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Noncommutative motives
and their applications

MATILDE MARCOLLI AND GONCALO TABUADA

This survey is based on lectures given by the authors during the program “Non-
commutative algebraic geometry and representation theory” at MSRI in the
Spring 2013. It covers recent work by the authors on noncommutative motives
and their applications, and is intended for a broad mathematical audience. In
Section 1 we recall the main features of Grothendieck’s theory of motives. In
Sections 2 and 3 we introduce several categories of noncommutative motives
and describe their relation with the classical commutative counterparts. In Sec-
tion 4 we formulate the noncommutative analogues of Grothendieck’s standard
conjectures of type C and D, of Voevodsky’s smash-nilpotence conjecture, and
of Kimura—O’Sullivan finite-dimensionality conjecture. Section 5 is devoted
to recollections of the (super-)Tannakian formalism. In Section 6 we introduce
the noncommutative motivic Galois (super-)groups and their unconditional
versions. In Section 7 we explain how the classical theory of (intermediate)
Jacobians can be extended to the noncommutative world. Finally, in Section 8
we present some applications to motivic decompositions and to Dubrovin’s
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1. Grothendieck’s theory of motives

We recall here the main features of Grothendieck’s classical theory of pure
motives, which will be useful when passing to the noncommutative world. These
facts are well-known and we refer the reader to [André 2004; Jannsen et al. 1994,
Manin 1968] for more detailed treatments. Let k be a base field and F a field of
coefficients.

Let V(k) be the category of smooth projective k-schemes. The category of
pure motives is obtained from V (k) by linearization, idempotent completion, and
inversion of the Lefschetz motive.

1.1. Correspondences. The linearization of V (k) is obtained by replacing the
morphisms of schemes with correspondences. Concretely, the correspondences
Corr~ r(X,Y) := ZTTV(X)(X x Y) from X to Y are the F-linear combinations
of algebraic cycles in X x Y of codimension equal to dim(X). This includes the
case of ordinary morphisms by viewing their graphs as correspondences. The
composition of correspondences is obtained by pulling back the cycles to the
product X x Y x Z, taking their intersection product there, and pushing forward
the result to the product X x Z:

Corr~ r(X,Y) x Corr~ p (Y, Z) — Corr~ (X, Z),
(@, B) = (xz)«(mxy (@) e Ty 7 (B))-

1.2. Equivalence relations on algebraic cycles. One of the important steps in
the construction of the category of pure motives is the choice of an equiva-
lence relation on algebraic cycles. The usual choices are rational equivalence,
homological equivalence, and numerical equivalence. Rational equivalence
depends upon the moving lemma and gives rise to the category of Chow motives.
Homological equivalence depends on the choice of a “good” cohomology theory
(Weil cohomology theory) and gives rise to the category of homological motives.
Numerical equivalence depends only on the intersection product between alge-
braic cycles and gives rise to the category of numerical motives. These three
equivalence relations are summarized as follows:

(1-1)

A correspondence « from X to Y is rationally trivial, o ~ ¢ O, if there exists
ap ezt (X xYxPsuch that « = B(0) — B(c0).

e A correspondence o from X to Y is homologically trivial, o ~pom 0, if it
vanishes under a chosen Weil cohomology theory.
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e A correspondence « from X to Y is numerically trivial, o ~py O, if it has
a trivial intersection number with every other algebraic cycle.

It is well-known that ~p#~num. The question of whether ~hom=""num
remains open and is part of an important set of conjectures about motives which
will be described below (see §1.10).

The category of pure motives has different properties depending on the equiv-
alence relation.

1.3. Pure motives. The symmetric monoidal category of effective pure motives
Motf’f’f (k) is defined as follows: the objects are the pairs (X, p) (with X € V(k)
and p an idempotent of Corr~ (X, X)), the morphisms are the correspondences

HomMoti‘TF(k)(<X’ p)’ (Ya CI)) = pcorrN,F(X’ Y)C],

the composition is induced from (1-1), and the symmetric monoidal structure is
given by (X, p)® (Y, q) = (X x Y, p x q). In what follows we will write & r(X)
instead of (X, Ayx).

The effective pure motive i (P') decomposes as 2% (P!) @ h%(P)) ~ 1@ L,
where 1 = hp(Spec(k)) and L is called the Lefschetz motive.

The symmetric monoidal category of pure motives Mot~ r (k) is obtained from
Mote’f’f (k) by formally inverting the Lefschetz motive. The formal inverse L!
is called the Tate motive @Q(1) (one writes Q(n) := Q(1)®"). Concretely, in the
category of pure motives the objects are triples (X, p, m) := (X, p)® (L~ Hoem =
(X, p) ® Q(m) and the morphisms are given by

Homyor k) (X, p, m), (Y, g, n)) = pCorr. (X, Y)q.
The category Mot~ r(k) is additive. In the case where m = n, the direct sum
(X, p,m)® (Y, q,n) is defined as (X L1 Y, p ® g, m). The general case reduces
to this one using the Lefschetz motive.

Inverting the Lefschetz motive has therefore the effect of introducing arbitrary
shifts in the codimension of the algebraic cycles, instead of using only algebraic
cycles of codimension equal to dim(X). One has a canonical (contravariant)
symmetric monoidal functor

hFZV(k)Op%MOtN’F(k), X hp(X),
which sends a morphism f : X — Y to the transpose of its graph I'(f) C X x Y.

