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The current article is a short survey on the theory of Hecke algebras, and in
particular Kazhdan–Lusztig theory, and on the theory of symplectic reflection
algebras, and in particular rational Cherednik algebras. The emphasis is on
the connections between Hecke algebras and rational Cherednik algebras that
could allow us to obtain a generalised Kazhdan–Lusztig theory, or at least its
applications, for all complex reflection groups.

1. Introduction 95
2. Iwahori–Hecke algebras 99
3. Cyclotomic Hecke algebras 108
4. Symplectic reflection algebras 114
5. Rational Cherednik algebras at t = 1 122
6. Rational Cherednik algebras at t = 0 130
Acknowledgements 134
References 134

1. Introduction

Finite Coxeter groups are finite groups of real matrices that are generated by reflec-
tions. They include the Weyl groups, which are fundamental in the classification
of simple complex Lie algebras as well as simple algebraic groups. Iwahori–
Hecke algebras associated to Weyl groups appear naturally as endomorphism
algebras of induced representations in the study of finite reductive groups. They
can also be defined independently as deformations of group algebras of finite
Coxeter groups, where the deformation depends on an indeterminate q and a
weight function L . For q = 1, we recover the group algebra. For a finite Coxeter
group W , we will denote by H(W, L) the associated Iwahori–Hecke algebra.

When q is an indeterminate, the Iwahori–Hecke algebra H(W, L) is semi-
simple. By Tits’s deformation theorem, there exists a bijection between the
set of irreducible representations of H(W, L) and the set Irr(W ) of irreducible
representations of W . Using this bijection, Lusztig attaches to every irreducible
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representation of W an integer depending on L , thus defining the famous a-
function. The a-function is used in his definition of families of characters, a
partition of Irr(W ) which plays a key role in the organisation of families of
unipotent characters in the case of finite reductive groups.

Kazhdan–Lusztig theory is a key to understanding the representation theory of
the Iwahori–Hecke algebra H(W, L). There exists a special basis of H(W, L),
called the Kazhdan–Lusztig basis, which allows us to define the Kazhdan–Lusztig
cells for H(W, L), a certain set of equivalence classes on W . The construction
of Kazhdan–Lusztig cells yields the construction of representations for H(W, L).
It also gives another, more combinatorial, definition for Lusztig’s families of
characters.

Now, when q specialises to a nonzero complex number η, and more specifi-
cally to a root of unity, the specialised Iwahori–Hecke algebra Hη(W, L) is not
necessarily semisimple and we no longer have a bijection between its irreducible
representations and Irr(W ). We obtain then a decomposition matrix which
records how the irreducible representations of the semisimple algebra split after
the specialisation. A canonical basic set is a subset of Irr(W ) in bijection with
the irreducible representations of Hη(W, L) (and thus a labelling set for the
columns of the decomposition matrix) with good properties. Its good properties
ensure that the decomposition matrix has a lower unitriangular form while the
a-function increases (roughly) down the columns. Canonical basic sets were
defined by Geck and Rouquier [2001], who also proved their existence in certain
cases with the use of Kazhdan–Lusztig theory. Thanks to the work of many
people, canonical basic sets are now proved to exist and explicitly described for
all finite Coxeter groups and for any choice of L .

Finite Coxeter groups are particular cases of complex reflection groups, that
is, finite groups of complex matrices generated by “pseudoreflections”. Their
classification is due to Shephard and Todd [1954]: An irreducible complex
reflection group either belongs to the infinite series G(`, p, n) or is one of the
34 exceptional groups G4, . . . ,G37 (see Theorem 3.1). Important work in the
last two decades has suggested that complex reflection groups will play a crucial,
but not yet understood role in representation theory, and may even become as
ubiquitous in the study of other mathematical structures. In fact, they behave so
much like real reflection groups that Broué, Malle and Michel [Broué et al. 1999]
conjectured that they could play the role of Weyl groups for, as yet mysterious,
objects generalising finite reductive groups. These objects are called spetses.

Broué et al. [1998] defined Hecke algebras for complex reflection groups as
deformations of their group algebras. A generalised Kazhdan–Lusztig cell theory
for these algebras, known as cyclotomic Hecke algebras, is expected to help find
spetses. Unfortunately, we do not have a Kazhdan–Lusztig basis for complex
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reflection groups. However, we can define families of characters using Rouquier’s
definition: Rouquier [1999] gave an alternative definition for Lusztig’s families
of characters by proving that, in the case of Weyl groups, they coincide with the
blocks of the Iwahori–Hecke algebra over a certain ring, called the Rouquier ring.
This definition generalises without problem to the case of complex reflection
groups and their cyclotomic Hecke algebras, producing the so-called Rouquier
families. These families have now been determined for all cyclotomic Hecke
algebras of all complex reflection groups; see [Chlouveraki 2009].

We also have an a-function and can define canonical basic sets for cyclotomic
Hecke algebras. Although there is no Kazhdan–Lusztig theory in the complex
case, canonical basic sets are now known to exist for the groups of the infinite
series G(`, p, n) and for some exceptional ones. In order to obtain canonical
basic sets for G(`, 1, n), Geck and Jacon used Ariki’s Theorem on the categori-
fication of Hecke algebra representations and Uglov’s work on canonical bases
for higher level Fock spaces [Geck and Jacon 2006; Jacon 2004; 2007; Geck and
Jacon 2011]. The result for G(`, p, n) derives from that for G(`, 1, n) with the
use of Clifford theory [Genet and Jacon 2006; Chlouveraki and Jacon 2012].

In this paper we will see how we could use the representation theory of
symplectic reflection algebras, and in particular rational Cherednik algebras,
to obtain families of characters and canonical basic sets for cyclotomic Hecke
algebras associated with complex reflection groups.

Symplectic reflection algebras are related to a large number of areas of mathe-
matics such as combinatorics, integrable systems, real algebraic geometry, quiver
varieties, symplectic resolutions of singularities and, of course, representation
theory. They were introduced by Etingof and Ginzburg [2002] for the study of
symplectic resolutions of the orbit space V/G, where V is a symplectic complex
vector space and G ⊂ Sp(V ) is a finite group acting on V . Verbitsky [2000] has
shown that V/G admits a symplectic resolution only if (G, V ) is a symplectic
reflection group, that is, G is generated by symplectic reflections. Thanks to
the insight by Etingof and Ginzburg, the study of the representation theory of
symplectic reflection algebras has led to the (almost) complete classification
of symplectic reflection groups (G, V ) such that V/G admits a symplectic
resolution.

Let (G, V ) be a symplectic reflection group, and let TV ∗ denote the tensor
algebra on the dual space V ∗ of V . The symplectic reflection algebra Ht,c(G)
associated to (G, V ) is defined as the quotient of TV ∗oG by certain relations
depending on a complex function c and a parameter t . The representation theory
of Ht,c(G) varies a lot according to whether t is zero or not. A complex reflection
group W ⊂GL(h), where h is a complex vector space, can be seen as a symplectic
reflection group acting on V = h ⊕ h∗. Symplectic reflection algebras associated
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with complex reflection groups are known as rational Cherednik algebras.
If t 6= 0, there exists an important category of representations of the rational

Cherednik algebra, the category O, and an exact functor, the KZ-functor, from
O to the category of representations of a certain specialised cyclotomic Hecke
algebra Hη(W ) (the specialisation depends on the choice of parameters for
the rational Cherednik algebra — every specialised Hecke algebra can arise
this way). Category O is a highest weight category, and it comes equipped
with a set of standard modules {1(E) | E ∈ Irr(W )}, a set of simple modules
{L(E) | E ∈ Irr(W )} and a decomposition matrix that records the number of times
that L(E) appears in the composition series of 1(E ′) for E, E ′ ∈ Irr(W ). The
exactness of KZ allows us to read off the decomposition matrix of Hη(W ) from
the decomposition matrix of category O. Using this, we proved in [Chlouveraki
et al. 2012] the existence of canonical basic sets for all finite Coxeter groups and
for complex reflection groups of type G(`, 1, n). In particular, we showed that E
belongs to the canonical basic set for Hη(W ) if and only if KZ(L(E)) 6= 0. Our
proof of existence is quite general and it does not make use of Ariki’s Theorem
for type G(`, 1, n). However, the explicit description of canonical basic sets in
these cases by previous works answers simultaneously the question of which
simple modules are killed by the KZ-functor; this appears to be new. We also
proved that the images of the standard modules via the KZ-functor are isomorphic
to the cell modules of Hecke algebras with cellular structure, but we will not go
into that in this paper.

The case t = 0 yields the desired criterion for the space V/W to admit a
symplectic resolution. It is a beautiful result due to Ginzburg and Kaledin
[2004] and Namikawa [2011] that V/W admits a symplectic resolution if and
only if the spectrum of the centre of H0,c(W ) is smooth for generic c. The
space X c(W ) :=Spec(Z(H0,c(W ))) is called generalised Calogero–Moser space.
Gordon [2003] introduced and studied extensively a finite-dimensional quotient
of H0,c(W ), called the restricted rational Cherednik algebra, whose simple
modules are parametrised by Irr(W ). The decomposition of this algebra into
blocks induces a partition of Irr(W ), known as Calogero–Moser partition. We
have that X c(W ) is smooth if and only if the Calogero–Moser partition is trivial
for all parabolic subgroups of W . Following the classification of irreducible
complex reflection groups, and the works of Etingof and Ginzburg [2002], Gordon
[2003] and Gordon and Martino [2009], Bellamy [2009] was able to prove that
V/W admits a symplectic resolution if and only if W = G(`, 1, n) or W = G4.

A connection is conjectured between the Calogero–Moser partition and the
families of characters, first suggested by Gordon and Martino [2009] for type
Bn . In every case studied so far, the partition into Rouquier families (for a
suitably chosen cyclotomic Hecke algebra) refines the Calogero–Moser partition
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(“Martino’s conjecture”), while for finite Coxeter groups the two partitions
coincide. The reasons for this connection are still unknown, since there is no
apparent connection between Hecke algebras and rational Cherednik algebras at
t=0. Inspired by this, and in an effort to construct a generalised Kazhdan–Lusztig
cell theory, Bonnafé and Rouquier have used the Calogero–Moser partition to
develop a “Calogero–Moser cell theory” which can be applied to all complex
reflection groups [Bonnafé and Rouquier 2013]. The fruits of this very recent
approach remain to be seen.

1A. Piece of notation and definition of blocks. Let R be a commutative integral
domain and let F be the field of fractions of R. Let A be an R-algebra, free
and finitely generated as an R-module. If R′ is a commutative integral domain
containing R, we will write R′A for R′⊗R A.

Let now K be a field containing F such that the algebra KA is semisimple.
The primitive idempotents of the centre Z(KA) of KA are in bijection with the
irreducible representations of KA. Let Irr(KA) denote the set of irreducible
representations of KA. For χ ∈ Irr(KA), let eχ be the corresponding primitive
idempotent of Z(KA). There exists a unique partition Bl(A) of Irr(KA) that is
the finest with respect to the property:∑

χ∈B

eχ ∈ A for all B ∈ Bl(A).

The elements eB :=
∑
χ∈B

eχ , for B ∈Bl(A), are the primitive idempotents of Z(A).
We have

A ∼=
∏

B∈Bl(A)
AeB .

The parts of Bl(A) are the blocks of A.

2. Iwahori–Hecke algebras

In this section we will focus on real reflection groups, while in the next section
we will see what happens in the complex case.

2A. Kazhdan–Lusztig cells. Let (W, S) be a finite Coxeter system. By defini-
tion, W has a presentation of the form

W = 〈 S | (st)mst = 1 for all s, t ∈ S 〉,

with mss = 1 and mst ≥ 2 for s 6= t . We have a length function ` : W → Z≥0

defined by `(w) :=min {r |w = si1 . . . sir with si j ∈ S } for all w ∈W .
Let L : W → Z≥0 be a weight function, that is, a map such that L(ww′) =

L(w)+ L(w′) whenever `(ww′)= `(w)+ `(w′). For s, t ∈ S, we have L(s)=
L(t) whenever s and t are conjugate in W . Let q be an indeterminate. We define
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the Iwahori–Hecke algebra of W with parameter L , denoted by H(W, L), to be
the Z[q, q−1

]-algebra generated by elements (Ts)s∈S satisfying the relations:

(Ts−q L(s))(Ts+q−L(s))= 0 and Ts Tt Ts Tt . . .︸ ︷︷ ︸
mst

= Tt Ts Tt Ts . . .︸ ︷︷ ︸
mst

for s 6= t.

