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The interplay of algebra and geometry in the
setting of regular algebras

MICHAELA VANCLIFF

This article aims to motivate and describe the geometric techniques introduced
by M. Artin, J. Tate and M. Van den Bergh in the 1980s at a level accessible to
graduate students. Additionally, some advances in the subject since the early
1990s are discussed, including a recent generalization of complete intersection
to the noncommutative setting, and the notion of graded skew Clifford algebra
and its application to classifying quadratic regular algebras of global dimension
at most three. The article concludes by listing some open problems.

Introduction

Many noncommutative algebraists in the 1980s were aware of the successful
marriage of algebra and algebraic geometry in the commutative setting and wished
to duplicate that relationship in the noncommutative setting. One such line of
study was the search for a subclass of noncommutative algebras that “behave”
enough like polynomial rings that a geometric theory could be developed for them.
One proposal for such a class of algebras are the regular algebras, introduced in
[Artin and Schelter 1987], that were investigated using new geometric techniques
in the pivotal papers of M. Artin, J. Tate and M. Van den Bergh [Artin et al.
1990; 1991].

About the same time, advances in quantum mechanics in the 20th century had
produced many new noncommutative algebras on which traditional techniques
had only yielded limited success, so a need had arisen to find new techniques to
study such algebras (see [Reshetikhin et al. 1989; Kapustin et al. 2001; Sklyanin
1982; 1985; Sudbery 1993]). One such algebra was the Sklyanin algebra, which
had emerged from the study of quantum statistical mechanics [Sklyanin 1982;
1985]. By the early 1990s, T. Levasseur, S. P. Smith, J. T. Stafford and others
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had solved the ten-year old open problem of completely classifying all the finite-
dimensional irreducible representations (simple modules) over the Sklyanin
algebra, and their methods were the geometric techniques developed by Artin,
Tate and Van den Bergh [Levasseur and Smith 1993; Smith and Stafford 1992;
Smith and Staniszkis 1993].

Concurrent with the above developments, another approach was considered via
differential geometry and deformation theory to study the algebras produced by
quantum physics. That approach is the study of certain noncommutative algebras
via Poisson geometry (see [Drinfeld 1987]). At the heart of both approaches
are homological and categorical techniques, so it is perhaps no surprise that the
two approaches have much overlap; often, certain geometric objects from one
approach are in one-to-one correspondence with various geometric objects from
the other approach (depending on the algebra being studied — cf. [Vancliff 1995;
1999; 2000]). A survey of recent advances in Poisson geometry may be found in
[Goodearl 2010].

Given the above developments, the early 1990s welcomed a new era in the
field of noncommutative algebra in which geometric techniques took center stage.
Since that time, the subject has spawned many new ideas and directions, as
demonstrated by the MSRI programs in 2000 and 2013.

This article is based on a talk given by the author in the Connections for
Women workshop held at MSRI in January 2013 and it has two objectives. The
first is to motivate and describe the geometric techniques of Artin, Tate and Van
den Bergh at a level accessible to graduate students, and the second is to discuss
some developments towards the attempted classification of quadratic regular
algebras of global dimension four, while listing open problems. An outline of
the article is as follows.

Section 1 concerns the motivation and development of the subject, with
emphasis on quadratic regular algebras of global dimension four. Section 2
discusses constructions of certain types of quadratic regular algebras of arbitrary
finite global dimension, with focus on graded Clifford algebras and graded
skew Clifford algebras. This section also discusses a new type of symmetry for
square matrices called µ-symmetry. We conclude this section by revisiting the
classification of quadratic regular algebras of global dimension at most three,
since almost all such algebras may be formed from regular graded skew Clifford
algebras. In Section 3, we discuss geometric techniques that apply to graded
Clifford algebras and graded skew Clifford algebras in order to determine when
those algebras are regular. This section also considers the issue of complete
intersection in the noncommutative setting. We conclude with Section 4 which
lists some open problems and related topics.
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Although the main objects of study from [Artin et al. 1990; 1991] are discussed
in this article, several topics from the same are omitted; for surveys of those
topics, the reader is referred to [Stafford 2002; Stafford and van den Bergh
2001] and to D. Rogalski’s lecture notes [2014] from the graduate workshop
“Noncommutative Algebraic Geometry” at MSRI in June 2012.

1. The geometric objects

In this section, we discuss the motivation and development of the subject, with
emphasis on quadratic regular algebras of global dimension at most four.

Throughout this section, k denotes an algebraically closed field and, for any
graded algebra B, the span of the homogeneous elements of degree i will be
denoted by Bi .

1A. Motivation. Consider the k-algebra, S, on generators z1, . . ., zn with defin-
ing relations

z j zi = µi j zi z j , for all distinct i, j,

where 0 6=µi j ∈k for all i , j , and µi jµ j i =1 for all distinct i , j . If µi j =1, for all
i , j , then S is the commutative polynomial ring and has a rich subject of algebraic
geometry associated with it; in particular, by the (projective) Nullstellensatz, the
points of P(S1

∗
) are in one-to-one correspondence with certain ideals of S via

(α1, . . . , αn)↔〈αi z1−α1zi , . . . , αi zn−αnzi 〉, where αi 6= 0. Before continuing,
we first observe that for such an ideal I , the graded module S/I has the property
that its Hilbert series is H(t)= 1/(1− t) and that S/I is a 1-critical (with respect
to GK-dimension) graded cyclic module over S.

