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Limits in commutative algebra
and algebraic geometry

STEVEN DALE CUTKOSKY

In this survey article we explore various limits and asymptotic properties in
commutative algebra and algebraic geometry. We show that several important
invariants have good asymptotic behavior. We develop this and give some
examples of pathological behavior for topics such as multiplicity of graded
families of ideals, volumes of line bundles on schemes and regularity of powers
of ideals.

1. Introduction

This article is on the general theme of limits arising in commutative algebra and
algebraic geometry, in asymptotic multiplicity and rgularity. The four sections of
this article are based on the four talks that I gave during the Spring semester of
the special year on Commutative Algebra, held at MSRI during the 2012–2013
academic year. The first section is based on an Evans lecture I gave at Berkeley.

2. Asymptotic multiplicities

Multiplicity and projection from a point. We begin by discussing a formula
involving the multiplicity of a point on a variety, which evolved classically.
Proofs of the formula (1) can be found in Theorem 5.11 of [Mumford 1976]
(over k = C), in Section 11 of [Abhyankar 1998], Section 12 of [Lipman 1975]
and Theorem 12.1 [Cutkosky 2009].

Suppose that k = k̄ is an algebraically closed field and X ⊂ PN
k is a d-

dimensional projective variety. The degree of X is defined as

#(X ∩ L N−d)

where L N−d is a generic linear subspace of PN of dimension N − d. Suppose
that z ∈ PN is a closed point. Let πz : P

N 99K PN−1 be the projection from z
and Y = πz(X). We have the following formula relating deg(X) and deg(Y ).
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Theorem 2.1. Suppose that z ∈ X and X is not a cone over z. Then

deg(X)= [k(X) : k(Y )]deg(Y )+multz(X). (1)

The index of function fields [k(X) : k(Y )] is equal to the number of points in
X above a general point q of Y . In the case when z 6∈ X , multz(X)= 0. When
z ∈ X , the correction term multz(X) is the multiplicity em R (R) of the local ring
R=OX,z , which is defined below. Formula (1), together with its role in resolution
of singularities, was discussed by Zariski [1935, pp. 21–22]. At that time the
correction term multz(X) was not completely understood. In some cases, this
number is a local intersection number, but not always. In fact, we have

em R (R)≤ dimk(OX,z)/I (L ′)OX,z) (2)

where L ′ is a general linear space through z, and (2) is an equality if and only if
OX,z is Cohen–Macaulay [Zariski and Samuel 1960, Chapter VIII, Section 10,
Theorem 23].

Multiplicity has a purely geometric construction (over C), as explained in
[Mumford 1976].

Multiplicity, graded families of ideals, filtrations and the Zariski subspace
theorem. From now on in this section we suppose that (R,m R) is a (Noetherian)
local ring of dimension d.

A family of ideals {In}n∈N of R is called a graded family of ideals if I0 = R
and Im In ⊆ Im+n for all m, n. {In} is a filtration of R if, in addition, In+1 ⊆ In

for all n.
The most basic example is In = J n where J is a fixed ideal of R.
Suppose that N is a finitely generated R-module, and I is an m R-primary

ideal. Let
t = dim R/ann(N )

be the dimension of N . Let `R be the length of an R-module.
The theorem of Hilbert–Samuel is that the function `R(N/I n N ) is a polyno-

mial in n of degree t for n� 0. This polynomial is called the Hilbert–Samuel
polynomial.

The multiplicity of a finitely generated R-module N with respect to an m R-
primary ideal I is the leading coefficient of this polynomial times t !; that is,

eI (N )= lim
n→∞

`R(N/I n N )
nr/t !

. (3)

This multiplicity is always a natural number.
Multiplicity is the most basic invariant in resolution of singularities. Suppose

X is an algebraic variety. A point p ∈ X is nonsingular if OX,p is a regular local
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ring [Zariski 1947]. The following theorem shows that p ∈ X is a nonsingular
point if and only if its multiplicity em R (R)= 1 where R =OX,p.

Theorem 2.2. If R is a regular local ring then em R (R)= 1. If em R (R)= 1 and
R is formally equidimensional, then R is a regular local ring.

The first statement follows since the associated graded ring of a regular local
ring is a polynomial ring. The second statement is Theorem 40.6 of [Nagata
1959].

Suppose that R ⊂ S are local rings with m R = mS ∩ R. In = mn
S ∩ R is

a filtration of R. Let R̂ = lim→ R/mn
R be the m R-adic completion of R and

Ŝ = lim→ S/mn
S be the mS-adic completion of S.

The induced map R̂→ Ŝ is an inclusion if and only if there exists a function
σ(n) such that In ⊂ mσ(n)

R and σ(n)→∞ as n→∞.
A fundamental theorem in algebraic geometry is the Zariski subspace theorem.

Theorem 2.3 [Zariski 1949; Abhyankar 1998, 10.6]. Suppose that R ⊂ S are
local domains, essentially of finite type over a field k and R is analytically
irreducible (R̂ is a domain). Then the induced map R̂→ Ŝ is an inclusion.

While this is a theorem in algebraic geometry, the subspace theorem fails in
complex analytic geometry.

