here, we

have used the notation H i
∗
(F) :=

⊕
n H i (F(n)). If we constructed the correct

Hartshorne–Rao module M , then taking L1 and L2 to be appropriate choices of
direct sums of line bundles on P3, a general homomorphism ϕ∈Hom(L1,F⊕L2)

will produce the desired curve C , as we will obtain IC as the cokernel of a map
ϕ of the bundles

0 // L1
ϕ
// F ⊕L2 // IC // 0.

To compute the rank of F and to choose the direct sums of line bundles L1 and
L2, we now make plausible assumptions about the Hilbert function of MC . We
illustrate this approach in the example of the construction of a smooth linearly
normal curve C of degree d = 11 and genus g = 10. Since 2d > 2g− 2, the line
bundle OC(2) is already nonspecial. Hence by Riemann–Roch, we have that
h0(OC(2))= 22+ 1− 10= 13.

Remark 3.2. If we assume that C is a curve of maximal rank, i.e., that all
maps H 0(OP3(n))→ H 0(OC(n)) are either injective or surjective, then we can
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compute the Hilbert function of MC and IC . Note that being of maximal rank
is an open condition, so among the curves in the union Hd,g of the component
of the Hilbert scheme Hilbdt+1−g(P

3) containing smooth curves, maximal rank
curves form an open (and hopefully nonempty) subset. There is a vast literature
on the existence of maximal rank curves; see, for example, [Fløystad 1991].

To gain insight into the Betti numbers of M = MC , we use Hilbert’s formula
for the Hilbert series:

hM(t)=
∑
n∈Z

dim Mntn
=

∑3
i=0(−1)i

∑
j βi j t j

(1− t)4
.

Since hMC (t) = 3t2
+ 4t3 by our maximal rank assumption (Remark 3.2), we

have

(1− t)4hM(t)= 3t2
− 8t3

+ 2t4
+ 12t5

− 13t6
+ 4t7,

and thus the Betti table of M must be

β(M) =

0 1 2 3 4

2 3 8 2 . .
3 . . 12 13 4

if we assume that M has a so called natural resolution, which means that for
each degree j at most one βi j is nonzero. Note that having a natural resolution
is an open condition in a family of modules with constant Hilbert function.

Table 1 provides a detailed look at the Hilbert functions relevant to our
computation. From these we see that H 0

∗
(OC) and SC = S/IC will have the

potential Betti tables at the top of the next page, if we assume that they also have
natural resolutions.

n h1(IC(n)) h0(OC(n)) h0(OP3(n)) h0(IC(n))

0 0 1 1 0
1 0 4 4 0
2 3 13 10 0
3 4 24 20 0
4 0 35 35 0
5 0 46 56 10
6 0 55 84 29

Table 1. With our maximal rank assumption of Remark 3.2, this table
provides the relevant Hilbert functions in the case d = 11 and g = 10.
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β(H 0
∗
(OC)) =

0 1 2

0 1 . .
1 . . .
2 3 8 2
3 . . 2

and β(SC) =

0 1 2 3

0 1 . . .
1 . . . .
2 . . . .
3 . . . .
4 . 10 13 4

.

Comparing these Betti tables, we find the following plausible choices of F ,
L1, and L2:

• We choose F := Ñ , where N = ker(ψ : S8(−3)→ S3(−2)) is a sufficiently
general 3× 8 matrix of linear forms; in particular, rankF = 5.

• Let L1 :=O2(−4)⊕O2(−5) and L2 := 0.

• The map ϕ ∈ Hom(L1,F) is a sufficiently general homomorphism. Since
the map F2→ H 0

∗
(F) is surjective, the choice of ϕ amounts to choosing an

inclusion O2(−5)→O12(−5), i.e., a point in the Grassmannian G(2, 12).

• Finally, IC = cokerϕ.

It is not clear that general choices as above will necessarily yield a smooth
curve. If the sheaf Hom(L1,F ⊕ L2) happens to be generated by its global
sections Hom(L1,F ⊕L2), then a Bertini-type theorem as in [Kleiman 1974]
would apply. However, since we have to take all generators of H 0

∗
(F) in degree

4, this is not the case. On the other hand, there is no obvious reason that cokerϕ
should not define a smooth curve, and upon construction, it is easy to check
the smoothness of such an example using a computer algebra system, such as
Macaulay2 or Singular. Doing this, we find that general choices do lead to a
smooth curve.