However, if µi j 6= 1 for any i , j , then S still “feels” close to commutative,
and one would expect there to be a way to relate algebraic geometry to it. The
geometric objects in [Artin et al. 1990] are modeled on the module S/I above;
instead of using actual points or lines etc, certain graded modules are used as
follows.

1B. Points, lines, etc.

Definition 1.1. [Artin et al. 1990] Let A =
⊕
∞

i=0 Ai denote an N-graded, con-
nected (meaning A0= k) k-algebra generated by A1 where dim(A1)= n<∞. A
graded right A-module M =

⊕
∞

i=0 Mi is called a right point module (respectively,
line module) if

(a) M is cyclic with M = M0 A, and

(b) dimk(Mi )= 1 for all i (respectively, dimk(Mi )= i + 1) for all i .

If A is the polynomial ring S, then the module S/I from Section 1A is a point
module. In general, one may associate some geometry to point and line modules
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as follows. Condition (a) implies that A maps onto M via a 7→ma, for all a ∈ A,
where {m} is a k-basis for M0, and this map restricts via the grading to a linear
map θ : A1→ M1. Let K ⊂ A1 denote the kernel of θ . Condition (b) implies
that dimk(K )= n−1 (respectively, n−2), so that K⊥ ⊂ A1

∗ has dimension one
(respectively, two). Thus, P(K⊥) is a point (respectively, a line) in the geometric
space P(A1

∗
).

The Hilbert series of a point module is H(t)= 1/(1− t), whereas the Hilbert
series of a line module is 1/(1− t)2. Hence, a plane module is defined as in
Definition 1.1 but condition (b) is replaced by the requirement that the module
have Hilbert series 1/(1− t)3 (see [Artin et al. 1990]). Similarly, one may define
d-linear modules, where the definition is modeled on Definition 1.1, but the
module has Hilbert series 1/(1− t)d+1 (see [Shelton and Vancliff 2002]).

For many algebras, d-linear modules are (d + 1)-critical with respect to
GK-dimension. This leads to the following generalization of a point module.

Definition 1.2 [Cassidy and Vancliff 2014]. With A as in Definition 1.1, we
define a right base-point module over A to be a graded 1-critical (with respect to
GK-dimension) right A-module M such that M =

⊕
∞

i=0 Mi = M0 A and M has
Hilbert series HM(t)= c/(1− t) for some c ∈ N.

If c= 1 in Definition 1.2, then the module is a point module; whereas if c≥ 2,
then the module is called a fat point module [Artin 1992]. The only base-point
modules over the polynomial ring are point modules. On the other hand, in
general, the algebra S from Section 1A can have fat point modules, so fat point
modules are viewed as generalizations of points, and this is made more precise
in [Artin 1992].

Artin, Tate and Van den Bergh [1990] proved that, under certain conditions,
the point modules are parametrized by a scheme; that is, there is a scheme that
represents the functor of point modules. Later, in [Vancliff and Van Rompay
1997], this scheme was called the point scheme. A decade later, in [Shelton and
Vancliff 2002], it was proved by B. Shelton and the author that (under certain
conditions) d-linear modules are parametrized by a scheme; that is, there is a
scheme that represents the functor of d-linear modules. If d= 0, then this scheme
is isomorphic to the point scheme; if d = 1, the scheme is called the line scheme.

By factoring out a nonzero graded submodule from a point module, one
obtains a truncated point module as follows.

Definition 1.3 [Artin et al. 1990]. With A as in Definition 1.1, we define a
truncated right point module of length m to be a graded right A-module M =⊕m−1

i=0 Mi such that M is cyclic, M = M0 A and dimk(Mi ) = 1 for all i =
0, . . . ,m− 1.
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For many quadratic algebras A, there exists a one-to-one correspondence
between the truncated point modules over A of length three and the point modules
over A. Moreover, if the algebra A in Definition 1.3 is quadratic, then the
truncated point modules of length three are in one-to-one correspondence with
the zero locus in P(A1

∗
)×P(A1

∗
) of the defining relations of A. To see this,

we fix a k-basis {x1, . . . , xn} for A1, and use T to denote the free k-algebra on
x1, . . . , xn , and let Z ⊂ P(A1

∗
)×P(A1

∗
) denote the zero locus of the defining

relations of A. Viewing each xi as the i-th coordinate function on A1
∗, let

p = (αi ) ∈ P(A1
∗
) and r = (βi ) ∈ P(A1

∗
), where αi , βi ∈ k for all i = 1, . . . , n.

Let M = kv0 ⊕ kv1 ⊕ kv2 denote a three-dimensional vector space that is a
T -module via the action determined by

v0xi = αiv1, v1xi = βiv2, v2xi = 0,

for all i . It follows that M is a truncated point module over T of length three.
If g ∈ T2, then v1g = 0= v2g and v0g = g(p, r)v2. In particular, if f ∈ T2 is a
defining relation of A, then M f = 0 if and only if f (p, r)= 0. Hence, M is an
A-module if and only if (p, r) ∈ Z . This one-to-one correspondence between Z
and truncated point modules of length three also exists at the level of schemes;
the reason being that the scheme Z represents the functor of truncated point
modules of length three. The method of proof of this is to repeat the preceding
argument for a truncated point module of length three over R⊗k T and R⊗k A,
where R is a commutative k-algebra, together with localization techniques; for
details the reader is referred to [Artin et al. 1990, Proposition 3.9], its proof, and
the paragraph preceding that result. This correspondence will be revisited in
Section 1D.

