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In this survey we discuss various aspects of the singularity invariants with
differential origin derived from the D-module generated by f°. We should like
to point the reader to some other works: [Saito 2007] for V-filtration, Bernstein—
Sato polynomials, multiplier ideals; [Budur 2012b] for all these and Milnor
fibers; [Torrelli 2007] and [Narvdez-Macarro 2008] for homogeneity and free
divisors; [Suciu 2014] on details of arrangements, specifically their Milnor fibers,
although less focused on D-modules.
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1. Introduction

Notation 1.1. In this article, X will denote a complex manifold. Unless indicated
otherwise, X will be C".

Throughout, let R = C[xy, ..., x,] be the ring of polynomials in n variables
over the complex numbers. We denote by D = R(dy, ..., d,) the Weyl algebra.
In particular, d; denotes the partial differentiation operator with respect to x;. If
X is a general manifold, €y (the sheaf of regular functions) and Zx (the sheaf
of C-linear differential operators on Ox) take the places of R and D.

If X = C" we use Roman letters to denote rings and modules; in the general
case we use calligraphic letters to denote corresponding sheaves.

By the ideal J; we mean the Ox-ideal generated by the partial derivatives
af/dxy, ..., 0f/dx,; this ideal varies with the choice of coordinate system
in which we calculate. In contrast, the Jacobian ideal Jac(f) = Jy + (f) is
independent.

The ring D (resp. the sheaf Zy) is coherent, and both left- and right-Noetherian;
it has only trivial two-sided ideals [Bjork 1993, Theorem 1.2.5]. Introductions to
the theory of D-modules as we use them here can be found in [Kashiwara 2003;
Bernstein ca. 1997; Bjork 1993; 1979].

The ring D admits the order filtration induced by the weight x; — 0, 9; — 1.
The order filtration (and other good filtrations) leads to graded objects gr, 1)(—);
see [Schapira 1985]. The graded objects obtained from ideals are ideals in the
polynomial ring C[x, £], homogeneous in the symbols of the differentiation
operators; their radicals are closed under the Poisson bracket, and thus the
corresponding varieties are involutive [Kashiwara 1975; Kashiwara and Kawai
1981a]. For a D-module M and a component C of the support of gr ;,(M),
attach to the pair (M, C) the multiplicity u(M, C) of gr.1)(M) along C. The
characteristic cycle of M is charC(M) = Zc u(M,C) - C, an element of the
Chow ring on T*C". The module is holonomic if it is zero or if its characteristic
variety is of dimension n, the minimal possible value.

Throughout, f will be a regular function on X, with divisor Var(f). We
distinguish several homogeneity conditions on f:

e fis locally (strongly) Euler-homogeneous if for all p € Var(f) there is a
vector field 6, defined near p with 6, «(f) = f (and 6, vanishes at p).

e f is locally (weakly) quasihomogeneous if near all p € Var(f) there is a
local coordinate system {x;} and a positive (resp. nonnegative) weight vector
a ={ai, ..., a,} with respect to which f =3 ""_, a;x;0; (f).

o We reserve homogeneous and quasihomogeneous for the case when X = C"
and f is globally homogeneous or quasihomogeneous.
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To any nonconstant f € R, one can attach several invariants that measure the
singularity structure of the hypersurface f = 0. In this article, we are primarily
interested in those derived from the (parametric) annihilator annps(f*) of f°:

Definition 1.2. Let s be a new variable, and denote by R f [s]- f* the free module
generated by f* over the localized ring R¢[s] = R|[ £~ s]. Via the chain rule

we(or) = () piogr o

for each g(x, s) € R[s], Ry[s]- f° acquires the structure of a left D[s]-module.
Denote by

annps)(f*) ={P € D[s]| P+ f* =0}
the parametric annihilator, and by

My(s) = D[s]/annp(f*)
the cyclic D[s]-module generated by 1- f* € Ry[s]- f*.

Bernstein’s functional equation [1972] asserts the existence of a differential
operator P(x, d, s) and a nonzero polynomial b p(s) € C[s] such that

P(x,d,5) e f* T =bsp(s)- f°, (1-2)

i.e., the existence of the element P - f — by, p(s) € annp[s(f*). Bernstein’s result
implies that D[s]e f* is D-coherent (while R y[s]f* is not).

Definition 1.3. The monic generator of the ideal in C[s] generated by all b7, p (s)
appearing in an equation (1-2) is the Bernstein—Sato polynomial by (s). Denote
py < C the set of roots of b (s).

Note that the operator P in the functional equation is only determined up to
annppy(f*). See [Bjork 1979] for an elementary proof of the existence of b (s).
Alternative (and more general) proofs are given in [Kashiwara 2003]; see also
[Bernstein ca. 1997; Mebkhout and Narvaez-Macarro 1991; Nufiez-Betancourt
2013].

The C[s]-module .#(s)/.# (s + 1) is precisely annihilated by b/ (s). It is
an interesting problem to determine for any ¢ (s) € C[s] the ideals

arqe) = {8 € R1q(s)gf* € Dlsl+ f**'}
from [Walther 2005]. By [Malgrange 1975],
ars+1 = RN (annp(f*) + D[s]- (f, J¢)).

Question 1.4. Is ass11 = Jr+(f)?
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A positive answer would throw light on connections between b ¢(s) and coho-
mology of Milnor fibers.

Remark 1.5. At the 1954 International Congress of Mathematics in Amsterdam,
I. M. Gelfand asked the following question. Given a real analytic function
f: R" — R, the assignment (s € C)

f)* i f(x) >0,

fe = {o if £(x)<0.

is continuous in x and analytic in s where the real part of s is positive. Can one
analytically continue f(x)% ? Sato introduced b ¢ (s) in order to answer Gelfand’s
question; Bernstein [1972] established their existence in general.

Remark 1.6. Let m € M be a nonzero section of a holonomic D-module. Gen-
eralizing the case 1 € R there is a functional equation

P(x,9,8)e(mf* ") =bf pim(s) -mf*
with b p.,, (s) € C[s] nonzero. The monic generator of the ideal {b p.,, (s)} is
the b-function by.,, (s) [Kashiwara 1976].
2. Parameters and numbers

For any complex number y, the expression fV represents, locally outside Var( f),
a multivalued analytic function. Via the chain rule as in (1-1), the cyclic R -
module Ry - f7 becomes a left D-module, and we set

My(y) =D f* = D/annp(f7).
There are natural D[s]-linear maps
evp(y): Mp(s) = Mp(y), P(x,9,8)ef > P(x,0,7)ef7,
and D-linear inclusions
incp(s): Myp(s+1) > Mp(s), Px,0,5)ef > P(x,0,5) fof°
with cokernel A} (s) = .4 (s)/ 4 ¢(s + 1) = D[s]/(annpg (f*) + D[s]f), and
incy(y): Mp(y +1) = Ms(y), Px,d) o> P(x,0)- fof*

with cokernel A7 (y) = #(y)/ 4y (y +1) = D/(annp(f¥)+ D - f).

The kernel of the morphism ev 7 () contains the (two-sided) ideal D[s](s—y);
the containment can be proper, for example if y =0. If {y — 1,y —2,...}is
disjoint from the root set py then kerev(y) = D[s]- (s — y) [Kashiwara 1976].
If y & py then inc ¢ (y) is an isomorphism because of the functional equation; if
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y=—1,orif by(y) =0 while p does not meet {y —1, y —2, ...} thenincy(y)
is not surjective [Walther 2005].

Question 2.1. Does inc¢(y) fail to be an isomorphism for all y € p¢?

In contrast, the induced maps .#¢(s)/(s —y — 1) — .4y (s)/(s — y) are isomor-
phisms exactly when y & pr [Bjork 1993, 6.3.15]. The morphism inc ¢ (s) is
never surjective as s + 1 divides bz (s). One sets

By [Torrelli 2009, 4.2], the following are equivalent for a section m 7 0 of a
holonomic module:

o the smallest integral root of b ., (s) is at least —¢;
o (Dem)®pg R[f~!]is generated by m/f* =m @ 1/f%;
e (Dem)®g R[f~'1/De(m ®1) is generated by m/f*;

o D[slemf* — (Dem) @g RLf7'], P(s) s(mf*) > P(—£) e(m/f") is an
epimorphism with kernel D[s]- (s + £)mf*.