Exercise 3.3. Construct examples of curves of degree and genus as prescribed
in [Hartshorne 1977, Figure 18 on page 354], including those which were open
cases at the time of the book’s publication.

4. Random curves

In this section, we explain how the ideas of Section 3 lead to a computer-aided
proof of the unirationality of the moduli space Mg of curves of genus g, when g
is small. We will illustrate this approach by example, through the case of genus
g = 12 and degree d = 13 in Theorem 4.5.

Definition 4.1. A variety X is called unirational if there exists a dominant
rational map An 99K X . A variety X is called uniruled if there exists a dominant
rational map A1

× Y 99K X for some variety Y that does not factor through Y .
A smooth projective variety X has Kodaira dimension κ if the section ring
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RX :=
∑

n≥0 H 0(X, ω⊗n
X ) of pluri-canonical forms on X has a Hilbert function

with growth rate h0(ω⊗n
X )∈ O(nκ). We say that X has general type if κ = dim X ,

the maximal possible value.

Since the pluri-genera h0(ω⊗n
X ) are birational invariants, being of general type

does not depend on a choice of a smooth compactification. Thus we may also
speak of general type for quasiprojective varieties.

Unirationality and general type are on opposite ends of birational geometry. If
a variety is of general type, then there exists no rational curve through a general
point of X [Kollár 1996, Corollary IV.1.11]. On the other hand, uniruled varieties
have the pluri-canonical ring RX = (RX )0 = C and thus (by convention) have
Kodaira dimension κ = −∞. In fact, even if X is unirational, then we can
connect any two general points of X by a rational curve.

We now recall results concerning the unirationality of the moduli space Mg.
There are positive results for small genus, followed by negative results for large
genus.

Theorem 4.2 ([Severi 1921] for g ≤ 10; [Sernesi 1981; Chang and Ran 1984]
for g = 12, 11, 13; [Verra 2005] for g = 14.). The moduli space Mg of curves of
genus g is unirational for g ≤ 14.

Theorem 4.3 [Harris and Mumford 1982; Eisenbud and Harris 1987a; Farkas
2006; 2009a; 2009b]. The moduli space Mg of curves of genus g is of general
type for g ≥ 24 or g = 22. The moduli space M23 has Kodaira dimension ≥ 2.

�

We call this beautiful theorem a negative result because it says that it will
be very difficult to write down explicitly a general curve of large genus. Given
a family of curves of genus g ≥ 24 that pass through a general point of Mg,
say via an explicit system of equations with varying coefficients, none of the
essential coefficients is a free parameter. All of the coefficients will satisfy some
complicated algebraic relations. On the other hand, in unirational cases, there
exists a dominant family of curves whose parameters vary freely.

In principle, we can compute a dominating family explicitly along with a
unirationality proof. In practice, this is often out of reach using current computer
algebra systems; however, the following approach is feasible today in many
cases. By replacing each free parameter in the construction of the family by
a randomly chosen value in the ground field, the computation of an explicit
example is possible. In particular, over a finite field F, where it is natural to use
the constant probability distribution on F, a unirationality proof brings with it
the possibility of choosing random points in Mg(F), i.e., to compute a random
curve. These curves can then be used for further investigations of the moduli
space, as well as to considerably simplify the existing unirationality proofs. The
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advantage of using such random curves in the unirationality proof is that, with
high probability, they will be smooth curves, while in a theoretical treatment,
smoothness is always a delicate issue.

To begin this construction, we first need some information on the projective
models of a general curve. This is the content of Brill– Noether theory. Let

W r
d (C) := {L ∈ Picd(C) | h0(C, L)≥ r + 1} ⊂ Picd(C)

denote the space of line bundles of degree d on C that give rise to a morphism
C→ Pr .

Theorem 4.4. Let C be a smooth projective curve of genus g.