Theorem 2.4 [Gabrielov 1971]. There exist inclusions R ⊂ S of convergent
complex power series such that the induced map R̂→ Ŝ of formal power series
is not an inclusion.

Even though the Zariski subspace theorem is true, the induced filtration mn
S∩R

is not the best behaved.

Theorem 2.5 [Cutkosky and Srinivas 1993]. There exists an inclusion R→ S
of d-dimensional normal domains, essentially of finite type over the complex
numbers, such that

lim
n→∞

`R(R/In)

nd

exists but is an irrational number, where In = mn
S ∩ R.

The irrationality of the limit implies that
⊕

n≥0 In is not a finitely generated
R-algebra.

Limits of lengths of graded families of ideals. Suppose that {In}n∈N is a graded
family of m R-primary ideals (In is m R-primary for n ≥ 1) in a d-dimensional
(Noetherian) local ring R. We pose the following question:

Question 2.6. When does

lim
n→∞

`R(R/In)

nd (4)
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exist?

This problem was considered in [Ein, Lazarsfeld and Smith 2003] and [Mustat,ǎ
2002].

Lazarsfeld and Mustat,ă [2009] showed that the limit exists for all graded
families of m R-primary ideals in R if R is a domain which is essentially of
finite type over an algebraically closed field k with R/m R = k. All of these
assumptions are necessary in their proof. Their proof is by reducing the problem
to one on graded linear series on a projective variety, and then using a method
introduced by Okounkov [2003] to reduce the problem to one of counting points
in an integral semigroup.

In [Cutkosky 2013a], it is shown that the limit exists for all graded fami-
lies of m R-primary ideals in R if R is analytically unramified (R̂ is reduced),
equicharacteristic and R/m R is perfect.

In Example 5.3 of [Cutkosky 2014], an example is given of a nonreduced
local ring R with a graded family of m R-primary ideals {In} such that the limit
(4) does not exist. Dao and Smirnov communicated to me that they found this
same example. They further showed that it was universal, proving the following
theorem.

The nilradical N (R) of a d-dimensional ring R is

N (R)= {x ∈ R | xn
= 0 for some positive integer n}.

Recall that
dim N (R)= dim R/ann(N (R)),

so that dim N (R)= d if and only if there exists a minimal prime P of R such
that dim R/P = d and RP is not reduced.

Theorem 2.7 (Dao and Smirnov). Suppose that R is a d-dimensional local ring
such that dim N (R)= d. Then there exists a graded family of m R-primary ideals
{In} of R such that

lim
n→∞

`R(R/In)

nd

does not exist.

We now state our general theorem, which gives necessary and sufficient
conditions on a local ring R for all limits of graded families of m R-primary
ideals to exist.

Theorem 2.8 [Cutkosky 2014, Theorem 5.5]. Suppose that R is a d-dimensional
local ring. Then the limit

lim
n→∞

`R(R/In)

nd
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exists for all graded families of m R-primary ideals {In} of R if and only if
dim N (R̂) < d.

If R is excellent, then N (R̂) = N (R)R̂, and the theorem is true with the
condition dim N (R̂) < d replaced with dim N (R) < d. However, there exist
Noetherian local domains R (so that N (R) = 0) such that dim N (R̂) = dim R
[Nagata 1959, (E3.2)].

Before giving the proof of Theorem 2.8 in the next section, we turn to some of
the theorem’s applications. We start with some general “volume = multiplicity”
formulas.

Theorem 2.9 [Cutkosky 2014, Theorem 6.5]. Suppose that R is a d-dimensional,
analytically unramified local ring, and {In} is a graded family of m R-primary
ideals in R. Then

lim
n→∞

`R(R/In)

nd/d!
= lim

p→∞

eIp(R)
pd

Related formulas have been proven in [Ein, Lazarsfeld and Smith 2003;
Mustat,ǎ 2002; Lazarsfeld and Mustat,ă 2009]. This last paper proves the formula
when R is essentially of finite type over an algebraically closed field k with
R/m R = k. All of these assumptions are necessary in their proof.

Suppose that R is a (Noetherian) local ring and I, J are ideals in R. The
generalized symbolic power In(J ) is defined by

In(J )= I n
: J∞ =

∞⋃
i=1

I n
: J i .

Theorem 2.10 [Cutkosky 2014, Corollary 6.4]. Suppose that R is an analytically
unramified d-dimensional local ring. Let s be the constant limit dimension
s = dim In(J )/I n for n� 0. Suppose that s < d. Then

lim
n→∞

em R (In(J )/I n)

nd−s

exists.

This was proven in [Herzog, Puthenpurakal and Verma 2008] for ideals I
and J in a d-dimensional local ring, with the assumption that

⊕
n≥0 In(J ) is a

finitely generated R-algebra.

3. The proof of Theorem 2.8

In this section we outline the proof of Theorem 2.8. See [Cutkosky 2013a; 2014]
for details.
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Proof that dim N(R̂)<d implies limits exist. Suppose that R is a d-dimensional
local ring with dim N (R) < d and {In} is a graded family of m R-primary ideals
in R.