Definition 2.2. We say that f satisfies condition

(A1) (resp. (Ay)) if annp(1/f) (resp. annp(f*)) is generated by operators of
order one;

(By) if Ry is generated by 1/f over D.

Condition (A;) implies (B7) in any case [Torrelli 2004]. Local Euler-homo-
geneity, (A;) and (B;) combined imply (A;) [Torrelli 2007], and for Koszul
free divisors (see Definition 4.7 below) this implication can be reversed [Torrelli
20041].

Condition (A;) does not imply (Ay): f = xy(x + y)(x + yz) is free (see
Definition 4.1), and locally Euler-homogeneous and satisfies (A1) and (Bj)
[Calderén-Moreno 1999; Calderén-Moreno et al. 2002; Calderén-Moreno and
Narvaez-Macarro 2002b; Castro-Jiménez and Ucha 2001; Torrelli 2004], but
annpp(f*) and annp (f*) require a second order generator.

Condition (A;) implies local Euler-homogeneity if f has isolated singularities
[Torrelli 2002], or if it is Koszul-free or of the form z" — g(x, y) for reduced g
[Torrelli 2004]. In [Castro-Jiménez et al. 2007] it is shown that for certain locally
weakly quasihomogeneous free divisors Var(f), (A1) holds for high powers of
f, and even for f itself by [Narvdez-Macarro 2008, Remark 1.7.4].

For an isolated singularity, f has (A;) if and only if it has (B;) and is
quasihomogeneous [Torrelli 2002]. For example, a reduced plane curve (has
automatically (B1) and) has (A;) if and only if it is quasihomogeneous. See
[Schulze 2007] for further results.
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Condition (Bg) is equivalent to incy(—2), inc¢(—3), ... all being isomor-
phisms, and also to —1 being the only integral root of b (s) [Kashiwara 1976].
Locally quasihomogeneous free divisors satisfy condition (B;) at any point
[Castro-Jiménez and Ucha 2002].

3. V-filtration and Bernstein—-Sato polynomials

3A. V-filtration. The articles [Saito 1994; Maisonobe and Mebkhout 2004;
Budur 2005; Budur 2012b] are recommended for material on V-filtrations.

3A1. Definition and basic properties. Let Y be a smooth complex manifold (or
variety), and let X be a closed submanifold (or -variety) of Y defined by the
ideal sheaf .#. The V-filtration on %y along X is, for k € Z, given by

VEDy) ={(P e Dy | PesX C 7K forall k' € 7},

with the understanding that . K — Oy for k' < 0. The associated graded sheaf of
rings gry (Yy) is isomorphic to the sheaf of rings of differential operators on the
normal bundle Tx (Y), algebraic in the fiber of the bundle.

Suppose that Y = C" x C with coordinate function ¢ on C, and let X be the
hyperplane r = 0. Then V*(Dy) is spanned by {x*3"¢¢ 8th | a — b > k}. Given
a coherent holonomic Dy-module M with regular singularities in the sense of
[Kashiwara and Kawai 1981b], Kashiwara [1983] and Malgrange [1983] define
an exhaustive decreasing rationally indexed filtration on M that is compatible
with the V-filtration on Dy and has the following properties:

(1) Each V¥(M) is coherent over V?(Dy) and the set of o with nonzero
gry, (M) = V*(M)/V=%(M) has no accumulation point.
(2) For a >0, VI(Dy)V¥(M) = Veti(M).
(3) t9; — a acts nilpotently on gr{, (M).
The V-filtration is unique and can be defined in somewhat greater generality

[Budur 2005]. Of special interest is the following case considered in [Malgrange
1983; Kashiwara 1983].

Notation 3.1. Denote R, ; the polynomial ring R[¢], ¢ a new indeterminate, and
let D, ; be the corresponding Weyl algebra. Fix f € R and consider the regular
Dy ,-module

By =H}_(RI1]),

the unique local cohomology module of R[] supported in f —¢. Then % is
naturally isomorphic as D, ;-module to the direct image (in the D-category)
i+(R) of R under the graph embedding

i: X—>XxC, x—(x,f(x)).
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Moreover, extending (1-1) via

f'(g(x, s)fs—k) — g(x, 5+ l)fs-i-l—k’
0 ¢ (g(x, S)fs_k) = —sg(x,s — l)fs—l—k’

the module R ¢[s]® f* becomes a D, ;-module extending the D[s]-action where
—0,t acts as s.

The existence of the V-filtration on %y =i (R) is equivalent to the existence of
generalized b-functions b s, (s) in the sense of [Kashiwara 1976]; see [Kashiwara
1978; Malgrange 1983]. In fact, one can recover one from the other:

Ve (Br)=1{ne By |[by.,(—c) =0]= [a <cl}

and the multiplicity of b, (s) at « is the degree of the minimal polynomial of
s—a on gry, (D[s] nf*/D[sInf**t!) [Sabbah 1987a]. For more on this “microlocal
approach”, see [Saito 1994].

3B. The log-canonical threshold. By [Kollar 1997] (see also [Lichtin 1989;
Yano 1978]), the absolute value of the largest root of b (s) is the log-canonical
threshold lct(f) given by the supremum of all numbers s such that the local

integrals
/ ldx|
Usp |f|2s

converge for all p € X and all small open U around p. Smaller Ict corresponds to
worse singularities; the best one can hope for is Ict( f) = 1 as one sees by looking
at a smooth point. The notion goes back to Arnol’d, who called it (essentially)
the complex singular index [Arnold et al. 1985].

The point of multiplier ideals is to force the finiteness of the integral by
allowing moderating functions in the integral:

I(fi )= {g €Ox|g/f*is Lz—integrable near p € Var(f)},

for A € R. By [Ein et al. 2004], there is a finite collection of jumping numbers for
f of rational numbers 0 = g < @) < --- < oy = 1 such that .#(f, «) is constant
on [o;, oj+q) but Z(f, o;) # 7 (f, ai+1). The log-canonical threshold appears as
a1. These ideas had appeared before in [Lipman 1982; Loeser and Vaquié 1990].

Generalizing Kollar’s approach, each «; is a root of b (s) [Ein et al. 2004].
In [Saito 2007, Theorem 4.4] a partial converse is shown for locally Euler-
homogeneous divisors. Extending the idea of jumping numbers to the range
a > 1 one sees that « is a jumping number if and only if o + 1 is a jumping
number, but the connection to the Bernstein—Sato polynomial is lost in general.
For example, if f(x, y) =x2+ y> then jumping numbers are {5/6, 1} +N while
br(s)=(s+5/6)(s+1)(s +7/6).
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3C. Bernstein—-Sato polynomial. The roots of by (s) relate to an astounding
number of other invariants, see for example [Kollar 1997] for a survey. However,
besides the functional equation there is no known way to describe p .

3C1. Fundamental results. Let p € C" be a closed point, cut out by the maximal
ideal m C R. Extending R to the localization Ry, (or even the ring of holomorphic
functions at p) one arrives at potentially larger sets of polynomials b p(s) that
satisfy a functional equation (1-2) with P(x, 9, s) now in the correspondingly
larger ring of differential operators. The local (resp. local analytic) Bernstein—
Sato polynomial b, ,(s) (resp. by, pan (s)) is the generator of the resulting ideal
generated by the by, p(s) in C[s]. We denote by py,, (resp. oy, ) the root set of
b pan (s) (resp. by, pan (s)/(s +1)). From the definitions and [Lyubeznik 1997b;
Briangon et al. 2000; Briangcon and Maynadier 1999] we have

by pan ($)|by p(s)|br(s) =lcmpevar(r) b, p(s) =lcmpevar(p) by, pan (s),  (3-1)

and the function C" 5 p + Var(b¢(s)), counting with multiplicity, is upper semi-
continuous in the sense that for p’ sufficiently near p one has by, ,/(s)|by,,(s).
The underlying reason is the coherence of D.