If L(s)= L(t) for all s, t ∈ S, we say that we are in the equal parameter case.
Since L is a weight function, unequal parameters can only occur in irreducible
types Bn , F4 and dihedral groups I2(m) for m even.

Example 2.1. Let W = S3. We have W = 〈s, t | s2
= t2
= (st)3 = 1〉. Let

l := L(s)= L(t) ∈ Z≥0. We have

H(W, l)=
〈
Ts, Tt | Ts Tt Ts=Tt Ts Tt , (Ts−ql)(Ts+q−l)= (Tt−ql)(Tt+q−l)=0

〉
.

Let w ∈ W and let w = si1 . . . sir be a reduced expression for w, that is,
r = `(w). Set Tw := Tsi1

. . . Tsir
. As a Z[q, q−1

]-module, H(W, L) is generated
by the elements (Tw)w∈W satisfying the following multiplication formulas:{

T 2
s = 1+ (q L(s)

− q−L(s)) Ts for s ∈ S,
TwTw′ = Tww′ if `(ww′)= `(w)+ `(w′).

The elements (Tw)w∈W form a basis of H(W, L), the standard basis.
Let i be the algebra involution on H(W, L) given by i(q)= q−1 and i(Ts)=

T−1
s for s ∈ S (as a consequence, i(Tw)= T−1

w−1 for all w ∈W ). By [Kazhdan and
Lusztig 1979, Theorem 1.1] (see [Lusztig 1983, Proposition 2] for the unequal
parameter case), for eachw∈W , there exists an element Cw ∈H(W, L) uniquely
determined by the conditions

i(Cw)= Cw and and i(Cw)= Tw +
∑

x∈W,x<w

Px,w Tx ,

where < stands for the Chevalley–Bruhat order on W and Px,w ∈ q−1Z[q−1
].

The elements (Cw)w∈W also form a basis of H(W, L), the Kazhdan–Lusztig
basis.

Example 2.2. We have C1 = T1 = 1 and, for all s ∈ S,

Cs =

{
Ts if L(s)= 0,
Ts + q−L(s)T1 if L(s) > 0.

Using the Kazhdan–Lusztig basis, we can now define the following three
preorders on W . For x, y ∈W , we have

• x ≤L y if Cx appears with nonzero coefficient in hCy for some h ∈H(W, L).

• x ≤R y if Cx appears with nonzero coefficient in Cyh′ for some h′ ∈
H(W, L).
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• x ≤LR y if Cx appears with nonzero coefficient in hCyh′ for some h, h′ ∈
H(W, L).

The preorder ≤L defines an equivalence relation ∼L on W as follows:

x ∼L y ⇐⇒ x ≤L y and y ≤L x .

The equivalence classes for ∼L are called left cells. Similarly, one can define
equivalence relations ∼R and ∼LR on W , whose equivalence classes are called,
respectively, right cells and two-sided cells.

Example 2.3. For W =S3 = {1, s, t, st, ts, sts = tst} and l > 0,

• the left cells are {1}, {s, ts}, {t, st} and {sts};

• the right cells are {1}, {s, st}, {t, ts} and {sts};

• the two-sided cells are {1}, {s, t, st, ts} and {sts}.

If l = 0, then all elements of W belong to the same cell (left, right or two-sided).

Let now C be a left cell of W . The following two Z[q, q−1
]-modules are left

ideals of H(W, L):

H≤LC = 〈Cy | y ≤L w,w ∈ C〉Z[q,q−1],

H<LC = 〈Cy | y ≤L w,w ∈ C, y /∈ C〉Z[q,q−1].

Then
MC :=H≤LC/H<LC

is a free left H(W, L)-module with basis indexed by the elements of C.
Let K be a field containing Z[q, q−1

] such that the algebra KH(W, L) is split
semisimple (for example, take K =C(q)). Then, since the left cells form a parti-
tion of W , we obtain a corresponding direct sum decomposition of KH(W, L):

KH(W, L)∼=
⊕

C left cell

KMC (isomorphism of left KH(W, L)-modules),

(2.4)
where KMC := K ⊗Z[q,q−1]MC. We obtain analogous decompositions with
respect to right and two-sided cells.

2B. Schur elements and the a-function. From now on, set R :=Z[q, q−1
] and

let K be a field containing R such that the algebra KH(W, L) is split semisimple.
Using the standard basis of the Iwahori–Hecke algebra, we define the linear

map τ :H(W, L)→ R by setting

τ(Tw) :=
{

1 if w = 1,
0 otherwise.
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The map τ is a symmetrising trace on H(W, L), that is,

(a) τ(hh′)= τ(h′h) for all h, h′ ∈H(W, L), and

(b) the map τ̂ : H(W, L) → HomR(H(W, L), R), h 7→ (x 7→ τ(hx)) is an
isomorphism of H(W, L)-bimodules.

Moreover, the elements (Tw−1)w∈W form a basis of H(W, L) dual to the standard
basis with respect to τ (that is, τ(Tw−1 Tw′) = δw,w′) [Geck and Pfeiffer 2000,
Proposition 8.1.1]. The map τ is called the canonical symmetrising trace on
H(W, L), because it specialises to the canonical symmetrising trace on the group
algebra Z[W ] when q 7→ 1.

Now, the map τ can be extended to KH(W, L) by extension of scalars.
By Tits’s deformation theorem (see, for example, [Geck and Pfeiffer 2000,
Theorem 7.4.6]), the specialisation q 7→ 1 induces a bijection between the set
of irreducible representations Irr(KH(W, L)) of KH(W, L) and the set of irre-
ducible representations Irr(W ) of W . For E ∈ Irr(W ), let χE be the corresponding
irreducible character of KH(W, L) and let ωχE be the corresponding central
character. We define

sE := χE(τ̂
−1(χE))/χE(1)= ωχE (τ̂

−1(χE))

to be the Schur element of H(W, L) associated with E . Geck has shown (see
[Geck and Pfeiffer 2000, Proposition 7.3.9]) that sE ∈ ZK [q, q−1

] for all E ∈
Irr(W ), where ZK denotes the integral closure of Z in K . We have

τ =
∑

E∈Irr(W )

1
sE
χE (2.5)

and

eE =
1
sE

∑
w∈W

χE(Tw) Tw−1, (2.6)

where eE is the primitive central idempotent of KH(W, L) corresponding to E .
Both results are due to Curtis and Reiner [1962], but we follow the exposition
in [Geck and Pfeiffer 2000, Theorem 7.2.6] and [loc. cit., Proposition 7.2.7],
respectively.

Example 2.7. In the group algebra case (L(s) = 0 for all s ∈ S), we have
sE = |W |/χE(1) for all E ∈ Irr(W ).

Example 2.8. The irreducible representations of the symmetric group Sn are
parametrised by the partitions of n. For W = S3, there are three irreducible
representations. Let E (3), E (2,1) and E (1,1,1) denote respectively the trivial,
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reflection and sign representation of S3. We have

sE (3) = (q
2l
+ 1)(q4l

+ q2l
+ 1), sE (2,1) = q2l

+ 1+ q−2l,

sE (1,1,1) = (q
−2l
+ 1)(q−4l

+ q−2l
+ 1).

We can define the functions a : Irr(W )→ Z and A : Irr(W )→ Z by setting

a(E) := −valq(sE) and A(E) := −degq(sE).

Note that both functions depend on L . For brevity, we will write aE for a(E)
and AE for A(E).

Example 2.9. For W =S3, we have

aE (3) = 0, aE (2,1) = 2l, aE (1,1,1) = 6l,

AE (3) =−6l, AE (2,1) =−2l, AE (1,1,1) = 0.

The Schur elements of H(W, L) have been explicitly calculated for all finite
Coxeter groups:

• for type An by Steinberg [1951],

• for type Bn by Hoefsmit [1974],

• for type Dn by Benson and Gay [1977] (it derives from type Bn with the
use of Clifford theory),

• for dihedral groups I2(m) by Kilmoyer and Solomon [1973],

• for F4 by Lusztig [1979],

• for E6 and E7 by Surowski [1978],

• for E8 by Benson [1979],

• for H3 by Lusztig [1982],

• for H4 by Alvis and Lusztig [1982].

There have been other subsequent proofs of the above results. For example,
Iwahori–Hecke algebras of types An and Bn are special cases of Ariki–Koike
algebras, whose Schur elements have been independently obtained by Geck,
Iancu and Malle [2000] and Mathas [2004].

A case-by-case analysis shows that the Schur elements of H(W, L) can be
written in the form

sE = ξE q−aE
∏

8∈CycE

8(qnE,8), (2.10)

where ξE ∈ ZK , nE,8 ∈ Z>0 and CycE is a family of K -cyclotomic polyno-
mials (see [Geck and Pfeiffer 2000, Chapters 10 and 11; Chlouveraki 2009,
Theorem 4.2.5]).
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Example 2.11. For W =S3, we have

sE (3) =82(q2l)83(q2l), sE (2,1) = q−2l83(q2l),

sE (1,1,1) = q−6l82(q2l)83(q2l).

2C. Families of characters and Rouquier families. The families of characters
are a special partition of the set of irreducible representations of W . In the case
where W is a Weyl group, these families play an essential role in the definition of
the families of unipotent characters for the corresponding finite reductive groups.
Their original definition is due to Lusztig [1984, 4.2] and uses the a-function.

Let I ⊆ S and consider the parabolic subgroup WI ⊆W generated by I . Then
we have a corresponding parabolic subalgebra H(WI , L)⊆H(W, L). By exten-
sion of scalars from R to K , we also have a subalgebra KH(WI , L)⊆KH(W, L),
and a corresponding a-function on the set of irreducible representations of WI .
Denote by IndS

I the induction of representations from WI to W . Let E ∈ Irr(W )

and M ∈ Irr(WI ). We will write M  L E if E is a constituent of IndS
I (M) and

aE = aM .

Definition 2.12. The partition of Irr(W ) into families is defined inductively
as follows: when W = {1}, there is only one family; it consists of the unit
representation of W . Assume now that W 6= {1} and that the families have already
been defined for all proper parabolic subgroups of W . Then E, E ′ ∈ Irr(W ) are in
the same family of W if there exists a finite sequence E = E0, E1, . . . , Er = E ′

in Irr(W ) such that, for each i ∈ {0, 1, . . . , r − 1}, the following condition is
satisfied: There exist a subset Ii $ S and Mi , M ′i ∈ Irr(WIi ) such that Mi ,M ′i
belong to the same family of WIi and either

Mi  L Ei and M ′i  L Ei+1

or
Mi  L Ei ⊗ ε and M ′i  L Ei+1⊗ ε,

where ε denotes the sign representation of W . We will also refer to these families
as Lusztig families.

Lusztig [1987, 3.3 and 3.4] has shown that the functions a and A are both
constant on the families of characters, that is, if E and E ′ belong to the same
family, then aE = aE ′ and AE = AE ′ .

The decomposition of W into two-sided cells can be used to facilitate the
description of the partition of Irr(W ) into families of characters. As we saw in
the previous subsection, Tits’s deformation theorem yields a bijection between
Irr(KH(W, L)) and Irr(W ). Let E ∈ Irr(W ) and let V E be the corresponding
simple module of KH(W, L). Following the direct sum decomposition given by
(2.4), there exists a left cell C such that V E is a constituent of MC; furthermore,
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all such left cells are contained in the same two-sided cell. This two-sided cell,
therefore, only depends on E and will be denoted by FE . Thus, we obtain a
natural surjective map

Irr(W )→ {set of two-sided cells of W }, E 7→ FE

(see [Lusztig 1984, 5.15] for the equal parameter case; the same argument works
in general).