We have `R̂(R/In R̂)= `R(R/In) for all n, so we may assume that R = R̂ is
complete; in particular, we may assume that R is excellent with dim N (R) < d .
There exists a positive integer c such that mc

R ⊆ I1, which implies that

mnc
R ⊆ In for all positive n. (5)

Let N = N (R) and A = R/N . We have short exact sequences

0→ N/N ∩ Ii R→ R/Ii R→ A/Ii A→ 0,

from which we deduce that there exists a constant α > 0 such that

`R(N/N ∩ Ii R)≤ `R(N/mci
R N )≤ αidim N

≤ αid−1.

Replacing R with A and In with In A, we thus reduce to the case that R is reduced.
Using the following lemma, we then reduce to the case that R is a complete
domain (so that it is analytically irreducible).

Lemma 3.1 [Cutkosky 2013a, Corollary 6.4]. Suppose that R is a reduced local
domain, and {In} is a graded family of m R-primary ideals in R. Let {P1, . . . , Ps}

be the set of minimal primes of R and let Ri = R/Pi . Then there exists α > 0
such that ∣∣∣( s∑

i=1
`Ri (Ri/In Ri )

)
− `R(R/In)

∣∣∣≤ αnd−1 for all n.

We now present a method introduced in [Okounkov 2003] to compute limits
of multiplicities. The method has been refined in [Lazarsfeld and Mustat,ă 2009;
Kaveh and Khovanskii 2012].

Suppose that 0 ⊂ Nd+1 is a semigroup. Let 6(0) be the closed convex cone
generated by 0 in Rd+1. Define 1(0) = 6(0) ∩ (Rd

× {1}). For i ∈ N, let
0i = 0 ∩ (N

d
×{i}).

Theorem 3.2 [Okounkov 2003; Lazarsfeld and Mustat,ă 2009]. Suppose that 0
satisfies these conditions:

1) There exist finitely many vectors (vi , 1) ∈ Nd+1 spanning a semigroup
B ⊆ Nd+1 such that 0 ⊆ B (boundedness).

2) The subgroup generated by 0 is the full integral lattice Zd+1.

Then
lim

i→∞

#0i

id = vol(1(0))

exists.
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We now return to the proof that dim N (R̂) < d implies limits exist. Recall that
we have reduced to the case that R is a complete domain. Let π : X→ spec(R) be
the normalization of the blowup of m R . Being excellent, X is of finite type over R.
X is regular in codimension 1, so there exists a closed point p ∈ π−1(m R) such
that S = OX,p is regular and dominates R. We have an inclusion R → S of
d-dimensional local rings such that mS∩ R =m R with equality of quotient fields
Q(R)= Q(S). Let k = R/m R , k ′ = S/mS . Since S is essentially of finite type
over R, we have that [k ′ : k] <∞. Let y1, . . . , yd be regular parameters in S.
Choose λ1, . . . , λd ∈R+ which are rationally independent with λi ≥ 1. Prescribe
a rank 1 valuation ν on Q(R) by

ν(yi1
1 · · · y

id
d )= i1λ1+ · · ·+ idλd

and ν(γ )= 0 if γ ∈ S is a unit. The value group of ν is

0ν = λ1Z+ · · ·+ λdZ⊆ R.

Let Vν be the valuation ring of ν. Then

k ′ = S/mS ∼= Vν/mν .

For λ ∈ R+, define valuation ideals in Vν by

Kλ = { f ∈ Q(R) | ν( f )≥ λ}

and

K+λ = { f ∈ Q(R) | ν( f ) > λ}.

Now suppose that I ⊂ R is an ideal and λ ∈ 0ν is nonnegative. We have an
inclusion

I ∩ Kλ/I ∩ K+λ ⊆ Kλ/Kλ+
∼= k ′.

Thus

dimk I ∩ Kλ/I ∩ K+λ ≤ [k
′
: k].

Lemma 3.3 [Cutkosky 2013a, Lemma 4.3]. There exists α ∈ Z+ such that
Kαn ∩ R ⊂ mn

R for all n ∈ Z+ .

The proof uses Huebl’s linear Zariski subspace theorem [Hübl 2001] or Rees’
Izumi theorem [Rees 1989]. The assumption that R is analytically irreducible is
necessary for the lemma. Recalling the constant c of (5), let β = αc. Then

Kβn ∩ R ⊂ mnc
R ⊆ In (6)
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for all n. For 1≤ t ≤ [k ′ : k], define

0(t)=
{
(n1, . . . , nd , i)∈Nd+1

| dimk Ii ∩Kn1λ1+···+ndλd/Ii ∩K+n1λ1+···+ndλd
≥ t

and n1+ · · ·+ nd ≤ βi
}
,

0̂(t)=
{
(n1, . . . , nd , i)∈Nd+1

| dimk R∩Kn1λ1+···+ndλd/R∩K+n1λ1+···+ndλd
≥ t

and n1+ · · ·+ nd ≤ βi
}
.