For completeness, we finish this subsection with some technical definitions
that play minor roles throughout the text. The reader is referred to [Levasseur
1992; Levasseur and Smith 1993] for details and for results concerning algebras
satisfying these definitions.

Definition 1.4 [Levasseur 1992, Definition 2.1]. A noetherian ring B is called
Auslander-regular (respectively, Auslander–Gorenstein) if

(a) the global homological dimension (respectively, (left and right) injective
dimension) of B is finite, and

(b) every finitely generated B-module M satisfies the Auslander condition,
namely, for every i ≥ 0 and for every B-submodule N of ExtiB(M, B), we
have j (N )≥ i , where j (N )= inf{` : Ext`B(N , B) 6= 0}.

Definition 1.5 [Levasseur 1992, Definition 5.8]. A noetherian k-algebra B of
integral GK-dimension n satisfies the Cohen–Macaulay property if GKdim(M)+
j (M)= n for all nonzero finitely generated B-modules M .
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1C. Regular algebras. The goal of [Artin et al. 1990] was to classify, in a
user-friendly way, the generic regular algebras of global dimension three that
were first analyzed in [Artin and Schelter 1987]. Using geometric techniques
developed for the purpose, those algebras were shown in [Artin et al. 1990] to
be noetherian. Regular algebras are often viewed as noncommutative analogues
of polynomial rings and are defined as follows.

Definition 1.6 [Artin and Schelter 1987]. A finitely generated, N-graded, con-
nected k-algebra A =

⊕
∞

i=0 Ai , generated by A1, is regular (or AS-regular) of
global dimension r if

(a) it has global homological dimension r <∞, and

(b) it has polynomial growth (i.e., there exist positive real numbers c and δ such
that dimk(Ai )≤ ci δ for all i), and

(c) it satisfies the Gorenstein condition, namely, a minimal projective resolution
of the left trivial module Ak consists of finitely generated modules and
dualizing this resolution yields a minimal projective resolution of the right
trivial module kA[e], shifted by some degree e.

Although all three conditions in Definition 1.6 are satisfied by the polynomial
ring, the main reason a regular algebra is viewed as a noncommutative analogue
of a polynomial ring is due to condition (c), since it imposes a symmetry condition
on the algebra that replaces the symmetry condition of commutativity. The reader
should note that, in the literature, (c) is sometimes replaced by an equivalent
condition that makes the symmetry property less obvious; namely, ExtiA(Ak, A)∼=
δi

r kA[e], where δi
r is the Kronecker delta. An N-graded connected k-algebra

that is generated by degree-1 elements and which is Auslander-regular with
polynomial growth is AS-regular [Levasseur 1992]. For a notion of regular
algebra where the algebra is not generated by degree-1 elements; see [Cassidy
1999; 2003; Stephenson 1996; 1997; 2000a; 2000b].

Examples 1.7. (a) The algebra S from Section 1A is regular.

(b) If k = C, then many algebras from physics are regular. In particular, ho-
mogenizations of universal enveloping algebras of finite-dimensional Lie
algebras, the coordinate ring of quantum affine n-space, the coordinate ring
of quantum m× n matrices, and the coordinate ring of quantum symplectic
n-space are all regular [Le Bruyn and Smith 1993; Le Bruyn and Van den
Bergh 1993; Levasseur and Stafford 1993].

(c) If the global dimension of a regular algebra is one, then the algebra is the
polynomial ring on one variable. However, by [Artin and Schelter 1987],
if the global dimension is two, then there are two types of such algebra as
follows. For both types, the algebra has two generators, x , y, of degree one
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and one defining relation f , where either f = xy− yx − x2 (Jordan plane)
or f = xy− qyx (quantum affine plane), where q ∈ k can be any nonzero
scalar.

However, if the global dimension is three, then the situation is much richer;
some of the algebras are quadratic with three generators and three defining
relations, whereas the rest have two generators and two cubic relations [Artin
and Schelter 1987]. Such algebras that are generic are classified in [Artin et al.
1990] according to their point schemes, and in all cases, the point scheme is the
graph of an automorphism σ . Moreover, the algebra is a finite module over its
center if and only if σ has finite order.

1D. Global dimension four. Although many regular algebras of global dimen-
sion four have been extensively studied, there is no classification yet. Recently,
the progress towards classifying nonquadratic regular algebras of global di-
mension four made good headway via the work in [Lu et al. 2007; Rogalski
and Zhang 2012]. However, quadratic regular algebras of global dimension
four constitute most of the regular algebras of global dimension four, so their
attempted classification is one of the motivating problems that drives the subject
forward. We end this section by summarizing some key results for this latter
case; in this setting, the algebra has four generators and six relations.