The Bernstein—Sato polynomial by (s) factors over Q into linear factors,
py € Q, and all roots are negative [Malgrange 1975; Kashiwara 1976]. The
proof uses resolution of singularities over C in order to reduce to simple normal
crossing divisors, where rationality and negativity of the roots is evident. For this
Kashiwara proves a comparison theorem [Kashiwara 1976, Theorem 5.1] that
establishes b ¢ (s) as a divisor of a shifted product of the least common multiple
of the local Bernstein—Sato polynomials of the pullback of f under the resolution
map. There is a refinement by Lichtin [1989] for plane curves. The roots of
by (s), besides being negative, are always greater than —n, n being the minimum
number of variables required to express f locally analytically [Varchenko 1981;
Saito 1994].

3C2. Constructible sheaves from f°. Let V =V (n, d) be the vector space of
all complex polynomials in x; . . ., x, of degree at most d. Consider the function
B:V > f+ bs(s). By [Lyubeznik 1997b; Briangon and Maynadier 1999],
there is an algebraic stratification of V' such that on each stratum the function g
is constant. For varying n, d these stratifications can be made to be compatible.

3C3. Special cases. If p is a smooth point of Var(f) then f can be used as
an analytic coordinate near p, hence by pan(s) = s+ 1, and so by(s) =s + 1
for all smooth hypersurfaces. By Proposition 2.6 in [Briangcon and Maisonobe
1996], an extension of [Briancon et al. 1991], the equation b7 (s) = s + 1 implies
smoothness of Var(f). Explicit formulas for the Bernstein—Sato polynomial are
rare; here are some classes of examples.
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o f=I1x" P=T18" uptoascalar, bs(s) =[], [T, (s + j/a;).

* f (quasi)homogeneous with isolated singularity at zero:

deg(g dx))
deg(f) )’

where g runs through a (quasi)homogeneous standard basis for J; by work
of Kashiwara, Sato, Miwa, Malgrange, Kochman [Malgrange 1975; Yano
1978; Torrelli 2005; Kochman 1976]. Note that the Jacobian ring of such a
singularity is an Artinian Gorenstein ring, whose duality operator implies
symmetry of py.

o f=det(x;;)]: P=det(9;;)],bs(s)=(s+1)---(s+n). This is attributed
to Cayley, but see the comments in [Caracciolo et al. 2013].

Ef(s) = lcm<s +

o For some hyperplane arrangements, b (s) is known; see [Walther 2005;
Budur et al. 201 1c].

» A long list of examples is worked out in [Yano 1978].

If V is a complex vector space, G a reductive group acting linearly on V with open
orbit U such that V \ U is a divisor Var(f), Sato’s theory of prehomogeneous
vectors spaces [Sato and Shintani 1974; Muro 1988; Sato 1990; Yano 1977]
yields a factorization for b ¢ (s). For reductive linear free divisors, Granger and
Schulze [2010] and Sevenheck [2011] discuss symmetry properties of Bernstein—
Sato polynomials. In [Narvaez-Macarro 2013] this theme is taken up again,
investigating specifically symmetry properties of p r when D[s] e f* has a Spencer
logarithmic resolution (see [Castro-Jiménez and Ucha 2002] for definitions). This
covers locally quasihomogeneous free divisors, and more generally free divisors
whose Jacobian is of linear type. The motivation is the fact that roots of b (s)
seem to come in strands, and whenever roots can be understood the strands
appear to be linked to Hodge-theory.

There are several results on ps for other divisors of special shape. Trivially,
if f(x)=gx1,...,xk) -h(Xks1, ..., x,) thenbyp(s) | be(s) - by(s); the question
of equality appears to be open. In contrast, b s(s) cannot be assembled from the
Bernstein—Sato polynomials of the factors of f in general, even if the factors are
hyperplanes and one has some control on the intersection behavior; see Section 8
below. If f(x) = g(x1, ..., xx) +h(Xk+1, ..., x,) and at least one is locally
Euler-homogeneous, then there are Thom—Sebastiani type formulas [Saito 1994].
In particular, diagonal hypersurfaces are completely understood.

3C4. Relation to intersection homology module. Suppose

Y=Var(fi,..., o € X
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is a complete intersection and denote by jf}‘(ﬁx) the unique (algebraic) local
cohomology module of &x along Y. Brylinski [1983; 1985], continuing work of
Kashiwara, defined .Z (Y, X) C jﬁf‘(ﬁ x), the intersection homology 2x-module
of Y, the smallest Zx-module equal to %”)f‘ (Ox) in the generic point(s). See also
[Barlet and Kashiwara 1986]. The module . (X, Y) contains the fundamental
class of Y in X [Barlet 1980].

Question 3.2. When is Z(X,Y) = /#(0x)?

Equality is equivalent to %f(ﬁx) being generated by the cosets of A/ ]—[i-‘:1 fi
over Zx where A is the ideal generated by the k-minors of the Jacobian matrix

of f1,..., fr. A necessary condition is that 1/ ]_[f?:1 fi generates %”,f‘(ﬁx), but
this is not sufficient: consider xy(x +y)(x+yz), where py = —{%, %, 1,1,1, %}

Indeed by [Torrelli 2009], equality can be characterized in terms of functional
equations, as the following are equivalent at p € X:

(1) Z(X,Y) = (0x) in the stalk;
) prpNZ=a;

(3) 1 is not an eigenvalue of the monodromy operator on the reduced cohomol-
ogy of the Milnor fibers near p.

If 1/ T, f; generates R[1/[] filand 1/ ]*_, fi € Z(X, Y), then b (—1) #0
[Torrelli 2009]. It seems unknown whether (irrespective of 1/ ]_[f.‘:1 fi generating
R[1/T] f;] the condition b(—1) # 0 is equivalent to 1/ ]_[f;1 fi being in
Z(X,Y). See also [Massey 2009] for a topological viewpoint. (By the Riemann—
Hilbert correspondence of [Kashiwara 1984] and [Mebkhout 1984], (X, Y)
corresponds to the intersection cohomology complex of Y on X [Brylinski 1983]
and %f(ﬁ’x) to Cy[n — k] [Grothendieck 1966; Kashiwara 1976; Mebkhout
1977]. Equality then says: the link is a rational homology sphere). Barlet [1999]
characterizes property (3) above in terms of currents for complexified real f.
Equivalence of (1) and (3) for isolated singularities can be derived from [Milnor
1968; Brieskorn 1970]; the general case can be shown using [Saito 1990, 4.5.8]
and the formalism of weights. For the case k = 1, (1) requires irreducibility; in
general, there is a criterion in terms of b-functions [Torrelli 2009, 1.6, 1.10].

4. LCT and logarithmic ideal

4A. Logarithmic forms. Let X = C" be the analytic manifold, f a holomorphic
function on X, and Y = Var(f) a divisor in X with j: U = X \Y — X the
embedding. Let Q5 (xY) denote the complex of differential forms on X that are
(at worst) meromorphic along Y. By [Grothendieck 1966], Q5 (xY) — Rj.Cy
is a quasiisomorphism.
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A form w is logarithmic along Y if fw and fdw are holomorphic; these w
form the logarithmic de Rham complex 2% (logY) on X along Y. The complex
Q5 (log Y) was first used with great effect on normal crossing divisors by Deligne
[1971; 1974] in order to establish mixed Hodge structures, and later by Esnault
and Viehweg [1992] in order to prove vanishing theorems. A major reason for
the success of normal crossings is that in that case Q‘X (logY) is a locally free
module over &y. The logarithmic de Rham complex was introduced in [Saito
1980] for general divisors.

4B. Free divisors.

Definition 4.1. A divisor Var(f) is free if (locally) Qk(log f) is a free Ox-
module.

For a nonsmooth locally Euler-homogeneous divisor, freeness is equivalent to
the Jacobianring O / J  being a codimension-2 Cohen-Macaulay 0x-module; in
general, freeness is equivalent to the Tjurina algebra R/(f, 9f/0xy, ..., df/0xy)
being of projective dimension 2 or less over R. See [Saito 1980; Aleksandrov
1986] for relations to determinantal equations. Free divisors have rather big
singular locus, and are in some ways at the opposite end from isolated singu-
larities in the singularity zoo. If Qi((log f) is (locally) free, then Q’X (log f) =
/\i Q‘X (log f) and also (locally) free [Saito 1980]. A weakening is

Definition 4.2. A divisor Var(f) is tame if, for all i € N, (locally) Q’X (log f)
has projective dimension at most i as a &x-module.

