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Vector bundles and ideal
closure operations
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This is an introduction to the use of vector bundle techniques to ideal closure
operations, in particular to tight closure and related closures like solid closure
and plus closure. We also briefly introduce the theory of vector bundles
in general, with an emphasis on smooth projective curves, and discuss the
relationship between forcing algebras and closure operations.
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Introduction

An ideal operation is an assignment which provides for every ideal I in a
commutative ring R a further ideal I ′ fulfilling certain structural conditions such
as I ⊆ I ′, I ′′ = I ′, and an inclusion I ⊆ J should induce an inclusion I ′ ⊆ J ′.
The most important examples are the radical of an ideal, whose importance stems
from Hilbert’s Nullstellensatz, the integral closure Ī , which plays a crucial role
in the normalization of blow-up algebras, and tight closure I ∗, which is a closure
operation in positive characteristic invented by Hochster and Huneke. In the
context of tight closure, many other closure operations were introduced such
as plus closure I+, Frobenius closure I F , solid closure I ?, dagger closure I †,
parasolid closure.
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In this survey article we want to describe how the concepts of forcing algebras,
vector bundles and their torsors can help to understand closure operations. This
approach can be best understood by looking at the fundamental question whether
f ∈ ( f1, . . . , fn)

′
= I ′. In his work on solid closure, Hochster considered the

forcing algebra

A = R[T1, . . . , Tn]/( f1T1+ · · ·+ fnTn + f )

and put properties of this R-algebra in relation to the closure operation. Suppose
that the ideal I is primary to the maximal ideal m in a local normal domain
R of dimension d. Then the containment f ∈ I ? is equivalent to the property
that the local cohomology H d

m(A) does not vanish. This is still a difficult prop-
erty, however the situation becomes somehow geometrically richer. Because
of H d

m(A) ∼= H d−1(T,OA), where T = D(mA) is the open subset of Spec A
above the punctured spectrum U = D(m), we can study global cohomological
properties of T . The first syzygy module Syz( f1, . . . , fn) is a locally free sheaf
on U and acts on T in a locally trivial way. The scheme T is therefore a torsor
for the syzygy bundle, which are classified by H 1(U,Syz( f1, . . . , fn)), and the
element f determines this class. So the ideal operation is reflected by global
properties of T , which is locally just an affine space over the base.

If the ring and the ideal are graded, then these objects have their counterpart on
the corresponding projective varieties. This allows to apply results and machinery
from algebraic geometry to closure operations, like intersection theory, semista-
bility conditions, ampleness, moduli spaces of vector bundles, deformations. As
this translation works best in dimension two, where the corresponding projective
varieties are curves, we will focus here on this case. This approach has led in
dimension two over a finite field to a positive solution to the tantalizing question
whether tight closure is plus closure, and to negative solutions to arithmetic
variation and to the localization problem in tight closure theory. The aim of this
article is to provide an introduction to this techniques and to show how they help
to solve problems from tight closure theory.

Throughout we assume a basic knowledge of commutative algebra and alge-
braic geometry including local cohomology and sheaf cohomology; once in a
while we will use some notions and results from tight closure theory.
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1. Linear equations, forcing algebras and closure operations

Systems of linear equations. We start with some linear algebra. Let K be a
field. We consider a system of linear homogeneous equations over K ,

f11t1+ · · ·+ f1ntn = 0,

f21t1+ · · ·+ f2ntn = 0,
...

fm1t1+ · · ·+ fmntn = 0,

where the fi j are elements in K . The solution set to this system of homogeneous
equations is a vector space V over K (a subvector space of K n), its dimension
is n − rk(A), where A = ( fi j )i j is the matrix given by these elements. Addi-
tional elements f1, . . . , fm ∈ K give rise to the system of inhomogeneous linear
equations,

f11t1+ · · ·+ f1ntn = f1,

f21t1+ · · ·+ f2ntn = f2,

...

fm1t1+ · · ·+ fmntn = fm .

The solution set T of this inhomogeneous system may be empty, but nevertheless
it is tightly related to the solution space of the homogeneous system. First of all,
there exists an action

V × T → T, (v, t) 7→ v+ t,

because the sum of a solution of the homogeneous system and a solution of the
inhomogeneous system is again a solution of the inhomogeneous system. Theis
action is a group action of the group (V,+, 0) on the set T . Moreover, if we fix
one solution t0 ∈ T (supposing that at least one solution exists), then there exists
a bijection

V → T, v 7→ v+ t0.

This means that the group V acts simply transitive on T , and so T can be
identified with the vector space V , however not in a canonical way.
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Suppose now that X is a geometric object (a topological space, a manifold,
a variety, a scheme, the spectrum of a ring) and that instead of elements in the
field K we have functions

fi j : X→ K

on X (which are continuous, or differentiable, or algebraic). We form the matrix
of functions A = ( fi j )i j , which yields for every point P ∈ X a matrix A(P)
over K . Then we get from these data the space

V =

{
(P; t1, . . . , tn) | A(P)

( t1...
tn

)
= 0

}
⊆ X × K n

together with the projection to X . For a fixed point P ∈ X , the fiber VP of V
over P is the solution space to the corresponding system of homogeneous linear
equations given by inserting P into fi j . In particular, all fibers of the map

V → X

are vector spaces (maybe of nonconstant dimension). These vector space struc-
tures yield an addition1

V ×X V → V, (P; s1, . . . , sn; t1, . . . , tn) 7→ (P; s1+ t1, . . . , sn + tn)

(only points in the same fiber can be added). The mapping

X→ V, P 7→ (P; 0, . . . , 0)

is called the zero-section.
Suppose now that additional functions

f1, . . . , fm : X→ K

are given. Then we can form the set

T =

{
(P; t1, . . . , tn) | A(P)

( t1...
tn

)
=

( f1(P)...
fn(P)

)}
⊆ X × K n

with the projection to X . Again, every fiber TP of T over a point P ∈ X is the
solution set to the system of inhomogeneous linear equations which arises by
inserting P into fi j and fi . The actions of the fibers VP on TP (coming from
linear algebra) extend to an action

V ×X T → T, (P; t1, . . . , tn; s1, . . . , sn) 7→ (P; t1+ s1, . . . , tn + sn).

1V ×X V is the fiber product of V → X with itself.
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Also, if a (continuous, differentiable, algebraic) map

s : X→ T

with s(P) ∈ TP exists, then we can construct a (continuous, differentiable,
algebraic) isomorphism between V and T . However, different from the situation
in linear algebra (which corresponds to the situation where X is just one point),
such a section does rarely exist.

These objects T have new and sometimes difficult global properties which we
try to understand in these lectures. We will work mainly in an algebraic setting
and restrict to the situation where just one equation

f1T1+ · · ·+ fnTn = f

is given. Then in the homogeneous case ( f = 0) the fibers are vector spaces of
dimension n− 1 or n, and the later holds exactly for the points P ∈ X where
f1(P)= · · · = fn(P)= 0. In the inhomogeneous case the fibers are either empty
or of dimension (as a scheme) n− 1 or n. We give some typical examples.

Example 1.1. We consider the line X = A1
K (or X = K ,R,C etc.) with the

(identical) function x . For f1 = x and f = 0, i.e., for the homogeneous equation
xt = 0, the geometric object V consists of a horizontal line (corresponding to
the zero-solution) and a vertical line over x = 0. So all fibers except one are
zero-dimensional vector spaces. For the inhomogeneous equation xt = 1, T is a
hyperbola, and all fibers are zero-dimensional with the exception that the fiber
over x = 0 is empty.

For the homogeneous equation 0t = 0, V is just the affine cylinder over the
base line. For the inhomogeneous equation 0t = x , T consists of one vertical
line, almost all fibers are empty.

Example 1.2. Let X denote a plane (K 2,R2,A2
K ) with coordinate functions x

and y. We consider an inhomogeneous linear equation of type

xat1+ ybt2 = xc yd .

The fiber of the solution set T over a point 6= (0, 0) is one-dimensional, whereas
the fiber over (0, 0) has dimension two (for a, b, c, d ≥ 1). Many properties of
T depend on these four exponents.

In (most of) these examples we can observe the following behavior. On an
open subset, the dimension of the fibers is constant and equals n− 1, whereas
the fiber over some special points degenerates to an n-dimensional solution set
(or becomes empty).
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Forcing algebras. We describe now the algebraic setting of systems of linear
equations depending on a base space. For a commutative ring R, its spectrum
X =Spec(R) is a topological space on which the ring elements can be considered
as functions. The value of f ∈ R at a prime ideal P ∈ Spec(R) is just the
image of f under the ring homomorphism R→ R/P→ κ(P)= Q(R/P). In
this interpretation, a ring element is a function with values in different fields.
Suppose that R contains a field K . Then an element f ∈ R gives rise to the ring
homomorphism

K [Y ] → R, Y 7→ f,

which gives rise to a scheme morphism

Spec(R)→ Spec(K [Y ])∼= A1
K .

This is another way to consider f as a function on Spec(R) with values in the
affine line.

The following construction appeared first in [Hochster 1994] in the context of
solid closure.

Definition 1.3. Let R be a commutative ring and let f1, . . . , fn and f be ele-
ments in R. Then the R-algebra

R[T1, . . . , Tn]/( f1T1+ · · ·+ fnTn − f )

is called the forcing algebra of these elements (or these data).

The forcing algebra B forces f to lie inside the extended ideal ( f1, . . . , fn)B
(hence the name). For every R-algebra S such that f ∈ ( f1, . . . , fn)S there exists
a (non unique) ring homomorphism B→ S by sending Ti to the coefficient si ∈ S
in an expression f = s1 f1+ · · ·+ sn fn .

The forcing algebra induces the spectrum morphism

ϕ : Spec(B)→ Spec(R).