Definition 2.13. Let E, E ′ ∈ Irr(W ). We will say that E and E ′ belong to the
same Kazhdan–Lusztig family if FE = FE ′ .

The following remarkable result, relating Lusztig families and Kazhdan–
Lusztig families, has been proved by Barbasch–Vogan and Lusztig for finite
Weyl groups in the equal parameter case [Lusztig 1984, 5.25]. It was subsequently
proved [Lusztig 2003, 23.3; Geck 2005] to hold for any finite Coxeter group
and any weight function L , assuming that Lusztig’s conjectures P1–P15 [Lusztig
2003, 14.2] are satisfied.

Theorem 2.14. Assume that Lusztig’s conjectures P1–P15 hold. The Lusztig
families and the Kazhdan–Lusztig families coincide.

Lusztig’s conjectures P1–P15 concern properties of the Kazhdan–Lusztig
basis which should hold for any Coxeter group and in the general multiparameter
case. For the moment, Conjectures P1–P15 have been proved in the following
cases:

• Equal parameter case for finite Weyl groups [Kazhdan and Lusztig 1980;
Lusztig 2003; Springer 1982].

• Equal parameter case for H3, H4 and dihedral groups I2(m) [Alvis 1987;
du Cloux 2006].

• Unequal parameter case for F4 and dihedral groups I2(m) [Geck 2004; Geck
2011].

• Asymptotic case and some other cases for Bn [Bonnafé and Iancu 2003;
Bonnafé 2006; Bonnafé et al. 2010].

Moreover, these are exactly the cases where we have a description of the Kazhdan–
Lusztig cells and Kazhdan–Lusztig families. A conjectural combinatorial de-
scription of the Kazhdan–Lusztig cells for type Bn is given by Bonnafé et al.
[2010].

Example 2.15. The group S3 has three irreducible representations. For l > 0,
each irreducible representation forms a family on its own. This is true in general
for the symmetric group Sn . For l = 0, all irreducible representations belong to
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the same family. This is true in general for the group algebra (L(s)= 0 for all
s ∈ S) of every finite Coxeter group.

Rouquier [1999] gave an alternative definition for Lusztig’s families. He
showed that, for finite Weyl groups in the equal parameter case, the families of
characters coincide with the blocks of the Iwahori–Hecke algebra H(W, L) over
the Rouquier ring

RK (q) := ZK [q, q−1, (qn
− 1)−1

n≥1],

that is, following (2.6), the nonempty subsets B of Irr(W ) which are minimal
with respect to the property:∑

E∈B

χE(h)
sE
∈RK (q) for all h ∈H(W, L).

These are the Rouquier families of H(W, L). One advantage of this definition, as
we will see in the next section, is that it can be also applied to complex reflection
groups. This is important in the “Spetses project” [Broué et al. 1999; 2014].

Following the determination of Rouquier families for all complex reflection
groups (see Section 3C for references), and thus for all finite Coxeter groups,
one can check that Rouquier’s result holds for all finite Coxeter groups for all
choices of parameters (by comparing the Rouquier families with the already
known Lusztig families [Lusztig 1984; 2003]); that is, we have the following:

Theorem 2.16. Let (W, S) be a finite Coxeter system and let H(W, L) be an
Iwahori–Hecke algebra associated to W . The Lusztig families and the Rouquier
families of H(W, L) coincide.

2D. Canonical basic sets. As we saw in Section 2C, the specialisation q 7→ 1
yields a bijection between the set of irreducible representations of KH(W, L)
and Irr(W ). What happens though when q specialises to a complex number?
The resulting Iwahori–Hecke algebra is not necessarily semisimple and the first
questions that need to be answered are the following: What are the simple
modules for the newly obtained algebra? Is there a good way to parametrise
them? What are their dimensions? One major approach to answering these
questions is through the existence of “canonical basic sets”.

Let θ : ZK [q, q−1
] → K (η), q 7→ η be a ring homomorphism such that η is

a nonzero complex number. Let us denote by Hη(W, L) the algebra obtained
as a specialisation of H(W, L) via θ . Set K := K (η). We have the following
semisimplicity criterion [Geck and Pfeiffer 2000, Theorem 7.4.7]:

Theorem 2.17. The algebra KHη(W, L) is semisimple if and only θ(sE) 6= 0 for
all E ∈ Irr(W ).
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Following (2.10), KHη(W, L) is semisimple unless η is a root of unity.

Example 2.18. The algebra Q(η)Hη(S3, l) is semisimple if and only if η2l /∈

{−1, ω, ω2
}, where ω := exp(2π i/3).

If KHη(W, L) is semisimple, then, by Tits’s deformation theorem, the spe-
cialisation θ yields a bijection between Irr(KH(W, L)) and Irr(KHη(W, L)).
Thus, the irreducible representations of KHη(W, L) are parametrised by Irr(W ).
Hence, we need to see what happens when KHη(W, L) is not semisimple.

Let R0(KH(W, L)) and R0(KHη(W, L)) be respectively the Grothendieck
groups of finitely generated KH(W, L)-modules and KHη(W, L)-modules. The
classes [U ], where U ranges over simple KH(W, L)-modules (respectively
KHη(W, L)-modules), generate R0(KH(W, L)) (respectively R0(KHη(W, L))).
We obtain a well-defined decomposition map

dθ : R0(KH(W, L))→ R0(KHη(W, L)),

such that, for all E ∈ Irr(W ), we have

dθ ([V E
])=

∑
M∈Irr(KHη(W,L))

[V E
: M][M].

The matrix
Dθ = ([V E

: M])E∈Irr(W ),M∈Irr(KHη(W,L))

is called the decomposition matrix with respect to θ . If KHη(W, L) is semisimple,
then Dθ is a permutation matrix.

Definition 2.19. A canonical basic set with respect to θ is a subset Bθ of Irr(W )

such that

(a) there exists a bijection Irr(KHη(W, L))→ Bθ , M 7→ EM ;

(b) [V EM : M] = 1 for all M ∈ Irr(KHη(W, L));

(c) if [V E
: M] 6= 0 for some E ∈ Irr(W ), M ∈ Irr(KHη(W, L)), then either

E = EM or aEM < aE .

If a canonical basic set exists, the decomposition matrix has a lower unitrian-
gular form (with an appropriate ordering of the rows). Thus, we can obtain a lot
of information about the simple modules of KHη(W, L) from what we already
know about the simple modules of KH(W, L).

A general existence result for canonical basic sets is proved by Geck [2007b,
Theorem 6.6], following his earlier work [1998], and that of Geck and Rouquier
[2001] and Geck and Jacon [2006]. Another proof is given in [Geck and Jacon
2011]. In every case canonical basic sets are known explicitly, thanks to the
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work of many people. For a complete survey on the topic, we refer the reader to
[Geck and Jacon 2011].

Example 2.20. Let W be the symmetric group Sn . Then W is generated by the
transpositions si = (i, i + 1) for all i = 1, . . . , n− 1, which are all conjugate in
W . Set l := L(s1) and let η2l be a primitive root of unity of order e > 1. By
[Dipper and James 1986, Theorem 7.6], we have that, in this case, the canonical
basic set Bθ is the set of e-regular partitions (a partition is e-regular if it does not
have e nonzero equal parts). For example, for n= 3, we have Bθ = {E (3), E (2,1)}
for e ∈ {2, 3}, and Bθ = Irr(S3) for e > 3.

3. Cyclotomic Hecke algebras

Cyclotomic Hecke algebras generalise the notion of Iwahori–Hecke algebras to
the case of complex reflection groups. For any positive integer e we will write
ζe for exp(2π i/e) ∈ C.

3A. Hecke algebras for complex reflection groups. Let h be a finite dimen-
sional complex vector space. A pseudoreflection is a nontrivial element s ∈GL(h)
that fixes a hyperplane pointwise, that is, dimCKer(s− idh)= dimCh− 1. The
hyperplane Ker(s− idh) is the reflecting hyperplane of s. A complex reflection
group is a finite subgroup of GL(h) generated by pseudoreflections. The classifi-
cation of (irreducible) complex reflection groups is due to Shephard and Todd
[1954]:

Theorem 3.1. Let W ⊂ GL(h) be an irreducible complex reflection group (i.e.,
W acts irreducibly on h). Then one of the following assertions is true:

• There exist positive integers `, p, n with `/p ∈ Z and ` > 1 such that
(W, h) ∼= (G(`, p, n),Cn), where G(`, p, n) is the group of all n × n
monomial matrices whose nonzero entries are `-th roots of unity, while
the product of all nonzero entries is an (`/p)-th root of unity.

• There exists a positive integer n such that (W, h)∼= (Sn,Cn−1).

• (W, h) is isomorphic to one of the 34 exceptional groups Gn (n=4, . . . , 37).

Remark 3.2. We have

G(1, 1, n)∼=Sn, G(2, 1, n)∼= Bn, G(2, 2, n)∼= Dn, G(m,m, 2)∼= I2(m),

G23 ∼= H3, G28 ∼= F4, G30 ∼= H4,G35 ∼= E6, G36 ∼= E7, G37 ∼= E8.

Let W ⊂ GL(h) be a complex reflection group. Benard [1976] and Bessis
[1997] have proved (using a case-by-case analysis) that the field K generated by
the traces on h of all the elements of W is a splitting field for W . The field K is
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called the field of definition of W . If K ⊆ R, then W is a finite Coxeter group,
and if K =Q, then W is a Weyl group.

Let A be the set of reflecting hyperplanes of W . Let hreg
:= h \

⋃
H∈A H and

BW := π1(h
reg/W, x0), where x0 is some fixed basepoint. The group BW is the

braid group of W . For every orbit C of W on A, we set eC the common order
of the subgroups WH , where H is any element of C and WH is the pointwise
stabiliser of H . Note that WH is cyclic, for all H ∈A.

We choose a set of indeterminates u= (uC, j )(C∈A/W )(0≤ j≤eC−1) and we denote
by Z[u, u−1

] the Laurent polynomial ring in all the indeterminates u. We define
the generic Hecke algebra H(W ) of W to be the quotient of the group algebra
Z[u, u−1

]BW by the ideal generated by the elements of the form

(s− uC,0)(s− uC,1) · · · (s− uC,eC−1),

where C runs over the set A/W and s runs over the set of monodromy generators
around the images in hreg/W of the elements of C [Broué et al. 1998, Section 4].

From now on, we will make certain assumptions for H(W ). These assumptions
are known to hold for all finite Coxeter groups [Bourbaki 2002, IV, Section 2],
G(`, p, n) [Broué et al. 1999; Malle and Mathas 1998; Geck et al. 2000] and a
few of the exceptional complex reflection groups [Marin 2012; 2014]1; they are
expected to be true for all complex reflection groups.

Hypothesis 3.3. (a) The algebra H(W ) is a free Z[u, u−1
]-module of rank

equal to the order of W .

(b) There exists a symmetrising trace τ on H(W ) that satisfies certain canonical-
ity conditions [Broué et al. 1999, Sections 1 and 2]; the form τ specialises
to the canonical symmetrising form on the group algebra when uC, j 7→ ζ

j
eC .

Under these assumptions, Malle [1999, 5.2] has shown that there exists NW ∈

Z>0 such that if we take

uC, j = ζ
j

eCv
NW
C, j , (3.4)

and set v := (vC, j )(C∈A/W )(0≤ j≤eC−1), then the K (v)-algebra K (v)H(W ) is split
semisimple. By Tits’s deformation theorem, it follows that the specialisation
vC, j 7→ 1 induces a bijection between Irr(K (v)H(W )) and Irr(W ). From now
on, we will consider H(W ) as an algebra over ZK [v, v

−1
], where ZK denotes

the integral closure of Z in K .