Plane curves are trivially free; surfaces in 3-space are trivially tame. Normal
crossing divisors are easily shown to be free. Discriminants of (semi)versal
deformations of an isolated complete intersection singularity (and some others)
are free [Aleksandrov 1986; 1990; Looijenga 1984; Saito 1981; Damon 1998;
Buchweitz et al. 2009]. Unitary reflection arrangements are free [Terao 1981].

Definition 4.3. The logarithmic derivations Deryx(—log f) along Y = Var(f)
are the C-linear derivations 6 € Der(0x; C) that satisfy 6 e f € (f).

A derivation 6 is logarithmic along Y if and only it is so along each component
of the reduced divisor to Y [Saito 1980]. The modules Deryx(—log f) and
Qk(log f) are reflexive and mutually dual over R. Moreover, SZ’X (log f) and
Q% ' (log f) are dual.

4C. LCT.

Definition 4.4. If
Qy(logY) — Qy(xY) 4-1)

is a quasiisomorphism, we say that LCT holds for Y .
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We recommend [Narvaez-Macarro 2008].

Remark 4.5. (1) This “logarithmic comparison theorem”, a property of a divi-
sor, is very hard to check explicitly. No general algorithms are known, even
in C3 (but see [Castro-Jiménez and Takayama 2009] for n = 2).

(2) LCT fails for rather simple divisors such as f = x1x3 + x3x4.

(3) If Y is a reduced normal crossing divisor, Deligne [1970] proved (4-1) to
be a filtered (by pole filtration) quasiisomorphism; this provided a crucial
step in the development of the theory of mixed Hodge structures [Deligne
1971; 1974].

(4) Limiting the order of poles in forms needed to capture all cohomology of
U started with the seminal [Griffiths 1969a; 1969b] and continues; see for
example [Deligne and Dimca 1990; Dimca 1991; Karpishpan 1991].

(5) The free case was studied for example in [Castro-Jiménez et al. 1996]. But
even in this case, LCT is not understood.

(6) If f is quasihomogeneous with an isolated singularity at the origin, then
LCT for f is equivalent to a topological condition (the link of f at the
origin being a rational homology sphere), as well as an arithmetic one on
the Milnor algebra of f [Holland and Mond 1998]. In [Schulze 2010], using
the Gauss—Manin connection, this is extended to a list of conditions on an
isolated hypersurface singularity, each one of which forces the implication
[D has LCT] = [D is quasihomogeneous].

(7) For a version regarding more general connections, see [Calderén-Moreno
and Narvaez-Macarro 2009].

A plane curve satisfies LCT if and only it is locally quasihomogeneous
[Calderén-Moreno et al. 2002]. By [Castro-Jiménez et al. 1996], free locally
quasihomogeneous divisors satisfy LCT in any dimension. By [Granger and
Schulze 2006a], in dimension three, free divisors with LCT must be locally Euler-
homogeneous. Conjecturally, LCT implies local Euler-homogeneity [Calderén-
Moreno et al. 2002]. The converse is false, see for example [Castro-Jiménez
and Ucha 2005]. The classical example of rotating lines with varying cross-ratio
f=xy(x+y)(x+ yz) is free, satisfies LCT and is locally Euler-homogeneous,
but only weakly quasihomogeneous [Calderén-Moreno et al. 2002]. In [Castro-
Jiménez et al. 2007], the effect of the Spencer property on LCT is discussed in
the presence of homogeneity conditions. For locally quasihomogeneous divisors
(or if the nonfree locus is zero-dimensional), LCT implies (B;) [Castro-Jiménez
and Ucha 2002; Torrelli 2007]. In particular, LCT implies (B) for divisors with
isolated singularities. In [Granger and Schulze 2006b] quasihomogeneity of
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isolated singularities is characterized in terms of a map of local cohomology
modules of logarithmic differentials.

A free divisor is linear free if the (free) module Dery (—log f) has a basis of
linear vector fields. In [Granger et al. 2009], linear free divisors in dimension at
most 4 are classified, and for these divisors LCT holds at least on global sections.
In the process, it is shown that LCT is implied if the Lie algebra of linear logarith-
mic vector fields is reductive. The example of n x n invertible upper triangular
matrices acting on symmetric matrices [Granger et al. 2009, Example 5.1] shows
that LCT may hold without the reductivity assumption. Linear free divisors
appear naturally, for example in quiver representations and in the theory of
prehomogeneous vector spaces and castling transformations [Buchweitz and
Mond 2006; Sato and Kimura 1977; Granger et al. 2011]. Linear freeness is
related to unfoldings and Frobenius structures [de Gregorio et al. 2009].

Denote by Dery o(—log f) the derivations 8 with 6 ¢ f = 0. In the presence
of a global Euler-homogeneity E on Y there is a splitting

Derx(—log f) = R - E @ Derx o(—log f).

Reading derivations as operators of order one,

Dery o(—log f) C annp(f*).
We write S for gr.1)(D); if y; is the symbol of 9; then we have S = R[y].

Definition 4.6. The inclusion Dery o(—log f) < annp(f*), via the order fil-
tration, defines a subideal of gr(.1)(annp( f*) < er, n(D) =S called the
logarithmic ideal Ly of Var(f).

Note that the symbols of Dery(—log f) are in the ideal R - y of height n.

Definition 4.7. If Derx(—log f) has a generating set (as an R-module) whose
symbols form a regular sequence on §, then Y is called Koszul free.

As Dery (—log f) has rank n, a Koszul free divisor is indeed free. Divisors in
the plane [Saito 1980] and locally quasihomogeneous free divisors [Calderén-
Moreno and Narvaez-Macarro 2002b; 2002a] are Koszul free. In the case of
normal crossings, this has been used to make resolutions for D[s]e f* and
D[s]/Dls](annp(s f*, f) [Gros and Narvdez-Macarro 2000]. A way to distill
invariants from resolutions of D[s]e f* is given in [Arcadias 2010]. The log-
arithmic module M'°¢/ = D /D - Derx(—log f) has in the Spencer case (see
[Castro-Jiménez and Ucha 2002; Calderén-Moreno and Narvaez-Macarro 2005])
a natural free resolution of Koszul type.

For Koszul-free divisors, the ideal D - Dery (—log f) is holonomic [Calderén-
Moreno 1999]. By [Granger et al. 2009, Theorem 7.4], in the presence of freeness,
the Koszul property is equivalent to the local finiteness of Saito’s logarithmic
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stratification. This yields an algorithmic way to certify (some) free divisors as
not locally quasihomogeneous, since free locally quasihomogeneous divisors
are Koszul free. Based on similar ideas, one may devise a test for strong local
Euler-homogeneity [Granger et al. 2009, Lemma 7.5]. See [Calderén-Moreno
1999] and [Torrelli 2007, Section 2] for relations of Koszul freeness to perversity
of the logarithmic de Rham complex.

Castro-Jiménez and Ucha established conditions for ¥ = Var(f) to have
LCT in terms of D-modules [Castro-Jiménez and Ucha 2001; 2002; 2004b] for
certain free f. For example, LCT is equivalent to (A;) for Spencer free divisors.
Calderén-Moreno and Narvaez-Macarro [2005] proved that free divisors have
LCT if and only if the natural morphism 2y ®‘L/o(%() Ox(Y) > Ox(xY) is a
quasiisomorphism, Ox (Y) being the meromorphic functions with simple pole
along f. For Koszul free Y, one has at least

Dx ®Lo () Ox(¥) = Dx ®yoay) Ox (Y).

A similar condition ensures that the logarithmic de Rham complex is perverse
[Calder6n-Moreno 1999; Calderén-Moreno and Narvaez-Macarro 2005]. The
two results are related by duality between logarithmic connections on Yx and
the V-filtration [Castro-Jiménez and Ucha 2002; 2004a; Calderé6n-Moreno and
Narvaez-Macarro 2005].

It is unknown how LCT is related to (A}) in general, but for quasihomogeneous
polynomials with isolated singularities the two conditions are equivalent [Torrelli
2007].

4D. Logarithmic linearity.

Definition 4.8. We say that f € R satisfies (L) if the characteristic ideal of
annp (f*) is generated by symbols of derivations.