In unpublished work, Van den Bergh proved in the mid-1990s that any qua-
dratic (not necessarily regular) algebra A on four generators with six generic
defining relations has twenty (counted with multiplicity) nonisomorphic truncated
point modules of length three. Hence, A has at most twenty nonisomorphic
point modules. He also proved that if, additionally, A is Auslander-regular of
global dimension four, then A has a 1-parameter family of line modules. For
lack of a suitable reference, we outline the proof of these results. Let M(4, k)
denote the space of 4× 4 matrices with entries in k. For the first result, we
write points of P(A1

∗
) as columns and, by mapping (a, b) ∈ P(A1

∗
)×P(A1

∗
) to

the matrix abT
∈ M(4, k), we have that P(A1

∗
)×P(A1

∗
) is isomorphic to the

scheme �1 of rank-1 elements in P(M(4, k)). Correspondingly, the defining
relations of A map to homogeneous degree-1 polynomial functions on M(4, k),
and their zero locus Z ′ ⊂ P(M(4, k)) can be identified with a P9. With these
identifications, the zero locus Z ⊂P(A1

∗
)×P(A1

∗
) of the defining relations of A

is isomorphic to �1∩ Z ′ ⊂P(M(4, k)). Since �1 has dimension six and degree
twenty, dim(Z) ≥ 6+ 9− 15 = 0, and, by Bézout’s Theorem, deg(Z) = 20.
Hence, generically, Z is finite with twenty points, so the first result follows
by using the discussion after Definition 1.3. For the second result, we identify
A1⊗k A1 with M(4, k), and the assumption on regularity allows the application
of [Levasseur and Smith 1993, Proposition 2.8], so that the line modules are in
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one-to-one correspondence with the elements in the span of the defining relations
of A that have rank at most two. In particular, we compute dim(�2 ∩1) in
P(M(4, k)), where �2 denotes the elements in P(M(4, k)) of rank at most two
and 1 denotes the projectivization of the image in P(M(4, k)) of the span of
the defining relations of A. Since 1∼= P5 and dim(�2)= 11, the dimension is
thus at least equal to 11+5−15= 1, so, generically, A has a 1-parameter family
of line modules.

In spite of Van den Bergh’s work, it was still not clear that a regular algebra
satisfying the hypotheses from the preceding paragraph could have both a finite
point scheme (especially one of cardinality twenty) and a 1-dimensional line
scheme simultaneously. However, Vancliff, Van Rompay and Willaert [Vancliff
et al. 1998] proved that there exists a quadratic regular algebra of global dimension
four on four generators with six defining relations that has exactly one point
module (up to isomorphism) and a 1-parameter family of line mods.

Some years later, Shelton and Vancliff [2002] proved that if a quadratic algebra
on four generators with six defining relations has a finite scheme of truncated
point modules of length three, then that scheme determines the defining relations
of the algebra. One should note that this result assumes no hypothesis of regularity
nor of any other homological data. Moreover, by [Van Rompay 1996] this result
is false in general if the scheme is infinite, even if the algebra is assumed to be
regular and noetherian.

Shelton and Vancliff [2002] also proved that if a quadratic regular algebra of
global dimension four (that satisfies a few other homological conditions) has
four generators and six defining relations and a 1-dimensional line scheme, then
that scheme determines the defining relations of the algebra.

These last two results are counterintuitive, since they seem to be saying that
if the point scheme (respectively, line scheme) is as small as possible, then the
defining relations can be recovered from it.

However, by the start of 2001, it was still unclear whether or not any quadratic
regular algebra exists that has global dimension four, four generators, six defining
relations, exactly twenty nonisomorphic point modules and a 1-dimensional line
scheme. Fortunately, this was resolved by Shelton and Tingey [2001] in the
affirmative. Sadly, their method to produce their example used much trial and
error on a computer, which they and others were unable to duplicate to produce
more examples. This hurdle likely had a negative impact on the development of
the subject, since it is difficult to make conjectures if there is only one known
example. Hence, a quest began to find an algorithm to construct such algebras,
but it was another several years before this situation was remedied, and that is
discussed in the next section.
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2. Graded Clifford algebras, graded skew Clifford algebras
and quantum planes

This section describes a construction of a certain type of regular algebra of
arbitrary finite global dimension; such an algebra is called a graded skew Clifford
algebra as it is modeled on the construction of a graded Clifford algebra. If
the global dimension is four, then this construction is able to produce regular
algebras that have the desired properties described at the end of the previous
section. We conclude this section by revisiting the classification of quadratic
regular algebras of global dimension three, and show that almost all such algebras
may be obtained from regular graded skew Clifford algebras.

We continue to assume that k is algebraically closed; we additionally assume
char(k) 6= 2. We write M(n, k) for the space of n×n matrices with entries in k,
and Mi j for the entry in the n× n matrix M that is in row i and column j .

2A. Graded Clifford algebras.

Definition 2.1 [Aubry and Lemaire 1985; Le Bruyn 1995]. Let

M1, . . . ,Mn ∈ M(n, k)

denote symmetric matrices. A graded Clifford algebra (GCA) is the k-algebra C
on degree-one generators x1, . . . , xn and on degree-two generators y1, . . . , yn

with defining relations given by

(i) (degree-2 relations) xi x j + x j xi =
∑n

k=1(Mk)i j yk for all i, j = 1, . . . , n,
and

(ii) degree-3 and degree-4 relations that guarantee yk is central in C for all
k = 1, . . . , n.

In general, GCAs need not be quadratic nor regular, as demonstrated by the
next example.