Over a point P ∈ X = Spec(R), the fiber of this morphism is given by

Spec
(
B⊗R κ(P)

)
,

and we can write

B⊗R κ(P)= κ(P)[T1, . . . , Tn]/( f1(P)T1+ · · ·+ fn(P)Tn − f (P)),

where fi (P) means the evaluation of the fi in the residue class field. Hence the
κ(P)-points in the fiber are exactly the solutions to the inhomogeneous linear
equation f1(P)T1+· · ·+ fn(P)Tn= f (P). In particular, all the fibers are (empty
or) affine spaces.
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Forcing algebras and closure operations. Let R denote a commutative ring and
let I = ( f1, . . . , fn) be an ideal. Let f ∈ R and let

B = R[T1, . . . , Tn]/( f1T1+ · · ·+ fnTn − f )

be the corresponding forcing algebra and

ϕ : Spec(B)→ Spec(R)

the corresponding spectrum morphism. How are properties of ϕ (or of the
R-algebra B) related to certain ideal closure operations?

We start with some examples. The element f belongs to the ideal I if and
only if we can write f = r1 f1+· · ·+rn fn with ri ∈ R. By the universal property
of the forcing algebra this means that there exists an R-algebra homomorphism

B→ R,

hence f ∈ I holds if and only if ϕ admits a scheme section. This is also equivalent
to

R→ B

admitting an R-module section (R being a direct module summand of B) or B
being a pure R-algebra (so for forcing algebras properties might be equivalent
which are not equivalent for arbitrary algebras).

The radical of an ideal. Now we look at the radical of the ideal I ,

rad(I )=
{

f ∈ R | f k
∈ I for some k

}
.

The importance of the radical comes mainly from Hilbert’s Nullstellensatz, saying
that for algebras of finite type over an algebraically closed field there is a natural
bijection between radical ideals and closed algebraic zero-sets. So geometrically
one can see from an ideal only its radical. As this is quite a coarse closure
operation we should expect that this corresponds to a quite coarse property of
the morphism ϕ as well. Indeed, it is true that f ∈ rad(I ) if and only if ϕ is
surjective. This is true since the radical of an ideal is the intersection of all prime
ideals in which it is contained. Hence an element f belongs to the radical if and
only if for all residue class homomorphisms

θ : R→ κ(p)

where I is sent to 0, also f is sent to 0. But this means for the forcing equation
that whenever the equation degenerates to 0, then also the inhomogeneous part
becomes zero, and so there will always be a solution to the inhomogeneous
equation.

Exercise. Define the radical of a submodule inside a module.
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Integral closure of an ideal. Another closure operation is integral closure (see
[Huneke and Swanson 2006]). It is defined by

I =
{

f ∈ R | f k
+ a1 f k−1

+ · · ·+ ak−1 f + ak = 0 f orsome k and ai ∈ I i} .
This notion is important for describing the normalization of the blow up of the
ideal I . Another characterization (assume that R is noetherian) is that there
exists a z ∈ R, not contained in any minimal prime ideal of R, such that z f n

∈ I n

holds for all n. Another equivalent property — the valuative criterion — is that
for all ring homomorphisms

θ : R→ D

to a discrete valuation domain D the containment θ( f ) ∈ θ(I )D holds.
The characterization of the integral closure in terms of forcing algebras requires

some notions from topology. A continuous map

ϕ : X→ Y

between topological spaces X and Y is called a submersion, if it is surjective and
if Y carries the image topology (quotient topology) under this map. This means
that a subset W ⊆ Y is open if and only if its preimage ϕ−1(W ) is open. Since
the spectrum of a ring endowed with the Zarisiki topology is a topological space,
this notion can be applied to the spectrum morphism of a ring homomorphism.
With this notion we can state that f ∈ Ī if and only if the forcing morphism

ϕ : Spec(B)→ Spec(R)

is a universal submersion (universal means here that for any ring change R→ R′

to a noetherian ring R′, the resulting homomorphism R′ → B ′ still has this
property). The relation between these two notions stems from the fact that also
for universal submersions there exists a criterion in terms of discrete valuation
domains: A morphism of finite type between two affine noetherian schemes is
a universal submersion if and only if the base change to any discrete valuation
domain yields a submersion (see [SGA 1 1971, Remarque 2.6]). For a morphism

Z→ Spec(D)

(D a discrete valuation domain) to be a submersion means that above the only
chain of prime ideals in Spec(D), namely (0)⊂mD , there exists a chain of prime
ideals p′ ⊆ q′ in Z lying over this chain. This pair-lifting property holds for a
universal submersion

Spec(S)−→ Spec(R)
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for any pair of prime ideals p⊆ q in Spec(R). This property is stronger than lying
over (which means surjective) but weaker than the going-down or the going-up
property (in the presence of surjectivity).

If we are dealing only with algebras of finite type over the complex numbers C,
then we may also consider the corresponding complex spaces with their natural
topology induced from the euclidean topology of Cn . Then universal submersive
with respect to the Zariski topology is the same as submersive in the complex
topology (the target space needs to be normal).

Example 1.4. Let K be a field and consider R = K [X ]. Since this is a principal
ideal domain, the only interesting forcing algebras (if we are only interested in
the local behavior around (X)) are of the form K [X, T ]/(XnT−Xm). For m≥ n
this K [X ]-algebra admits a section (corresponding to the fact that Xm

∈ (Xn)),
and if n ≥ 1 there exists an affine line over the maximal ideal (X). So now
assume m < n. If m = 0, then we have a hyperbola mapping to an affine line,
with the fiber over (X) being empty, corresponding to the fact that 1 does not
belong to the radical of (Xn) for n ≥ 1. So assume finally 1 ≤ m < n. Then
Xm belongs to the radical of (Xn), but not to its integral closure (which is the
identical closure on a one-dimensional regular ring). We can write the forcing
equation as XnT − Xm

= Xm(Xn−m T − 1). So the spectrum of the forcing
algebra consists of a (thickened) line over (X) and of a hyperbola. The forcing
morphism is surjective, but it is not a submersion. For example, the preimage of
V (X)= {(X)} is a connected component hence open, but this single point is not
open.

Example 1.5. Let K be a field and let R = K [X, Y ] be the polynomial ring
in two variables. We consider the ideal I = (X2, Y ) and the element X . This
element belongs to the radical of this ideal; hence the forcing morphism

Spec
(
K [X, Y, T1, T2]/(X2T1+ Y T2− X

)
→ Spec

(
K [X, Y ]

)
is surjective. We claim that it is not a submersion. For this we look at the
reduction modulo Y . In K [X, Y ]/(Y )∼= K [X ] the ideal I becomes (X2) which
does not contain X . Hence by the valuative criterion for integral closure, X
does not belong to the integral closure of the ideal. One can also say that the
chain V (X, Y )⊂ V (Y ) in the affine plane does not have a lift (as a chain) to the
spectrum of the forcing algebra.

For the ideal I = (X2, Y 2) and the element XY the situation looks different.
Let

θ : K [X, Y ] → D

be a ring homomorphism to a discrete valuation domain D. If X or Y is mapped
to 0, then also XY is mapped to 0 and hence belongs to the extended ideal. So
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assume that θ(X) = uπr and θ(Y ) = vπ s , where π is a local parameter of D
and u and v are units. Then θ(XY ) = uvπr+s and the exponent is at least the
minimum of 2r and 2s, hence

θ(XY ) ∈ (π2r , π2s)= (θ(X2), θ(Y 2))D.

So XY belongs to the integral closure of (X2, Y 2) and the forcing morphism

Spec
(
K [X, Y, T1, T2]/(X2T1+ Y 2T2− XY )

)
→ Spec

(
K [X, Y ]

)
is a universal submersion.

Continuous closure. Suppose now that R = C[X1, . . . , Xk]. Then every polyno-
mial f ∈ R can be considered as a continuous function

f : Ck
→ C, (x1, . . . , xk) 7→ f (x1, . . . , xk),

in the complex topology. If I = ( f1, . . . , fn) is an ideal and f ∈ R is an element,
we say that f belongs to the continuous closure of I , if there exist continuous
functions

g1, . . . , gn : C
k
→ C

such that

f =
n∑

i=1

gi fi

(as an identity of functions). The same definition works for C-algebras of finite
type; see [Brenner 2006a; Epstein and Hochster 2011; Kollár 2012].

It is not at all clear at once that there may exist polynomials f 6∈ I but inside
the continuous closure of I . For C[X ] it is easy to show that the continuous
closure is (like the integral closure) just the ideal itself. We also remark that
when we would only allow holomorphic functions g1, . . . , gn then we could not
get something larger. However, with continuous functions g1, g2 : C

2
→ C we

can for example write
X2Y 2

= g1 X3
+ g2Y 3.

Continuous closure is always inside the integral closure and hence also inside
the radical. The element XY does not belong to the continuous closure of
I = (X2, Y 2), though it belongs to the integral closure of I . In terms of forcing
algebras, an element f belongs to the continuous closure if and only if the
complex forcing mapping

ϕC : Spec(B)C→ Spec(R)C

(between the corresponding complex spaces) admits a continuous section.
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2. Vector bundles and torsors

Geometric vector bundles. We have seen that the fibers of the spectrum of a
forcing algebra are (empty or) affine spaces. However, this is not only fiberwise
true, but more general: If we localize the forcing algebra at fi we get

(R[T1, . . . , Tn]/( f1T1+ · · ·+ fnTn − f )) fi
∼= R fi [T1, . . . , Ti−1, Ti+1, . . . , Tn],

since we can write

Ti =−
∑
j 6=i

f j

fi
T j +

f
fi
.

So over every D( fi ) the spectrum of the forcing algebra is an (n−1)-dimensional
affine space over the base. So locally, restricted to D( fi ), we have isomorphisms

T |D( fi )
∼= D( fi )×An−1.

On the intersections D( fi )∩ D( f j ) we get two identifications with affine space,
and the transition morphisms are linear if f = 0, but only affine-linear in general
(because of the translation with f

fi
).

So the forcing algebra has locally the form R fi [T1, . . . , Ti−1, Ti+1, . . . , Tn]

and its spectrum Spec(B) has locally the form D( fi )×An−1
K . This description

holds on the union U =
⋃n

i=1 D( fi ). Moreover, in the homogeneous case ( f = 0)
the transition mappings are linear. Hence V |U , where V is the spectrum of a
homogeneous forcing algebra, is a geometric vector bundle according to the
following definition.