1Malle and Michel [2010] mention that these assumptions have been confirmed computationally
by Müller in several exceptional cases, but this work is not published. Moreover, in [Broué and
Malle 1993] the assumption (a) is proved for the groups G4, G5, G12 and G25, but Marin [2014]
pointed out that these proofs might contain a questionable argument.
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Example 3.5. The group W = G(`, 1, n) is isomorphic to the wreath product
(Z/`Z) oSn and its splitting field is K =Q(ζ`). In this particular case, we can
take NW = 1. The algebra K (v)H(W ) is generated by elements s, t1, . . . , tn−1

satisfying the braid relations of type Bn (given by

st1st1 = t1st1s, sti = ti s, ti−1 ti ti−1 = ti ti−1 ti

for i = 2, . . . , n − 1 and ti t j = t j ti for |i − j | > 1), together with the extra
relations

(s− vs,0)(s− ζ`vs,1) · · · (s− ζ `−1
` vs,`−1)= 0, (ti − vt,0)(ti + vt,1)= 0,

for all i = 1, . . . , n − 1. The Hecke algebra of G(`, 1, n) is also known as
Ariki–Koike algebra, with the last quadratic relation usually looking like this:

(ti − q)(ti + 1)= 0,

where q is an indeterminate. The irreducible representations of G(`, 1, n), and
thus the irreducible representations of K (v)H(W ), are parametrised by the `-
partitions of n.

Let now q be an indeterminate and let m = (mC, j )(C∈A/W )(0≤ j≤eC−1) be a
family of integers. The ZK -algebra morphism

ϕm : ZK [v, v
−1
] → ZK [q, q−1

], vC, j 7→ qmC, j

is called a cyclotomic specialisation. The ZK [q, q−1
]-algebra Hϕm(W ) obtained

as the specialisation of H(W ) via ϕm is called a cyclotomic Hecke algebra
associated with W . The Iwahori–Hecke algebras defined in the previous section
are cyclotomic Hecke algebras associated with real reflection groups. The algebra
K (q)Hϕm(W ) is split semisimple [Chlouveraki 2009, Proposition 4.3.4]. By
Tits’s deformation theorem, the specialisation q 7→ 1 yields a bijection between
Irr(K (q)Hϕm(W )) and Irr(W ).

3B. Schur elements and the a-function. The symmetrising trace τ (see Hy-
pothesis 3.3) can be extended to K (v)H(W ) by extension of scalars, and can be
used to define Schur elements (sE)E∈Irr(W ) for H(W ). The Schur elements of
H(W ) have been explicitly calculated for all complex reflection groups:

• for finite Coxeter groups see Section 2B ;

• for complex reflection groups of type G(`, 1, n) by Geck et al. [2000] and
Mathas [2004];

• for complex reflection groups of type G(`, 2, 2) by Malle [1997];

• for the remaining exceptional complex reflection groups by Malle [1997;
2000].
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With the use of Clifford theory, we obtain the Schur elements for type G(`, p, n)
from those of type G(`, 1, n) when n > 2 or n = 2 and p is odd. The Schur
elements for type G(`, p, 2) when p is even derive from those of type G(`, 2, 2).
See [Malle 1995; Chlouveraki 2009, A.7].

Using a case-by-case analysis, we have been able to determine that the Schur
elements of H(W ) have the following form [Chlouveraki 2009, Theorem 4.2.5].

Theorem 3.6. Let E ∈ Irr(W ). The Schur element sE is an element of ZK [v, v
−1
]

of the form

sE = ξE NE

∏
i∈IE

9E,i (ME,i ), (3.7)

where

(a) ξE is an element of ZK ,

(b) NE =
∏
C, j
v

bC, j
C, j is a monomial in ZK [v, v

−1
] with

eC−1∑
j=0

bC, j =0 for all C∈A/W ,

(c) IE is an index set,

(d) (9E,i )i∈IE is a family of K -cyclotomic polynomials in one variable,

(e) (ME,i )i∈IE is a family of monomials in ZK [v, v
−1
] such that if

ME,i =
∏
C, j

v
aC, j
C, j ,

then

gcd(aC, j )= 1 and
eC−1∑
j=0

aC, j = 0 for all C ∈A/W.

Equation (3.7) gives the factorisation of sE into irreducible factors. The mono-
mials (ME,i )i∈IE are unique up to inversion, and we will call them potentially
essential for W .

Remark 3.8. Theorem 3.6 was independently obtained by Rouquier [2008,
Theorem 3.5] using a general argument on rational Cherednik algebras.

Example 3.9. Consider S3, which is isomorphic to G(1, 1, 3). We have

sE (3) =82(vt,0v
−1
t,1 )83(vt,0v

−1
t,1 ), sE (2,1) = v

−1
t,0vt,183(vt,0v

−1
t,1 ),

sE (1,1,1) = v
−3
t,0v

3
t,182(vt,0v

−1
t,1 )83(vt,0v

−1
t,1 ).

Let ϕm :vC, j 7→qmC, j be a cyclotomic specialisation. The canonical symmetris-
ing trace on H(W ) specialises via ϕm to become the canonical symmetrising
trace τϕm on Hϕm(W ). The Schur elements of Hϕm(W ) with respect to τϕm are
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(ϕm(sE))E∈Irr(W ), hence they can be written in the form (2.10). We can again
define functions am

: Irr(W )→ Z and Am
: Irr(W )→ Z such that

am
E := −valq(ϕm(sE)) and Am

E := −degq(ϕm(sE)).

3C. Families of characters and Rouquier families. Let ϕm : vC, j 7→ qmC, j be
a cyclotomic specialisation and let Hϕm(W ) be the corresponding cyclotomic
Hecke algebra associated with W . How can we define families of characters
for Hϕm(W )? We cannot apply Lusztig’s original definition, because parabolic
subgroups of complex reflection groups2 do not have a nice presentation as in the
real case, and certainly not a “corresponding” parabolic Hecke algebra. On the
other hand, we do not have a Kazhdan–Lusztig basis for Hϕm(W ), so we cannot
construct Kazhdan–Lusztig cells and use them to define families of characters
for complex reflection groups in the usual way. However, we can define the
families of characters to be the Rouquier families of Hϕm(W ), that is, the blocks
of Hϕm(W ) over the Rouquier ring RK (q), where

RK (q)= ZK [q, q−1, (qn
− 1)−1

n≥1].

Similarly to the real case, the Rouquier families are the nonempty subsets B of
Irr(W ) that are minimal with respect to the property:∑

E∈B

ϕm(χE(h))
ϕm(sE)

∈RK (q) for all h ∈H(W ).

Broué and Kim [2002] determined the Rouquier families for the complex
reflection groups of type G(`, 1, n), but their results are only true when ` is a
power of a prime number or ϕm is a “good” cyclotomic specialisation. The same
problem persists, and some new appear, in the determination of the Rouquier
families for G(`, p, n) by Kim [2005]. Malle and Rouquier [2003] calculated
the Rouquier families for some exceptional complex reflection groups and the
dihedral groups, for a certain choice of cyclotomic specialisation. More recently,
we managed to determine the Rouquier families for all cyclotomic Hecke algebras
of all complex reflection groups [Chlouveraki 2007; 2008b; 2009; 2010], thanks
to their property of “semicontinuity” (the term is due to Cédric Bonnafé). In
order to explain this property, we will need some definitions.

Let
M =

∏
C, j

v
aC, j
C, j

2The parabolic subgroups of a complex reflection group W ⊂GL(h) are the pointwise stabilisers
of the subsets of h. It is a remarkable theorem by Steinberg [1964, Theorem 1.5] that all parabolic
subgroups of W are again complex reflection groups.
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be a potentially essential monomial for W . We say that the family of integers
m = (mC, j )(C∈A/W )(0≤ j≤eC−1) belongs to the potentially essential hyperplane
HM (of R

∑
C eC ) if

∑
C, j mC, j aC, j = 0.

Suppose that m belongs to no potentially essential hyperplane. Then the
Rouquier families of Hϕm(W ) are called Rouquier families associated with no
essential hyperplane. Now suppose that m belongs to a unique potentially essen-
tial hyperplane H . Then the Rouquier families of Hϕm(W ) are called Rouquier
families associated with H . If they do not coincide with the Rouquier families
associated with no essential hyperplane, then H is called an essential hyperplane
for W . All these notions are well-defined and they do not depend on the choice
of m because of the following theorem [Chlouveraki 2009, Section 4.4].

Theorem 3.10 (semicontinuity property of Rouquier families). Let

m = (mC, j )(C∈A/W )(0≤ j≤eC−1)

be a family of integers and let ϕm : vC, j 7→ qmC, j be the corresponding cyclotomic
specialisation. The Rouquier families of Hϕm(W ) are unions of the Rouquier
families associated with the essential hyperplanes that m belongs to and they are
minimal with respect to that property.

Thanks to the above result, it is enough to do calculations in a finite number
of cases in order to obtain the families of characters for all cyclotomic Hecke
algebras, whose number is infinite.

Example 3.11. For W =S3, the Rouquier families associated with no essential
hyperplane are trivial. The hyperplane HM corresponding to the monomial
M = vt,0v

−1
t,1 is essential, and it is the unique essential hyperplane for S3.

Let ϕm : vt, j 7→ qm j , j = 0, 1, be a cyclotomic specialisation. We have that
m= (m0,m1) belongs to HM if and only if m0 =m1. There is a single Rouquier
family associated with HM , which contains all irreducible representations of S3.

We have also shown that the functions a and A are constant on the Rouquier
families, for all cyclotomic Hecke algebras of all complex reflection groups
[Chlouveraki 2008a; 2008b; 2010].

3D. Canonical basic sets. Given a cyclotomic Hecke algebra Hϕm(W ) and a
ring homomorphism θ : q 7→ η ∈ C \ {0}, we obtain a semisimplicity criterion
and a decomposition map exactly as in Section 2D. A canonical basic set with
respect to θ is also defined in the same way.

In [Chlouveraki and Jacon 2011], we showed the existence of canonical basic
sets with respect to any θ for all cyclotomic Hecke algebras associated with finite
Coxeter groups, that is, when the weight function L in the definition of H(W, L)
is also allowed to take negative values.
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For nonreal complex reflection groups, things become more complicated. For
W = G(`, 1, n), consider the specialised Ariki–Koike algebra with relations

(s− ζ s0
e )(s− ζ

s1
e ) · · · (s− ζ

s`−1
e )= 0, (ti − ζe)(ti + 1)= 0

for i = 1, . . . , n− 1. (3.12)

where (s0, . . . , s`−1) ∈ Z` and e ∈ Z>0. With the use of Ariki’s theorem [Ariki
1996] and Uglov’s work [2000] on canonical bases for higher level Fock spaces,
Geck and Jacon have shown that, for a suitable choice of m, the corresponding
function am yields a canonical basic set for the above specialised Ariki–Koike
algebra [Geck and Jacon 2006; 2011; Jacon 2004; 2007]. This canonical basic
set consists of the so-called Uglov `-partitions [Jacon 2007, Definition 3.2].
However, this does not work the other way round: not all cyclotomic Ariki–
Koike algebras admit canonical basic sets. For a study about which values of m
yield canonical basic sets, see [Gerber 2014].

In [Chlouveraki and Jacon 2012], building on work by Genet and Jacon [2006],
we generalised the above result to obtain canonical basic sets for all groups of
type G(`, p, n) with n > 2, or n = 2 and p odd.

Finally, for the exceptional complex reflection groups of rank 2 (G4, . . . ,G22),
we have shown the existence of canonical basic sets for the cyclotomic Hecke
algebras appearing in [Broué and Malle 1993] with respect to any θ [Chlouveraki
and Miyachi 2011].

4. Symplectic reflection algebras

Let V be a complex vector space of finite dimension n, and let G ⊂GL(V ) be a
finite group. Let C[V ] be the set of regular functions on V , which is the same
thing as the symmetric algebra Sym(V ∗) of the dual space of V . The group G
acts on C[V ] as follows:

g f (v) := f (g−1v) for all g ∈ G, f ∈ C[V ], v ∈ V .

We set

C[V ]G := { f ∈ C[V ] | g f = f for all g ∈ G},

the space of fixed points of C[V ] under the action of G. It is a classical problem
in algebraic geometry to try and understand as a variety the space

V/G = Spec C[V ]G .

Is the space V/G singular? How much? The first question is answered by the
following result from [Shephard and Todd 1954; Chevalley 1955].
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Theorem 4.1. The following statements are equivalent:

(1) V/G is smooth.