Lemma 3.4 [Cutkosky 2014, Lemma 4.4]. Suppose that t ≥ 1, 0 6= f ∈ Ii ,
0 6= g ∈ I j and

dimk Ii ∩ Kν( f )/Ii ∩ K+ν( f ) ≥ t.

Then
dimk Ii+ j ∩ Kν( f g)/Ii+ j ∩ K+ν( f g) ≥ t.

Since ν( f g)= ν( f )+ ν(g), we conclude that when they are nonempty, 0(t) and
0̂(t) are subsemigroups of Nd+1.

Given λ= n1λ1+ · · ·+ ndλd such that n1+ · · ·+ nd ≤ βi , we have

dimk Kλ ∩ Ii/K+λ ∩ Ii = #{t | (n1, . . . , nd , i) ∈ 0(t)}.

Recalling (6), we obtain

`R(R/Ii )= `R(R/Kβi ∩ R)− `R(Ii/Kβi ∩ Ii )

=

( ∑
0≤λ<βi

dimk Kλ ∩ R/K+λ ∩ R
)
−

( ∑
0≤λ<βi

dimk Kλ ∩ Ii/K+λ ∩ Ii

)
=

( [k′:k]∑
t=1

#0̂(t)i

)
−

( [k′:k]∑
t=1

#0(t)i

)
,

where 0(t)i = 0
(t)
∩ (Nd

×{i}) and 0̂(t)i = 0̂
(t)
∩ (Nd

×{i}). The semigroups 0(t)

and 0̂(t) satisfy the hypotheses of Theorem 3.2. Thus

lim
i→∞

#0(t)i

id = vol(1(0(t))

and

lim
i→∞

#0̂(t)i

id = vol(1(0̂(t))

so that

lim
i→∞

`R(R/Ii )

id

exists.
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An example where limits do not exist. Let i1 = 2 and r1 = i1/2. For j ≥ 1,
inductively define i j+1 so that i j+1 is even and i j+1 > 2 j i j . Let r j+1 = i j+1/2.
For n ∈ Z+, define

σ(n)=
{

1 if n = 1,
i j/2 if i j ≤ n < i j+1.

(7)

The limit

lim
n→∞

σ(n)
n

(8)

does not exist, even when n is constrained to lie in an arithmetic sequence
[Cutkosky 2014, Lemmas 6.1 and 6.2]. The following example shows that limits
do not always exist on nonreduced local rings.

Example 3.5 [Cutkosky 2014, Example 5.3]. Let k be a field, d > 0 and R be the
nonreduced d-dimensional local ring R = k[[x1, . . . , xd , y]]/(y2). There exists a
graded family of m R-primary ideals {In} in R such that the limit

lim
n→∞

`R(R/In)

nd (9)

does not exist, even when n is constrained to lie in an arithmetic sequence.

This example was also found by Dao and Smirnov. They further showed that
it is universal (Theorem 2.7).

Proof. Let x̄1, . . . , x̄d , ȳ be the classes of x1, . . . , xd , y in R. Let Ni be the set
of monomials of degree i in the variables x̄1, . . . , x̄d . Let σ(n) be the function
defined in (7). Define MR-primary ideals In in R by In = (Nn, ȳNn−σ(n)) for
n ≥ 1 (and I0 = R).

We first verify that {In} is a graded family of ideals, by showing that Im In ⊂

Im+n for all m, n > 0. This follows since

Im In = (Nm+n, ȳN(m+n)−σ(m), ȳN(m+n)−σ(n))

and σ( j)≤ σ(k) for k ≥ j .
R/In has a k-basis consisting of

{Ni | i < n} and {ȳN j | j < n− σ(n)}.

Thus

`R(R/In)=
(n

d

)
+

(n−σ(n)
d

)
,

and the limit (9) does not exist, even when n is constrained to lie in an arithmetic
sequence, by (8). �
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4. Volumes on schemes

Unless stated otherwise, we will assume that X is a d-dimensional proper scheme
over an arbitrary field k. The vector space N (X) of R-divisors modulo numerical
equivalence is defined in [Kleiman 1966], Chapter 1 of [Lazarsfeld 2004a], and
extended to this level of generality (proper schemes over a field) in [Cutkosky
2013b]. In the case of a nonsingular variety, N (X) is defined in the last section
of this article.

If L is a line bundle on X , then the volume of L is

vol(L)= lim sup
n→∞

dimk 0(X,Ln)

nd/d!
.

If L is ample, then vol(L)= (L)d (the self intersection number). vol(L) is well
defined on N (X). The volume can be irrational [Cutkosky and Srinivas 1993]
even on a nonsingular projective variety over C. The following is a fundamental
result.

Theorem 4.1. Suppose that X is a projective variety over an algebraically closed
field k, and L is a line bundle on X. Then

vol(L)= lim
n→∞

dimk 0(X,Ln)

nd/d!

exists as a limit.

The function vol extends to a continuous, even continuously differentiable
d-homogeneous function on N (X) [Lazarsfeld 2004b; Boucksom, Favre and
Jonsson 2009; Lazarsfeld and Mustat,ă 2009]. This last result is true for vol(L)
on N (X) when X is a proper variety over an arbitrary field [Cutkosky 2013b].