Definition 2.1. Let X denote a scheme. A scheme V equipped with a morphism

p : V → X

is called a geometric vector bundle of rank r over X if there exists an open
covering X =

⋃
i∈I Ui and Ui -isomorphisms

ψi :Ui ×Ar
= Ar

Ui
→ V |Ui = p−1(Ui )

such that for every open affine subset U ⊆Ui ∩U j the transition mappings

ψ−1
j ◦ψi : A

r
Ui
|U → Ar

U j
|U

are linear automorphisms; that is, they are induced by an automorphism of the
polynomial ring 0(U,OX )[T1, . . . , Tr ] given by Ti 7→

∑r
j=1 ai j T j .

Here we can restrict always to affine open coverings. If X is separated then the
intersection of two affine open subschemes is again affine and then it is enough
to check the condition on the intersections. The trivial bundle of rank r is the
r -dimensional affine space Ar

X over X , and locally every vector bundle looks like
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this. Many properties of an affine space are enjoyed by general vector bundles.
For example, in the affine space we have the natural addition

+ : Ar
U ×U Ar

U → Ar
U , (v1, . . . , vr , w1, . . . , wr ) 7→ (v1+w1, . . . , vr +wr ),

and this carries over to a vector bundle, that is, we have an addition

α : V ×X V → V .

The reason for this is that the isomorphisms occurring in the definition of a
geometric vector bundle are linear, hence the addition on V |U coming from
an isomorphism with some affine space over U is independent of the chosen
isomorphism. For the same reason there is a unique closed subscheme of V called
the zero-section which is locally defined to be 0×U ⊆ Ar

U . Also, multiplication
by a scalar, i.e., the mapping

· : AU ×U Ar
U → Ar

U , (s, v1, . . . , vr ) 7→ (sv1, . . . , svr ),

carries over to a scalar multiplication

· : AX ×X V → V .

In particular, for every point P ∈ X the fiber VP = V ×X P is an affine space
over κ(P).

For a geometric vector bundle p : V → X and an open subset U ⊆ X one sets

0(U, V )= {s :U → V |U | p ◦ s = IdU } ,

so this is the set of sections in V over U . This gives in fact for every scheme
over X a set-valued sheaf. Because of the observations just mentioned, these
sections can also be added and multiplied by elements in the structure sheaf, and
so we get for every vector bundle a locally free sheaf, which is free on the open
subsets where the vector bundle is trivial.

Definition 2.2. A coherent OX -module F on a scheme X is called locally
free of rank r , if there exists an open covering X =

⋃
i∈I Ui and OUi -module-

isomorphisms F |Ui
∼= (OUi )

r for every i ∈ I .

Vector bundles and locally free sheaves are essentially the same objects.

Theorem 2.3. Let X denote a scheme. Then the category of locally free sheaves
on X and the category of geometric vector bundles on X are equivalent. A
geometric vector bundle V → X corresponds to the sheaf of its sections, and
a locally free sheaf F corresponds to the (relative) spectrum of the symmetric
algebra of the dual module F∨.

The free sheaf of rank r corresponds to the affine space Ar
X over X .
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Torsors of vector bundles. We have seen that

V = Spec
(
R[T1, . . . , Tn]/( f1T1+ · · ·+ fnTn)

)
acts on the spectrum of a forcing algebra

T = Spec
(
R[T1, . . . , Tn]/( f1T1+ · · ·+ fnTn − f )

)
by addition. The restriction of V to U = D( f1, . . . , fn) is a vector bundle, and
T restricted to U becomes a V -torsor.

Definition 2.4. Let V denote a geometric vector bundle over a scheme X . A
scheme T → X together with an action

β : V ×X T → T

is called a geometric (Zariski) torsor for V (or a V -principal fiber bundle or a
principal homogeneous space) if there exists an open covering X =

⋃
i∈I Ui and

isomorphisms
ϕi : T |Ui → V |Ui

such that the diagrams (we set U =Ui and ϕ = ϕi )

V |U ×U T |U
β
→ T |U

Id×ϕ ↓ ↓ ϕ

V |U ×U V |U
α
→ V |U

commute, where α is the addition on the vector bundle.

The torsors of vector bundles can be classified in the following way.

Proposition 2.5. Let X denote a noetherian separated scheme and let

p : V → X

denote a geometric vector bundle on X with sheaf of sections S. Then there exists
a correspondence between first cohomology classes c ∈ H 1(X,S) and geometric
V -torsors.

Proof. We describe only the correspondence. Let T denote a V -torsor. There
exists by definition an open covering X =

⋃
i∈I Ui such that there exist isomor-

phisms
ϕi : T |Ui → V |Ui

which are compatible with the action of V |Ui on itself. The isomorphisms ϕi

induce automorphisms

ψi j = ϕ j ◦ϕ
−1
i : V |Ui∩U j → V |Ui∩U j .
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These automorphisms are compatible with the action of V on itself, and this
means that they are of the form

ψi j = IdV |Ui∩U j + si j

with suitable sections si j ∈ 0(Ui ∩U j ,S). This family defines a Čech cocycle
for the covering and gives therefore a cohomology class in H 1(X,S).

For the reverse direction, suppose that the cohomology class c ∈ H 1(X,S)
is represented by a Čech cocycle si j ∈ 0(Ui ∩ U j ,S) for an open covering
X =

⋃
i∈I Ui . Set Ti := V |Ui . We take the morphisms

ψi j : Ti |Ui∩U j = V |Ui∩U j → V |Ui∩U j = T j |Ui∩U j

given by ψi j := IdV |Ui∩U j + si j to glue the Ti together to a scheme T over X .
This is possible since the cocycle condition guarantees the gluing condition for
schemes (see [EGA I 1960, Chapter 0, §4.1.7]). The action of Ti = V |Ui on itself
glues also together to give an action on T . �

It follows immediately that for an affine scheme (a scheme of type Spec(R))
there is no nontrivial torsor for any vector bundle. There will however be in
general many nontrivial torsors on the punctured spectrum (and on a projective
variety).

Forcing algebras and induced torsors. As TU is a VU -torsor, and as every V -
torsor is represented by a unique cohomology class, there should be a natural
cohomology class coming from the forcing data. To see this, let R be a noetherian
ring and I = ( f1, . . . , fn) be an ideal. Then on U = D(I ) we have the short
exact sequence

0→ Syz( f1, . . . , fn)→On
U →OU → 0.

On the left we have a locally free sheaf of rank n− 1 which we call the syzygy
sheaf or syzygy bundle. It is the sheaf of sections in the geometric vector bundle

Spec
(
R[T1, . . . , Tn]/( f1T1+ · · ·+ fnTn)

)
|U .

An element f ∈ R defines an element f ∈ 0(U,OU ) and hence a cohomology
class δ( f )∈H 1(U,Syz( f1, . . . , fn)). Hence f defines in fact a Syz( f1, . . . , fn)-
torsor over U . We will see that this torsor is induced by the forcing algebra given
by f1, . . . , fn and f .

Theorem 2.6. Let R denote a noetherian ring, let I = ( f1, . . . , fn) denote an
ideal and let f ∈ R be another element. Let c ∈ H 1(D(I ),Syz( f1, . . . , fn)) be
the corresponding cohomology class and let

B = R[T1, . . . , Tn]/( f1T1+ · · ·+ fnTn − f )
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denote the forcing algebra for these data. Then the scheme Spec(B)|D(I ) together
with the natural action of the syzygy bundle on it is isomorphic to the torsor
given by c.

Proof. We compute the cohomology class δ( f ) ∈ H 1(U,Syz( f1, . . . , fn)) and
the cohomology class given by the forcing algebra. For the first computation we
look at the short exact sequence

0→ Syz( f1, . . . , fn)→On
U

f1,..., fn
→ OU → 0.

On D( fi ), the element f is the image of (0, . . . , 0, f/ fi , 0, . . . , 0) (the nonzero
entry is at the i-th place). The cohomology class is therefore represented by the
family of differences(

0, . . . , 0,
f
fi
, 0, . . . , 0,−

f
f j
, 0, . . . , 0

)
∈0(D( fi )∩D( f j ),Syz( f1, . . . , fn)).

On the other hand, there are isomorphisms

V |D( fi )→ T |D( fi ), (s1, . . . , sn) 7→

(
s1, . . . , si−1, si +

f
fi
, si+1, . . . , sn

)
.

The composition of two such isomorphisms on D( fi f j ) is the identity plus the
same section as before. �

Example 2.7. Let (R,m) denote a two-dimensional normal local noetherian
domain and let f and g be two parameters in R. On U = D(m) we have the
short exact sequence

0→OU ∼= Syz( f, g)→O2
U

f,g
→OU → 0

and its corresponding long exact sequence of cohomology,

0→ R→ R2 f,g
→ R

δ
→ H 1(U,OX )→ · · · .

The connecting homomorphism δ sends an element h ∈ R to h
f g . The torsor

given by such a cohomology class c = h
f g ∈ H 1(U,OX ) can be realized by the

forcing algebra
R[T1, T2]/( f T1+ gT2− h).

Note that different forcing algebras may give the same torsor, because the torsor
depends only on the spectrum of the forcing algebra restricted to the punctured
spectrum of R. For example, the cohomology class 1

f g =
f g

f 2g2 defines one torsor,
but the two fractions yield the two forcing algebras R[T1, T2]/( f T1+ gT2− 1)
and R[T1, T2]/( f 2T1+ g2T2− f g), which are quite different. The fiber over the
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maximal ideal of the first one is empty, whereas the fiber over the maximal ideal
of the second one is a plane.

If R is regular, say R = K [X, Y ] (or the localization of this at (X, Y ) or the
corresponding power series ring) then the first cohomology classes are K -linear
combinations of terms 1/(x i y j ), for i, j ≥ 1. They are realized by the forcing
algebras

K [X, Y, T1, T2]/(X i T1+ Y j T2− 1).