(2) C[V ]G is a polynomial algebra, on n homogeneous generators.

(3) G is a complex reflection group.

Example 4.2. Let Sn act on V =Cn by permuting the coordinates. Let C[V ] =
C[X1, . . . , Xn] and let61, 62, . . . , 6n be the elementary symmetric polynomials
in n variables. We have

C[V ]Sn = C[61(X1, . . . , Xn),62(X1, . . . , Xn), . . . , 6n(X1, . . . , Xn)].

More generally, we have

C[V ]G(`,1,n) = C[61(X`
1, . . . , X`

n),62(X`
1, . . . , X`

n), . . . , 6n(X`
1, . . . , X`

n)],

where G(`, 1, n) ∼= (Z/`Z)n oSn and (Z/`Z)n acts on V by multiplying the
coordinates by `-th roots of unity. Note that G(`, 1, n) acts irreducibly on V if
and only if ` > 1.

Example 4.3. Let V = C2 and let G be a finite subgroup of SL2(C). Then G
is not a complex reflection group (in fact, it contains no pseudoreflections at
all). The singular space C2/G is called a Kleinian (or Du Val) singularity. The
simplest example we can take is

G =
{( 1

0
0
1

)(
−1

0
0
−1

)}
;

we will use it to illustrate further notions.

4A. Symplectic reflection groups. The group G in Example 4.3 might not be a
complex reflection group, but it is a symplectic reflection group, which is quite
close. Moreover, the space C2/G is not smooth (following Theorem 4.1), but it
admits a symplectic resolution.

Let (V, ωV ) be a symplectic vector space, let Sp(V ) be the group of symplectic
transformations on V and let G ⊂ Sp(V ) be a finite group. The triple (G, V, ωV )

is called a symplectic triple. A symplectic triple is indecomposable if there is
no G-equivariant splitting V = V1⊕ V2 with ωV (V1, V2)= 0. Any symplectic
triple is a direct sum of indecomposable symplectic triples.

Definition 4.4. Let (G, V, ωV ) be a symplectic triple and let (V/G)sm denote
the smooth part of V/G. A symplectic resolution of V/G is a resolution of
singularities π : X→ V/G such that there exists a complex symplectic form ωX

on X for which the isomorphism

π |π−1((V/G)sm) : π
−1((V/G)sm)→ (V/G)sm

is a symplectic isomorphism.
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The existence of a symplectic resolution for V/G is a very strong condition
and implies that the map π has some very good properties; for example, π is
“semismall” [Verbitsky 2000, Theorem 2.8]. Moreover, all crepant resolutions of
V/G are symplectic [loc. cit., Theorem 2.5].

Verbitsky has shown that if V/G admits a symplectic resolution, then G is
generated by symplectic reflections [loc. cit., Theorem 3.2].

Definition 4.5. A symplectic reflection is a nontrivial element s ∈ Sp(V ) such
that rank(s−idV )= 2. The symplectic triple (G, V, ωV ) is a symplectic reflection
group if G is generated by symplectic reflections.

Hence, if the space V/G admits a symplectic resolution, then (G, V, ωV )

is a symplectic reflection group; the converse is not true. The classification of
such symplectic reflection groups is almost complete thanks to the representation
theory of symplectic reflection algebras.

Example 4.6. Following Example 4.3, let G be the cyclic group of order 2,
denoted by µ2, acting on V = C⊕C∗ by multiplication by −1. Let ωV be the
standard symplectic form on V , that is,

ωV (y1⊕ x1, y2⊕ x2)= x2(y1)− x1(y2). (4.7)

Letting C[V ] = C[X, Y ], we see that

C[V ]G = C[X2, XY, Y 2
] ∼= C[A, B,C]/(AC − B2),

the quadratic cone. This has an isolated singularity at the origin, that is, at the
zero orbit, which can be resolved by blowing up there. The resulting resolution
π : T ∗P1

→ V/G is a symplectic resolution where T ∗P1 has its canonical
symplectic structure.

The classification of (indecomposable) symplectic reflection groups is due
to Huffman and Wales [1976], Cohen [1980], and Guralnick and Saxl [2003].
Except for a finite list of explicit exceptions with dimC(V )≤ 10, there are two
classes of symplectic reflection groups:

• Wreath products. Let 0⊂ SL2(C) be finite: such groups are called Kleinian
subgroups and they preserve the canonical symplectic structure on C2. Set

V = C2
⊕C2

⊕ · · ·⊕C2︸ ︷︷ ︸
n summands

with the symplectic form ωV induced from that on C2 and let G = 0 oSn

act in the obvious way on V .
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• Complex reflection groups. Let G ⊂ GL(h) be a complex reflection group.
Set V = h⊕ h∗ with its standard symplectic form ωV (see (4.7)) and with
G acting diagonally.

In both these cases, (G, V, ωV ) is a symplectic reflection group.

Remark 4.8. Note that in the second case, where G is a complex reflection
group, the space h/G is smooth, but V/G is not. The symplectic reflections in
(G, V, ωV ) are the pseudoreflections in (G, h).

Remark 4.9. There is a small overlap between the two main families of symplec-
tic reflection groups, namely the complex reflection groups of type G(`, 1, n).

Wang [1999, Sections 1.3 and 1.4] observes that if G = 0 oSn for some
0 ⊂ SL2(C), then V/G has a symplectic resolution given by the Hilbert scheme
of n points on the minimal resolution of the Kleinian singularity C2/0. In
Section 6 we will see what happens in the case where G is a complex reflection
group.

4B. The symplectic reflection algebra Ht,c(G). From now on, let (G, V, ωV )

be a symplectic reflection group and let S be the set of all symplectic reflections
in G.

Definition 4.10. The skew-group ring C[V ]oG is, as a vector space, equal to
C[V ]⊗CG and the multiplication is given by

g · f = g f · g for all g ∈ G, f ∈ C[V ].

The centre Z(C[V ]o G) of the skew-group ring is equal to C[V ]G . It has
been an insight of Etingof and Ginzburg [2002], which goes back to (at least)
Crawley-Bovey and Holland [1998], that, in order to understand Spec C[V ]G , we
could look at deformations of C[V ]oG, hoping that the centre of the deformed
algebra is itself a deformation of C[V ]G . These deformations are the symplectic
reflection algebras.

Let s ∈ S. The spaces Im(s− idV ) and Ker(s− idV ) are symplectic subspaces
of V with dimC Im(s− idV )= 2 and V = Im(s− idV )⊕Ker(s− idV ). Let ωs be
the 2-form on V whose restriction to Im(s− idV ) is ωV and whose restriction to
Ker(s− idV ) is zero. Let ωV ∗ be the symplectic form on V ∗ corresponding to ωV

(under the identification of V and V ∗ induced by ωV ), and let TV ∗ denote the
tensor algebra on V ∗. Finally, let c : S→ C be a conjugacy invariant function,
that is, a map such that

c(gsg−1)= c(s) for all s ∈ S, g ∈ G.
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Definition 4.11. Let t ∈ C. We define the symplectic reflection algebra Ht,c(G)
of G to be

Ht,c(G) := TV ∗oG
/〈
[u, v]−

(
t ωV ∗(u, v)−2

∑
s∈S

c(s) ωs(u, v) s
) ∣∣ u, v ∈ V ∗

〉
.

Note that the above definition simply describes how two vectors in V ∗ com-
mute with each other in Ht,c(G), and that we have [u, v] ∈CG for all u, v ∈ V ∗.

Remark 4.12. For all λ ∈ C×, we have Hλt,λc(G)∼= Ht,c(G). So we only need
to consider the cases t = 1 and t = 0.

Remark 4.13. We have H0,0(G)= C[V ]oG.

Example 4.14. Let us consider the example of the cyclic group µ2 = 〈s〉 acting
on V = C2, so that

sx =−x, sy =−y and ωV ∗(y, x)= 1,

where {x, y} is a basis of (C2)∗. We have ωs = ωV ∗ , since Im(s − idV ) = V .
Then Ht,c(µ2) is the quotient of C〈x, y, s〉 by the relations:

s2
= 1, sx =−xs, sy =−ys, [y, x] = t − 2c(s)s.

Example 4.15. Let V =C2. Then Sp(V )= SL2(C) and we can take G to be any
finite subgroup of SL2(C). Let {x, y} be a basis of (C2)∗ such that ωV ∗(y, x)= 1.
Every g 6= 1 in G is a symplectic reflection and ωg = ωV ∗ . Then

Ht,c(G)= C〈x, y〉oG
/〈
[y, x] −

(
t − 2

∑
g∈G\{1}

c(g)g
)〉
.

There is a natural filtration F on Ht,c(G) given by putting V ∗ in degree one
and G in degree zero. The crucial result by Etingof and Ginzburg is the Poincaré–
Birkhoff–Witt (PBW) theorem [Etingof and Ginzburg 2002, Theorem 1.3].

Theorem 4.16. There is an isomorphism of algebras

grF (Ht,c(G))∼= C[V ]oG,

given by σ(v) 7→ v, σ(g) 7→ g, where σ(h) denotes the image of h ∈ Ht,c(G) in
grF (Ht,c(G)). In particular, there is an isomorphism of vector spaces

Ht,c(G)∼= C[V ]⊗CG.

Moreover, symplectic reflection algebras are the only deformations of C[V ]oG
with this property (PBW property).

The most important consequence of the PBW theorem is that it gives us an
explicit basis of the symplectic reflection algebra. The proof of it is an application
of a general result by Braverman and Gaitsgory: If I is a two-sided ideal of
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TV ∗ o G generated by a space U of elements of degree at most two, then
[Braverman and Gaitsgory 1996, Theorem 0.5] gives necessary and sufficient
conditions so that the quotient TV ∗ o G/I has the PBW property. The PBW
property also implies that Ht,c(G) has some good ring-theoretic properties, for
example:

Corollary 4.17. (i) The algebra Ht,c(G) is a Noetherian ring.

(ii) Ht,c(G) has finite global dimension.

Remark 4.18. For general pairs (G, V ) a description of PBW deformations of
C[V ]oG was originally given by Drinfeld [1986]. In the symplectic case this
was rediscovered by Etingof and Ginzburg as above, and Drinfeld’s general case
was described in detail by Ram and Shepler [2003].

4C. The spherical subalgebra. We saw in the previous subsection that the skew-
group ring C[V ]o G is not commutative and that its centre Z(C[V ]o G) is
equal to C[V ]G . We will now see that C[V ]o G contains another subalgebra
isomorphic to C[V ]G .

Let e := 1
|G|

∑
g∈G g be the trivial idempotent in CG. One can easily check

that the map
C[V ]G→ e(C[V ]oG)e,

f 7→ e f e,
(4.19)

is an algebra isomorphism. We have e f e = f e, for all f ∈ C[V ]G .

Definition 4.20. We define the spherical subalgebra of Ht,c(G) to be the algebra

Ut,c(G) := e Ht,c(G) e.

The filtration F on Ht,c(G) induces, by restriction, a filtration on Ut,c(G). The
PBW theorem, in combination with (4.19), implies that there is an isomorphism
of algebras

grF (Ut,c(G))∼= e(C[V ]oG)e ∼= C[V ]G

and an isomorphism of vector spaces

Ut,c(G)∼= C[V ]G .

Thus, the spherical subalgebra provides a flat deformation of the coordinate ring
of V/G, as desired.

Example 4.21. Let G = µ2 = 〈s〉 acting on V = C2 as in Example 4.14. Then
e = 1

2(1+ s). The spherical subalgebra Ut,c(µ2) is generated as a C-algebra by

h := − 1
2 e(xy+ yx)e, e := 1

2 ex2e and f := 1
2 ey2e.
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There are relations

[e, f ] = t h, [h, e] = −2te, [h, f ] = 2t f ,
e f = (2c(s)− h/2)(t/2− c(s)− h/2).

So if t = 0, Ut,c(µ2) is commutative, while if t = 1, Ut,c(µ2) is a central quotient
of the enveloping algebra of sl2(C).