There are several proofs of Theorem 4.1. Lazarsfeld [2004b] gave one when k
is algebraically closed of characteristic zero, using Fujita approximation ([Fujita
1994], which requires resolution of singularities). Satoshi Takagi [2007] gave
a proof when k is algebraically closed of characteristic p > 0 using de Jong’s
resolution [1996] after alterations and Fujita approximation.

There are also proofs by Okounkov [2003] for ample line bundles and by
Lazarsfeld and Mustat,ă [2009] using the cone method (using Theorem 3.2).

Definition 4.2. A graded linear series (for a line bundle L) on a d-dimensional
proper scheme X over a field k is a graded k-subalgebra

L =
⊕
n≥0

Ln ⊆
⊕
n≥0

0(X,Ln).
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Of course L need not be a finitely generated k-algebra. For the definition of
Iitaka–Kodaira dimension, we need the following definition:

σ(L)=max
{
s | there exist y1, . . . , ys ∈ L homogenenous of

positive degree and algebraically independent over k
}
.

We define the Iitaka–Kodaira dimension of L to be

κ(L)=
{
σ(L)− 1 if σ(L) > 0,
−∞ if σ(L)= 0.

The index of L is m(L) = [Z : G] where G is the subgroup generated by
{n | Ln 6= 0}.

If X is reduced and κ(L) = −∞, then Lm = 0 for all m > 0 and if X is
reduced and κ(L)≥ 0, then there exist constants 0< α < β such that

αnκ(L) < dimk Lmn < βnκ(L)

for n � 0. However, if X is not reduced, then we can have κ(L) = −∞ and
dimk Ln > nd for all n� 0 [Cutkosky 2014, Section 12].

Theorem 4.3 ([Lazarsfeld and Mustat,ă 2009] when dim X =κ(L) and m(L)=1;
[Kaveh and Khovanskii 2012]). Suppose that X is a projective variety over an
algebraically closed field k, and L is a graded linear series on X with κ(L)≥ 0,
index m = m(L). Then

lim
n→∞

dimk Lnm

nκ(L)

exists.

In analogy with our Theorem 2.8 for existence of limits of graded families of
ideals, we have the following necessary and sufficient conditions for the existence
of limits on projective schemes.

Theorem 4.4 [Cutkosky 2014, Theorem 10.6]. Suppose that X is a d-dimen-
sional projective scheme over a field k with d > 0. Let

NX = { f ∈OX | f s
= 0 for some positive integer s},

the nilradical of X. Let α ∈ N. Then the following are equivalent:

1) For every graded linear series L on X with α ≤κ(L), there exists a positive
integer r such that

lim
n→∞

dimk La+nr

nκ(L)

exists for every positive integer a.
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2) For every graded linear series L on X with α ≤ κ(L), there exists an
arithmetic sequence a+ nr (for fixed r and a depending on L) such that

lim
n→∞

dimk La+nr

nκ(L)

exists.

3) dimNX < α.

The implication 3) =⇒ 1) holds if X is a proper scheme over a field k, or if X
is a compact analytic space.

Corollary 4.5 [Cutkosky 2014, Theorem 10.7]. Suppose that X is a proper
d-dimensional scheme over a field k with dimNX < d and L is a line bundle
on X. Then

vol(L)= lim
n→∞

dimk 0(X,Ln)

nd/d!
.

5. Asymptotic regularity

We first give a comparison of local cohomology and sheaf cohomology. Let
R = k[x0, . . . , xn], a polynomial ring over a field with the standard grading, and
m = (x0, . . . , xn). Suppose that M is a graded module over R. Let M̃ be the
sheafification of M on Pn . We have an exact sequence of graded R-modules

0→ H 0
m(M)→ M→

⊕
j∈Z

H 0(Pn, M̃( j))→ H 1
m(M)→ 0

and isomorphisms⊕
j∈Z

H i (Pn, M̃( j))∼= H i+1
m (M) for i ≥ 1.

We have the interpretation⊕
j∈Z

H 0(Pn, M̃( j))∼= lim
−−→

HomR(m
n,M)

as an ideal transform.
We now define the regularity of a finitely generated graded R-module M :

ai (M)=
{

sup{ j | H i
m(M) j 6= 0} if H i

m(M) 6= 0,
−∞ otherwise.

The regularity of M is defined to be

reg(M)=max
i
{ai (M)+ i}.
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Interpreting R as the coordinate ring of Pn
= proj(R), and considering the

sheaf M̃ on Pn associate to M , we can define the regularity of M̃ to be

reg(M̃)=max
{
m | H i (Pn, M̃(m− i − 1)) 6= 0 for some i ≥ 1

}
=max

i≥2
{ai (M)+ i}.

Thus
reg(M̃)≤ reg(M).

We now give some interpretations of regularity of modules. Let

F∗ : 0→ · · · → F j → · · · → F1→ F0→ M→ 0

be a minimal free resolution of M as a graded R-module. Let b j be the maximum
degree of the generators of F j . Then

reg(M)=max{b j − j | j ≥ 0}.