Since the fiber over the maximal ideal is empty, the spectrum of the forcing
algebra equals the torsor. Or, the other way round, the torsor is itself an affine
scheme.

3. Tight closure and cohomological properties of torsors

The closure operations we have considered so far can be characterized by some
property of the forcing algebra. However, they can not be characterized by a
property of the corresponding torsor alone. For example, for R = K [X, Y ], we
may write

1
XY
=

X
X2Y
=

XY
X2Y 2 =

X2Y 2

X3Y 3 ,

so the torsors given by the forcing algebras

R[T1, T2]/(XT1+ Y T2− 1), R[T1, T2]/(X2T1+ Y T2− X),

R[T1, T2]/(X2T1+ Y 2T2− XY ) and R[T1, T2]/(X3T1+ Y 3T2− X2Y 2)

are all the same (the restriction over D(X, Y )), but their global properties are quite
different. We have a nonsurjection, a surjective nonsubmersion, a submersion
which does not admit (for K = C) a continuous section and a map which admits
a continuous section.

We deal now with closure operations which depend only on the torsor which
the forcing algebra defines, so they only depend on the cohomology class of
the forcing data inside the syzygy bundle. Our main example is tight closure, a
theory developed by Hochster and Huneke, and related closure operations like
solid closure and plus closure. For background on tight closure see [Hochster
and Huneke 1990; Huneke 1996; 1998].

Tight closure and solid closure. Let R be a noetherian domain of positive char-
acteristic, let

F : R→ R, f 7→ f p,

be the Frobenius homomorphism, and

Fe
: R→ R, f 7→ f q , q = pe,
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its e-th iteration. Let I be an ideal and set

I [q] = extended ideal of I under Fe.

Then define the tight closure of I to be the ideal

I ∗ := { f ∈ R | there exists z 6= 0 such that z f q
∈ I [q] for all q = pe

}.

The element f defines the cohomology class c ∈ H 1(D(I ),Syz( f1, . . . , fn)).
Suppose that R is normal and that I has height at least 2 (think of a local
normal domain of dimension at least 2 and an m-primary ideal I ). Then the e-th
Frobenius pull-back of the cohomology class is

Fe∗(c) ∈ H 1(D(I ), Fe∗(Syz( f1, . . . , fn))
)
∼= H 1(D(I ),Syz( f q

1 , . . . , f q
n ))

(q = pe) and this is the cohomology class corresponding to f q . By the height
assumption, zFe∗(c)= 0 if and only if z f q

∈ ( f q
1 , . . . , f q

n ), and if this holds for
all e then f ∈ I ∗ by definition. This shows already that tight closure under the
given conditions does only depend on the cohomology class.

This is also a consequence of the following theorem, which gives a characteri-
zation of tight closure in terms of forcing algebra and local cohomology.

Theorem 3.1 [Hochster 1994, Theorem 8.6]. Let R be a normal excellent lo-
cal domain with maximal ideal m over a field of positive characteristic. Let
f1, . . . , fn generate an m-primary ideal I and let f be another element in R.

Then f ∈ I ∗ if and only if
H dim(R)
m (B) 6= 0,

where B = R[T1, . . . , Tn]/( f1T1+ · · ·+ fnTn − f ) denotes the forcing algebra
of these elements.

If the dimension d is at least two, then

H d
m(R)→ H d

m(B)∼= H d
mB(B)∼= H d−1(D(mB),OB).

This means that we have to look at the cohomological properties of the comple-
ment of the exceptional fiber over the closed point, i.e., the torsor given by these
data. If H d−1(D(mB),OB)= 0 then this is true for all quasicoherent sheaves
instead of the structure sheaf. This property can be expressed by saying that
the cohomological dimension of D(mB) is ≤ d − 2 and thus smaller than the
cohomological dimension of the punctured spectrum D(m), which is exactly
d−1. So belonging to tight closure can be rephrased by saying that the formation
of the corresponding torsor does not change the cohomological dimension.

If the dimension is two, then we have to look at whether the first cohomology
of the structure sheaf vanishes. This is true (by Serre’s cohomological criterion
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for affineness, see below) if and only if the open subset D(mB) is an affine
scheme (the spectrum of a ring).

The right-hand side of the equivalence in Theorem 3.1 — the nonvanishing of
the top-dimensional local cohomology — is independent of any characteristic
assumption, and can be taken as the basis for the definition of another closure
operation, called solid closure. So the theorem above says that in positive
characteristic tight closure and solid closure coincide. There is also a definition
of tight closure for algebras over a field of characteristic 0 by reduction to positive
characteristic; see [Hochster 1996].

An important property of tight closure is that it is trivial for regular rings:
I ∗ = I for every ideal I . This rests upon Kunz’s theorem [1969, 3.3] saying that
the Frobenius homomorphism for regular rings is flat. This property implies the
following cohomological property of torsors.

Corollary 3.2. Let (R,m) denote a regular local ring of dimension d and of
positive characteristic, let I = ( f1, . . . , fn) be an m-primary ideal and f ∈ R
an element with f 6∈ I . Let B = R[T1, . . . , Tn]/( f1T1+ · · ·+ fnTn − f ) be the
corresponding forcing algebra. Then for the extended ideal mB we have

H d
mB(B)= H d−1(D(mB),OB)= 0.

Proof. This follows from Theorem 3.1 and f 6∈ I ∗. �

In dimension two this is true in every (even mixed) characteristic.

Theorem 3.3. Let (R,m) denote a two-dimensional regular local ring, let I =
( f1, . . . , fn) be an m-primary ideal and f ∈ R an element with f 6∈ I . Let
B= R[T1, . . . , Tn]/( f1T1+· · ·+ fnTn− f ) be the corresponding forcing algebra.
Then the extended ideal mB satisfies

H 2
mB(B)= H 1(D(mB),OB)= 0.

In particular, the open subset T = D(mB) is an affine scheme if and only if
f 6∈ I .

The main point for the proof of this result is that for f 6∈ I , the natural mapping

H 1(U,OX )→ H 1(T,OT )

is not injective by a Matlis duality argument. Since the local cohomology of a
regular ring is explicitly known, this map annihilates some cohomology class of
the form 1/( f g) where f, g are parameters. But then it annihilates the complete
local cohomology module and then T is an affine scheme.

For nonregular two-dimensional rings it is a difficult question in general to
decide whether a torsor is affine or not. A satisfactory answer is only known in
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the normal two-dimensional graded case over a field, which we will deal with in
the final lectures.

In higher dimension in characteristic zero it is not true that a regular ring is
solidly closed (meaning that every ideal equals its solid closure), as was shown
by the following example of Paul Roberts.

Example 3.4 [Roberts 1994]. Let K be a field of characteristic 0 and let

B = K [X, Y, Z ][U, V,W ]/(X3U + Y 3V + Z3W − X2Y 2 Z2).

Then the ideal a= (X, Y, Z)B has the property that H 3
a (B) 6= 0. This means that

in R = K [X, Y, Z ] the element X2Y 2 Z2 belongs to the solid closure of the ideal
(X3, Y 3, Z3); hence the three-dimensional polynomial ring is not solidly closed.

This example was the motivation for the introduction of parasolid closure
[Brenner 2003a], which has all the good properties of solid closure but which is
also trivial for regular rings.

If R is a normal local domain of dimension 2 and I = ( f1, . . . , fn) an m-
primary ideal, then f ∈ I ∗ (or inside the solid closure) if and only if D(m) ⊆
Spec(B) is not an affine scheme, where B denotes the forcing algebra. Here
we will discuss in more detail, with this application in mind, when a scheme is
affine.

Affine schemes. A scheme U is called affine if it is isomorphic to the spectrum
of some commutative ring R. If the scheme is of finite type over a field (or a
ring) K , then this is equivalent to saying that there exist global functions

g1, . . . , gm ∈ 0(U,OU )

such that the mapping

U → Am
K , x 7→ (g1(x), . . . , gm(x)),

is a closed embedding. The relation to cohomology is given by the following
well-known theorem of Serre [Hartshorne 1977, Theorem III.3.7].

Theorem 3.5. For U a noetherian scheme, the following properties are equiva-
lent.

(1) U is an affine scheme.

(2) For every quasicoherent sheaf F on U and all i ≥ 1 we have H i (U,F)= 0.

(3) For every coherent ideal sheaf I on U we have H 1(U, I)= 0.

It is in general a difficult question whether a given scheme U is affine. For
example, suppose that X = Spec(R) is an affine scheme and

U = D(a)⊆ X
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is an open subset (such schemes are called quasiaffine) defined by an ideal a⊆ R.
When is U itself affine? The cohomological criterion above simplifies to the
condition that H i (U,OX )= 0 for i ≥ 1.

Of course, if a= ( f ) is a principal ideal (or up to radical a principal ideal),
then U = D( f ) ∼= Spec(R f ) is affine. On the other hand, if (R,m) is a local
ring of dimension ≥ 2, then

D(m)⊂ Spec(R)

is not affine, since

H d−1(U,OX )= H d
m(R) 6= 0

by the relation between sheaf cohomology and local cohomology and a theorem
of Grothendieck [Bruns and Herzog 1993, Theorem 3.5.7].

Codimension condition. One can show that for an open affine subset U ⊆ X the
closed complement Y = X \U must be of pure codimension one (U must be the
complement of the support of an effective divisor). In a regular or (locally Q-)
factorial domain the complement of every effective divisor is affine, since the
divisor can be described (at least locally geometrically) by one equation. But it is
easy to give examples to show that this is not true for normal three-dimensional
domains. The following example is a standard example for this phenomenon and
it is in fact given by a forcing algebra (we write here and in the following often
small letters for the classes of the variables in the residue class ring).

Example 3.6. Let K be a field and consider the ring

R = K [X, Y,U, V ]/(XU − Y V ).

The ideal p= (x, y) is a prime ideal in R of height one. Hence the open subset
U = D(x, y) is the complement of an irreducible hypersurface. However, U is
not affine. For this we consider the closed subscheme

A2
K
∼= Z = V (u, v)⊆ Spec(R)

and

Z ∩U ⊆U.