(1) [Brill and Noether 1874] At every point, dim W r
d (C)≥ ρ := g− (r+1)(g−

d + r).

(2) [Griffiths and Harris 1980; Fulton and Lazarsfeld 1981] If ρ ≥ 0, then
W r

d (C) 6= 0, and if ρ > 0, then W r
d (C) is connected. Further, the tangent

space of W r
d (C) at a point L ∈W r

d (C) \W r+1
d (C) is

TL W r
d (C)= Im µ⊥L ⊂ H 1(OC)= TL Picd(C),

where µL : H 0(L)⊗ H 0(ωC ⊗ L−1)→ H 0(ωC) = H 1(OC)
∗ denotes the

Petri map.

(3) [Gieseker 1982] If C ∈Mg is a general curve, then W r
d (C) is smooth of

dimension ρ away from W r+1
d (C). More precisely, the Petri map µL is

injective for all L ∈W r
d (C) \W r+1

d (C). �

We now illustrate the computer-aided unirationality proof of Mg by example,
through the case g = 12, d = 13 [Schreyer and Tonoli 2002]. This case is not
amongst those covered in [Sernesi 1981] or [Chang and Ran 1984] (which are
g = 11, d = 12, g = 12, d = 12, and g = 13, d = 13). We are choosing the case
d = 12, g = 13 because it illustrates well the difficulty of this construction. For
g= 14, see [Verra 2005] and, for a computer aided unirationality proof, [Schreyer
2013]. For a related Macaulay2 package, see [von Bothmer et al. 2011].

Theorem 4.5. Let g = 12 and d = 13. Then Hilbdt+1−g(P
3) has a component

Hd,g that is unirational and dominates the moduli space Mg of curves of genus
g.

Proof. This proof proceeds as follows. We first compute the Hilbert function and
expected syzygies of the Hartshorne–Rao module M = H 1

∗
(IC), the coordinate

ring SC , and the section ring R := H 0
∗
(OC). We then use this information to

choose generic matrices which realize the free resolution of M . Finally, we
show that this construction leads to a family of curves that dominate M12 and
generically contains smooth curves.
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We first choose r so that a general curve has a model of degree d = 13 in
Pr . In our case, we choose r = 3 so that g− d + r = 2. To compute the Hilbert
function and expected syzygies of the Hartshorne–Rao module M = H 1

∗
(IC),

the coordinate ring SC = S/IC , and the section ring R = H 0
∗
(OC), we assume

the open condition that C has maximal rank, i.e.,

H 0(P3,O(n))→ H 0(C, Ln)

is of maximal rank for all n, as in Remark 3.2. In this case, hM(t)=5t2
+8t3
+6t4,

which has Hilbert numerator

hM(t)(1− t)4 = 5t2
− 12t3

+ 4t4
+ 4t5

+ 9t6
− 16t10

+ 6t11.

If M has a natural resolution, so that for each j at most one βi j (M) is nonzero,
then M has the Betti table

β(M) =

0 1 2 3 4

2 5 12 4 . .
3 . . 4 . .
4 . . 9 16 6

.

If we assume the open condition that SC and R have natural syzygies as well,
then their Betti tables are

β(SC) =

0 1 2

0 1 . .
1 . . .
2 3 12 4
3 . . 2

and β(R) =

0 1 2 3

0 1 . . .
1 . . . .
2 . . . .
3 . . . .
4 . 2 . .
5 . 9 16 6

.

We conclude that once we have constructed the Hartshorne–Rao module M=MC ,
say via its representation

0← M← S5(−2)← S12(−3),

we may choose F to be the kernel of

0←O5(−2)←O12(−3)← F← 0

and set L1 :=O(−4)4⊕O2(−5) and L2 := 0. Then C is determined by M and
the choice of a point in G(2, 4). In particular, as mentioned earlier, constructing
C is equivalent to constructing the finite length module M with the desired
syzygies.