Condition (L) holds for isolated singularities [ Yano 1978], locally quasihomo-
geneous free divisors [Calderén-Moreno and Narviez-Macarro 2002b], and
locally strongly Euler-homogeneous holonomic tame divisors [Walther 2015].
Also, (Ly) plus (B1) yields (A;) for locally Euler-homogeneous f by [Kashiwara
1976]; see [Torrelli 2007].

The logarithmic ideal supplies an interesting link between Q3 (log f) and
annp (f*) via approximation complexes: if f is holonomic, strongly locally
Euler-homogeneous and also tame then the complex (25 (log f)[y], ydx) is a
resolution of the logarithmic ideal Ly, and S/Ly is a Cohen-Macaulay domain
of dimension n + 1; if f is in fact free, S/ Ly is a complete intersection [Narvaez-
Macarro 2008; Walther 2015].

Question 4.9. For locally Euler-homogeneous divisors, is annp (f°) related to
the cohomology of (25 (log f)[y], y dx)?
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5. Characteristic variety

We continue to assume that X = C". For f € R let Uy be the open set defined
by df # 0 # f. Because of the functional equation, .#(s) is coherent over
D [Bernstein 1972; Kashiwara 1976], and the restriction of charV(D[s]e f*) to
Uy is the Zariski closure of

d
[

it is an (n 4 1)-dimensional involutive subvariety of T*U s [Kashiwara 2003].
Ginsburg [1986] gives a formula for the characteristic cycle of D[s]emf* in
terms of an intersection process for holonomic sections m.

In favorable cases, more can be said. By [Calderén-Moreno and Narviez-
Macarro 2002b], if the divisor is reduced, free and locally quasihomogeneous then
annpy(f*) is generated by derivations, both .#(s) and .47 (s) have Koszul—-
Spencer type resolutions, and so the characteristic varieties are complete intersec-
tions. In the more general case where f is locally strongly Euler-homogeneous,
holonomic and tame, annp ( f*) is still generated by order one operators and the
ideal of symbols of annp(f*) (and hence the characteristic ideal of .Z(s) as
well) is a Cohen—Macaulay prime ideal [Walther 2015]. Under these hypotheses,
the characteristic ideal of .47 (s) is Cohen—Macaulay but usually not prime.

5A. Stratifications. By [Kashiwara and Schapira 1979], the resolution theorem
of Hironaka can be used to show that there is a stratification of C" such that for
each holonomic D-module M, charC(M) =|_|, .5 (M, 0)T) where T is the
closure of the conormal bundle of the smooth stratum ¢ in C" and u(M, o) € N.

For D[s]e f*/Dl[s]e f s+1 Kashiwara proved that if one considers a Whitney
stratification S for f (for example the “canonical” stratification in [Damon and
Mond 1991]) then the characteristic variety of the D-module 4% (s) is in the
union of the conormal varieties of the strata o € S [Yano 1978].

If one slices a pair (X, D) of a smooth space and a divisor with a hyperplane,
various invariants of the divisor will behave well provided that the hyperplane
is not “special”’. A prime example are Bertini and Lefschetz theorems. For
D-modules, Kashiwara defined the notion of noncharacteristic restriction: the
smooth hypersurface H is noncharacteristic for the D-module M if it meets each
component of the characteristic variety of M transversally (see [Pham 1979] for
an exposition). The condition assures that the inverse image functor attached
to the embedding H — X has no higher derived functors for M. In [Dimca
et al. 2006] these ideas are used to show that the V-filtration, and hence the
multiplier ideals as well as nearby and vanishing cycle sheaves, behave nicely
under noncharacteristic restriction.
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5B. Deformations. Varchenko proved, via establishing constancy of Hodge
numbers, that in a p-constant family of isolated singularities, the spectrum is
constant [Varchenko 1982]. In [Dimca et al. 2006] it is shown that the formation
of the spectrum along the divisor ¥ € X commutes with the intersection with a
hyperplane transversal to any stratum of a Whitney regular stratification of D, and
a weak generalization of Varchenko’s constancy results for certain deformations
of nonisolated singularities is derived.

In contrast, the Bernstein—Sato polynomial may not be constant along -
constant deformations. Suppose f(x) + Ag(x) is a 1-parameter family of
plane curves with isolated singularities at the origin. If the Milnor number
dimg(R/J(f41g)) 1s constant in the family, the singularity germs in the family
are topologically equivalent [Trang and Ramanujam 1976]; for discussion, see
[Dimca 1992, Section 2]. However, in such a family b/ (s) can vary, as it is a
differential (but not a topological) invariant. Indeed, f +Ag = x* + y° + Axy*
has constant Milnor number 20, and the general curve (not quasihomogeneous in
any coordinate system, as p 7, is not symmetric about —1; see Section 3C) has
—Pfirg = {I}UZI—O{9, 11,13, 14,17, 18, 19, 21, 22, 23, 26, 27} while the special
curve has —pr = —p i3 U{—=31/20} \ {—11/20}. See [Cassou-Nogues 1986]
for details and similar examples based on Newton polytope considerations, and
[Stahlke 1997] for deformations of plane diagonal curves.

6. Milnor fiber and monodromy

6A. Milnor fibers. Let B(p, ¢) denote the e-ball around p € Var(f) C C".
Milnor [1968] proved that the diffeomorphism type of the open real manifold

My 1.e = B(p, &) N Var(f —1o)

is independent of ¢, #p as long as 0 < |fp] K ¢ K 1. For 0 < 7 < ¢ < 1 denote
by M, the fiber of the bundle B(p,e) N{g € C" |0 < |f(g)| <1} — f(q).

The direct image functor for D-modules to the projection C* x C — C,
(x,1) — t turns the D, ;-module % into the Gauss—Manin system ¢y. The
D-module restriction of H k(%ﬁr) to t = ty is the k-th cohomology of the Milnor
fibers along Var(f) for 0 < |fy] < 7.

Fix a k-cycle o € H,(Var(f — ty)) and choose n € Hk(jfjr). Deforming
o to a k-cycle over ¢ using the Milnor fibration, one can evaluate foz n. The
Gauss—Manin system has Fuchsian singularities and these periods are in the
Nilsson class [Malgrange 1974]. For example, the classical Gauss hypergeometric
function saw the light of day the first time as solution to a system of differential
equations attached to the variation of the Hodge structure on an elliptic curve
(expressed as integrals of the first and second kind) [Brieskorn and Knorrer
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1981]. In [Pham 1979] this point of view is taken to be the starting point. The
techniques explained there form the foundation for many connections between
f* and singularity invariants attached to Var(f).

In [Budur 2003], a bijection (for 0 < o < 1) is established between a subset of
the jumping numbers of f at p € Var(f) and the support of the Hodge spectrum
[Steenbrink 1989]

Sp(f) =) na()r,

aeQ

with ny(f) determined by the size of the «-piece of Hodge component of the
cohomology of the Milnor fiber of f at p. See also [Saito 1993; Varchenko
1981], and [Steenbrink 1987] for a survey on Hodge invariants. We refer to
[Budur 2012b; Saito 2009] for many more aspects of this part of the story.

6B. Monodromy. The vector spaces H kem .10,¢» C) form a smooth vector bun-
dle over a punctured disk C*. The linear transformation p 7, x on H*(M, 1, ¢, C)
induced by p — p-exp(2mil) is the k-th monodromy of f at p. Let x s p (1)
denote the characteristic polynomial of s p x, set

espix ={y € C|y is an eigenvalue of 1y p i}

andputes,=Jes -
For most (in a quantifiable sense) divisors f with given Newton diagram,

a combinatorial recipe can be given that determines the alternating product
[Ty p,k(t))(_l)k [Varchenko 1976], similarly to A’Campo’s formula in terms
of an embedded resolution [A’Campo 1975].

6C. Degrees, eigenvalues, and Bernstein—-Sato polynomial. By [Malgrange
1983; Kashiwara 1983], the exponential function maps the root set of the local
analytic Bernstein—Sato polynomial of f at p onto ey, ,. The set exp(—2mipy, )
is the set of eigenvalues of the monodromy on the Grothendieck—Deligne van-
ishing cycle sheaf ¢¢(Cx ,). This was shown in [Saito 1994] by algebraic
microlocalization.