1.4. Chow and homological motives. The category Mot~ g(k) with ~ =~y
(resp. ~ = ~pom) is called the category of Chow motives (resp. homological
motives) and is denoted by Chowg (k) (resp. by Homg (k)).
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1.5. Numerical motives. One of the most important results in the theory of pure
motives was obtained in [Jannsen 1992]. It asserts that the numerical equivalence
relation is the “best one” from the point of view of the resulting properties of
the category. More precisely, Jannsen proved that the following conditions are
equivalent:

e Mot r(k) is a semisimple abelian category;
e Corr~ (X, X) is a finite-dimensional semisimple F-algebra for every X;

» The equivalence relation ~ is equal to ~pym.

The category Mot~ r(k) with ~ =~ is called the category of numerical
motives Num g (k)

1.6. Smash-nilpotence. Voevodsky [1995] introduced the equivalence relation
of smash-nilpotence on algebraic cycles, ~gni1, and conjectured the following:

Conjecture V (X). ZL X =22 p(X).

The ®yji-ideal of an F-linear, additive, symmetric monoidal category C is
defined as

®nil(a, b) = {g € Home(a, b) | " = 0 for n > 0}.

The quotient functor C — C/®y; is F-linear, additive, symmetric monoidal,
and conservative. If C is idempotent complete, then C/®y;; is also idempotent
complete. One denotes by Voevg (k) := Chowp(k)/®yi1 the category of Chow
motives up to smash-nilpotence.

1.7. All together. The different categories of pure motives are related by a
sequence of F-linear, additive, full, symmetric monoidal functors Chowr (k) —
Voevg (k) - Homp(k) — Numpg(k).

1.8. Tate motives. The additive full subcategory of Mot~ r(k) generated by
Q(1) is called the category of (pure) Tate motives. This category is independent
of the equivalence relation.

1.9. Weil cohomology theories. A Weil cohomology theory axiomatizes the
properties of a “good” cohomology theory. It consists of a contravariant functor
H* : V(k)°® — GrVect(F) to Z-graded F-vector spaces equipped with the
following data:

« Kiinneth isomorphisms H*(X xY) ~ H*(X) @ H*(Y);
o trace maps tr : H24™X) (X)(dim(X)) — F;
e cycle maps y, : 22 o(X) — H*(X)(n).
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One assumes that dim H>(P!) = 1 and some natural compatibility conditions.
Examples of Weil cohomology theories include de Rham, Betti, étale, and
crystalline cohomology.

A great deal of difficulty in the theory of pure motives comes from the poor
understanding of the cycle maps. The question of which cohomology classes
are in the range of the y, is a notoriously difficult problem (which includes the
Hodge conjecture below).

The idea of motives can be traced back to Grothendieck’s quest for a universal
cohomology lying behind all the different Weil cohomology theories.

1.10. Grothendieck’s standard conjectures. Important conjectures relate the
properties of the categories of pure motives with the geometry of schemes. The
standard conjectures are traditionally labeled as type C, D, B, and I. They are
summarized as follows:

e Type C (Kiinneth): the Kiinneth components of the diagonal Ay are alge-
braic cycles.

e Type D (Hom = Num): the homological and the numerical equivalence
relations coincide.

e Type B (Lefschetz): the Lefschetz involution ; x is algebraic (with Q-
coefficients).

o Type I (Hodge): the quadratic form defined by the Hodge involution g is
positive definite.

There are relations between these conjectures: type B and I imply type D and
in characteristic zero type B implies all others. For our purposes, we will focus
on types C and D.

2. From motives to noncommutative motives

As mentioned above, the origin of pure motives was Grothendieck’s quest for a
universal cohomology lying behind all the different Weil cohomology theories.
The origin of noncommutative motives is similar. In the noncommutative world
the basic objects are not schemes but rather dg categories. Instead of cohomology
theories, one has homological type invariants such as algebraic K -theory, cyclic
homology (and all its variants), topological Hochschild homology, etc. In analogy
with the commutative world, one can try to identify a suitable universal invariant
lying behind all these different invariants.

2.1. Dg categories. A differential graded (=dg) category A is a category whose
morphism sets A(x, y) are cochain complexes of k-modules (k can more generally
be a commutative ring) and whose composition law satisfies the Leibniz rule. A
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dg functor F : A — B is a functor which preserves this extra structure. For further
details, we refer the reader to the pioneering work of Bondal and Kapranov [1990;
1989] and to the ICM survey [Keller 2006]. In what follows, we will denote by
dgcat(k) the category of all (small) dg categories and dg functors.

Perfect complexes. Dg categories should be understood as “noncommutative
schemes”. The reason for this is that one can canonically associate to every
scheme X a dg category, namely the dg category of perfect complexes perfy, (X)
of Ox-modules. This dg category enhances the classical derived category of
perfect complexes perf(X) in the sense that the latter is obtained from the former
by passing to degree zero cohomology. When £ is a field and X is quasiprojective,
Lunts and Orlov [2010] proved that this dg enhancement is in fact “unique”. This
construction gives rise to a well-defined (contravariant) symmetric monoidal
functor

V(k)® — dgcat(k), X perfy, (X).

An arbitrary dg category should be then considered as the dg category of perfect
complexes of an hypothetical ‘“noncommutative scheme”.

Saturated dg categories. Kontsevich [2005; 2010; 2009] introduced a class of
dg categories whose properties closely resemble those of perfect complexes on
smooth proper schemes. These are called saturated dg categories. Concretely, a
dg category A is saturated if it is perfect as a bimodule over itself and if for any
two objects x, y we have ) . rank HA(x,y) < 0o. A k-scheme X is smooth
and proper if and only if the associated dg category perfy, (X) is saturated.

As mentioned in [Kontsevich 2005], other examples of saturated dg categories
arise from representation theory of (finite) quivers and from deformation by
quantization.

2.2. Morita equivalences. A dg functor F : A — B is called a Morita equiva-
lence if the restriction of scalars between derived categories D(B) = D(A) is
an equivalence of (triangulated) categories.