Example 2.2. Let M1 =
[ 2 −1
−1 0

]
and M2 =

[ 0 −1
−1 2

]
. The corresponding GCA

is the k-algebra on degree-one generators x1, x2 with defining relations

x1x2+ x2x1 =−x2
1 − x2

2 , x2
1 x2 = x2x2

1 ,

so this algebra is not quadratic nor regular (as (x1+ x2)
2
= 0). For more details

on this algebra, the reader may consult [Vancliff 2015, Example 2.4].

GCAs C are noetherian by [Artin et al. 1990, Lemma 8.2], since

dimk(C/〈y1, . . . , yn〉) <∞.

Moreover, since each matrix Mk in the definition is symmetric, we may associate
a quadratic form to Mk , and thereby associate a quadric in Pn−1 to Mk for each
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k. This means that for each GCA, as in Definition 2.1, there is an associated
quadric system Q in Pn−1. Quadric systems are said to be base-point free if
they yield a complete intersection; that is, the intersection of all the quadrics in
the quadric system is empty. Although Example 2.2 demonstrates that a GCA
need not be quadratic nor regular, if Q is base-point free, it determines these
properties of the associated GCA as follows.

Theorem 2.3 [Aubry and Lemaire 1985; Le Bruyn 1995]. The GCA C is
quadratic, Auslander-regular of global dimension n and satisfies the Cohen–
Macaulay property with Hilbert series 1/(1− t)n if and only if the associated
quadric system is base-point free; in this case, C is regular and a domain.

In spite of this result, regular GCAs of global dimension four are not candidates
for generic quadratic regular algebras of global dimension four, since, although
their point schemes can be finite [Stephenson and Vancliff 2007; Vancliff et al.
1998], the symmetry of their relations prevents their line schemes from having
dimension one [Shelton and Vancliff 2002]. The standard argument to prove this
for a quadratic regular GCA C of global dimension four exploits the symmetry
of the defining relations of C to move the computation of Section 1D inside
P(W ), where W is the 10-dimensional subspace of M(4, k) consisting of all
symmetric matrices. Hence, using the notation from Section 1D, 1 ⊂ P(W )

and the line modules are parametrized by (�2 ∩P(W ))∩1⊂ P(W ); thus the
dimension is at least 6+ 5− 9, so it is at least two.

Hence, a modification of the definition of GCA is desired in such a way that
enough symmetry is retained so as to allow an analogue of Theorem 2.3 to hold,
while, at the same time, losing some symmetry so that the line scheme might
have dimension one.

2B. Graded skew Clifford algebras. In order to generalize the notion of GCA
and to have a result analogous to Theorem 2.3, we need to generalize the notions
of symmetric matrix and quadric system and make use of normalizing sequences.
For any N-graded k-algebra B, a sequence {g1, . . . , gm} of homogeneous ele-
ments of positive degree is called normalizing if g1 is a normal element in B
and, for each k = 1, . . . ,m−1, the image of gk+1 in B/〈g1, . . . , gk〉 is a normal
element.

We write k× for k \ {0}.

Definition 2.4 [Cassidy and Vancliff 2010].

(a) Let µ ∈ M(n, k×) satisfy µi jµ j i = 1 for all distinct i , j . We say a matrix
M ∈ M(n, k) is µ-symmetric if Mi j = µi j M j i for all i, j = 1, . . . , n. We
write Mµ(n, k) for the subspace of M(n, k) consisting of all µ-symmetric
matrices.
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(b) Fix µ as in (a) and additionally assume µi i = 1 for all i . Let M1, . . . ,Mn ∈

Mµ(n, k). A graded skew Clifford algebra (GSCA) associated to µ and
M1, . . . ,Mn is a graded k-algebra A = A(µ,M1, . . . ,Mn) on degree-one
generators x1, . . . , xn and on degree-two generators y1, . . . , yn with defining
relations given by

(i) (degree-2 relations) xi x j + µi j x j xi =
∑n

k=1(Mk)i j yk for all i, j =
1, . . . , n, and

(ii) degree-3 and degree-4 relations that guarantee the existence of a nor-
malizing sequence {y′1, . . . , y′n} that spans

∑n
k=1 kyk .

Clearly, symmetric matrices and skew-symmetric matrices are µ-symmetric
matrices for appropriate µ, and GCAs are GSCAs. Moreover, by [Artin et al.
1990, Lemma 8.2], GSCAs A are noetherian since dimk(A/〈y1, . . . , yn〉) <∞.
Furthermore, in Definition 2.4(b)(i), for all i , j , the j i-relation can be deduced
from the i j-relation by the µ-symmetry of the Mk .

Examples 2.5. (a) With µ as in Definition 2.4(b), skew polynomial rings on
generators x1, . . . , xn with relations xi x j = −µi j x j xi , for all i 6= j , are
GSCAs.

(b) (quantum affine plane) Let n = 2, and M1 =
[

2 0
0 0

]
and M2 =

[
0 0
0 2

]
. The

degree-2 relations of A(µ, M1, M2) have the form

2x2
1 = 2y1, 2x2

2 = 2y2, x1x2+µ12x2x1 = 0,

so that k〈x1, x2〉/〈x1x2+µ12x2x1〉 −� A(µ, M1, M2). By Theorem 2.6
below, this map is an isomorphism (see Examples 3.2(a)).