In fact, we have (see [Eisenbud and Goto 1984])

reg(M)=max{b j − j | j ≥ 0}

=max
{
n | ∃ j such that TorR

j (k,M)n+ j 6= 0
}

=max
{
n | ∃ j such that H j

m(M)n− j 6= 0
}
.

We define
regi (M)=max

{
n | TorR

i (k,M)n 6= 0
}
− i.

Then
reg(M)=max{regi (M) | i ≥ 0}.

Further, reg0(M) is the maximum degree of a homogeneous generator of M .
We now discuss the regularity of powers of ideals. We outline the proof of

[Cutkosky, Herzog and Trung 1999] showing that reg(I n) is a linear polynomial
for large n.

Let F1, . . . , Fs be homogeneous generators of I ⊂ R = k[x0, . . . , xn], with
deg(Fi )= di . The map yi 7→ Fi induces a surjection of bigraded R-algebras

S = R[y1, . . . , ys] → R(I )=
⊕
m≥0

I m

where we have bideg(xi ) = (1, 0) for 0 ≤ i ≤ n, and bideg(y j ) = (d j , 1) for
1≤ j ≤ s. We have

TorR
i (k, I m)a ∼= TorS

i (S/mS, R(I ))(a,m).
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Theorem 5.1. Let E be a finitely generated bigraded module over k[y1, . . . , ys].
Then the function

ρE(m)=max{a | E(a,m) 6= 0}

is a linear polynomial for m� 0.

Since TorS
i (S/mS, R(I )) is a finitely generated bigraded S/mS module, we

have:

Theorem 5.2 [Cutkosky, Herzog and Trung 1999]. For all i ≥ 0, the function
regi (I

n) is a linear polynomial for n� 0.

Theorem 5.3 [Cutkosky, Herzog and Trung 1999; Kodiyalam 2000]. reg(I n) is
a linear polynomial for n� 0.

In the expression
reg(I n)= an+ b

for n� 0, we have

a = lim
reg(I n)

n
= lim

d(I n)

n
= ρ(I )

where d(I n)= reg0(I
n) is the maximal degree of a homogeneous generator of

I n , and (see [Kodiyalam 2000])

ρ(I )=min{max{d(J ) | J is a graded reduction of I }.

Theorem 5.4 [Tài Hà 2011]. Suppose that R is standard graded over a commu-
tative Noetherian ring with unity, I is a graded ideal of R and M is a finitely
generated graded R-module. Then there exists a constant e such that for n� 0,

reg(I n M)= ρM(I )n+ e

where
ρM(I )=min{d(J ) | J is a M-reduction of I }.

J is an M-reduction of I if I n+1 M = J I n M for some n ≥ 0.

Theorem 5.5 [Eisenbud and Harris 2010]. Let R = k[x1, . . . , xm]. If I is
R+-primary and generated in a single degree, then the constant term of reg(I n)

(for n� 0) is the maximum of the regularity of the fibers of the morphism defined
by a minimal set of generators.

Theorem 5.6 [Tài Hà 2011; Chardin 2013]. The constant term of the regularity
reg(I n), for I homogeneous in R= k[x0, . . . , xm] with generators all of the same
degree, can be computed as the maximum of regularities of the localization of
the structure sheaf of the graph of a rational map of Pm determined by I above
points in the projection of the graph onto its second factor (the image of the
rational map).
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We now give a comparison of regi (I
m), ai (I m) and reg(I m). We continue

to study the graded polynomial ring R = k[x0, . . . , xn], and assume that I is a
homogeneous ideal. Recall that

ai (I m)=

{
sup{ j | H i

m(I
m) j 6= 0} if H i

m(I
m) 6= 0,

−∞ otherwise,

regi (I
m)=max{n | TorR

i (k, I m)n 6= 0}− i,

and the regularity is

reg(I m)=max
i
{ai (I m)+ i} =max{regi (I

m) | i ≥ 0}.

We have shown that all of the functions regi (I
m) are eventually linear polynomi-

als, so reg(I m) is eventually a linear polynomial.
We first discuss the behavior of ai (I m).

Theorem 5.7 [Cutkosky 2000]. There is a homogeneous height two prime ideal
I in k[x0, x1, x2, x3] of a nonsingular space curve, such that

a2(I m)= bm(9+
√

2)c+ 1+ σ(m)

for m > 0, where bxc is the greatest integer in a real number x and

σ(m)=
{

0 if m = q2n for some n ∈ N,

1 otherwise,

where qn is defined recursively by

q0 = 1, q1 = 2, qn = 2qn−1+ q2n−2,

computed from the convergents pn
qn

of the continued fraction expansion of
√

2.

The m such that σ(m)= 0 are very sparse, as q2n ≥ 3n .
We also compute that

a3(I m)= bm(9−
√

2)c− τ(m)

where 0≤ τ(m)≤ constant is a bounded function, and

a4(I m)=−4.

Since 9+
√

2≤ limm→∞
reg(I m)

m
∈ Z+, we have

a1(I m)= reg(I m)= linear function for m� 0.