If f is an isolated singularity, the Milnor fiber M is a bouquet of spheres,
and H" '(M £, C) can be identified with the Jacobian ring R/J . Moreover, if
f is quasihomogeneous, then under this identification R/Jy is a Q[s]-module, s
acting via the Euler operator, and p is in bijection with the degree set of the
nonzero quasihomogeneous elements in R/Jy. For nonisolated singularities,
most of this breaks down, since R/Jy is not Artinian in that case. However, for
homogeneous f, consider the Jacobian module

HY(R/Jp)=1{g+J; |k eN, Vi, xkg e Js)
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and the canonical (n — 1)-form

n:indxl/\---/\ch\i/\---/\dxn.
i

Every class in H"~'(M 3 ©) is of the form gn for suitable g € R, and there
is a filtration on H"~! (M, C) induced by integration of % along 01, ..., 0y,
with the following property: if g € R is the smallest degree homogeneous
polynomial such that gn represents a chosen element of H"~!(M £, C) then
by (—(deg(gn))/ deg(f)) = 0 [Walther 2005]. Moreover, let g # 0 by a homo-
geneous element in the Jacobian module and suppose that its degree deg(gn) =
deg(g)+) ; deg(x;) is between d and 2d. Then, by [Walther 2015], gn represents
a nonzero cohomology class in H"~!(M, C) as in the isolated case.

6D. Zeta functions. The zeta function Z s (s) attached to a divisor f € R is the
rational function

zf(s)=Zx(E;‘)]_[ﬁ,

I1cS iel

where 7: (Y, |J; Ei) = (C", Var(f)) is an embedded resolution of singularities,
and N; (resp. v; — 1) are the multiplicities of E; in w*(f) (resp. in the Jacobian
of 7). By results of Denef and Loeser [1992], Z/(s) is independent of the
resolution.

Conjecture 6.1 (Topological Monodromy Conjecture).

(SMC) Any pole of Z¢(s) is a root of the Bernstein—-Sato polynomial b (s).

(MC) Any pole of Z¢(s) yields under exponentiation an eigenvalue of the
monodromy operator at some p € Var(f).

The strong version (SMC) implies (MC) by [Malgrange 1975; Kashiwara
1983]. Each version allows a generalization to ideals.
(SMC), formulated by Igusa [2000] and Denef—Loeser [1992] holds for

 reduced curves by [Loeser 1988] with a discussion on the nature of the
poles by Veys [1993; 1990; 1995];

« certain Newton-nondegenerate divisors by [Loeser 1990];

» some hyperplane arrangements (see Section 8);

» monomial ideals in any dimension by [Howald et al. 2007].
Additionally, (MC) holds for

« bivariate ideals by Van Proeyen and Veys [2010];

« all hyperplane arrangements by [Budur et al. 2011b; 2011c];
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« some partial cases: [Artal Bartolo et al. 2002; Lemahieu and Veys 2009]
some surfaces; [Artal Bartolo et al. 2005] quasiordinary power series;
[Lichtin and Meuser 1985; Loeser 1990] in certain Newton nondegenerate
cases; [Igusa 1992; Kimura et al. 1990] for invariants of prehomogeneous
vector spaces; [Lemahieu and Van Proeyen 2011] for nondegenerate sur-
faces.

Strong evidence for (MC) for n = 3 is procured in [Veys 2006]. The articles
[Rodrigues 2004; Némethi and Veys 2012] explore what (MC) could mean on a
normal surface as ambient space and gives some results and counterexamples to
naive generalizations. See also [Denef 1991] and the introductions of [Bories
2013b; 2013] for more details in survey format.

A root of bs(s), a monodromy eigenvalue, and a pole of Z¢(s) may have
multiplicity; can the monodromy conjecture be strengthened to include multi-
plicities? This version of (SMC) was proved for reduced bivariate f in [Loeser
1988]; in [Melle-Hernandez et al. 2009; 2010] it is proved for certain nonreduced
bivariate f, and for some trivariate ones.

A different variation, due to Veys, of the conjecture is the following. Vary the
definition of Z(s) to Zs.,(s) =Y ;cg X(E7) [1;e; 1/(Nis 4+ v)), where v] is
the multiplicity of E; in the pullback a_long 7 of some differential form g. (The
standard case is when g is the volume form). Two questions arise: (1) varying
over a suitable set G of forms g, can one generate all roots of b (s) as poles of
the resulting zeta functions? And if so, can one (2) do this such that the pole
sets of all zeta functions so constructed are always inside o, so that

pr ={a| there exists g € G, lim Zy,,(s) = 00}?
S—>o

Némethi and Veys [2010; 2012] prove a weak version: if n = 2 then monodromy
eigenvalues are exponentials of poles of zeta functions from differential forms.

The following is discussed in [Bories 2013a]. For some ideals with n =
2, (1) is false for the topological zeta function (even for divisors: consider
xy> 4+ x3y% + x*y). For monomial ideals with two generators in n = 2, (1) is
correct; with more than two generators it can fail. Even in the former case, (2)
can be false.

7. Multivariate versions

If f=(f1,...,f) defines amap f: C" — C’, several b-functions can be
defined:

(1) the univariate Bernstein—Sato polynomial b  (s) attached to the ideal (f) C R
from [Budur et al. 2006a];
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(2) the multivariate Bernstein—Sato polynomials b ; (s) of all elements b(s) of
Cls1, ..., sr] such that there is an equation P(x, d, s)e f; f* = b(s) f* in
multiindex notation;

(3) the multivariate Bernstein—Sato ideal By, (s) for u € N of all b(s) €

Cls1, ..., s;] such that there is an equation P(x, 9, s) e f*t#* = b(s) f* in
multiindex notation. The most interesting caseis u =1=(1, ..., 1);
(4) the multivariate Bernstein—Sato ideal By x(s) of all b(s) € C[sy, ..., s,]

that multiply f* into Y D[s]f; f* in multiindex notation.

The Bernstein—Sato polynomial in (1) above has been studied in the case of
a monomial ideal in [Budur et al. 2006b] and more generally from the point
of view of the Newton polygon in [Budur et al. 2006c]. While the roots for
monomial ideals do not depend just on the Newton polygon, their residue classes
modulo Z do.

Nontriviality of the quantities in (2)—(4) have been established in [Sabbah
1987¢; 1987d; 1987b], but see also [Bahloul 2005]. The ideals By ,(s) and
By 5 (s) do not have to be principal [Ucha and Castro-Jiménez 2004; Bahloul
and Oaku 2010]. In [Sabbah 1987¢; Gyoja 1993] it is shown that B , (s) contains
a polynomial that factors into linear forms with nonnegative rational coefficients
and positive constant term. Bahloul and Oaku [2010] show that these ideals are
local in the sense of (3-1).

The following would generalize Kashiwara’s result in the univariate case as
well as the results of Sabbah and Gyoja above.

Conjecture 7.1 [Budur 2012a]. The Bernstein—Sato ideal By, (s) is generated
by products of linear forms Y _ a;s; +a with «;, a nonnegative rational and a > 0.

For n = 2, partial results by Cassou-Nogues and Libgober exist [2011]. In
[Budur 2012a] it is further conjectured that the Malgrange—Kashiwara result,
exponentiating py,, gives ey, ,, generalizes: monodromy in this case is defined
in [Verdier 1983], and Sabbah’s specialization functor ¥ ¢ from [1990] takes on
the role of the nearby cycle functor, and conjecturally exponentiating the variety
of By ,(s) yields the uniform support (near p) of Sabbah’s functor. The latter
conjecture would imply Conjecture 7.1.

Similarly to the one-variable case, if V (n, d, m) is the vector space of (ordered)
m-tuples of polynomials in x, ..., x, of degree at most d, there is an algebraic
stratification of V (n, d, m) such that on each stratum the function V 5 f =
(f1, ..., fm) > by(s) is constant. Corresponding results for the Bernstein—Sato
ideal By,1(s) hold by [Briangon et al. 2000].
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8. Hyperplane arrangements

A hyperplane arrangement is a divisor of the form

o = 1_[ o;
iel

where each «; is a polynomial of degree one. We denote H; = Var(«;). Essentially
all information we are interested in is of local nature, so we assume that each «;
is a form so that &7 is central. If there is a coordinate change in C" such that &/
becomes the product of polynomials in disjoint sets of variables, the arrangement
is decomposable, otherwise it is indecomposable.