If U were affine, then also the closed subscheme Z ∩U ∼= A2
K \ {(0, 0)} would

be affine, but this is not true, since the complement of the punctured plane has
codimension 2.
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Ring of global sections of affine schemes. For an open subset U = D(a) ⊆
Spec(R) its ring of global sections 0(U,OX ) is difficult to compute in general.
If R is a domain and a= ( f1, . . . , fn), then

0(U,OX )= R f1 ∩ R f2 ∩ · · · ∩ R fn .

This ring is not always of finite type over R, but it is if U is affine.

Lemma 3.7. Let R be a noetherian ring and U = D(a) ⊆ Spec(R) an open
subset.

(1) U is an affine scheme if and only if a0(U,OX )= (1).

(2) If this holds, and q1 f1 + · · · + qn fn = 1 with f1, . . . , fn ∈ a and qi ∈

0(U,OX ), then 0(U,OX )= R[q1, . . . , qn]. In particular, the ring of global
sections over U is finitely generated over R.

Sketch of proof. (1) There always exists a natural scheme morphism

U → Spec
(
0(U,OX )

)
,

and U is affine if and only if this morphism is an isomorphism. It is always an
open embedding (because it is an isomorphism on the D( f ), f ∈ a), and the
image is D(a0(U,OX )). This is everything if and only if the extended ideal is
the unit ideal.

(2) We write 1= q1 f1+ · · ·+ qn fn and consider the natural morphism

U → Spec
(
R[q1, . . . , qn]

)
corresponding to the ring inclusion R[q1, . . . , qn] ⊆ 0(U,OX ). This morphism
is again an open embedding and its image is everything. �

We give some examples of tight closure computations on the Fermat cubic
x3
+ y3
+ z3
= 0, a standard example in tight closure theory, with the methods

we have developed so far.

Example 3.8. We consider the Fermat cubic R = K [X, Y, Z ]/(X3
+ Y 3

+ Z3),
the ideal I = (X, Y ) and the element Z . We claim that for characteristic 6= 3
the element Z does not belong to the solid closure of I . Equivalently, the open
subset

D(X, Y )⊆ Spec
(
R[S, T ]/(X S+ Y T − Z)

)
is affine. For this we show that the extended ideal inside the ring of global
sections is the unit ideal. First of all we get the equation

X3
+ Y 3

= (X S+ Y T )3 = X3S3
+ 3X2S2Y T + 3X SY 2T 2

+ Y 3T 3
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or, equivalently,

X3(S3
− 1)+ 3X2Y S2T + 3XY 2ST 2

+ Y 3(T 3
− 1)= 0.

We write this as

X3(S3
− 1)=−3X2Y S2T − 3XY 2ST 2

− Y 3(T 3
− 1)

= Y
(
−3X2S2T − 3XY ST 2

− Y 2(T 3
− 1)

)
,

which yields on D(X, Y ) the rational function

Q =
S3
− 1
Y
=
−3X2S2T − 3XY ST 2

− Y 2
(
T 3
− 1

)
X3 .

This shows that S3
− 1= QY belongs to the extended ideal. Similarly, one can

show that also the other coefficients 3S2T, 3ST 2, T 3
− 1 belong to the extended

ideal. Therefore in characteristic different from 3, the extended ideal is the unit
ideal.

Example 3.9. We consider the Fermat cubic R = K [X, Y, Z ]/(X3
+ Y 3

+ Z3),
the ideal I = (X, Y ) and the element Z2. We claim that in positive characteristic
6= 3 the element Z2 does belong to the tight closure of I . Equivalently, the open
subset

D(X, Y )⊆ Spec
(
R[S, T ]/(X S+ Y T − Z2)

)
is not affine. The element Z2 defines the cohomology class

c =
Z2

XY
∈ H 1(D(X, Y ),OX )

and its Frobenius pull-backs are Fe∗(c)= Z2q

Xq Y q ∈ H 1(D(X, Y ),OX ). This coho-
mology module has a Z-graded structure (the degree is given by the difference of
the degree of the numerator and the degree of the denominator) and, moreover, it
is 0 in positive degree (this is related to the fact that the corresponding projective
curve is elliptic). Therefore for any homogeneous element t ∈ R of positive
degree we have t Fe∗(c)= 0 and so Z2 belongs to the tight closure.

From this it follows also that in characteristic 0 the element Z2 belongs to the
solid closure, because affineness is an open property in an arithmetic (or any)
family, which follows from Lemma 3.7 (1).

We give now a cohomological proof of a tight closure containment on the
Fermat cubic for a nonparameter ideal. M. McDermott has raised the question
whether

xyz ∈ (x2, y2, z2)∗ in K [X, Y, Z ]/(X3
+ Y 3

+ Z3).

This was answered positively by A. Singh [1998] by a long “equational” argu-
ment.
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Example 3.10. Let R = K [X, Y, Z ]/(X3
+ Y 3

+ Z3), where K is a field of
positive characteristic p 6= 3, I = (x2, y2, z2) and f = xyz. We consider the
short exact sequence

0→ Syz(x2, y2, z2)→O3
U

x2,y2,z2

→ OU → 0

and the cohomology class

c = δ(xyz) ∈ H 1 (U,Syz(x2, y2, z2)
)
.

We want to show that zFe∗(c)= 0 for all e ≥ 0 (here the test element z equals
the element z in the ring). It is helpful to work with the graded structure on this
syzygy sheaf (or to work on the corresponding elliptic curve Proj R directly).
Now the equation x3

+ y3
+ z3
= 0 can be considered as a syzygy (of total degree

3) for x2, y2, z2, yielding an inclusion

0→OU → Syz(x2, y2, z2).

Since this syzygy does not vanish anywhere on U the quotient sheaf is invertible
and in fact isomorphic to the structure sheaf. Hence we have

0→OU → Syz(x2, y2, z2)→OU → 0

and the cohomology sequence

→ H 1(U,OU )s→ H 1(U,Syz(x2, y2, z2)
)

s+3→ H 1(U,OU )s→ 0,

where s denotes the degree-s piece. The class c lives in H 1
(
U,Syz(x2, y2, z2)

)
3,

so its Frobenius pull-backs live in H 1
(
U, Fe∗ Syz(x2, y2, z2)

)
3q , and we can

have a look at the cohomology of the pull-backs of the sequence, i.e.,

→ H 1(U,OU )0→ H 1(U, Fe∗ Syz(x2, y2, z2)
)

3q → H 1(U,OU )0→ 0.

The class zFe∗(c) lives in H 1
(
U, Fe∗ Syz(x2, y2, z2)

)
3q+1. It is mapped on the

right to H 1(U,OU )1, which is 0 (because we are working over an elliptic curve),
hence it comes from the left, which is H 1(U,OU )1 = 0. So zFe∗(c) = 0 and
f ∈

(
x2, y2, z2

)∗.
Affineness and superheight. We have mentioned above that the complement
of an affine open subset must have pure codimension 1. We have also seen in
Example 3.6 that the nonaffineness can be established by looking at the behavior
of the codimension when the situation is restricted to closed subschemes. The
following definition and theorem is an algebraic version of this observation
[Brenner 2002].
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Definition 3.11. Let R be a noetherian commutative ring and let I ⊆ R be an
ideal. The (noetherian) superheight is the supremum

sup
(
ht(I S) : S is a notherian R-algebra

)
.

Theorem 3.12. Let R be a noetherian commutative ring and let I ⊆ R be an
ideal and U = D(I )⊆ X = Spec(R). Then the following are equivalent.

(1) U is an affine scheme.

(2) I has superheight ≤ 1 and 0(U,OX ) is a finitely generated R-algebra.

It is not true at all that the ring of global sections of an open subset U of
the spectrum X of a noetherian ring is of finite type over this ring. This is not
even true if X is an affine variety. This problem is directly related to Hilbert’s
fourteenth problem, which has a negative answer. We will later present examples
(see Example 3.13) where U has superheight one, yet is not affine, hence its ring
of global sections is not finitely generated.

Plus closure. For an ideal I ⊆ R in a domain R define its plus closure by

I+ = { f ∈ R | there exists a finite domain extension R ⊆ T such that f ∈ I T }.

Equivalent: let R+ be the absolute integral closure of R. This is the integral
closure of R in an algebraic closure of the quotient field Q(R) (first considered
in [Artin 1971]). Then

f ∈ I+ if and only if f ∈ I R+.

The plus closure commutes with localization; see [Huneke 1996, Exercise 12.2].
We also have the inclusion I+ ⊆ I ∗; see [Huneke 1996, Theorem 1.7].

Question. Is I+ = I ∗?

This is known as the tantalizing question in tight closure theory.
In terms of forcing algebras and their torsors, the containment inside the plus

closure has the following geometric meaning (see [Brenner 2003c] for details):
If R is a d-dimensional domain of finite type over a field, and I = ( f1, . . . , fn)

is an m-primary ideal for some maximal ideal m and f ∈ R, then f ∈ I+ if
and only if the spectrum of the forcing algebra contains a d-dimensional closed
subscheme which meets the exceptional fiber (the fiber over the maximal ideal)
in isolated points. This means that the superheight of the extended ideal to
the forcing algebra is d or that the torsor contains a punctured d-dimensional
closed subscheme. In this case the local cohomological dimension of the torsor
must be d as well, since it contains a closed subscheme with this cohomological
dimension. So also the plus closure depends only on the torsor.
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In characteristic zero, the plus closure behaves very differently compared with
positive characteristic. If R is a normal domain of characteristic 0, then the trace
map shows that the plus closure is trivial, I+ = I for every ideal I .

Examples. In the following two examples we use results from tight closure
theory to establish (non) -affineness properties of certain torsors.

Example 3.13. Let K be a field and consider the Fermat ring

R = K [X, Y, Z ]/(Xd
+ Y d

+ Zd)

together with the ideal I = (X, Y ) and f = Z2. For d ≥ 3 we have Z2
6∈ (X, Y ).