(c) (“Jordan” plane) Let n=2, and M1=
[ 2 1
µ21 0

]
and M2=

[
0 0
0 2

]
. The degree-2

relations of A(µ, M1, M2) have the form

2x2
1 = 2y1, 2x2

2 = 2y2, x1x2+µ12x2x1 = y1 = x2
1 ,

so that k〈x1, x2〉/〈x1x2 +µ12x2x1 − x2
1〉 −� A(µ, M1, M2). By Theo-

rem 2.6 below, this map is an isomorphism (see Examples 3.2(b)). Depend-
ing on the choice of µ12, this family of examples contains the Jordan plane
and some quantum affine planes.

(d) The quadratic regular algebra of global dimension four found by Shelton
and Tingey [2001], and discussed above in Section 1D, that has exactly
twenty nonisomorphic point modules and a 1-dimensional line scheme is a
GSCA [Cassidy and Vancliff 2010].

One can associate a noncommutative “quadric” to each µ-symmetric matrix
Mk and, in so doing, there is also a notion of “base-point free”. These ideas are
discussed in Section 3B below, and yield a generalization of Theorem 2.3:
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Theorem 2.6 [Cassidy and Vancliff 2010]. The GSCA A is quadratic, Auslander-
regular of global dimension n and satisfies the Cohen–Macaulay property with
Hilbert series 1/(1− t)n if and only if the associated quadric system is normal-
izing and base-point free; in this case, A is regular and a domain and uniquely
determined, up to isomorphism, by the data µ, M1, . . . ,Mn .

Theorem 2.6 allowed the production in [Cassidy and Vancliff 2010] of many
algebras that are candidates for generic quadratic regular algebras of global
dimension four. In particular, there exist quadratic regular GSCAs of global
dimension four on four generators with six defining relations that have exactly
twenty nonisomorphic point modules and a 1-dimensional line scheme.

It is an open problem to describe the 1-dimensional line schemes of the regular
GSCAs of global dimension four in [Cassidy and Vancliff 2010] that have exactly
twenty nonisomorphic point modules.

By Examples 1.7(c) and 2.5(b)(c), the regular algebras of global dimension at
most two are GSCAs, and, by Section 2C, almost all quadratic regular algebras
of global dimension three are determined by GSCAs, so GSCAs promise to
be very helpful in the classification of all quadratic regular algebras of global
dimension four.

2C. Quadratic quantum planes. In the language of [Artin 1992], a regular
algebra of global dimension three that is generated by degree-1 elements is
sometimes called a quantum plane or quantum projective plane or a quantum
P2. The classification of the generic quantum planes is in [Artin and Schelter
1987; Artin et al. 1990; 1991]. In this subsection, we summarize the results
of [Nafari et al. 2011], in which all quadratic quantum planes are classified by
using GSCAs.

We continue to assume that k is algebraically closed, but its characteristic is
arbitrary unless specifically stated otherwise.

Let D denote a quadratic quantum plane and let X ⊂ P2 denote its point
scheme. By [Artin et al. 1990, Proposition 4.3; Nafari et al. 2011, Lemma 2.1],
there are, in total, four cases to consider:

• X contains a line, or

• X is a nodal cubic curve in P2, or

• X is a cuspidal cubic curve in P2, or

• X is a (nonsingular) elliptic curve in P2.

Theorem 2.7 [Nafari et al. 2011]. Suppose char(k) 6= 2. If X contains a line,
then either D is a twist, by an automorphism, of a GSCA, or D is a twist, by a
twisting system, of an Ore extension of a regular GSCA of global dimension two.
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Theorem 2.8 [Nafari et al. 2011]. If X is a nodal cubic curve, then D is isomor-
phic to a k-algebra on generators x1, x2, x3 with defining relations

λx1x2 = x2x1, λx2x3 = x3x2− x2
1 , λx3x1 = x1x3− x2

2 , (∗)

where λ ∈ k and λ3 /∈ {0, 1}. Conversely, for any such λ, any quadratic algebra
with defining relations (∗) is a quantum plane and its point scheme is a nodal
cubic curve in P2. Moreover, if char(k) 6= 2, then D is an Ore extension of a
regular GSCA of global dimension two; in particular, if λ3

= −1, then D is a
GSCA.

Theorem 2.9 [Nafari et al. 2011]. If char(k)= 3, then X is not a cuspidal cubic
curve in P2. If char(k) 6= 3 and if X is a cuspidal cubic curve in P2, then D is
isomorphic to a k-algebra on generators x1, x2, x3 with defining relations

x1x2 = x2x1+ x2
1 , x3x1 = x1x3+ x2

1 + 3x2
2 ,

x3x2 = x2x3− 3x2
2 − 2x1x3− 2x1x2.

(†)

Moreover, any quadratic algebra with defining relations (†) is a quantum plane; it
has point scheme given by a cuspidal cubic curve in P2 if and only if char(k) 6= 3.
If char(k) 6= 2, then any quadratic algebra with defining relations given by (†) is
an Ore extension of a regular GSCA of global dimension two.

It remains to discuss the case that X is an elliptic curve. In [Artin and Schelter
1987; Artin et al. 1990], such algebras are classified into types A, B, E, H, where
some members of each type might not have an elliptic curve as their point scheme,
but a generic member does.

Theorem 2.10 [Nafari et al. 2011]. Suppose that char(k) 6= 2 and that X is an
elliptic curve.

(a) Quadratic quantum planes of type H are GSCAs.