We now discuss the proof of this theorem. We first need to review numerical
equivalence, from [Kleiman 1966] and [Lazarsfeld 2004a, Chapter 1]. Let k be
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an algebraically closed field, and X be a nonsingular projective variety over k.
Define

Div(X)= divisors on X
:= formal sums of codimension-1 subvarieties of X .

Numerical equivalence is defined by

D1 ≡ D2 ⇐⇒ (D1 ·C)= (D2 ·C) for all curves C on X .

The R-vector space
N (X)= (Div(X)/≡)⊗Z R

is finite-dimensional (this is proved in [Lazarsfeld 2004a, Proposition 1.1.16],
for instance).

A divisor D on X is ample if H 0(OX (m D)) gives a projective embedding of
X for some m� 0.

Theorem 5.8. A divisor D is ample if and only if (Dd
· V ) > 0 for all d-

dimensional irreducible subvarieties V of X.

Taking V = X this condition is (Ddim X ) > 0.
Set

A(X)= ample cone= convex cone in N (X) generated by ample divisors

Nef(X)= nef cone
= convex cone generated by numerically effective divisors

((D ·C)≥ 0 for all curves C on X ,)

NE(X)= convex cone generated by effective divisors
(h0(OX (nD)) > 0 for some n > 0.).

Theorem 5.9.
A(X)⊆ A(X)= Nef(X)⊆ NE(X)

Here T denotes closure of T in the euclidean topology.

Suppose that S is a nonsingular projective surface. Then N (S) has an inter-
section form q(D)= (D2) for D a divisor on S.

A K3 surface is a nonsingular projective surface with H 1(OS)= 0 and such
that KS is trivial. From the theory of K3 surfaces (as reviewed in Section 2 of
[Cutkosky 2000] and using a theorem of Morrison [Morrison 1984]) it follows
that there exists a K3 surface S such that N (S)∼= R3 and

q(D)= 4x2
− 4y2

− 4z2

for D = (x, y, z) ∈ R3.
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Lemma 5.10. Suppose that C is an integral curve on S. Then (C2)≥ 0.

Proof. Suppose otherwise. Then (C2) = −2, since S is a K3 surface. But 4
divides q(C)= (C2), a contradiction. �

Corollary 5.11. NE(S)= A(S), and

NE(S)=
{
(x, y, z) | 4x2

− 4y2
− 4z2

≥ 0, x ≥ 0
}
.

Let H = (1, 0, 0) (that is, let H be a divisor whose class is (1, 0, 0)). Then
H 0(OS(H)) gives an embedding of S as a quartic surface in P3. Choose
(a, b, c) ∈ Z3 such that a > 0, a2

−b2
−c2 > 0 and

√
b2+ c2 6∈Q. (a, b, c) is in

the interior of NE(S), which is equal to A(S). There exists a nonsingular curve
C on S such that C = (a, b, c) in N (X). Let

λ2 = a+
√

b2+ c2 and λ1 = a−
√

b2+ c2.

Suppose that m, r ∈ N. Then

m H − rC ∈ NE(S) and is ample if rλ2 < m,

m H − rC, rC −m H 6∈ NE(S) if rλ1 < m < rλ2,

rC −m H ∈ NE(S) and is ample if m < rλ1.

Choose C = (a, b, c) so that 7<λ1 <λ2 and λ2−λ1 > 2. Then by Riemann–
Roch,

χ(m H − rC) = h0(m H − rC)− h1(m H − rC)+ h2(m H − rC)
=

1
2(m H − rC)2+ 2.

Theorem 5.12.

h1(m H − rC)=
{

0 if rλ2 < m,
−

1
2(m H − rC)2− 2 if rλ1 < m < rλ2,

h2(m H − rC)= 0 if rλ1 < m.

Let H be a linear hyperplane on P3 such that H · S = H . Let IC = ĨC , where
IC is the homogeneous ideal of C in the coordinate ring R of P3.

Let π : X→ P3 be the blowup of C . Let E = π∗(C), the exceptional surface,
S be the strict transform of S on X . S ∼= S and E · S = C . For m, r ∈ N and
i ≥ 0,

H i (P3, Ir
C(m))∼= H i (X,OX (m H − r E)).

In particular,

I (r)C = (I
r
C)

sat ∼=
⊕
m≥0

H 0(P3, Ir
C(m))=

⊕
m≥0

H 0(X,OX (m H − r E)).
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In the exact sequence

0→OX (−S)→OX →OS→ 0

we have S ∼ 4H − E . Tensor with OX ((m+ 4)H − (r + 1)E) to get

0−→OX (m H − r E)−→OX ((m+ 4)H − (r + 1)E)

−→OS((m+ 4)H − (r + 1)C)−→ 0.

Since hi (OX (m H))= 0 for i > 0 and m ≥ 0, our calculation of cohomology on
S and induction gives

h1(m H − r E)=
{

0 if m > rλ2,

h1(m H − r E) if m = brλ2c or m = brλ2c− 1,

h2(m H − r E)= 0 if m > λ1r,

h3(m H − r E)= 0 if m > 4r.