This element is however in the tight closure (X, Y )∗ of the ideal in positive
characteristic (assume that the characteristic p does not divide d) and is therefore
also in characteristic 0 inside the tight closure (in the sense of [Hochster 1996,
Definition 3.1]) and inside the solid closure. Hence the open subset

D(X, Y )⊆ Spec
(
K [X, Y, Z , S, T ]/(Xd

+ Y d
+ Zd , SX + T Y − Z2)

)
is not an affine scheme. In positive characteristic, Z2 is also contained in the plus
closure (X, Y )+ and therefore this open subset contains punctured surfaces (the
spectrum of the forcing algebra contains two-dimensional closed subschemes
which meet the exceptional fiber V (X, Y ) in only one point; the ideal (X, Y )
has superheight two in the forcing algebra). In characteristic zero however,
the superheight is one because plus closure is trivial for normal domains in
characteristic 0, and therefore by Theorem 3.12 the algebra 0(D(X, Y ),OB) is
not finitely generated. For K = C and d = 3 one can also show that D(X, Y )C
is, considered as a complex space, a Stein space.

Example 3.14. Let K be a field of positive characteristic p ≥ 7 and consider
the ring

R = K [X, Y, Z ]/(X5
+ Y 3

+ Z2)

together with the ideal I = (X, Y ) and f = Z . Since R has a rational singularity,
it is F-regular, so all ideals are tightly closed. Therefore Z 6∈ (X, Y )∗ and so the
torsor

D(X, Y )⊆ Spec
(
K [X, Y, Z , S, T ]/(X5

+ Y 3
+ Z2, SX + T Y − Z)

)
is an affine scheme. In characteristic zero this can be proved by either using that
R is a quotient singularity or by using the natural grading (deg X = 6, deg Y = 10,
deg Z = 15) where the corresponding cohomology class Z/(XY ) gets degree
−1 and then applying the geometric criteria (see below) on the corresponding
projective curve (rather the corresponding curve of the standard homogenization
U 30
+ V 30

+W 30
= 0).
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4. Cones over projective curves

We continue with the question when the torsors given by a forcing algebra over
a two-dimensional ring are affine? We will look at the graded situation to be
able to work on the corresponding projective curve.

In particular we want to address the following questions:

(1) Is there a procedure to decide whether the torsor is affine?

(2) Is it nonaffine if and only if there exists a geometric reason for it not to be
affine (because the superheight is too large) ?

(3) How does the affineness vary in an arithmetic family, when we vary the
prime characteristic?

(4) How does the affineness vary in a geometric family, when we vary the base
ring?

In terms of tight closure, these questions are directly related to the tantalizing
question of tight closure (is it the same as plus closure), the dependence of tight
closure on the characteristic and the localization problem of tight closure.

Geometric interpretation in dimension two. We will restrict now to the two-
dimensional homogeneous case in order to work on the corresponding projective
curve. We want to find an object over the curve which corresponds to the forcing
algebra or its induced torsor. The results of this part were developed in [Brenner
2003b; 2004; 2006c]; see also [Brenner 2008].

Let R be a two-dimensional standard-graded normal domain over an alge-
braically closed field K . Let C=Proj (R) be the corresponding smooth projective
curve and let

I = ( f1, . . . , fn)

be an R+-primary homogeneous ideal with generators of degrees d1, . . . , dn .
Then we get on C the short exact sequence

0→ Syz ( f1, . . . , fn)(m)→
n⊕

i=1

OC(m− di )
f1,..., fn
→ OC(m)→ 0.

Here Syz ( f1, . . . , fn)(m) is a vector bundle, called the syzygy bundle, of rank
n− 1 and of degree

((n− 1)m−
n∑

i=1

di ) deg (C).

Recall that the degree of a vector bundle S on a projective curve is defined as
the degree of the invertible sheaf

∧r S, where r is the rank of S. The degree is
additive on short exact sequences.
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A homogeneous element f of degree m defines an element in 0(C,OC(m))
and thus a cohomology class δ( f )∈ H 1(C,Syz( f1, . . . , fn)(m)), so this defines
a torsor over the projective curve. We mention an alternative description of the
torsor corresponding to a first cohomology class in a locally free sheaf which is
better suited for the projective situation.

Remark 4.1. Let S denote a locally free sheaf on a scheme X . For a cohomology
class c∈ H 1(X,S) one can construct a geometric object: Because of H 1(X,S)∼=
Ext1(OX ,S), the class defines an extension

0→ S→ S ′→OX → 0.

This extension is such that under the connecting homomorphism of cohomology,
1∈0(X,OX ) is sent to c∈H 1(X,S). The extension yields a projective subbundle

P(S∨)⊂ P(S ′∨).

If V is the corresponding geometric vector bundle of S, one may think of P(S∨)
as P(V ) which consists for every base point x ∈ X of all the lines in the fiber
Vx passing through the origin. The projective subbundle P(V ) has codimension
one inside P(V ′), for every point it is a projective space lying (linearly) inside a
projective space of one dimension higher. The complement is then over every
point an affine space. One can show that the global complement

T = P(S ′∨) \P(S∨)

is another model for the torsor given by the cohomology class. The advantage
of this viewpoint is that we may work, in particular when X is projective, in an
entirely projective setting.

Semistability of vector bundles. In the situation of a forcing algebra of homoge-
neous elements, this torsor T can also be obtained as Proj B, where B is the (not
necessarily positively) graded forcing algebra. In particular, it follows that the
containment f ∈ I ∗ is equivalent to the property that T is not an affine variety.
For this properties, positivity (ampleness) properties of the syzygy bundle are
crucial. We need the concept of (Mumford) - semistability.

Definition 4.2. Let S be a vector bundle on a smooth projective curve C . It is
called semistable if

µ(T )=
deg(T )
rk(T )

≤
deg(S)
rk(S)

= µ(S)

for all subbundles T .
Suppose that the base field has positive characteristic p > 0. Then S is called

strongly semistable, if all (absolute) Frobenius pull-backs Fe∗(S) are semistable.
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An important property of a semistable bundle of negative degree is that it can
not have any global section 6= 0. Note that a semistable vector bundle need not
be strongly semistable, the following is probably the simplest example.

Example 4.3. Let C be the smooth Fermat quartic given by x4
+ y4
+ z4 and

consider on it the syzygy bundle Syz(x, y, z) (which is also the restricted cotan-
gent bundle from the projective plane). This bundle is semistable. Suppose that
the characteristic is 3. Then its Frobenius pull-back is Syz(x3, y3, z3). The curve
equation gives a global nontrivial section of this bundle of total degree 4. But the
degree of Syz(x3, y3, z3)(4) is negative, hence it can not be semistable anymore.

The following example is related to Example 3.10.

Example 4.4. Let R = K [X, Y, Z ]/
(
X3
+ Y 3

+ Z3
)
, where K is a field of

positive characteristic p 6= 3, I =
(
x2, y2, z2

)
, and C = Proj(R). The equation

x3
+ y3
+ z3
= 0 yields the short exact sequence

0→OC → Syz(x2, y2, z2)(3)→OC → 0.

This shows that Syz(x2, y2, z2) is strongly semistable, since the Frobenius pull-
backs of this sequence show that all Fe∗

(
Syz(x2, y2, z2)

)
are semistable.

For a strongly semistable vector bundle S on C and a cohomology class
c ∈ H 1(C,S) with corresponding torsor we obtain the following affineness
criterion (in characteristic zero we mean by strongly semistable just semistable).

Theorem 4.5. Let C denote a smooth projective curve over an algebraically
closed field K and let S be a strongly semistable vector bundle over C together
with a cohomology class c ∈ H 1(C,S). Then the torsor T (c) is an affine scheme
if and only if deg(S) < 0 and c 6= 0 (Fe(c) 6= 0 for all e in positive characteristic).

This result rests on the ampleness of S ′∨ occurring in the dual exact sequence
0→OC→ S ′∨→ S∨→ 0 given by c (this rests on [Gieseker 1971] and [1971]).
It implies for a strongly semistable syzygy bundle the following degree formula
for tight closure.

Theorem 4.6. Suppose that Syz( f1, . . . , fn) is strongly semistable. Then

Rm ⊆ I ∗ for m ≥
∑

di

n− 1

and

Rm ∩ I ∗ ⊆ I F for m <

∑
di

n− 1
,
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where I F is the Frobenius closure. In a relative setting, if R′ is a finitely generated
Z-algebra and R = R′/(p), then

Rm ∩ I ∗ ⊆ I for m <

∑
di

n− 1

for almost all prime numbers.

We indicate the proof of the inclusion result. The degree condition implies
that c = δ( f ) ∈ H 1(C,S) is such that S = Syz( f1, . . . , fn)(m) has nonnegative
degree. Then also all Frobenius pull-backs F∗(S) have nonnegative degree. Let
L=O(k) be a twist of the tautological line bundle on C such that its degree is
larger than the degree of ω−1

C , the dual of the canonical sheaf. Let z ∈ H 0(Y,L)
be a nonzero element. Then zFe∗(c) ∈ H 1(C, Fe∗(S)⊗L), and by Serre duality
we have

H 1(C, Fe∗(S)⊗L)∼= H 0(Fe∗(S∨)⊗L−1
⊗ωC

)∨
.

On the right we have a semistable sheaf of negative degree, which can not have
a nontrivial section. Hence zFe∗(c) = 0 and therefore f belongs to the tight
closure.

Harder–Narasimhan filtration. In general, there exists an exact criterion for the
affineness of the torsor T (c) depending on c and the strong Harder–Narasimhan
filtration of S. For this we give the definition of the Harder–Narasimhan filtration.

Definition 4.7. Let S be a vector bundle on a smooth projective curve C over
an algebraically closed field K . Then the filtration

0= S0 ⊂ S1 ⊂ · · · ⊂ St−1 ⊂ St = S

of subbundles such that all quotient bundles Sk/Sk−1 are semistable with decreas-
ing slopes µk = µ(Sk/Sk−1), is called the Harder–Narasimhan filtration of S.
This object exists uniquely by a theorem of Harder and Narasimhan [1975].