(b) Quadratic quantum planes of type B are GSCAs.

(c) As in [Artin and Schelter 1987; Artin et al. 1990], a quadratic quantum
plane D of type A is given by a k-algebra on generators x , y, z with defining
relations

axy+ byx + cz2
= 0, ayz+ bzy+ cx2

= 0, azx + bxz+ cy2
= 0,

where a, b, c ∈ k×, (3abc)3 6= (a3
+ b3
+ c3)3, char(k) 6= 3, and either

a3
6= b3, or a3

6= c3, or b3
6= c3. In the case that a3

= b3
6= c3, D is a

GSCA; whereas in the case a3
6= b3
= c3 (respectively, a3

= c3
6= b3), D is

a twist, by an automorphism, of a GSCA.
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In (c) of the last result, the case that a3
6= b3
6= c3
6= a3 is still open. Moreover,

the case when D is of type E is still open, but this case only consists of one
algebra, up to isomorphism and antiisomorphism. However, both type A and
type E have the property that the Koszul dual of D is a quotient of a regular
GSCA; so, in this sense, such algebras are weakly related to GSCAs.

3. Complete intersections

In this section, we define the geometric terms used in Theorem 2.6. That
discussion leads naturally into a consideration of a notion of noncommutative
complete intersection that mimics the commutative definition.

We continue to assume that the field k is algebraically closed.

3A. Commutative complete intersection and quadric systems. Let R denote
the commutative polynomial ring on n generators of degree one. If f1, . . . , fm

are homogeneous elements of R of positive degree, then { f1, . . . , fm} is a regular
sequence in R if and only if GKdim(R/〈 f1, . . . , fk〉) = n − k ≥ 0, for all
k = 1, . . . ,m. Geometrically, this corresponds to the zero locus in P(R1

∗
) of the

ideal Jk=〈 f1, . . . , fk〉 having dimension n−1−k≥−1 for all k. If { f1, . . . , fm}

is a regular sequence, then the zero locus of Jm (respectively, R/Jm) is called a
complete intersection (see [Eisenbud 1995]).

In the setting of Definition 2.1, a quadric system Q is associated to symmetric
matrices M1, . . . ,Mn . In that setting, Q corresponds to a regular sequence
in R if and only if Q is a complete intersection, that is, if and only if Q has
no base points (a base point is a point that lies on all the quadrics in Q). A
noncommutative analogue of this is needed for Theorem 2.6.

3B. Noncommutative complete intersection and quadric systems. The follow-
ing result uses the notion of base-point module defined in Definition 1.2.

Proposition 3.1 [Cassidy and Vancliff 2010; 2014]. Let S denote the skew poly-
nomial ring from Section 1A, and let f1, . . . , fn denote homogeneous elements
of S of positive degree. If { f1, . . . , fn} is a normalizing sequence in S, then the
following are equivalent:

(a) { f1, . . . , fn} is a regular sequence in S.

(b) dimk(S/〈 f1, . . . , fn〉) <∞.

(c) For each k = 1, . . . , n, we have GKdim(S/〈 f1, . . . , fk〉)= n− k.

(d) The factor ring S/〈 f1, . . . , fn〉 has no right base-point modules.

(e) The factor ring S/〈 f1, . . . , fn〉 has no left base-point modules.
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Such a sequence { f1, . . . , fn} (respectively, S/〈 f1, . . . , fn〉) satisfying the
equivalent conditions (a)-(e) from Proposition 3.1 is called a complete intersection
in [Cassidy and Vancliff 2014].

In the setting of Section 2B, one associates S to the GSCA by using µ. The
isomorphism Mµ(n, k) → S2 defined by M 7→ (z1, . . . , zn)M(z1, . . . , zn)

T

associates a quadric system Q to the µ-symmetric matrices M1, . . . ,Mn; that is,
Q is the span in S2 of the images of the Mk under this map. If Q is given by a
normalizing sequence in S, then it is called a normalizing quadric system. By
Proposition 3.1, if Q is normalizing, then it corresponds to a regular sequence in
S if and only if it is a complete intersection, that is, if and only if S/〈Q〉 has no
right (respectively, left) base-point modules; this is the meaning of base-point
free in Theorem 2.6.

Examples 3.2. (a) [Cassidy and Vancliff 2010] We revisit the quantum affine
plane from Example 2.5(b), where n = 2. In that case, Mi 7→ qi =

2z2
i ∈ S2, for i = 1, 2. The sequence {q1, q2} is normalizing in S and

dim(S/〈q1, q2〉) <∞. Thus, by Proposition 3.1, the corresponding quadric
system is base-point free.

(b) [Cassidy and Vancliff 2010] For Example 2.5(c), n = 2 and M1 7→ q1 =

2(z2
1+z1z2) and M2 7→q2= 2z2

2. Here, the sequence {q2, q1} is normalizing
in S and dim(S/〈q2, q1〉) <∞, so by Proposition 3.1, the corresponding
quadric system is base-point free.

Proposition 3.1 has recently been extended in [Vancliff 2015] to a family of
algebras that contains the skew polynomial ring S from Section 1A. In particular,
an analogue of Proposition 3.1 holds for regular GSCAs, many quantum groups,
and homogenizations of finite-dimensional Lie algebras.