The space Ht,c(G)e is a (Ht,c(G),Ut,c(G))-bimodule and it is called the
Etingof–Ginzburg sheaf. The following result is known as the “double centraliser
property” [Etingof and Ginzburg 2002, Theorem 1.5].

Proposition 4.22. (i) The right Ut,c(G)-module Ht,c(G)e is reflexive.

(ii) EndHt,c(G)(Ht,c(G)e)op ∼= Ut,c(G).

(iii) EndUt,c(G)op(Ht,c(G)e)∼= Ht,c(G).

This is important, because, in general, we have an explicit presentation of
Ht,c(G), but not of Ut,c(G). The above result allows us to study Ut,c(G) by
studying Ht,c(G) instead.

4D. The centre of Ht,c(G). The behaviour of the centre of the spherical subal-
gebra observed in Example 4.21 is the same for all symplectic reflection groups
[Etingof and Ginzburg 2002, Theorem 1.6].

Theorem 4.23. (i) If t = 0, then Ut,c(G) is commutative.

(ii) If t 6= 0, then Z(Ut,c(G))= C.

Now the double centraliser property can be used to prove the following result
relating the centres of Ut,c(G) and Ht,c(G).

Theorem 4.24 (the Satake isomorphism). The map z 7→ ze defines an algebra
isomorphism Z(Ht,c(G))∼= Z(Ut,c(G)) for all parameters (t, c).

Corollary 4.25. (i) If t = 0, then Z(Ht,c(G))∼= Ut,c(G).

(ii) If t 6= 0, then Z(Ht,c(G))= C.

Thus, the symplectic reflection algebra Ht,c(G) produces a commutative
deformation of the space V/G when t = 0.

4E. Symplectic resolutions. In this subsection, we will focus on the case t = 0.
Set Zc(G) := Z(H0,c(G)). We have Zc(G) ∼= U0,c(G), and so H0,c(G) is a
finitely generated Zc(G)-module.

Definition 4.26. The generalised Calogero–Moser space X c(G) is defined to be
the affine variety Spec Zc(G).
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Since the associated graded of Zc(G) is C[V ]G (with respect to the filtration
F), X c(G) is irreducible. The following result, due to Ginzburg and Kaledin
[2004, Proposition 1.18 and Theorem 1.20] and Namikawa [2011, Corollary 2.10],
gives us a criterion for V/G to admit a symplectic resolution, using the geometry
of the generalised Calogero–Moser space.

Theorem 4.27. Let (G, V, ωV ) be an (irreducible) symplectic reflection group.
The space V/G admits a symplectic resolution if and only if X c(G) is smooth
for generic values of c (equivalently, there exists c such that X c(G) is smooth).

Example 4.28. Consider again the example of µ2=〈s〉 acting on C2. The centre
of H0,c(µ2) is generated by A := x2, B := xy− c(s)s and C := y2. Thus,

X c(µ2)∼= C[A, B,C]/(AC − (B+ c(s))(B− c(s)))

is the affine cone over P1
⊂ P2 when c(s)= 0, but is a smooth affine surface for

c(s) 6= 0.

As we mentioned in Section 4A, if G = 0 oSn for some 0 ⊂ SL2(C), then
V/G always admits a symplectic resolution, that is, X c(G) is smooth for generic
c. On the other hand, if G ⊂ GL(h) is a complex reflection group acting on
V = h ⊕ h∗, this is not always the case. Etingof and Ginzburg proved that
X c(G) is smooth for generic c when G=G(`, 1, n) [Etingof and Ginzburg 2002,
Corollary 1.14]. However, Gordon showed that, for most finite Coxeter groups
not of type An or Bn , X c(G) is a singular variety for all choices of the parameter
c [Gordon 2003, Proposition 7.3]. Finally, using the Calogero–Moser partition of
Irr(G) described in [Gordon and Martino 2009], Bellamy [2009, Theorem 1.1]
proved that X c(G) is smooth for generic values of c if and only if G =G(`, 1, n)
or G = G4. We will revisit this result in Section 6.

Following the classification of symplectic reflection groups, and all the works
mentioned above, the classification of quotient singularities admitting symplectic
resolutions is (almost) complete.

4F. Rational Cherednik algebras. From now on, let W ⊂GL(h) be a complex
reflection group and let V = h⊕h∗. There is a natural pairing ( , ) : h×h∗→ C

given by (y, x) := x(y). Then the standard symplectic form ωV on V is given by

ωV (y1⊕ x1, y2⊕ x2)= (y1, x2)− (y2, x1).

The triple (W, V, ωV ) is a symplectic reflection group. The set S of all symplectic
reflections in (W, V, ωV ) coincides with the set of pseudoreflections in (W, h).
Let c : S→ C be a conjugacy invariant function.

Definition 4.29. The rational Cherednik algebra of W is the symplectic reflec-
tion algebra Ht,c(W ) associated to (W, V, ωV ).
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For s ∈ S, fix αs ∈ h∗ to be a basis of the one-dimensional vector space
Im(s − idV )|h∗ and α∨s ∈ h to be a basis of the one-dimensional vector space
Im(s− idV )|h. Then Ht,c(W ) is the quotient of TV ∗o W by the relations:

[x1, x2] = 0, [y1, y2] = 0, [y, x] = t (y, x)− 2
∑
s∈S

c(s)
(y, αs)(α

∨
s , x)

(α∨s , αs)
s

(4.30)
for all x1, x2, x ∈ h∗ and y1, y2, y ∈ h.

Example 4.31. Let W =Sn and h=Cn . Choose a basis x1, . . . , xn of h∗ and a
dual basis y1, . . . , yn of h so that

σ xi = xσ(i)σ and σ(yi )= yσ(i)σ for all σ ∈Sn, 1≤ i ≤ n.

The set S is the set of all transpositions in Sn . We denote by si j the transposition
(i, j). Set

αi j := xi − x j and α∨i j = yi − y j for all 1≤ i < j ≤ n.

We have (α∨i j , αi j ) = 2. There is a single conjugacy class in S, so take c ∈ C.
Then Ht,c(Sn) is the quotient of TV ∗oSn by the relations:

[xi , x j ]=0, [yi , y j ]=0, [yi , xi ]= t−c
∑
j 6=i

si j , [yi , x j ]= c si j , for i 6= j.

5. Rational Cherednik algebras at t = 1

The PBW theorem implies that the rational Cherednik algebra H1,c(W ), as a
vector space, has a “triangular decomposition”

H1,c(W )∼= C[h]⊗CW ⊗C[h∗].

Another famous example of a triangular decomposition is the one of the envelop-
ing algebra U (g) of a finite dimensional, semisimple complex Lie algebra g

(into the enveloping algebras of the Cartan subalgebra, the nilpotent radical of
the Borel subalgebra and its opposite). In the representation theory of g, one of
the categories of modules most studied, and best understood, is category O, the
abelian category generated by all highest weight modules. Therefore, it makes
sense to want to construct and study an analogue of category O for rational
Cherednik algebras.

5A. Category O. Let H1,c(W )-mod be the category of all finitely generated
H1,c(W )-modules. We say that a module M ∈ H1,c(W )-mod is locally nilpotent
for the action of h ⊂ C[h∗] if for each m ∈ M there exists N >> 0 such that
hN
·m = 0.
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Definition 5.1. We define O to be the category of all finitely generated H1,c(W )-
modules that are locally nilpotent for the action of h⊂ C[h∗].

Remark 5.2. Each module in category O is finitely generated as a C[h]-module.

Category O has been thoroughly studied in [Ginzburg et al. 2003]. Proofs of
all its properties presented here can be found in this paper.

For all E ∈ Irr(W ), we set

1(E) := H1,c(W )⊗C[h∗]oW E,

where C[h∗] acts trivially on E (that is, the augmentation ideal C[h∗]+ acts on
E as zero) and W acts naturally. The module 1(E) belongs to O and is called a
standard module (or Verma module). Each standard module 1(E) has a simple
head L(E) and the set

{L(E) | E ∈ Irr(W )}

is a complete set of pairwise nonisomorphic simple modules of the category
O. Every module in O has finite length, so we obtain a well-defined square
decomposition matrix

D = ([1(E) : L(E ′)])E,E ′∈Irr(W ),

where [1(E) : L(E ′)] equals the multiplicity with which the simple module
L(E ′) appears in the composition series of 1(E). We have [1(E) : L(E)] = 1.

Proposition 5.3. The following are equivalent:

(1) O is semisimple.

(2) 1(E)= L(E) for all E ∈ Irr(W ).

(3) D is the identity matrix.

Now, there exist several orderings on the set of standard modules of O (and
consequently on Irr(W )) for which O is a highest weight category in the sense
of [Cline et al. 1988] (see also [Rouquier 2008, Section 5.1]). If <O is such an
ordering on Irr(W ), and if [1(E) : L(E ′)] 6= 0 for some E, E ′ ∈ Irr(W ), then
either E = E ′ or E ′ <O E . Thus, we can arrange the rows of D so that the
decomposition matrix is lower unitriangular. We will refer to these orderings on
Irr(W ) as orderings on the category O. A famous example of such an ordering
is the one given by the c-function.

5B. A change of parameters and the c-function. In order to relate rational
Cherednik algebras with cyclotomic Hecke algebras via the KZ-functor in the
next subsection, we need to change the parametrisation of H1,c(W ). As in
Section 3A, let A denote the set of reflecting hyperplanes of W . For H ∈A, let
WH be the pointwise stabiliser of H in W . The group WH is cyclic and its order,
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denoted by eC , only depends on the orbit C ∈A/W that H belongs to. We have
that

S =
⋃

H∈A

WH \ {1}.

For each s ∈WH \ {1}, we have Kerαs = H . Without loss of generality, we may
assume that αs = αs′ and α∨s = α

∨

s′ for all s, s ′ ∈ WH \ {1}. Set αH := αs and
α∨H := α

∨
s . Then the third relation in (4.30) becomes

[y, x] = (y, x)− 2
∑
H∈A

(y, αH )(α
∨

H , x)
(α∨H , αH )

∑
s∈WH\{1}

c(s) s for all x ∈ h∗, y ∈ h.

We define a family of complex numbers k = (kC, j )(C∈A/W )(0≤ j≤eC−1) by

−2
∑

s∈WH\{1}

c(s) s =
∑

s∈WH\{1}

(eC−1∑
j=0

det(s)− j (kC, j − kC, j−1)

)
s, for H ∈ C,

with kC,−1 = 0. This implies that

c(s)=−1
2

eC−1∑
j=0

det(s)− j (kC, j − kC, j−1).

From now on, we will denote by Hk(W ) the quotient of TV ∗oW by the relations

[x1, x2] = 0, [y1, y2] = 0, [y, x] = (y, x)+
∑
H∈A

(y, αH )(α
∨

H , x)
(α∨H , αH )

γH ,

where

γH =
∑

w∈WH\{1}

(eC−1∑
j=0

det(w)− j (kC, j − kC, j−1)

)
w,

for all x1, x2, x ∈ h∗ and y1, y2, y ∈ h. We have Hk(W )= H1,c(W ).
Let E ∈ Irr(W ). We denote by cE the scalar by which the element

−

∑
H∈A

eC−1∑
j=0

( ∑
w∈WH

(detw)− jw

)
kC, j ∈ Z(CW )

acts on E . We obtain thus a function c : Irr(W )→ C, E 7→ cE . The c-function
defines an ordering <c on the category O as follows: For all E, E ′ ∈ Irr(W ),

E ′ <c E if and only if cE − cE ′ ∈ Z>0.

Remark 5.4. If cE − cE ′ /∈ Z \ {0} for all E, E ′ ∈ Irr(W ), then D is the identity
matrix, and thus O is semisimple.
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Remark 5.5. In the rational Cherednik algebra literature the function c is usually
taken to be the negative of the one defined here. In the context of this paper
the above definition is more natural. In both cases we obtain an ordering on the
category O.