If we choose the presentation matrix φ of M to be given by a general (or
random) 5× 12 matrix of linear forms, then its cokernel will be a module with
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Hilbert series 5t2
+ 8t3

+ 2t4. In other words, to get the right Hilbert function
for M , we must force 4 linear syzygies. To do this, choose a general (or random)
12× 4 matrix ψ of linear forms. Then

ker(ψ t
: S12(1)→ S4(2))

has at least 12 · 4− 4 · 10= 8 generators in degree 0. In fact, there are precisely
8 and a general point in G(5, 8) gives rise to a 12× 5 matrix ϕt of linear forms.
This means that M := coker(ϕ : S12(−3) → S5(−2)) to have Hilbert series
5t2
+ 8t3

+ 6t4, due to the forced 4 linear syzygies.
Having constructed M , it remains to prove that this construction leads to a

family of curves that dominates M12. To this end, we compute a random example
C , say over a finite prime field Fp, and confirm its smoothness. Since we may
regard our computation over Fp as the reduction modulo p of a construction
defined over an open part of Spec Z, semicontinuity allows us to establish the
existence of a smooth example defined over Q with the same syzygies.

We now consider the universal family Wr
d ⊂Picd over Mg and a neighbor-

hood of our example (C, L)∈Picd . Note that the codimension of Wr
d is at most

(r + 1)(g− d + r)= 4 · 2= 8. On the other hand, we claim that the Petri map
µL for (C, L) is injective. (Recall the definition of µL from Theorem 4.4.) To
see this, note that the Betti numbers of H 0

∗
(ωC) correspond to the dual of the

resolution of H 0
∗
(OC), so

β(H 0
∗
(ωC)) =

0 1 2

–1 2 . .
0 4 12 3
1 . . .
2 . . 1

Thus there are no linear relations among the two generators in H 0(ωC ⊗ L−1),
which means that the µL : H 0(L)⊗H 0(ωC⊗L−1) is injective. From this we see
that dim W r

d (C) has dimension 4 at (C, L), and the constructed family dominates
for dimension reasons. �

The unirationality of M15 and M16 are open; however, these moduli spaces
are uniruled.

Theorem 4.6 (Chang and Ran [1986; 1991]; see also [Bruno and Verra 2005;
Farkas 2009a]). The moduli space M15 is rationally connected, and M16 is
uniruled. �

To explain why the unirationality in these cases is more difficult to approach
using the method of Theorem 4.5, we conclude with a brief discussion on the
space models of curves of genus g = 16. By Brill–Noether theory, a general
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curve C of genus 16 has finitely many models of degree d = 15 in P3. Again
assuming the maximal rank condition of Remark 3.2, the Hartshorne–Rao module
M = H 1

∗
(IC) has Hilbert series

HM(t)= 5t2
+ 10t3

+ 10t4
+ 4t5

and expected syzygies

β(M) =

0 1 2 3 4

2 5 10 .
3 . . 4 . .
4 . . 9 6 .
5 . . . 6 4

.

The section ring H 0
∗
(OC) and the coordinate ring SC have expected syzygies

β(H 0
∗
(OC)) =

0 1 2

0 1 . .
1 . . .
2 5 10 .
3 . . 4

and β(SC) =

0 1 2 3

0 1 . . .
1 . . . .
2 . . . .
3 . . . .
4 . . . .
5 . 9 6 .
6 . . 6 4

.

Proposition 4.7. A general curve C of genus g = 16 and degree d = 15 in P3

has syzygies as above. In particular, the Hartshorne–Rao module MC uniquely
determines C. Furthermore, the rational map from the component Hd,g of the
Hilbert scheme Hilb15t+1−16(P

3) that dominates M16 defined by

Hd,g 99K { 20 determinantal points }

C 7→ 0 := supp coker(ϕt
:O6(−1)→O4)

is dominant. Here ϕ : S4(−9) → S6(−8) denotes the linear part of the last
syzygy matrix of M.

Proof. For the first statement, it suffices to find an example with the expected
syzygies, since Betti numbers behave semicontinuously in a family of modules
with constant Hilbert function. We may even take a reducible example, provided
that it is smoothable. Consider the union C := E1 ∪ E2 ∪ E3 of three smooth
curves of genus 2 and degree 5, such that Ei ∩E j for i 6= j consists of 4 nodes of
C . Then C has degree d = 3 ·5= 15 and genus g= 3 ·2+4 ·3−2= 16. Clearly,
C is smoothable as an abstract curve. For general choices, it is smoothable as an
embedded curve because the g3

15 on the reducible curve is an isolated smooth
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point in W 3
15 (as we will see), so the smooth curves nearby have an isolated g3

15
as well.