Theorem 3.3 [Vancliff 2015]. Let A =
⊕
∞

i=0 Ai denote a connected, N-graded
k-algebra that is generated by A1. Suppose A is Auslander–Gorenstein of finite
injective dimension and satisfies the Cohen–Macaulay property, and that there
exists a normalizing sequence {y1, . . . , yν} ⊂ A \ k consisting of homogeneous
elements such that GKdim(A/〈y1, . . . , yν〉)= 1. If GKdim(A)= n ∈ N, and if
F = { f1, . . . , fn} ⊂ A \k× is a normalizing sequence of homogeneous elements,
then the following are equivalent:

(a) F is a regular sequence in A.

(b) dimk(A/〈F〉) <∞.

(c) For each k = 1, . . . , n, we have GKdim(A/〈 f1, . . . , fk〉)= n− k.

(d) The factor ring A/〈F〉 has no right base-point modules.

(e) The factor ring A/〈F〉 has no left base-point modules.
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The reader should note that other notions of complete intersection abound in
the literature, with most emphasizing a homological approach, such as the recent
work in [Kirkman et al. 2013].

4. Conclusion

In this section, we list some open problems and related topics. The open problems
are not listed in any particular order in regards to difficulty, and many challenge
levels are included, with some quite computational in nature, and so accessible
to junior researchers.

4A. Some open problems. (1) As stated at the end of Section 2, it is still open
whether or not quadratic quantum planes of type A with a3

6= b3
6= c3
6= a3 are

directly related to GSCAs; the analogous problem is also open for type E.

(2) Is it possible to classify cubic quantum planes by using GSCAs, or by using
an appropriate analogue of a GSCA?

(3) Is it possible to classify quadratic regular algebras of global dimension four by
using GSCAs? Presumably, such a classification will use both the point scheme
and the line scheme.

(4) Can standard results on commutative quadratic forms and quadrics be extended
to noncommutative quadratic forms and quadrics? For example, P. Veerapen and
Vancliff [2013] have extended the notion of rank of a (commutative) quadratic
form to noncommutative quadratic forms on n generators, where n = 2, 3; can
this be done for n ≥ 4?

(5) Can results concerning GCAs be carried over to GSCAs? In particular,
Veerapen and the author applied their aforementioned generalization of rank to
GSCAs in a way that is analogous to that used for the traditional notion of rank
with GCAs in [Vancliff et al. 1998]. They proved [2014] that various results
in [Vancliff et al. 1998] concerning point modules over GCAs apply to point
modules over GSCAs.

(6) Can standard results concerning symmetric matrices be extended or general-
ized to µ-symmetric matrices?

(7) Can the results in [Vancliff 2015], mentioned above at the end of Section 3,
on complete intersections be extended to an even larger family of algebras?

(8) By combining results in [Cassidy and Vancliff 2010] and [Stephenson and
Vancliff 2007], it is known that regular GSCAs of global dimension four can
have exactly N nonisomorphic point modules, where N /∈ {2, 19}; it is not yet
known if N ∈ {2, 19} is possible. In fact, by [Stephenson and Vancliff 2006],
N = 2 is possible if the algebra is quadratic and regular of global dimension four
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but is not a GSCA, but it is not known if N = 19 is possible, even if the algebra
is not a GSCA.

(9) What is the line scheme of some known quadratic regular algebras of global
dimension four? Such as those in [Cassidy and Vancliff 2010, Section 5], double
Ore extensions in [Zhang and Zhang 2008; 2009], generalized Laurent polynomial
rings in [Cassidy et al. 2006], etc.

(10) Does the line scheme of a generic quadratic regular algebra of global
dimension four have a particular form? Perhaps a union of elliptic curves? Or,
perhaps it contains at least one elliptic curve?

(11) Suppose A is as in Definition 1.1 and F is as in Theorem 3.3. Let Ik =

〈 f1, . . . , fk〉 for all k ≤ n, and let V̂(Ik) denote the set of isomorphism classes
of right base-point modules over A/Ik . If A is commutative, then, for each k,
V̂(Ik) is a scheme, and so has a dimension. In particular, if A is the polynomial
ring, then F is regular if and only if dim(V̂(Ik)) = n − k − 1, for all k ≤ n.
However, if A is not commutative, is there an analogous statement and under
what hypotheses on A could it hold?

4B. Related topics. Since the publication of [Artin et al. 1990], the subject
has branched out in many directions, the key topics being: classification of
regular algebras; classification of projective surfaces; seeing which commutative
techniques (e.g., blowing-up, blowing-down) carry over to the noncommutative
setting; and connections with differential geometry (e.g., via Poisson geome-
try). Module categories and homological algebra provide a unifying umbrella.
These directions are highlighted in the references cited in the Introduction and
throughout the text, and in some of the articles in this volume.

New directions continue to emerge, with one of the most recent trends being
the study of regular algebras and Hopf algebras together via the consideration of
Hopf actions on regular algebras, such as the work in [Chan et al. 2014]. However,
perhaps the most recent exciting triumph of the subject is when the universal
enveloping algebra of the Witt algebra was viewed through the geometric lens
of [Artin et al. 1990] by Sierra and Walton [2014], enabling them to solve the
long-standing problem of whether or not that algebra is noetherian.

In view of all these advances, it is now clear that the marriage of noncommu-
tative algebra and algebraic geometry, à la [Artin et al. 1990], is a dynamic and
evolving field of research.
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