A flat is any (set-theoretic) intersection (), ; H; where J C I. The intersection
lattice L(<7) is the partially ordered set consisting of the collection of all flats,
with order given by inclusion.

8A. Numbers and parameters. Hyperplane arrangements satisfy (B;) every-
where [Walther 2005]. Arrangements satisfy (A1) everywhere if they decompose
into a union of a generic and a hyperbolic arrangement [Torrelli 2004], and if they
are tame [Walther 2015]. Terao conjectured that all hyperplane arrangements
satisfy (A1); some of them fail (Ay) [Walther 2015].

Apart from recasting various of the previously encountered problems in the
world of arrangements, a popular study is the following: choose a discrete
invariant / of a divisor. Does the function .« +— [ (<7) factor through the map
o/ +— L(<7/)? Randell showed that if two arrangements are connected by a
one-parameter family of arrangements which have the same intersection lattice,
the complements are diffeomorphic [Randell 1989] and the isomorphism type
of the Milnor fibration is constant [Randell 1997]. Rybnikov [2011] (see also
[Artal Bartolo et al. 2006]) showed on the other hand that there are arrangements
(even in the projective plane) with equal lattice but different complement. In
particular, not all isotopic arrangements can be linked by a smooth deformation.

8B. LCT and logarithmic ideal. The most prominent positive result is one by
Brieskorn [1973]: the Orlik—Solomon algebra OS(<7) C Q2*(log «7) generated
by the forms do; /«; is quasiisomorphic to 2°(x7), hence to the singular co-
homology algebra of U,,. The relation with combinatorics was given in [Orlik
and Solomon 1980; Orlik and Terao 1992]. For a survey on the Orlik—Solomon
algebra, see [ Yuzvinsky 2001]. The best known open problem in this area is this:

Conjecture 8.1 [Terao 1978]. OS(«) — Q*(log &) is a quasiisomorphism.

While the general case remains open, Wiens and Yuzvinsky [1997] proved it
for tame arrangements, and also if n < 4. The techniques are based on [Castro-
Jiménez et al. 1996].
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8C. Milnor fibers. There is a survey article by Suciu on complements, Milnor
fibers, and cohomology jump loci [Suciu 2014], and [Budur 2012b] contains
further information on the topic. It is not known whether L(<) determines
the Betti numbers (even less the Hodge numbers) of the Milnor fiber of an
arrangement. The first Betti number of the Milnor fiber M, at the origin is
stable under intersection with a generic hyperplane (if » > 2). But it is unknown
whether the first Betti number of an arrangement in 3-space is a function of the
lattice alone. By [Dimca et al. 2013], this is so for collections of up to 14 lines
with up to 5-fold intersections in the projective plane. See also [Libgober 2012]
for the origins of the approach. By [Budur et al. 2011a], a lower combinatorial
bound for the A-eigenspace of H'(M.,) is given under favorable conditions on L.
If L satisfies stronger conditions, the bound is shown to be exact. In any case,
[Budur et al. 2011a] gives an algebraic, although perhaps noncombinatorial,
formula for the Hodge pieces in terms of multiplier ideals.

By [Orlik and Randell 1993], the Betti numbers of M, are combinatorial if
</ 1s generic. See also [Cohen and Suciu 1995].

8D. Multiplier ideals. Mustatd gave a formula for the multiplier ideals of ar-
rangements, and used it to show that the log-canonical threshold is a function
of L(<7). The formula is somewhat hard to use for showing that each jumping
number is a lattice invariant; this problem was solved in [Budur and Saito 2010].
Explicit formulas in low dimensional cases follow from the spectrum formulas
given there and in [Yoon 2013]. Teitler [2008] improved Mustatd’s formula
[2006] for multiplier ideals to not necessarily reduced hyperplane arrangements.

8E. Bernstein—Sato polynomials. By [Walther 2005], p.,,NZ ={—1}; by [Saito
2006], py € (—2,0). There are few classes of arrangements with explicit
formulas for their Bernstein—Sato polynomial:

» Boolean (a normal crossing arrangement, locally given by x; - - - x¢);

« hyperbolic (essentially an arrangement in two variables);

» generic (central, and all intersections of n hyperplanes equal the origin).
The first case is trivial, the second is easy, the last is [Walther 2005] with assistance
from [Saito 2007]. Some interesting computations are in [Budur et al. 2011c],
and [Budur 2012a] has a partial confirmation of the multivariable Kashiwara—

Malgrange theorem. The Bernstein—Sato polynomial is not determined by the
intersection lattice [Walther 2015].

8F. Zeta functions. Budur, Mustatd and Teitler [Budur et al. 2011b] show: (MC)
holds for arrangements, and in order to prove (SMC), it suffices to show the
following conjecture.
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Conjecture 8.2. For all indecomposable central arrangements with d planes in
n-space, b (—n/d) = 0.

The idea is to use the resolution of singularities obtained by blowing up the
dense edges from [Schechtman et al. 1995]. The corresponding computation of
the zeta function is inspired from [Igusa 1974; 1975]. The number —n/d does not
have to be the log-canonical threshold. By [Budur et al. 2011b], Conjecture 8.2
holds in a number of cases, including reduced arrangements in dimension 3. By
[Walther 2015] it holds for tame arrangements.

Examples of Veys (in 4 variables) show that (SMC) may hold even if Con-
jecture 8.2 were false in general, since —n/d is not always a pole of the zeta
function [Budur et al. 2011c]. However, in these examples, —n/d is in fact a
root of bz (s).

For arrangements, each monodromy eigenvalue can be captured by zeta func-
tions in the sense of Némethi and Veys (see Section 6D), but not necessarily all
of p.s (Veys and Walther, unpublished).

9. Positive characteristic

Let here [ denote a field of characteristic p > 0. The theory of D-modules is
rather different in positive characteristic compared to their behavior over the
complex numbers. There are several reasons for this:

(1) On the downside, the ring D, of F-linear differential operators on R, =
F[x1, ..., x,] is no longer finitely generated: as an [F-algebra it is generated
by the elements 9@, o € N, which act via 3@ e (x#) = (g)xﬂ_“.

(2) As a trade-off, one has access to the Frobenius morphism x; — xip , as well
as the Frobenius functor F (M) = R’ ® g M where R’ is the R — R-bimodule
on which R acts via the identity on the left, and via the Frobenius on the
right. Lyubeznik [1997a] created the category of F-finite F-modules and
proved striking finiteness results. The category includes many interesting
D ,-modules, and all F-modules are D,-modules.

(3) Holonomicity is more complicated; see [Bogvad 2002].

A most surprising consequence of Lyubeznik’s ideas is that in positive charac-
teristic the property (B) is meaningless: it holds for every f € R, [Alvarez-
Montaner et al. 2005]. The proof uses in significant ways the difference between
D, and the Weyl algebra. In particular, the theory of Bernstein—Sato polynomials
is rather different in positive characteristic. In [Mustatd 2009] a sequence of
Bernstein—Sato polynomials is attached to a polynomial f assuming that the
Frobenius morphism is finite on R (e.g., if [ is finite or algebraically closed); these
polynomials are then linked to test ideals, the finite characteristic counterparts
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to multiplier ideals. In [Blickle et al. 2009] variants of our modules .#¢(y) are
introduced and [Nufiez-Betancourt and Pérez 2013] shows that simplicity of
these modules detects the F-thresholds from [Mustatd et al. 2005]. These are
cousins of the jumping numbers of multiplier ideals and related to the Bernstein—
Sato polynomial via base- p-expansions. The Kashiwara—Brylinski intersection
homology module was shown to exist in positive characteristic by Blickle in his
thesis [Blickle 2004].

Appendix: Computability
by Anton Leykin

Computations around f* can be carried out by hand in special cases. Generally,
the computations are enormous and computers are required (although not often
sufficient). One of the earliest such approaches are in [Briangon et al. 1989;
Aleksandrov and Kistlerov 1992], but at least implicitly Buchberger’s algorithm in
a Weyl algebra was discussed as early as [Castro-Jimenez 1984]. An algorithmic
approach to the isolated singularities case [Maisonobe 1994] preceded the general
algorithms based on Grobner bases in a noncommutative setting outlined below.