All the classical invariants, like algebraic K -theory, cyclic homology (and all
its variants), topological Hochschild homology, etc, are Morita invariant in the
sense that they send Morita equivalences to isomorphisms. It is then natural to
consider dg categories up to Morita equivalence.

As proved in [Tabuada 2005], the category dgcat(k) carries a Quillen model
structure whose weak equivalences are the Morita equivalences. Let us denote
by Hmo(k) the homotopy category hence obtained. This category is symmet-
ric monoidal and, as shown in [Cisinski and Tabuada 2012], the saturated dg
categories can be characterized as the dualizable (or rigid) objects of Hmo(k).
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Bondal and Van den Bergh [2003] proved that for every quasicompact qua-
siseparated k-scheme X the dg category perfy, (X) is isomorphic in Hmo(k) to a
dg k-algebra with bounded cohomology.

Bondal and Kapranov’s pretriangulated envelope. Using one-sided twisted com-
plexes, Bondal and Kapranov [1990] constructed in the pretriangulated envelope
of every dg category .A. Intuitively speaking, one formally adds to .A (de-
)suspensions, cones, cones of morphisms between cones, etc. Making use of the
Morita model structure, this construction can be conceptually understood as a
functorial fibrant resolution functor; consult [Tabuada 2005] for details.

Drinfeld’s DG quotient. A very useful operation on triangulated categories is
the Verdier quotient. Via a very elegant construction (reminiscent of Dwyer—Kan
localization), Drinfeld [2004] lifted this operation to the setting of dg categories.
Although very elegant, this construction didn’t seem to satisfy any obvious
universal property. The Morita model structure changed this state of affairs by
allowing the characterizing of Drinfeld’s DG quotient as an homotopy cofiber
construction; consult [Tabuada 2010b] for details.

2.3. Additive invariants. Given a dg category A, let T (A) be the dg category of
pairs (i, x), where i € {1, 2} and x € A. The complex of morphisms in 7 (A) from
(i, x) to (i’, x") is given by A(x, x’) if i <i’ and is zero otherwise. Composition
is induced by .A. Intuitively speaking, T (A) “dg categorifies” the notion of upper
triangular matrix. Note that we have two inclusion dg functors iy : A < T (A)
and ip : A< T (A). Let E : dgcat(k) — A be a functor with values in an additive
category. We say that E is an additive invariant if it satisfies the following two
conditions:

« It sends Morita equivalences to isomorphisms.

« Given any dg category .4, the inclusion dg functors induce an isomorphism
[E(i1) E@i2)]: E(A) @ E(A) = E(T(A)).

Thanks to [Blumberg and Mandell 2012; Keller 1999; Quillen 1973; Schlicht-
ing 2006; Tabuada 2010a; Thomason and Trobaugh 1990; Waldhausen 1985],
among other works, we know that all the invariants above are additive.

The universal additive invariant was constructed in [Tabuada 2005] as follows:
consider the additive symmetric monoidal category Hmog (k) whose objects are
the dg categories and whose morphisms are given by Hompyme,x) (A, B) 1=
Korep(A, B), where rep(A, B) C D(A°® @ B) stands for the full triangulated
subcategory of those .4-5 bimodules which are perfect as right B-modules. The
composition law and the symmetric monoidal structure are induced from Hmo(k).
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As explained in loc. cit., the canonical composed symmetric monoidal functor
U : dgcat(k) —> Hmo(k) —> Hmog (k) 2-1)

is the universal additive invariant, i.e., precomposition with U induces a bi-
jection between additive functors E : Hmog(k) — A and additive invariants
E : dgcat(k) — A. This suggests that Hmog(k) is the correct place where
noncommutative motives should reside. Let us denote by Hmog(k)F its F-
linearization (F can more generally be a commutative ring).

2.4. Computations. In order to gain some sensibility with (2-1), we recall some
computations:

o [Marcolli and Tabuada 2015] Let X be a smooth projective k-scheme whose
derived category perf(X) admits a full exceptional collection of length n (see
§8.2). In this case, U (perfdg(X )) identifies with the direct sum of n copies of
U (k).

o [Tabuada and Van den Bergh 2015] Let X be a quasicompact quasiseparated
k-scheme, A a sheaf of Azumaya algebras over X of rank r, and perfy,(A)
the associated dg category. When 1/r belongs to the commutative ring F,
U (perfdg(A)) r identifies with U (perfdg (X)) rF.

» [Bernardara and Tabuada 2014b] Let A be a central simple k-algebra of
degree d := /dim(A) and SB(A) the associated Severi-Brauer variety. In
this case, U (perfy, (SB(A))) identifies with the following direct sum U (k) &
U(A) @ UMD @ @ U (A,

e [Tabuada and Van den Bergh 2015] Let k be a perfect field, A a finite-
dimensional k-algebra of finite global dimension, and J(A) its Jacobson
radical. In this case, we have U (A) ~ U (A/J(A)).

e [Tabuada 2014] Let A and B be two central simple k-algebras and [A] and
[B] their Brauer classes. In this case, U(A) and U (B) are isomorphic if and
only if [A] = [B].

2.5. Noncommutative Chow motives. Kontsevich [2005] introduced the sym-
metric monoidal category of noncommutative Chow motives NChow(k)r. It
can be described as the idempotent completion (—)" of the full subcategory of
Hmog(k) r given by the saturated dg categories. Concretely, the objects are of the
pairs (A, e) (with A a saturated dg category and e an idempotent), the morphisms
are given by the noncommutative correspondences

Homychow()r (A, ), (B, ) := eKorep(A, B)e' =~ eKo(A”® ®" B) re,
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the composition law is induced by the derived tensor product of bimodules, and
the symmetric monoidal structure is induced by the derived tensor product of dg
categories.