It is easy to find such a union over a finite field F. Start with the 12 intersection
points {p1, . . . , p4} ∪ {p5, . . . , p8} ∪ {p9, . . . , p12} randomly chosen in P3(F).
To construct E1, pick at random a quadric Q1 in the pencil of quadrics through
{p1, . . . , p8}. Next, we must check if the tangent hyperplane of Q1 in a point, say
p1, intersects Q1 in a pair of lines individually defined over F; this will happen
about 50% of the time. Once this is true, choose one of the lines, call it L1.
Then |OQ1(3)⊗OQ1(−L1)| is a linear system of class (3, 2) on Q1 ∼= P1

×P1.
We may take E1 as a general curve in this linear system that passes through
{p1, . . . , p8}. Similarly, we choose E2 using {p1, . . . , p4, p9, . . . , p12} and E3

starting with {p5, . . . , p12}. The union of the Ei yields the desired curve C , and it
a straightforward computation to check that C has the expected Hartshorne–Rao
module and syzygies.

The second statement can be proved by showing that the appropriate map
between tangent spaces is surjective for this example. This involves computing
appropriate Ext-groups. Define

M : = coker(S6(−2)⊕ S6(−1)→ S4)

= Ext4S(M, S(−9))

= HomK (M, K )(−5)

and N : = coker(ϕt
: S6(−1)→ S4).

Then there is a short exact sequence

0→ P→ N → M→ 0

of modules with Hilbert series

hM(t)= 4+ 10t + 10t2
+ 5t3

hN (t)= 4+ 10t + 16t2
+ 20t3

+ 20t4
+ 20t5

+ · · ·

h P(t)= 6t2
+ 15t3

+ 20t4
+ 20t5

+ · · · .

The group Ext1S(M,M) governs the deformation theory of M (and M). More
details can be found in [Hartshorne 2010], for example, Theorem 2.7 applied
in the affine case. More precisely, the degree 0 part of this Ext-group is the
tangent space of homogeneous deformations of M , which in turn is isomorphic
to the tangent space of the Hilbert scheme in C . Similarly, in the given example,
Ext1(N , N )0 can be identified with the tangent space to the space of twenty
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determinantal points. Note that we have the diagram

Ext1S(M,M) // Ext1S(N ,M) // Ext1S(P,M).

Ext1S(N , N )

OO

Ext1S(N , P)

OO

In our example, computation shows that

dim Ext1S(M,M)0 = 60,

dim Ext1S(N ,M)0 = dim Ext1S(N , N )0 = 45, and

dim Ext1S(P,M)0 = dim Ext1S(N , P)0 = 0.

Thus the induced map Ext1S(M,M)0→ dim Ext1S(N , N )0 is surjective with 15-
dimensional kernel, as expected. �

Exercise 4.8. Fill in the computational details in of the proof of Proposition 4.7
and Theorem 4.5 using your favorite computer algebra system.

Remark 4.9. In the proof of Proposition 4.7, the module P has syzygies

β(P) =

0 1 2 3
2 6 9 . .
3 . 4 6 .
4 . . 6 5

.

The cokernel of ψ t
: S6(−1)→ S5 has support on a determinantal curve E of

degree 15 and genus 26, which is smooth for general C . The points 0 form
a divisor on E with h0(E,OE(0)) = 1. The curves E and C do not intersect;
in fact, we have no idea how the curve E is related to C , other than the fact
that it can be constructed from the syzygies of M . It is possible that M16 is not
unirational, and, even if M16 is unirational, it could be that the component of
the Hilbert scheme containing C is itself not unirational.

It is not clear to us whether it is a good idea to start with the determinantal
points 0 in Proposition 4.7. Perhaps entirely different purely algebraic methods
might lead to a unirational construction of the modules M , and we invite the
reader to discover such an approach.
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