10A. Grobner bases. The monomials x*3? with «, B € N" form a C-basis of
D; expressing p € D as linear combination of monomials leads to its normal
form. The monomial orders on the commutative monoid [x, d] for which for
all i € [n] the leading monomial of 0;x; = x;0; + 1 is x;0;, can be used to
run Buchberger’s algorithm in D. Modifications are needed in improvements
that exploit commutativity, but the naive Buchberger’s algorithm works without
any changes. See [Kandri-Rody and Weispfenning 1990] for more general
settings in polynomial rings of solvable type. Surprisingly, the worst case
complexity of Grobner bases computations in Weyl algebras is not worse than
in the commutative polynomial case: it is doubly exponential in the number of
indeterminates [Aschenbrenner and Leykin 2009; Grigoriev and Chistov 2008].

10B. Characteristic variety. A weight vector (u,v) € 7" x 7" withu+v >0
induces a filtration of D,

Fi=C-{x*®|u-a+v-B<i}, ieclZ
The (u, v)-Grobner deformation of a left ideal I € D is
in(u’v)(l) =C- {in(uvv)(P) | P e I} C 8L ) D,

the ideal of initial forms of elements of I with respect to the given weight in the
associated graded algebra. It is possible to compute Grobner deformations in the
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homogenized Weyl algebra
D" = D(h)/(8ix; — x;0; — h*, x;h — hx;, 9;h — hd; | 1 <i <n);

see [Castro-Jimenez and Narvédez-Macarro 1997; Oaku and Takayama 2001b].
Grobner deformations are the main topic of [Saito et al. 2000].

10C. Annihilator. Recall the construction appearing in the beginning of Sec-
tion 6A: D, ; acts on D[s] f*; in particular, the operator —d,¢ acts as multipli-
cation by s. It is this approach that lead Oaku to an algorithm for annp(f*),
annp(f*) and b7 (s) [Oaku 1997]. We outline the ideas.

Malgrange observed that

annpp(f*) =annp_, (f*) N D[s], (10-1)

0 )
with annD”(fS)=<t—f,81+—f8,,...,3n+ f
. 8x1 0

8t> C Dy,. (10-2)

Xn

The former can be found from the latter by eliminating ¢ and 9, from the ideal
(s +19;) +annp, , (f*) € Dx,(s); (10-3)

of course s = —9,¢ does not commute with 7, d; here.
Oaku’s method for annps)(f*) accomplished the elimination by augmenting
two commuting indeterminates:

annD[S](fs) = I} N D[S],

0 0 (10-4)
I}- = <t —uf, 0 +u—f8,, e, O +u—f81, uv — 1> C Dy ¢[u, v].

0x1 0x,
Now outright eliminate u, v. Note that / ji is quasihomogeneous if the weights
are t,u ~» —1 and 9;,v ~» 1, all other variables having weight zero. The
homogeneity of the input and the relation [d;, ] = 1 assures the termination of
the computation. The operators of weight O in the output (with —o,¢ replaced by
§) generate I} N D[s].

A modification given in [Briangon and Maisonobe 2002] and used, e.g., in
[Ucha and Castro-Jiménez 2004], reduces the number of algebra generators by
one. Consider the subalgebra D (s, 9;) C D, ;; the relation [s, d;] = 9; shows that
it is of solvable type. According to [Briancon and Maisonobe 2002],

annpys)(f*) = 17N D[s],
(10-5)

0 0
I]/C/: S+fat781+_fats~--,an+ fat CD(S,Bt)-
8x1 d

Xn



416 ULI WALTHER

Note that / }f =annp_,(f*) N D(s, 3;). The elimination step is done as in [Oaku
1997]; the decrease of variables usually improves performance. An algorithm to
decide (A;) for arrangements is given in [Alvarez Montaner et al. 2007].

10D. Algorithms for the Bernstein—Sato polynomial. As the minimal polyno-
mial of s on 4% (s), b (s) can be obtained by means of linear algebra as a syzygy
for the normal forms of powers of s modulo annps(f*) + D[s] - f with respect
to any fixed monomial order on D[s]. Most methods follow this path, starting
with [Oaku 1997]. Variations appear in [Walther 1999; Oaku and Takayama
2001a; Oaku et al. 2000]; see also [Saito et al. 2000].

A different approach is to compute b ¢ (s) without recourse to annp,(f*), via
a Grobner deformation of the ideal Iy = annp_, (f*) in (10-2) with respect to the
weight (—w, w) with w = (07, 1) € N""1: (b (s)) = iny,u) (Tr) N Q[—3;2].
Here again, computing the minimal polynomial using linear algebra tends to
provide some savings in practice.

In [Levandovskyy and Martin-Morales 2012] the authors give a method to
check specific numbers for being in ps. A method for bz (s) in the prehomoge-
neous vector space setup is in [Muro 2000].

10E. Stratification from by (s). The Grobner deformation in(_y, ) (/) in the
previous subsection can be refined as follows; see [Berkesch and Leykin 2010,
Theorem 2.2]. Let b(x, s) be nonzero in the polynomial ring C[x, s]. Then
b(x,s) € (in_y,u) Ir) NClx, s] if and only if there exists P € D[s] satisfy-
ing the functional equation b(x, s) f* = Pff*. From this one can design an
algorithm not only for computing the local Bernstein—Sato polynomial b, ,(s)
for p € Var(f), but also the stratification of C" according to local Bernstein—
Sato polynomials; see [Nishiyama and Noro 2010; Berkesch and Leykin 2010]
for various approaches. Moreover, one can compute the stratifications from
Section 3C2; see [Leykin 2001].

For the ideal case, [Andres et al. 2009] gives a method to compute an inter-
section of a left ideal of an associative algebra over a field with a subalgebra,
generated by a single element. An application is a method for the computation of
the Bernstein-Sato polynomial of an ideal. Another such was given by Bahloul
[2001], and a version on general varieties was given by the same in [2003].

10F. Multiplier ideals. Consider polynomials fi, ..., f, € C[x], let f stand
for (fi,..., fy), s forsi,...,s,, and f* for [[;_, /. In this subsection, let
D, ; =C(x,t, 0y, 0;) be the (n 4 r)-th Weyl algebra.

Consider Dy ((s) e f* C Rx,,[f_l, s]f* and put

tioh(x,s1,...,8j,....s)f =h(x,s1,....s;+1,....8)f; [,
3,j-h(x,sl,...,Sj,...,sr)fs:—sjh(x,sl,...,Sj—l,...,sr)fjflfs’
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for h € C[x][f~', 5], generalizing the univariate constructions.

The generalized Bernstein—Sato polynomial by ,(o) of f at g € C[x] is the
monic univariate polynomial b of the lowest degree for which there exist P, € D, ;
such that

b(o)ef =) Pgfif', o= —<Z 8,,.t,-). (10-6)
k=1 i=1

An algorithm for by (o) is an essential ingredient for the algorithms in
[Shibuta 2011; Berkesch and Leykin 2010] that compute the jumping numbers
and corresponding multiplier ideals for I = (f1, ..., f;). That by (o) is related
to multiplier ideals was worked out in [Budur et al. 2006a].

There are algorithms for special cases: monomial ideals [Howald 2001], hy-
perplane arrangements [Mustatd 2006], and determinantal ideals [Johnson 2003].
A Macaulay? package Multiplierldeals by Teitler collects all implementations
available in Macaulay2. See also [Budur 2005].

10G. Software. Algorithms for computing Bernstein—Sato polynomials have
been implemented in kan/smi [Takayama], Risa/Asir [Noro et al.], the dmod_lib
library [Levandovskyy and Morales] for Singular [Decker et al. 2012], and the
D-modules package [Leykin and Tsai] for Macaulay2 [Grayson and Stillman].
The best source of information of these is documentation in the current versions
of the corresponding software. A relatively recent comparison of the performance
for several families of examples is given in [Levandovskyy and Martin Morales
2008].

The following are articles by developers discussing their implementations:
[Noro 2002; Nishiyama and Noro 2010; Oaku and Takayama 2001a; Andres
et al. 2010; Levandovskyy and Morales; Leykin 2002; Berkesch and Leykin
2010].
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