A Harder–Narasimhan filtration is called strong if all the quotients Si/Si−1

are strongly semistable. A Harder–Narasimhan filtration is not strong in general;
however, by a theorem of A. Langer [2004, Theorem 2.7], there exists some
Frobenius pull-back Fe∗(S) such that its Harder–Narasimhan filtration is strong.

Theorem 4.8. Let C denote a smooth projective curve over an algebraically
closed field K and let S be a vector bundle over C together with a cohomology
class c ∈ H 1(C,S). Let

S1 ⊂ S2 ⊂ · · · ⊂ St−1 ⊂ St = Fe∗(S)
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be a strong Harder–Narasimhan filtration. We choose i such that Si/Si−1 has
degree ≥ 0 and that Si+1/Si has degree < 0. We set Q= Fe∗(S)/Si . Then the
following are equivalent.

(1) The torsor T (c) is not an affine scheme.

(2) Some Frobenius power of the image of Fe∗(c) inside H 1(X,Q) is 0.

Plus closure in dimension two. Let K be a field and let R be a normal two-
dimensional standard-graded domain over K with corresponding smooth pro-
jective curve C . A homogeneous m-primary ideal with homogeneous ideal
generators f1, . . . , fn and another homogeneous element f of degree m yield a
cohomology class

c = δ( f ) ∈ H 1(C,Syz( f1, . . . , fn)(m)).

Let T (c) be the corresponding torsor. We have seen that the affineness of this
torsor over C is equivalent to the affineness of the corresponding torsor over
D(m)⊆ Spec(R). Now we want to understand what the property f ∈ I+ means
for c and for T (c). Instead of the plus closure we will work with the graded
plus closure I+gr, where f ∈ I+gr holds if and only if there exists a finite graded
extension R ⊆ S such that f ∈ I S. The existence of such an S translates into
the existence of a finite morphism

ϕ : C ′ = Proj (S)→ Proj (R)= C

such that ϕ∗(c) = 0. Here we may assume that C ′ is also smooth. Therefore
we discuss the more general question when a cohomology class c ∈ H 1(C,S),
where S is a locally free sheaf on C , can be annihilated by a finite morphism

C ′→ C

of smooth projective curves. The advantage of this more general approach
is that we may work with short exact sequences (in particular, the sequences
coming from the Harder–Narasimhan filtration) in order to reduce the problem
to semistable bundles which do not necessarily come from an ideal situation.

Lemma 4.9. Let C denote a smooth projective curve over an algebraically closed
field K , let S be a locally free sheaf on C and let c ∈ H 1(C,S) be a cohomology
class with corresponding torsor T → C. Then the following conditions are
equivalent.

(1) There exists a finite morphism

ϕ : C ′→ C

from a smooth projective curve C ′ such that ϕ∗(c)= 0.
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(2) There exists a projective curve Z ⊆ T .

Proof. If (1) holds, then the pull-back ϕ∗(T )= T ×C C ′ is trivial (as a torsor), as
it equals the torsor given by ϕ∗(c)= 0. Hence ϕ∗(T ) is isomorphic to a vector
bundle and contains in particular a copy of C ′. The image Z of this copy is a
projective curve inside T . If (2) holds, then let C ′ be the normalization of Z .
Since Z dominates C , the resulting morphism

ϕ : C ′→ C

is finite. Since this morphism factors through T and since T annihilates the
cohomology class by which it is defined, it follows that ϕ∗(c)= 0. �

We want to show that the cohomological criterion for (non) -affineness of a
torsor along the Harder–Narasimhan filtration of the vector bundle also holds for
the existence of projective curves inside the torsor, under the condition that the
projective curve is defined over a finite field. This implies that tight closure is
(graded) plus closure for graded m-primary ideals in a two-dimensional graded
domain over a finite field.

Annihilation of cohomology classes of strongly semistable sheaves. We deal
first with the situation of a strongly semistable sheaf S of degree 0. The following
two results are from [Lange and Stuhler 1977]. We say that a locally free sheaf
is étale trivializable if there exists a finite étale morphism ϕ : C ′→ C such that
ϕ∗(S)∼=Or

C ′ . Such bundles are directly related to linear representations of the
étale fundamental group.

Lemma 4.10. Let K denote a finite field (or the algebraic closure of a finite
field) and let C be a smooth projective curve over K . Let S be a locally free
sheaf over C. Then S is étale trivializable if and only if there exists some n such
that Fn∗S ∼= S.

Theorem 4.11. Let K denote a finite field (or the algebraic closure of a finite
field) and let C be a smooth projective curve over K . Let S be a strongly
semistable locally free sheaf over C of degree 0. Then there exists a finite
morphism

ϕ : C ′→ C

such that ϕ∗(S) is trivial.

Proof. We consider the family of locally free sheaves Fe∗(S), e ∈ N. Because
these are all semistable of degree 0, and defined over the same finite field, we
must have (by the existence of the moduli space for vector bundles) a repetition:
Fe∗(S)∼= Fe′∗(S) for some e′ > e. By Lemma 4.10 the bundle Fe∗(S) admits
an étale trivialization ϕ : C ′→ C . Hence the finite map Fe

◦ ϕ trivializes the
bundle. �
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Theorem 4.12. Let K denote a finite field (or the algebraic closure of a finite
field) and let C be a smooth projective curve over K . Let S be a strongly
semistable locally free sheaf over C of nonnegative degree and let c ∈ H 1(C,S)
denote a cohomology class. Then there exists a finite morphism

ϕ : C ′→ C

such that ϕ∗(c) is trivial.

Proof. If the degree of S is positive, then a Frobenius pull-back Fe∗(S) has
arbitrary large degree and is still semistable. By Serre duality we get that
H 1(C, Fe∗(S))= 0. So in this case we can annihilate the class by an iteration
of the Frobenius alone. So suppose that the degree is 0. Then there exists by
Theorem 4.11 a finite morphism which trivializes the bundle. So we may assume
that S∼=Or

C . Then the cohomology class has several components ci ∈H 1(C,OC)

and it is enough to annihilate them separately by finite morphisms. But this
is possible by the parameter theorem of K. Smith [1994] (or directly using
Frobenius and Artin–Schreier extensions). �

The general case. We look now at an arbitrary locally free sheaf S on C , a
smooth projective curve over a finite field. We want to show that the same
numerical criterion (formulated in terms of the Harder–Narasimhan filtration) for
nonaffineness of a torsor holds also for the finite annihilation of the corresponding
cohomology class (or the existence of a projective curve inside the torsor).

Theorem 4.13. Let K denote a finite field (or the algebraic closure of a finite
field) and let C be a smooth projective curve over K . Let S be a locally free sheaf
over C and let c ∈ H 1(C,S) denote a cohomology class. Let S1 ⊂ · · · ⊂ St be a
strong Harder–Narasimhan filtration of Fe∗(S). We choose i such that Si/Si−1

has degree ≥ 0 and that Si+1/Si has degree < 0. We set Q= Fe∗(S)/Si . Then
the following are equivalent.

(1) The class c can be annihilated by a finite morphism.

(2) Some Frobenius power of the image of Fe∗(c) inside H 1(C,Q) is 0.

Proof. Suppose that (1) holds. Then the torsor is not affine and hence by
Theorem 4.8 also (2) holds. So suppose that (2) is true. By applying a certain
power of the Frobenius we may assume that the image of the cohomology class
in Q is 0. Hence the class stems from a cohomology class ci ∈ H 1(C,Si ). We
look at the short exact sequence

0→ Si−1→ Si → Si/Si−1→ 0,

where the sheaf of the right-hand side has a nonnegative degree. Therefore the
image of ci in H 1(C,Si/Si−1) can be annihilated by a finite morphism due to
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Theorem 4.12. Hence after applying a finite morphism we may assume that ci

stems from a cohomology class ci−1 ∈ H 1(C,Si−1). Going on inductively we
see that c can be annihilated by a finite morphism. �

Theorem 4.14. Let C denote a smooth projective curve over the algebraic
closure of a finite field K , let S be a locally free sheaf on C and let c ∈ H 1(C,S)
be a cohomology class with corresponding torsor T →C. Then T is affine if and
only if it does not contain any projective curve.

Proof. Due to Theorem 4.8 and Theorem 4.13, for both properties the same
numerical criterion does hold. �

These results imply the following theorem in the setting of a two-dimensional
graded ring.

Theorem 4.15. Let R be a standard-graded, two-dimensional normal domain
over (the algebraic closure of ) a finite field. Let I be an R+-primary graded
ideal. Then

I ∗ = I+.

This is also true for nonprimary graded ideals and also for submodules in
finitely generated graded submodules. Moreover, G. Dietz [2006] has shown
that one can get rid also of the graded assumption (of the ideal or module, but
not of the ring).

5. Tight closure in families

After having understood tight closure and plus closure in the two-dimensional
situation we proceed to a special three-dimensional situation, namely families of
two-dimensional rings parametrized by a one-dimensional base scheme.

Affineness under deformations. We consider a base scheme B and a morphism

Z→ B

together with an open subscheme W ⊆ Z . For every base point b ∈ B we get the
open subset

Wb ⊆ Zb

inside the fiber Zb. It is a natural question to ask how properties of Wb vary with
b. In particular we may ask how the cohomological dimension of Wb varies and
how the affineness may vary.

In the algebraic setting we have a D-algebra S and an ideal a ⊆ S (so B =
Spec(D), Z = Spec(S) and W = D(a)) which defines for every prime ideal
p ∈ Spec(D) the extended ideal ap in S⊗D κ(p).
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This question is already interesting when B = Spec(D) is an affine one-
dimensional integral scheme, in particular in the following two situations.

(1) B = Spec(Z). Then we speak of an arithmetic deformation and want to
know how affineness varies with the characteristic and what the relation is
to characteristic zero.

(2) B = A1
K = Spec(K [t]), where K is a field. Then we speak of a geometric

deformation and want to know how affineness varies with the parameter
t , in particular how the behavior over the special points where the residue
class field is algebraic over K is related to the behavior over the generic
point.

It is fairly easy using Lemma 3.7 (1) to show that if the open subset in the generic
fiber is affine, then also the open subsets are affine for almost all special points.