Fundamental theorems. The fundamental theorems in algebraic K-theory and
periodic cyclic homology, proved respectively in [Weibel 1989] and [Kassel
1987], are of major importance. Their proofs are not only very different but
also quite involved. The category NChow(k)r allowed a simple, unified and
conceptual proof of these fundamental theorems; consult [Tabuada 2012] for
details.

2.6. A bridge from Chow to noncommutative Chow motives. Noncommutative
motives should, in a suitable sense, contain the category of motives. This idea was
made precise in [Tabuada 2013] (following the original insight in [Kontsevich
2009]). The precise statement is the existence of a Q-linear additive fully-faithful
symmetric monoidal functor R making the following diagram commute

V(k)oP X pertu () decat(k) (2-2)
g -
Chowg (k) Hmog (k)
| Jas
Chowa (k) /-gai) ————— NChow(k)a C Hmoo(k)g,

where Chowg(k)/ga() stands for the orbit category. This bridge opens new
horizons and opportunities of research by enabling the interchange of results
between the commutative and the noncommutative world. This yoga was devel-
oped in [Tabuada 2013] in what regards Schur and Kimura—O’Sullivan finite-
dimensionality (see §4.3 below), motivic measures, and motivic zeta functions.

The above diagram (2-2) holds more generally with Q replaced by any field
F of characteristic zero.

Orbit categories. Given an F-linear, additive, symmetric monoidal category C
and a ®-invertible object O e C, the orbit category C/_go has the same objects
as C and morphisms

Homg, ,, (a. b) := @) Home (a, b ® OF).
ieZ

The composition law and the symmetric monoidal structure are induced from C.
By construction, the orbit category comes equipped with a canonical symmetric
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monoidal projection functor 7 : C — C/gp. Moreover, 7 is endowed with a
2-isomorphism 77 o (— ® ©) = 7 and is 2-universal among all such functors.

3. Categories of noncommutative motives

3.1. Periodic cyclic homology as “noncommutative de Rham cohomology”.
Connes’ periodic cyclic homology extends naturally from k-algebras to dg cate-
gories giving thus rise to a functor H P* :dgcat(k) — sVect(k) to super k-vector
spaces. In the case of a smooth k-scheme X (with k of characteristic zero), the
Hochschild—Konstant—Rosenberg theorem show us that

H P*(perfyy (X)) =~ HP*(X) ~ ( P HixX). P H£R<X>). (3-1)

neven nodd

For this reason H P* is considered the noncommutative analogue of de Rham
cohomology. For further details on this viewpoint, we invite the reader to consult
the ICM address [Kaledin 2010].

As proved in [Marcolli and Tabuada 2011, Theorem 7.2], H P* induces
symmetric monoidal functors

HP* : NChow(k)r — sVect(F), HP=*:NChow(k)r — sVect(k) (3-2)

under the assumption that F is a field extension of k (left-hand-side) or the
assumption that & is a field extension of F (right-hand-side).

3.2. Noncommutative homological motives. Making use of the above “noncom-
mutative de Rham cohomology”, one defines the symmetric monoidal category of
noncommutative homological motives NHom (k) r as the idempotent completion
of the quotient category NChow (k) r/ Ker(W).

3.3. Noncommutative numerical motives. In order to define a category of non-
commutative numerical motives one needs to extend to the noncommutative
world the notion of intersection number. This can be done as follows. Let (A, ¢)
and (B, ¢’) be two noncommutative Chow motives. Given a noncommutative
correspondence B = e[, ;B;le’ from (A, e) to (B, ¢’) (recall that the B;’s
are A-B-bimodules), and a noncommutative correspondence B’ = ¢'[) ibj B’j]e
from (B, €’) to (A, e), one defines their intersection number as the following
sum

(B

B =) (=1"a; -b; - rank HH, (A; B; ® B),

i,j,n

where HH,(A; B; ®IL§ B’j) stands for the n-th Hochschild homology group of
A with coefficients in the A-.4 bimodule B; ®Ig B/j. The numerical equivalence
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relation on noncommutative Chow motives is obtained by declaring a noncom-
mutative correspondence B to be numerically trivial if (B, B’) = 0 for all B'.
This equivalence relation gives rise to the largest ®-ideal A strictly contained in
NChow(k) r. The symmetric monoidal category of noncommutative numerical
motives NNum(k)  is then defined as the idempotent completion of the quotient
category NChow (k) r/N.

As proved in [Marcolli and Tabuada 2014c, Theorem 1.12], the functor R of
diagram (2-2) descends to a @-linear additive fully-faithful symmetric monoidal
functor Ry : Num@(k)/_®@(1) — NNum(k)q.

A different numerical equivalence relation on noncommutative Chow mo-
tives (based on the bilinear pairing ) _, (—1Didim Ext' (—, —)), was proposed in
[Kontsevich 2005]. As proved in [Marcolli and Tabuada 2012, Theorem 1.1],
Kontsevich’s notion is equivalent to the above one.

3.4. Semisimplicity. As proved in [Marcolli and Tabuada 2014c, Theorem 1.1;
2011, Theorem 4.6], Jannsen’s result (see §1.5) holds also in the noncommutative
world. Concretely, under the assumption that k and F' have same characteristic,
NNum(k)F is abelian semisimple. This was conjectured in [Kontsevich 2005].
Moreover, if J is a ®-ideal in NChow (k) ¢ for which the idempotent completion
of NChow(k)r/J is abelian semisimple, then 7 agrees with .

As explained in [Marcolli and Tabuada 2014c, Corollary 1.1], the semisim-
plicity of NNum(k) ¢ (with k of characteristic zero) combined with the functor
R of diagram (2-2) gives rise to an alternative proof of Jannsen’s result.