5C. The KZ-functor. Following [Ginzburg et al. 2003, 5.3], there exists an exact
factor, known as the Knizhnik–Zamalodchikov functor or simply KZ, between the
category O of Hk(W ) and the category of representations of a certain specialised
Hecke algebra Hk(W ). Using the notation of Section 3A, the specialised Hecke
algebra Hk(W ) is a quotient of the group algebra CBW by the ideal generated
by the elements of the form

(s− exp(2π ikC,0))(s− ζeC exp(2π ikC,1)) · · · (s− ζ eC−1
eC exp(2π ikC,eC−1)),

where C runs over the set A/W and s runs over the set of monodromy generators
around the images in hreg/W of the elements of C. The algebra Hk(W ) is
obtained from the generic Hecke algebra C[v, v−1

]H(W ) via the specialisation
2 :v

NW
C, j 7→ exp(2π ikC, j ) (recall that NW is the power to which the indeterminates

vC, j appear in the defining relations of the generic Hecke algebra so that the
algebra C(v)H(W ) is split; see (3.4)). We always assume that Hypothesis 3.3
holds for H(W ).

The functor KZ is represented by a projective object PKZ ∈O, and we have
Hk(W )∼= EndHk(W )(PKZ)

op [Ginzburg et al. 2003, 5.4]. Based on this, we have
the following result due to Vale [2006, Theorem 2.1]:

Proposition 5.6. The following are equivalent:

(1) Hk(W ) is a simple ring.

(2) O is semisimple.

(3) Hk(W ) is semisimple.

We can thus use the semisimplicity criterion for Hk(W ) given by Theorem 2.17
in order to determine for which values of k the category O is semisimple.

Now let <O be any ordering on the category O as in Section 5A.

Proposition 5.7. Set B := {E ∈ Irr(W ) |KZ(L(E)) 6= 0}.

(a) The set {KZ(L(E)) | E ∈ B} is a complete set of pairwise nonisomorphic
simple Hk(W )-modules.

(b) For all E ∈ Irr(W ), E ′ ∈ B, we have

[1(E) : L(E ′)] = [KZ(1(E)) : KZ(L(E ′))].

(c) If E ∈ B, then [KZ(1(E)) : KZ(L(E))] = 1.
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(d) If [KZ(1(E)) : KZ(L(E ′))] 6= 0 for some E ∈ Irr(W ) and E ′ ∈ B, then
either E = E ′ or E ′ <O E.

Property (a) follows from [Ginzburg et al. 2003, Theorem 5.14]. For the proof
of properties (b), (c) and (d), all of them deriving from the fact that KZ is exact,
the reader may refer to [Chlouveraki et al. 2012, Proposition 3.1].

The simple modules killed by the KZ-functor are exactly the ones that do not
have full support. Their determination, and thus the determination of the set B,
is a very difficult problem.

We also obtain a decomposition matrix Dk for the specialised Hecke algebra
Hk(W ) with respect to the specialisation 2. The rows of Dk are indexed by
Irr(W ) and its columns by Irr(Hk(W )). Following Proposition 5.7, Dk can be
obtained from the decomposition matrix D of the category O by removing the
columns that correspond to the simple modules killed by the KZ-functor, that
is, the columns labelled by Irr(W ) \ B. This implies that Dk becomes lower
unitriangular when its rows are ordered with respect to <O, in the same way
that, in the cases where 2 factors through a cyclotomic Hecke algebra, the
existence of a canonical basic set implies that Dk becomes lower unitriangular
when its rows are ordered with respect to the a-function. If we could show that
the a-function defines an ordering on the category O, we would automatically
obtain the existence of a canonical basic set for Hk(W ). At the same time, we
would obtain the determination of B in the cases where canonical basic sets have
already been explicitly described.

5D. The (a + A)-function. Let m = (mC, j )(C∈A/W )(0≤ j≤eC−1) be a family of
integers and let ϕm : vC, j 7→ qmC, j be the corresponding cyclotomic specialisation
for the Hecke algebra H(W ). Let θ : q 7→ η be a specialisation such that η is
a nonzero complex number. If η is not a root of unity or η = 1, then, due to
Theorem 2.17 and the form of the Schur elements of Hϕm(W ), the specialised
Hecke algebra Hη(W ) is semisimple. So we may assume from now on that η
is a root of unity of order e > 1, namely η = ζ r

e for some r ∈ Z>0 such that
gcd(e, r)= 1.

Let k= (kC, j )(C∈A/W )(0≤ j≤eC−1) be the family of rational numbers defined by

kC, j :=
r NW

e
mC, j for all C, j.

Then Hk(W )=Hη(W ). Following [Chlouveraki et al. 2012, Section 3.3], we
obtain the following equation which relates the functions am and Am for Hϕm(W )

with the c-function for Hk(W ):

am
E + Am

E =
e

r NW
cE +

∑
H∈A

eC−1∑
j=0

mC, j for all E ∈ Irr(W ), (5.8)
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where C denotes the orbit of H ∈A under the action of W .

Remark 5.9. The above formula was also obtained in [Ginzburg et al. 2003,
Section 6.2] for finite Weyl groups in the equal parameter case.

Equation (5.8) implies that am
+ Am yields the same ordering on Irr(W ) as

the c-function (note that in this case cE ∈Q for all E ∈ Irr(W )). Thus, am
+ Am

is also an ordering on the category O, that is, if [1(E) : L(E ′)] 6= 0 for some
E, E ′ ∈ Irr(W ), then either E = E ′ or am

E ′ + Am
E ′ < am

E + Am
E . If now the

function am is compatible with am
+ Am, that is, for all E, E ′ ∈ Irr(W ),

am
E ′ + Am

E ′ < am
E + Am

E ⇒ am
E ′ < am

E , (5.10)

then am is an ordering on the category O and we obtain the existence of a
canonical basic set for Hϕm(W ) with respect to θ by Proposition 5.7. This is
true in several cases, but unfortunately not true in general. Some exceptional
complex reflection groups where (5.10) holds and the above argument works are:

G23 = H3,G24,G27,G29,G30 = H4.
3

This yields the existence of canonical basic sets for the groups G24, G27 and
G29, which was not known before. To summarise, we have the following:

Proposition 5.11. Let W =Gn , n ∈ {23, 24, 27, 29, 30}. Let m and k be defined
as above, and let E, E ′ ∈ Irr(W ). If [1(E) : L(E ′)] 6= 0, then either E = E ′ or
am

E ′ < am
E . In particular, we have KZ(L(E)) 6= 0 if and only if E belongs to the

canonical basic set of Hϕm(W ) with respect to θ : q 7→ ζ r
e .

5E. Canonical basic sets for Iwahori–Hecke algebras from rational Chered-
nik algebras. Equation (5.8) has also allowed us to show that, in the case where
W is a finite Coxeter group, and assuming that Lusztig’s conjectures P1–P15
hold, the c-function is compatible with the ordering ≤LR on two-sided cells,
since a and A are (see [Geck 2009, Remark 5.4] for the a-function, [Lusztig
2003, Corollary 21.6] and [Chlouveraki and Jacon 2011, Proposition 2.8] for A).
This in turn was crucial in showing [Chlouveraki et al. 2012, Corollary 4.7]:

Proposition 5.12. Let (W, S) be a finite Coxeter group and let H(W, L) be the
Iwahori–Hecke algebra of W with parameter L , as defined in Section 2A. For
H ∈ A, let sH ∈ W be the reflection with reflecting hyperplane H and let C be
the orbit of H under the action of W . If H ′ ∈ C, then we have L(sH )= L(sH ′)

3The groups G23, G24, G27, G29, G30, G31, G33, G34, G35, G36 and G37 are easy to
check with a computer; they are all generated by pseudoreflections of order 2 whose reflecting
hyperplanes belong to the same orbit.
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and we can set LC := L(sH ). Let e, r ∈ Z>0 such that gcd(e, r) = 1, and take,
for all C ∈A/W ,

kC,0 =
r LC

e
and kC,1 =−

r LC

e
.

If E ∈ Irr(W ), then KZ(L(E)) 6= 0 if and only if E belongs to the canonical basic
set of H(W, L) with respect to θ : q 7→ ζ r

e .

The proof uses a connection, established in [Chlouveraki et al. 2012, Proposi-
tion 4.6], between category O and the cellular structure of the Iwahori–Hecke
algebra. More specifically, if E ∈ Irr(W ), then KZ(1(E)) is isomorphic to
the cell module Wθ (E) defined in [Geck 2007a, Example 4.4]; we will not go
into further details here. Note though that, in Proposition 5.12, we have not
included the assumption that Lusztig’s conjectures must hold. The reason is that
the only case where they are not known to hold, the case of Bn , is covered by
Corollary 5.18 below.

Remark 5.13. The above result can be generalised to the case where kC,0= λLC
and kC,1 = −λLCfor any complex number λ. If λ ∈ Z or λ ∈ C \Q, then both
category O and Hexp(2π iλ)(W, L) are semisimple, so the statement trivially holds.
If λ is a negative rational number, let us say λ=−r/e for some e, r ∈ Z>0 with
gcd(e, r)= 1, and E ∈ Irr(W ), then KZ(L(E)) 6= 0 if and only if E belongs to
the canonical basic set of H(W,−L) with respect to θ : q 7→ ζ r

e . We recall now
that the canonical basic sets for finite Coxeter groups where L can take negative
values are described in [Chlouveraki and Jacon 2011]. In fact, E belongs to the
canonical basic set of H(W,−L) with respect to θ : q 7→ ζ r

e if and only if E⊗ ε
belongs to the canonical basic set of H(W, L) with respect to θ , where ε denotes
the sign representation of W .

Proposition 5.12 yields the existence of canonical basic sets for all finite
Coxeter groups in a uniform way. At the same time, it yields a description of
the simple modules that are not killed by the KZ-functor, since canonical basic
sets for finite Coxeter groups are explicitly known (see, for example, [Geck and
Jacon 2011]). However, it does not imply that the a-function is an ordering on
the category O, because we do not know what happens with the simple modules
killed by the KZ-functor. We do believe though that, for finite Coxeter groups,
the a-function is an ordering on the category O.

Example 5.14. Let W be the symmetric group Sn and let l := L(s) for every
transposition s ∈Sn (there exists only one orbit C in A/W ). Let η2l

:= ζ r
e for

some e, r ∈ Z>0 with gcd(e, r)= 1. As we saw in Example 2.20, the canonical
basic set Bθ of H(W, l) with respect to θ : q 7→ η consists of the e-regular
partitions of n. Now take kC,0 = r/2e and kC,1 =−r/2e. Let λ be a partition of
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n and let Eλ be the corresponding irreducible representation of Sn . We have
KZ(L(Eλ)) 6= 0 if and only if λ is e-regular.

5F. Canonical basic sets for Ariki–Koike algebras from rational Cherednik
algebras. As we have said and seen earlier, there exist several orderings on
the category O. For W = G(`, 1, n), where the irreducible representations are
parametrised by the `-partitions of n, one combinatorial ordering on the category
O is given by Dunkl and Griffeth [2010, Theorem 4.1]. More precisely, in this
case, there are two hyperplane orbits in A/W ; we will denote them by Cs and Ct .
We have eCs = ` and eCt = 2. Let (s0, . . . , s`−1) ∈ Z` and e ∈ Z>0. We define
k = (kCs,0, . . . , kCs,`−1, kCt ,0, kCt ,1) by

kCs, j =
s j

e
−

j
`

for j = 0, . . . , `− 1, kCt ,0 =
1
e
, kCt ,1 = 0. (5.15)

Then the KZ-functor goes from the category O for Hk(W ) to the category of
representations of the specialised Ariki–Koike algebra Hk(W ) with relations

(s−ζ s0
e )(s−ζ

s1
e ) · · · (s−ζ

s`−1
e )=0, (ti−ζe)(ti+1)=0 for i=1, . . . , n−1,

as in (3.12).
Let λ = (λ(0), . . . , λ(`−1)) be an `-partition of n. We will denote by Eλ the

corresponding irreducible representation of G(`, 1, n). We define the set of
nodes of λ to be the set

[λ] = {(a, b, c) : 0≤ c ≤ `− 1, a ≥ 1, 1≤ b ≤ λ(c)a }.