By our calculation of cohomology on S, we have for r, t ∈ N,

h1(Ir
C(t − 1))= h1((t − 1)H − r E)

{
= 0 if t ≥ brλ2c+ 1+ σ(r),
6= 0 if t = brλ2c+ σ(r),

where

σ(r)=
{

0 if h1(brλ− 2cH − rC)= 0,
1 if h1(brλ− 2cH − rC) 6= 0.

We obtain, for r ∈ N,

a2(I r
C)= reg(I (r)C )= reg((I r

C)
sat)= brλ2c+ 1+ σ(r)

with

lim
r→∞

a2(I r
C)

r
= lim

r→∞

reg((I r
C)

sat)

r
= λ2 6∈Q.

In this example, we have shown that the function

reg((I n
C)

sat)= reg(I (n)C )

has irrational behavior asymptotically. This is perhaps not so surprising, as its
symbolic algebra ⊕

n≥0

I (n)C

is not a finitely generated R-algebra. An example of an ideal of a union of
generic points in the plane whose symbolic algebras is not finitely generated was
found and used by Nagata [1959] to give his counterexample to Hilbert’s 14th
problem. Roberts [1985] interpreted this example to give an example of a prime
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ideal of a space curve. Even for rational monomial curves this algebra may not
be finitely generated, by an example in [Goto, Nishida and Watanabe 1994].

Holger Brenner [2013] has recently given a remarkable example showing that
the Hilbert–Kunz multiplicity can be irrational.

We now discuss the regularity of coherent sheaves. Suppose that X is a
projective variety, over a field k, and H is a very ample divisor on X . Suppose
that J ⊂ OX is an ideal sheaf. Let π : B(J )→ X be the blowup of J , with
exceptional divisor F . The Seshadri constant of J is defined to be

sH (J )= inf{s ∈ R | π∗(s H)− F is a very ample R-divisor on B(J ).}

The regularity of J is defined to be

regH (J )=max{m | H i (X,H⊗OX ((m− i − 1)H)) 6= 0.

Theorem 5.13 [Cutkosky, Ein and Lazarsfeld 2001]. Suppose that I ⊂ OX is
an ideal sheaf. Then

lim
m→∞

regH (Im)

m
= lim

m→∞

dH (Im)

m
= sH (I).

For an ideal sheaf J ,

dH (J )= least integer d such that J (d H) is globally generated.

If H is a linear hyperplane on Pn , and I = Ĩ , we get the statement that the
limit

lim
m→∞

reg((I m)sat)

m
= lim

m→∞

d((I m)sat)

m
.

exists, where d((I m)sat) is the maximal degree of a generator of (I m)sat.
We now give an example of an irrational Seshadri constant. The ideal I of a

nonsingular curve in P3 contained in a quartic which we considered earlier gives
an example (see [Cutkosky 2000]):

sH ( Ĩ )= lim
m→∞

regH ( Ĩ
m)

m
= lim

m→∞

reg((I m)sat)

m
= 9+

√
2.

We do have something like linear growth of regularity regH in the example.
Recall that the example is of the homogeneous height two prime ideal I in
k[x0, x1, x2, x3] of a nonsingular projective space curve, such that

regH ( Ĩ
n)= reg((I n)sat)=max{ai (I n)+ i | 2≤ i ≤ 4}

= bm(9+
√

2)c+ 1+ σ(m)
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for m > 0, where bxc is the greatest integer in a real number x and

σ(m)=
{

0 if m = q2n for some n ∈ N,

1 otherwise,

where qn is defined recursively by

q0 = 1, q1 = 2, qn = 2qn−1+ q2n−2.

Theorem 5.14 (Wenbo Niu [2011]). Suppose that I = Ĩ is an ideal sheaf on Pn .
Then there is a bounded function τ(m), with 0≤ τ(m)≤ constant, such that

regH (I
m)= reg((I n)sat)= bsH mc+ τ(m).

for all m > 0.

We conclude this section with some questions. Suppose that I is a homoge-
neous ideal in a polynomial ring S.

• Does

lim
n→∞

ai (I n)

n
exist for all i?

• Does

lim
n→∞

reg(I (n))
n

exist? (The answer is yes if the singular locus of S/I has dimension ≤ 1;
see [Herzog, Hoa and Trung 2002].)

• Does
lim

n→∞

reg(in(I n))

n
exist?

• David Eisenbud has posed the following problem. Suppose that I is gener-
ated in a single degree. Explain (geometrically) the constant term b in the
linear polynomial

reg(I n)= an+ b for n� 0.
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series”, Ann. Sci. Éc. Norm. Supér. (4) 42:5 (2009), 783–835.

[Lipman 1975] J. Lipman, “Introduction to resolution of singularities”, pp. 187–230 in Algebraic
geometry (Arcata, CA, 1974), edited by R. Hartshorne, Proc. Symp. Pure Math. 29, Amer. Math.
Soc., Providence, RI, 1975.

[Morrison 1984] D. R. Morrison, “On K 3 surfaces with large Picard number”, Invent. Math. 75:1
(1984), 105–121.

[Mumford 1976] D. Mumford, Algebraic geometry, I: Complex projective varieties, Grundlehren
der Mathematischen Wissenschaften 221, Springer, Berlin, 1976.
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