3.5. Smash-nilpotence in the noncommutative world. Recall from §1.6 the
definition of the ®y;-ideal. One denotes by NVoev(k)r := NChow(k) r/®nil
the category of noncommutative Chow motives up to smash-nilpotence. As
proved in [Marcolli and Tabuada 2014d, Proposition 3.1], the functor R of
diagram (2-2) descends also to a symmetric monoidal fully-faithful functor
Ry : Voevg (k) ea1) = NVoev(k)qg.

3.6. All together. The categories of noncommutative motives are related by F-
linear, additive, full, symmetric monoidal functors NChow (k) r — NVoev(k)r —
NHom (k) r — NNum(k) r.

Given a saturated dg category A, we will denote by ~gnil, ~hom> ~num the
equivalence relations on Homychow (k) (U (k) , U(A)F) > Ko(A) r induced by
the above functors.

3.7. Noncommutative Artin motives. The category of Artin motives AMp (k)
is by definition the smallest additive rigid idempotent complete full subcategory
of Chowp (k) containing the finite étale k-schemes. One defines the category of
noncommutative Artin motives NAM(k)g as the image of AMg(k) under the
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functors R o 7 of diagram (2-2). As proved in [Marcolli and Tabuada 2014b,
Theorem 1.7], this latter category is independent of the equivalence relation.

4. Conjectures in the noncommutative world
Let A be a saturated dg category.

4.1. Standard conjectures. In [Marcolli and Tabuada 2011] we introduced the
noncommutative analogues of Grothendieck’s standard conjectures of type C
and D.

Conjecture Cnc(A). The Kiinneth projectors

nh  HPE(A) — HPT(A) — HPE(A),
my HPE(A) — HP™(A) — HP*(A)

are algebraic, i.e., nj =H Pi(gj) for noncommutative correspondences zj.

A weaker version of the standard conjecture of type C (Kiinneth) is the sign
conjecture C*(X): The Kiinneth projectors wf =Y, 7% and ty =Y ;g !
are algebraic. The restriction of Cy¢ to the commutative world is weaker than

the sign conjecture in the sense that C*(X) = C ~e (perfyg (X)).
Conjecture Dy (A). Ko(A)F/~hom = Ko(A)F/~num-

Similarly, the restriction of Dy¢ to the commutative world is weaker than
the standard conjecture of type D (Hom=Num) in the sense that D(X) =

Dy (perfyy (X)).

4.2. Smash-nilpotence conjecture. Voevodsky’s nilpotence conjecture (see §1.6)
was extended in [Marcolli and Tabuada 2014d] to the noncommutative world as
follows:

Conjecture Vyc (A). Ko(A)F/~gw= Ko(A) F/~num-

As proved in Theorem 4.1 of the same reference, the restriction of V¢ to the
commutative world is equivalent to Voevodsky’s smash-nilpotence conjecture in
the sense that V(X) < Vyc (perfdg(X )). This suggests that instead of attacking
Voevodsky’s conjecture V, one should alternatively attack conjecture Vy ¢ (using
noncommutative tools). The authors are currently developing this approach.

4.3. Finite-dimensionality conjecture. Let F be a field of characteristic zero
and C an F-linear, idempotent complete, symmetric monoidal category. An object
a € C is called even (resp. odd) dimensional if A"(a) = 0 (resp. Sym” (a) = 0)
for some n > 0. An object a € C is called finite-dimensional if a = ay @ a_,
with a (resp. a_) even (resp. odd) dimensional. Kimura [2005] and O’Sullivan
[2005] conjectured the following:
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Conjecture KS(X). The Chow motive hp(X) is finite-dimensional.

This conjecture was extended in [Marcolli and Tabuada 2014d] to the non-
commutative world as follows:

Conjecture KSyc(A). The noncommutative Chow motive U(A)fr is finite-
dimensional.

The restriction of KSy¢ to the noncommutative world is weaker than the
Kimura—O’Sullivan finite-dimensionality conjecture in the sense that KS(X) =
KSnc (perfdg(X)).

Under the assumption that k is a field extension of F (or vice-versa), it
was proved in [Marcolli and Tabuada 2014d, Theorem 4.1] that conjectures
Ve ((AP)®" @ A®") n > 1, combined with conjecture Cyc(A), imply con-
jecture KSyc(A). Moreover, if conjecture KSyc¢ holds for every saturated dg
category and all symmetric monoidal functors NChow(k)r — sVect(K) (with
K a field extension of F') factor through NNum(k) ¢, then conjecture Vy¢ also
holds for every saturated dg category.

5. (Super-)Tannakian formalism

5.1. Tannakian categories. Let (C, ®, 1) be an F-linear, abelian, symmetric
monoidal category. In particular, we have commutativity and ®-unit constraints

Tup:a®b=>b®a, {,:a=a®l, r,:1®a = a,

and the following equality holds 1}, 4, 07, , =id,gs. The category C is called rigid
if there exists a duality functor (—)" : C — C°P, evaluation maps € :a ®a” — 1,
and coevaluation maps n : 1 — a” ® a, for which the following composition is
equal to the identity

a ﬁ>a®1m—®>ﬁa®av®a@—l>¢l 1®a % a.
The categorical trace of an endomorphism g : a — a is defined as tr(g) =
€0 Tyvgq o (Id,v ® g) on. The number dim(a) := tr(id,) is called the dimension
or Euler characteristic of a.

A category C with the above properties, and with End(1) = F, is called
Tannakian if there exists an exact faithful symmetric monoidal functor w : C —
Vect(K') with values in a category of K -vector spaces (with K a field extension
of F). The functor w is called a fiber functor. When this holds with K = F, C is
called a neutral Tannakian category.