Let γ = (a(γ ), b(γ ), c(γ )) ∈ [λ]. We set ϑ(γ ) := b(γ )−a(γ )+ sc(γ ). We then
have the following [Dunkl and Griffeth 2010, Proof of Theorem 4.1]:

Proposition 5.16. Let λ, λ′ be `-partitions of n. If [1(Eλ) : L(Eλ
′

)] 6= 0, then
there exist orderings γ1, γ2, . . . , γn and γ ′1, γ

′

2, . . . , γ
′
n of the nodes of λ and λ′

respectively, and nonnegative integersµ1, µ2, . . . , µn , such that, for all 1≤ i ≤n,

µi ≡ c(γi )− c(γ ′i ) mod ` and µi = c(γi )− c(γ ′i )+
`

e
(ϑ(γ ′i )−ϑ(γi )).

Now, there are several different cyclotomic Ariki–Koike algebras that produce
the specialised Ariki–Koike algebra Hk(W ) defined above and they may have
distinct a-functions attached to them. Using the combinatorial description of
the a-function for G(`, 1, n) given in [Geck and Jacon 2011, Section 5.5],4 we

4This definition captures all a-functions for G(`, 1, n) in the literature: the function am for
mCs, j = s j`− ej , j = 0, . . . , `− 1, given by Jacon [2007] and studied in the context of Uglov’s
work on canonical bases for higher level Fock spaces, and also the a-function for type Bn (`= 2)
arising from the Kazhdan–Lusztig theory for Iwahori–Hecke algebras with unequal parameters
(see [Geck and Jacon 2011, 6.7]).
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showed in [Chlouveraki et al. 2012, Section 5] that it is compatible with the
ordering on category O given by Proposition 5.16. Consequently, the a-function
also defines a highest weight structure on O, that is, we have the following:

Proposition 5.17. Let λ, λ′ be `-partitions of n. If [1(Eλ) : L(Eλ
′

)] 6= 0, then
either λ= λ′ or aEλ′ < aEλ .

The above result, combined with Proposition 5.7, yields the following:

Corollary 5.18. Let W = G(`, 1, n). Let (s0, . . . , s`−1) ∈ Z` and e ∈ Z>0. Let
k = (kCs,0, . . . , kCs,`−1, kCt ,0, kCt ,1) be defined as in (5.15). If λ is an `-partition
of n, then KZ(L(Eλ)) 6= 0 if and only if Eλ belongs to the canonical basic set
for Hk(W ) with respect to the a-function above.

Thus, we obtain the existence of canonical basic sets for Ariki–Koike algebras
without the use of Ariki’s theorem. On the other hand, the description of the
canonical basic sets for Ariki–Koike algebras by Jacon [2007, Main Theorem]
yields a description of the set B= {Eλ ∈ Irr(W ) |KZ(L(Eλ)) 6= 0}: we have that
Eλ ∈ B if and only if λ is an Uglov `-partition.

Finally, we expect a result similar to Corollary 5.18 to hold in the case where
W = G(`, p, n) for p > 1.

6. Rational Cherednik algebras at t = 0

Let us now consider the rational Cherednik algebra H0,c(W ). In this case, the
centre of H0,c(W ) is isomorphic to the spherical subalgebra of H0,c(W ), that
is, Z(H0,c(W )) ∼= eH0,ce, where e := 1

|W |

∑
w∈W w. So H0,c(W ) is a finitely

generated Z(H0,c(W ))-module. From now on, we set Zc(W ) := Z(H0,c(W )).

6A. Restricted rational Cherednik algebras. In the case of finite Coxeter groups
the following was proved in [Etingof and Ginzburg 2002, Proposition 4.15], and
the general case is due to Gordon [2003, Proposition 3.6].

Proposition 6.1. (a) The subalgebra m := C[h]W ⊗ C[h∗]W of H0,c(W ) is
contained in Zc(W ).

(b) Zc(W ) is a free m-module of rank |W |.

Let m+ denote the ideal of m consisting of elements with zero constant term.

Definition 6.2. We define the restricted rational Cherednik algebra to be

H0,c(W ) := H0,c(W )/m+H0,c(W ).

This algebra was originally introduced, and extensively studied, in [Gordon
2003]. The PBW theorem implies that, as a vector space,

H0,c(W )∼= C[h]coW
⊗CW ⊗C[h∗]coW ,
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where C[h]coW
=C[h]/〈C[h]W

+
〉 is the coinvariant algebra. Since W is a complex

reflection group, C[h]coW has dimension |W | and is isomorphic to the regular
representation as a CW -module. Thus, dimC H0,c(W )= |W |3.

Let E ∈ Irr(W ). We set

1(E) := H0,c(W )⊗C[h∗]coWoW E,

where C[h∗]coW acts trivially on E (that is, C[h∗]coW
+

acts on E as zero) and
W acts naturally. The module 1(E) is the baby Verma module of H0,c(W )

associated to E . We summarise, as is done in [Gordon 2003, Proposition 4.3],
the results of Holmes and Nakano [1991] applied to this situation.

Proposition 6.3. Let E, E ′ ∈ Irr(W ).

(i) The baby Verma module 1(E) has a simple head, L(E). Hence, 1(E) is
indecomposable.

(ii) 1(E)∼=1(E ′) if and only if E ∼= E ′.

(iii) The set {L(E) | E ∈ Irr(W )} is a complete set of pairwise nonisomorphic
simple H0,c-modules.

6B. The Calogero–Moser partition. Recall that the generalised Calogero–Moser
space X c(W ) is defined to be the affine variety Spec Zc(W ). By Theorem 4.27,
(h⊕ h∗)/W admits a symplectic resolution if and only if X c(W ) is smooth for
generic values of c. Etingof and Ginzburg proved that X c(G) is smooth for
generic c when W = G(`, 1, n) [Etingof and Ginzburg 2002, Corollary 1.14].
Later, Gordon [2003, Proposition 7.3] showed that X c(G) is a singular variety for
all choices of the parameter c for the following finite Coxeter groups: D2n (n≥2),
E6, E7, E8, F4, H3, H4 and I2(m) (m ≥ 5).

Now, since the algebra H0,c is finite dimensional, we can define its blocks
in the usual way (see Section 1A). Let E, E ′ ∈ Irr(W ). Following [Gordon and
Martino 2009], we define the Calogero–Moser partition of Irr(W ) to be the set
of equivalence classes of Irr(W ) under the equivalence relation:

E ∼CM E ′ if and only if L(E) and L(E ′) belong to the same block.

We will simply write CMc-partition for the Calogero–Moser partition of Irr(W ).
The inclusion m⊂ Zc(W ) defines a finite surjective morphism

Y : X c(W )−→ h/W × h∗/W,

where h/W ×h∗/W = Specm. Müller’s theorem (see [Brown and Gordon 2001,
Corollary 2.7]) implies that the natural map Irr(W )→Y−1(0), E 7→Supp(L(E))
factors through the CMc-partition. Using this fact, one can show that the geometry
of X c(W ) is related to the CMc-partition in the following way.
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Theorem 6.4. The following are equivalent:

(1) The generalised Calogero–Moser space X c(W ) is smooth.

(2) The CMc-partition of Irr(W ′) is trivial for every parabolic subgroup W ′ of
W .

Using the above result and the classification of irreducible complex reflection
groups (see Theorem 3.1), Bellamy [2009, Theorem 1.1]has shown the following:

Theorem 6.5. Let W be an irreducible complex reflection group. The generalised
Calogero–Moser space X c(W ) is smooth for generic values of c if and only if
W is of type G(`, 1, n) or G4. In every other case, X c(W ) is singular for all
choices of c.

Corollary 6.6. Let W be an irreducible complex reflection group. The space
(h⊕ h∗)/W admits a symplectic resolution if and only if W is of type G(`, 1, n)
or G4.

6C. The Calogero–Moser partition and Rouquier families. It just so happens
that the cases where X c(W ) is generically smooth, and the Calogero–Moser
partition generically trivial, are exactly the cases where the Rouquier families
are generically trivial (that is, the Rouquier families associated with no essential
hyperplane are singletons). This, combined with the fact that the Calogero–Moser
partition into blocks enjoys some property of semicontinuity, led to the question
whether there is a connection between the two partitions.

The question was first asked by Gordon and Martino [2009] in terms of a
connection between the Calogero–Moser partition and families of characters for
type Bn . In their paper, they computed the CMc-partition, for all c, for complex
reflection groups of type G(`, 1, n) and showed that for `= 2, using the conjec-
tural combinatorial description of Kazhdan–Lusztig cells for type Bn by Bonnafé
et al. [2010], the CMc-partition coincides with the partition into Kazhdan–Lusztig
families. After that, Martino [2010] compared the combinatorial description of
the CMc-partition for type G(`, 1, n) given in [Gordon and Martino 2009] with
the description of the partition into Rouquier families, given by Chlouveraki
[2008b], for a suitable cyclotomic Hecke algebra Hc of G(`, 1, n) (different
from the one defined in Section 5C). He showed that the two partitions coincide
when ` is a power of a prime number (which includes the cases of type An and
Bn), but not in general. In fact, he showed that the CMc-partition for G(`, 1, n)
is the same as the one obtained by Broué and Kim [2002]. He thus obtained
the following two connections between the CMc-partition and the partition into
Rouquier families for G(`, 1, n), and he conjectured that they hold for every
complex reflection group W [Martino 2010, 2.7]:
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(a) The CMc-partition for generic c coincides with the generic partition into
Rouquier families (both being trivial for W = G(`, 1, n));

(b) The partition into Rouquier families refines the CMc-partition, for all choices
of c; that is, if E, E ′ ∈ Irr(W ) belong to the same Rouquier family of Hc,
then E ∼CM E ′.

Conditions (a) and (b) are known as “Martino’s conjecture”. Using the
combinatorics of [Gordon and Martino 2009] and [Martino 2010], Bellamy
[2012a] computed the CMc-partition, for all c, and proved Martino’s conjecture
in the case where W is of type G(`, p, n); note that when p > 1 the generic
partitions in this case are not trivial. However, a counterexample for (a) was
found recently by Thiel [2014] in the case where W = G25. Thiel calculated
the CMc-partition for generic c for the exceptional complex reflection groups
G4, G5, G6, G8, G10,G23 = H3,G24,G25 and G26. Comparing his results
with the generic partition into Rouquier families for these groups, given by
[Chlouveraki 2009], he showed that Part (a) of Martino’s conjecture holds in
every case5 except for when W =G25. In this particular case, the generic partition
into Rouquier families simply refines the CMc-partition for generic c. So we
will state here as a conjecture only Part (b) of Martino’s conjecture, which is still
an open problem, and proved in all the above cases.

Conjecture 6.7 (Martino’s conjecture). Let W be a complex reflection group.
The partition into Rouquier families (for a suitably chosen cyclotomic Hecke
algebra Hc of W ) refines the CMc-partition, for all choices of c; that is, if
E, E ′ ∈ Irr(W ) belong to the same Rouquier family of Hc, then E ∼CM E ′.

Remark 6.8. Note that, in all the cases checked so far where W is a finite Coxeter
group, the partition into Rouquier families and the CMc-partition coincide. This
covers the finite Coxeter groups of types An , Bn , Dn and the dihedral groups for
all choices of c, and H3 for generic c.

6D. The Calogero–Moser partition and Kazhdan–Lusztig cells. In an effort to
develop a generalised Kazhdan–Lusztig cell theory, Bonnafé and Rouquier [2013]
used the Calogero–Moser partition to define what they call Calogero–Moser cells
for all complex reflection groups. An advantage of this, quite geometric, approach
is that the Calogero–Moser partition exists naturally for all complex reflection
groups. It also implies automatically the existence of a semicontinuity property
for cells, a property that was conjectured and proved in some cases for Kazhdan–
Lusztig cells by Bonnafé [2009]. However, Calogero–Moser cells are very hard
to compute and their construction depends on an “uncontrollable” choice. After
very long computations by Bonnafé and Rouquier, it is now confirmed that the

5For G4 this was already known by Bellamy [2009].
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Calogero–Moser cells coincide with the Kazhdan–Lusztig cells in the smallest
possible cases (A2, B2, G2); there is still a lot of work that needs to be done.
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