If C is a neutral Tannakian category, then there is a ®-equivalence of cat-
egories C =~ Rep(Gal(C)). The affine group scheme Gal(C) is given by the
®-automorphisms Aut®(w) of the fiber functor w.
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Tannakian categories in characteristic zero were characterized in [Deligne
1990] as follows: an F-linear, abelian, rigid symmetric monoidal category C,
with End(1) = F, is Tannakian if and only if dim(a) > O for all objects a € C.

5.2. Super-Tannakian categories. An F-linear, abelian, rigid symmetric mon-
oidal category C, with End(1) = F, is called super-Tannakian if there exists a
super-fiber functor w : C — sVect(K) with values in a category of super K -vector
spaces (with K a field extension of F). When this holds with K = F, C is called
a neutral super-Tannakian category.

If C is a neutral super-Tannakian category, @ induces a ®-equivalence between
C and the category Rep(sGal(C), €) of super-representations of the affine su-
pergroup scheme sGal(C) := Aut®(w) (the super-structure is given by the parity
automorphism €).

Super-Tannakian categories were also characterized in [Deligne 2002] as fol-
lows: an F'-linear, abelian, rigid symmetric monoidal category C, with End(1) =
F, is super-Tannakian if and only if it is Schur-finite. When F' is algebraically
closed, C is neutral super-Tannakian if and only if it is Schur-finite.

Schur-finiteness. Let C be a category as above, S, the symmetric group on n
symbols, and Q[S,,] the associated group ring. Every partition A of n gives rise
to an idempotent e; € Q[S,] and to a Schur functor S; : C — C, a > e; (a®").
The category C is called Schur-finite if all its objects are annihilated by some
Schur functor.

5.3. Motivic Galois groups. Deligne’s characterization of Tannakian categories
is not satisfied in the case of Numg (k) because dim(hr(X)) is equal to the
Euler characteristic x (X) of the k-scheme X which can be negative. Jannsen
[1992] proved that if the standard conjecture of type C holds, then one can
modify the commutativity constraints Ty y using the algebraic cycles coming
from the Kiinneth components of the diagonal. This has the effect of correcting
the negative signs of the Euler characteristic. Let Num}(k) be the Tannakian
category hence obtained. If the standard conjecture of type D also holds, then
Num}(k) is a neutral Tannakian category and every Weil cohomology theory
H* is a fiber functor. Under these assumptions, one obtains a group scheme
Gal(NumTF(k)) called the motivic Galois group.

5.4. Motivic Galois supergroups. In contrast with §5.3, Deligne’s characteriza-
tion of super-Tannakian categories is satisfied in the case of Numpg (k). When
F is algebraically closed, Numg (k) is then a neutral Tannakian category. As
a consequence, one obtains a supergroup scheme sGal(Numpg(k)) called the
motivic Galois supergroup.
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6. Noncommutative motivic Galois (super-)groups

Let k be a field of characteristic zero and F a field extension of k.

Assuming conjectures Cn ¢ and Dy, it was proved in [Marcolli and Tabuada
2011, Theorem 1.6] that the category NNum® (k) (obtained from NNum(k) ¢
by modifying the commutativity constrains) is neutral Tannakian. An explicit
fiber functor is given by periodic cyclic homology. The associated group scheme
Gal(NNum' (k) r) is called the noncommutative motivic Galois group.

By Theorem 1.2 of [Marcolli and Tabuada 2011], the category NNum(k) g
is super-Tannakian. When F is algebraically closed, NNum(k)F is neutral
super-Tannakian. Under these assumptions, one obtains a supergroup scheme
sGal(NNum(k) ) called the noncommutative motivic Galois supergroup.

6.1. Comparison morphisms. Assuming conjectures C, D, Cy¢, Dyc, we have
well-defined (noncommutative) motivic Galois (super-)groups. As proved in
[Marcolli and Tabuada 2011, Theorem 1.7], the composed functor

Numg (k) — Nume (k) a1 —> NNum(k), (6-1)
gives rise to faithfully-flat comparison morphisms

Gal(NNum® (k);) — Ker(z : Gal(Num] (k)) — G,,) (6-2)
sGal(NNum(k);) —» Ker(z : sGal(Numg (k) — Gy), (6-3)

where G, is the multiplicative group scheme and ¢ is induced by the inclusion
of Tate motives in Numg (k). These comparison morphisms were suggested in
[Kontsevich 2005]. Intuitively speaking, they show us that the ®-symmetries
of the commutative world which can be lifted to the noncommutative world are
precisely those that become trivial when restricted to Tate motives.

The proof of (6-2)—(6-3) makes use of the theory of Tate triples developed
in [Deligne and Milne 1982], of a suitable extension of this theory to the super-
Tannakian setting, and of Milne’s work [2007] on quotients of Tannakian cate-
gories. The key step is the description of the right-hand-side of (6-2) (resp. of
(6-3)) as the Galois group (resp. supergroup) of the orbit category of NumZ(k)
(resp. of Numg (k)).

It is unclear at the moment if the kernel of these comparison morphisms is
nontrivial. This problem is related to the existence of “truly noncommutative
numerical motives”, i.e., objects of NNum(k), that are not in the essential image
of (6-1).

6.2. Unconditional version. The functors (3-2) descend to symmetric monoidal
functors

H P* : NHow(k) p —> sVect(K). (6-4)
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Here, K = F when F is a field extension of k and K = k when k is a field
extension of F. Let NHom(k)ﬂrf be the full subcategory of NHom(k) r consisting
of those noncommutative homological motives for which the Kiinneth projectors
are algebraic. By changing the commutativity constraints of this latter category,
one obtains a rigid symmetric monoidal category NHomT(k):; and an F-linear
symmetric monoidal functor NHom‘L(k)f — Vect(K). Making use of techniques
from [André and Kahn 2002a; 2002b], we showed in [Marcolli and Tabuada
2014d, §1] that the associated category NNumT(k)fE is Tannakian, semisimple,
and that the canonical functor NHom" (k) — NNum® (k) admits a ®-section
sVC (unique up to conjugation by a ®-isomorphism). One obtains in this way a
fiber functor

t ot S t ()t
o : NNum' (k)% 2 NHom' (k)5 —> Vect(K).

The associated group scheme Gal(NNumT(k)f) is called the unconditional non-
commutative motivic Galois group. As proved in [Marcolli and Tabuada 2014d,
Theorem 1.7], we have a faithfully-flat comparison morphism

Gal(NNum' (b)) —»,  Ker(r : Gal(Num; (k)¥) = G,,).  (6-5)

Assuming conjectures C, D and Cyc, Dyc, the unconditional noncommutative
motivic Galois group agree with the conditional one Gal(NNum® (k);) and (6-5)
identifies with (6-3).

6.3. Base change. As proved in [Marcolli and Tabuada 2014b, Theorem 1.9],
one has the following short exact sequence

1 —> Gal(NNum® (k) ) —= Gal(NNum® (k) ) —> Gal(k/k) —> 1. (6-6)

Here I is induced by the base change — ®; k : NNum® (k) — NNum®(%)F;
the absolute Galois group Gal(k/k) is obtained from the Tannakian formalism
applied to the category of noncommutative Artin motives NAM(k) r; and finally
P is induced by the inclusion of the latter category in NNum' (k) r.

The proof in [Deligne and Milne 1982] of the classical commutative counter-
part of (6-6) makes full use of “commutative arguments” which don’t seem to
admit noncommutative analogues. The proof of (6-6) is not only very different
but moreover much more conceptual from a categorical viewpoint. By extracting
the key ingredients of this latter proof we have established in [Marcolli and
Tabuada 2014b, Appendix A] a general result about short exact sequences of
Galois groups. This led to a new proof of Deligne—Milne’s short exact sequence
which circumvents their “commutative arguments”.
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7. From noncommutative motives to motives via Jacobians

We have described in §2.6 a bridge from motives to noncommutative motives.
One can ask is there a bridge in the opposite direction, associating a “‘commutative
shadow” to every noncommutative motive? This (vague) idea can be implemented
using the theory of Jacobians, suitably extended to the noncommutative world.
Let k C C be an algebraically closed field.

7.1. Jacobians. Jacobians J(C) of curves C are geometric models for the coho-
mology H'(C). The study of Jacobians is in fact one of the historic precursors
of the theory of motives. Given an arbitrary smooth projective k-scheme X, the
Picard PicO(X ) and the Albanese Alb(X) varieties provide, in a similar way,
geometric models for the pieces H '(X) and H?4mX)=1(X). In what concerns
the remaining pieces of the cohomology, Griffiths’ intermediate Jacobians

Héi-‘f-l(X, C)
Fit HIH(X, C)+ HE ' (X, 7)

Ji(X) = 0<i<dim(X),

where Hp stands for Betti cohomology and F for the Hodge filtration, are not
algebraic. Nevertheless, they contain an algebraic part J/(X) C J;(X) defined
by the image of the Abel-Jacobi map AJ; : C H;FI(X)alg — J;(X), where
C H?l(X )22 is the group of algebraically trivial cycles of codimension i + 1.

7.2. Pairings. Given a smooth projective k-scheme X, consider the following
k-vector spaces
L (o
NHPN(X) = ZImage(Hle(C) Harp) Hi (X)), 0<i<dim(X)-1,
C.yi
(7-1)
where C is a smooth projective curve and y; : hg(C) — hg(X) (i) is a morphism in
Chowg (k). Intuitively speaking, (7-1) are the odd pieces of de Rham cohomology
that are generated by curves. By restricting the classical intersection pairings on
de Rham cohomology to (7-1) one obtains

(— =) NH SO ) s NHZH (X)) — &, 0<i <dim(X)—1. (7-2)

7.3. Jacobians of noncommutative motives. In [Marcolli and Tabuada 2014a,
Theorem 1.3] we constructed a Q-linear additive “Jacobian” functor

J(—) : NChow(k)g —> Abg(k) (7-3)

with values in the category of abelian varieties up to isogeny. Among other

properties, one has an isomorphism J (perfdg(X ) =~ ]_[?i:rg(x)_l J#(X) whenever

the above pairings (7-2) are nondegenerate. As explained in loc. cit., this is
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always the case for i =0 and i = dim(X) — 1 and the remaining cases follow
from Grothendieck’s standard conjecture of type B. Hence, the pairings (7-2)
are nondegenerate for curves, surfaces, abelian varieties, complete intersections,
uniruled threefolds, rationally connected fourfolds, and for any smooth hypersur-
face section, product, or finite quotient thereof (and if one trusts Grothendieck
for all smooth projective k-schemes).

Given a noncommutative Chow motive N, the abelian variety J(N) was
constructed as follows:

o First, via ha(—) and the fully-faithful functor Ry (see §3.3), one observes that
Abg (k) identifies with a semisimple abelian full subcategory of NNum(k)g.

» Secondly, the semisimplicity of NNum(k)g implies that N admits a unique
direct sum decomposition S; @ - - - @ S, into simple objects.

« Finally, one defines J(V) as the smallest piece of the noncommutative numer-
ical motive N >~ S1 & - - - @ S,, which contains the simple objects belonging to
Abg (k).

Roughly speaking, (7-3) show us that the classical theory of Jacobians can
be extended to the noncommutative world as long as one works with all the
intermediate Jacobians simultaneously. Note that this restriction is an intrinsic
feature of the noncommutative world which cannot be avoided because as soon
as one passes from X to perfy,(X) one loses track of the individual pieces of
Hjp(X) (see (3-1)).

7.4. Some applications. The above theory of Jacobians of noncommutative
motives allowed categorical Torelli theorems, a new proof of a classical theorem
of Clemens and Griffiths concerning blow-ups of threefolds, and several new
results on quadric fibrations and intersections of quadrics; see [Bernardara and
Tabuada 2014a]. Recently, this theory allowed also the proof of a conjecture of
Paranjape [1994] in the case of a complete intersection of either two quadrics or
three odd-dimensional quadrics; see [Bernardara and Tabuada 2015].

8. Applications to motivic decompositions and to Dubrovin’s conjecture

8.1. Motivic decompositions. 1t is well-know that A(P") =1 QL@ --- §L®";
see [Manin 1968]. Other examples of motivic decompositions containing only
®-powers of the Lefschetz motive arise from quadrics. Given a nondegenerate
quadratic form (V, ¢) of dimension n > 3 defined over an algebraically closed
field k of characteristic zero, let Q, C P(V) be the associated smooth projective
quadric of dimension d :=n — 2. The motivic decomposition of Q,, proved in
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[Rost 1990], is

1oL - L& for d odd,

ho(Q,) ~
alQ 1®L®- - ®LS @L®U? fordeven.

Fano 3-folds also fit in this pattern. In this case, thanks to [Gorchinskiy and
Guletskii 2012], we have

ho(X) ~ 1@ hL(X) dL® @ (hh () @ L) @ (L3 @ b3 (X) @ L,

where hql;D(X) and hf;p (X) are the Picard and Albanese motives, b = by(X) =
b4(X), and J is an abelian variety which is isogenous to the intermediate Jaco-
bian when k = C. Whenever the odd cohomology of X vanishes, this motivic
decomposition reduces to a direct sum of ®-powers of the Lefschetz motive.
Further examples include toric varieties and certain homogeneous spaces (see
[Brosnan 2005]), and moduli spaces of pointed curves of genus zero (see [Chen
et al. 2009]).

8.2. Full exceptional collections. A collection of objects {&1, ..., E,} in a k-
linear triangulated category C is called exceptional if RHom(&;, &) =k, for all
i, and RHom(&;, £;) =0 forall i > j. Itis called full if the objects &1, --- , &,
generate the triangulated category C.

The derived category Perf(X) >~ D’ (Coh(X)) of a smooth projective k-scheme
X admits a full exceptional collection in several cases: projective spaces (see
[Beilinson 1978]), quadrics (see [Kapranov 1988]), toric varieties (see [Kawamata
2006]), certain homogeneous spaces (see [Kuznetsov and Polishchuk 2011]),
moduli spaces of pointed curves of genus zero (see [Manin and Smirnov 2013]),
and Fano 3-folds with vanishing odd cohomology (see [Ciolli 2005]). In all these
examples the corresponding motivic decomposition contain only ®-powers of
the Lefschetz motive. It is therefore natural to ask if there is a relation between
these two notions. The answer is “yes”, as we now explain.

8.3. From exceptional collections to motivic decompositions. Let X be a smooth
projective k-scheme for which perf(X) admits a full exceptional collection
{€1, ..., &}, Then, as proved in [Marcolli and Tabuada 2015, Theorem 1.3],
there is a choice of integers €1, ..., ¢, € {0, ..., dim(X)} such that

ho(X) ~L® @ ... @ L%, (8-1)
The motivic decomposition (8-1) was obtained as follows:

» First, as mentioned in §2.4, the noncommutative Chow motive U (perfy, (X))o
decomposes into the direct sum of n copies of U (k)q.
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« Secondly, the commutativity of diagram (2-2) implies that 2g(X) (considered
as an object of the orbit category NChowg (k) ga(1)) decomposes into the
direct sum of n copies of L.

« Finally, one observes that the “fiber” of L under the projection functor from
noncommutative Chow motives to its orbit category consists solely of ®-
powers of the Lefschetz motive.

The decomposition (8-1) holds more generally with X a smooth proper
Deligne-Mumford stack.

The decomposition (8-1) has recently greatly refined: instead of working with
(-coefficients it suffices to invert the prime factors of the integer (2dim(X))!;
consult [Bernardara and Tabuada 2014b] for details.

8.4. Dubrovin’s conjecture. At his ICM address, Dubrovin [> 2015] conjec-
tured a striking connection between Gromov—Witten invariants and derived
categories of coherent sheaves. The most recent formulation, due to Hertling,
Manin and Teleman [Hertling et al. 2009], is the following:

Conjecture. Given a smooth projective C-scheme X, the following holds:

(i) The quantum cohomology of X is semisimple if and only if X is Hodge—Tate
(i.e the Hodge numbers h?-1(X) are zero for p # q) and perf(X) admits a
full exceptional collection,;

(i1) The Stokes matrix of the structure connection of the quantum cohomology
identifies with the Gram matrix of the full exceptional collection.

Thanks to [Bayer 2004; Golyshev 2009; Guzzetti 1999; Ueda 2005] and other
works, both statements are known to be true in the case of projective spaces
(and its blow-ups) and Grassmannians. Item (i) also holds for minimal Fano
threefolds. Moreover, it is proved in [Hertling et al. 2009] that the Hodge—Tate
property follows from the semisimplicity of quantum cohomology.

Making use of the above motivic decomposition (8-1), we proved in [Marcolli
and Tabuada 2015, Proposition 1.9] that the Hodge—Tate property follows also
from the existence of a full exceptional collection. As a consequence, this
assumption can be removed from item (i) of Dubrovin’s conjecture.
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