We deal with this question where W is a torsor over a family of smooth
projective curves (or a torsor over a punctured two-dimensional spectrum). The
arithmetic as well as the geometric variant of this question are directly related to
questions in tight closure theory. Because of the above mentioned degree criteria
in the strongly semistable case, a weird behavior of the affineness property of
torsors is only possible if we have a weird behavior of strong semistability.

Arithmetic deformations. We start with the arithmetic situation.

Example 5.1 [Brenner and Katzman 2006]. Consider Z[X, Y, Z ]/(X7
+Y 7
+Z7)

and take the ideal I = (x4, y4, z4) and the element f = x3 y3. Consider reductions
Z→ Z/(p). Then

f ∈ I ∗ holds in Z/(p)[x, y, z]/(x7
+ y7
+ z7) for p ≡ 3 mod 7

and

f 6∈ I ∗ holds in Z/(p)[x, y, z]/(x7
+ y7
+ z7) for p ≡ 2 mod 7.

In particular, the bundle Syz(x4, y4, z4) is semistable in the generic fiber, but
not strongly semistable for any reduction p≡ 2 mod 7. The corresponding torsor
is an affine scheme for infinitely many prime reductions and not an affine scheme
for infinitely many prime reductions.

In terms of affineness (or local cohomology) this example has the following
properties: the ideal

(x, y, z)⊆ Z/(p)[x, y, z, s1, s2, s3]/(x7
+ y7
+ z7, s1x4

+ s2 y4
+ s3z4

+ x3 y3)

has cohomological dimension 1 if p=3 mod 7 and has cohomological dimension
0 (equivalently, D(x, y, z) is an affine scheme) if p = 2 mod 7.
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Geometric deformations: a counterexample to the localization problem. Let
S ⊆ R be a multiplicative system and I an ideal in R. Then the localization
problem of tight closure is the question whether the identity

(I ∗)S = (I RS)
∗

holds.
Here the inclusion ⊆ is always true and ⊇ is the problem. This means

explicitly:

Question. If f ∈ (I RS)
∗, can we find an h ∈ S such that h f ∈ I ∗ holds in R?

Proposition 5.2. Let Z/(p) ⊂ D be a one-dimensional domain and D ⊆ R of
finite type, and I an ideal in R. Suppose that localization holds and that

f ∈ I ∗ holds in R⊗D Q(D)= RD∗ = RQ(D)

(S = D∗ = D \ {0} is the multiplicative system). Then f ∈ I ∗ holds in R⊗D κ(p)

for almost all p in Spec D.

Proof. By localization, there exists h ∈ D, h 6= 0, such that

h f ∈ I ∗ in R.

By persistence of tight closure (under a ring homomorphism) we get

h f ∈ I ∗ in Rκ(p).

The element h does not belong to p for almost all p, so h is a unit in Rκ(p) and
hence

f ∈ I ∗ in Rκ(p)

for almost all p. �

In order to get a counterexample to the localization property we will look now
at geometric deformations:

D = Fp[t] ⊂ Fp[t][X, Y, Z ]/(g)= S,

where t has degree 0 and X, Y, Z have degree 1 and g is homogeneous. Then
(for every field Fp[t] ⊆ K )

S⊗Fp[t] K

is a two-dimensional standard-graded ring over K . For residue class fields of
points of A1

Fp
= Spec(Fp[t]) we have basically two possibilities.

• K = Fp(t), the function field. This is the generic or transcendental case.

• K = Fq , the special or algebraic or finite case.
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How does f ∈ I ∗ vary with K ? To analyze the behavior of tight closure in
such a family we can use what we know in the two-dimensional standard-graded
situation.

In order to establish an example where tight closure does not behave uniformly
under a geometric deformation we first need a situation where strong semistability
does not behave uniformly. Such an example was given by Paul Monsky in terms
of Hilbert–Kunz theory:

Example 5.3 [Monsky 1998]. Let

g = Z4
+ Z2 XY + Z(X3

+ Y 3)+ (t + t2)X2Y 2.

Consider
S = F2[t, X, Y, Z ]/(g).

Monsky proved the following results on the Hilbert–Kunz multiplicity of the
maximal ideal (x, y, z) in S⊗F2[t] L , L a field:

eH K (S⊗F2[t] L)=
{

3 for L = F2(t),
3+ 4−d for L = Fq = F2(α) (t 7→ α, d = deg(α)).

By the geometric interpretation of Hilbert–Kunz theory (see [Brenner 2006b;
2007; Trivedi 2005]) this means that the restricted cotangent bundle

Syz(x, y, z)= (�P2)|C

is strongly semistable in the transcendental case, but not strongly semistable in
the algebraic case. In fact, for d = deg(α), t 7→ α, where L = F2(α), the d-th
Frobenius pull-back destabilizes (meaning that it is not semistable anymore).

The maximal ideal (x, y, z) can not be used directly. However, we look at the
second Frobenius pull-back which is (characteristic two) just

I = (x4, y4, z4).

By the degree formula we have to look for an element of degree 6. Let’s take

f = y3z3.

This is our example (x3 y3 does not work). First, by strong semistability in the
transcendental case we have

f ∈ I ∗ in S⊗ F2(t)

by the degree formula. If localization would hold, then f would also belong
to the tight closure of I for almost all algebraic instances Fq = F2(α), t 7→ α.
Contrary to that we show that for all algebraic instances the element f belongs
never to the tight closure of I .
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Lemma 5.4. Let Fq = Fp(α), t 7→ α, deg(α)= d. Set Q = 2d−1. Then

xy f Q
6∈ I [Q].

Proof. This is an elementary but tedious computation [Brenner and Monsky
2010]. �

Theorem 5.5. Tight closure does not commute with localization.

Proof. One knows in our situation that xy is a so-called test element. Hence the
previous lemma shows that f 6∈ I ∗. �

In terms of affineness (or local cohomology) this example has the following
properties: the ideal

(x, y, z)⊆ F2(t)[x, y, z, s1, s2, s3]/(g, s1x4
+ s2 y4

+ s3z4
+ y3z3)

has cohomological dimension 1 if t is transcendental and has cohomological
dimension 0 (equivalently, D(x, y, z) is an affine scheme) if t is algebraic.

Corollary 5.6. Tight closure is not plus closure in graded dimension two for
fields with transcendental elements.

Proof. Consider
R = F2(t)[X, Y, Z ]/(g).

In this ring y3z3
∈ I ∗, but it can not belong to the plus closure. Else there would

be a curve morphism Y → CF2(t) which annihilates the cohomology class c and
this would extend to a morphism of relative curves almost everywhere. �

Corollary 5.7. There is an example of a smooth projective (relatively over the
affine line) variety Z and an effective divisor D ⊂ Z and a morphism

Z→ A1
F2

such that (Z \ D)η is not an affine variety over the generic point η, but for every
algebraic point x the fiber (Z \ D)x is an affine variety.

Proof. Take C→ A1
F2

to be the Monsky quartic and consider the syzygy bundle

S = Syz(x4, y4, z4)(6)

together with the cohomology class c determined by f = y3z3. This class defines
an extension

0→ S→ S ′→OC → 0

and hence P(S∗)⊂ P(S ′∗). Then P(S ′∗) \P(S∗) is an example with the stated
properties by the previous results. �

It is an open question whether such an example can exist in characteristic
zero.



90 HOLGER BRENNER

Generic results. Is it more difficult to decide whether an element belongs to the
tight closure of an ideal or to the ideal itself? We discuss one situation where
this is easier for tight closure.

Suppose that we are in a graded situation of a given ring (or a given ring
dimension) and have fixed a number (at least the ring dimension) of homogeneous
generators and their degrees. Suppose that we want to know the degree bound
for (tight closure or ideal) inclusion for generic choice of the ideal generators.
Generic means that we write the coefficients of the generators as indeterminates
and consider the situation over the (large) affine space corresponding to these
indeterminates or over its function field. This problem is already interesting
and difficult for the polynomial ring: Suppose we are in P = K [X, Y, Z ] and
want to study the generic inclusion bound for, say, n ≥ 4 generic polynomials
F1, . . . , Fn all of degree a. What is the minimal degree number m such that
P≥m ⊆ (F1, . . . , Fn). The answer is⌈

1
2(n− 1)

(
3− 3n+ 2an+

√
1− 2n+ n2+ 4a2n

)⌉
.

This rests on the fact that the Fröberg conjecture has been solved in dimension 3,
by D. Anick [1986]. (The Fröberg conjecture gives a precise description of the
Hilbert function for an ideal in a polynomial ring which is generically generated.
Here we only need to know in which degree the Hilbert function of the residue
class ring becomes 0.)

The corresponding generic ideal inclusion bound for arbitrary graded rings
depends heavily (already in the parameter case) on the ring itself. Surprisingly,
the generic ideal inclusion bound for tight closure does not depend on the ring
and is only slightly worse than the bound for the polynomial ring. The following
theorem is due to Brenner and Fischbacher–Weitz [Brenner and Fischbacher-
Weitz 2011].

Theorem 5.8. Let d≥1 and a1, . . . , an be natural numbers (the degree type), n≥
d+1. Let K [x0, x1, . . . , xd ]⊆ R be a finite extension of standard-graded domains
(a graded Noether normalization). Suppose that there exist n homogeneous
polynomials g1, . . . , gn in P = K [x0, x1, . . . , xd ] with deg(gi ) = ai such that
P≥m ⊆ (g1, . . . , gn).

(1) Rm+d ⊆ ( f1, . . . , fn)
∗ holds over the generic point of the parameter space

(after the base change to the function field of this space) of homogeneous
elements f1, . . . , fn in R of this degree type (the coefficients of the fi are
taken as indeterminates).
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(2) If R is normal, then Rm+d+1 ⊆ ( f1, . . . , fn)
F
⊆ ( f1, . . . , fn)

∗ holds for
(open) generic choice of homogeneous elements f1, . . . , fn in R of this
degree type.

Example 5.9. Suppose that we are in K [x, y, z] and that n = 4 and a = 10.
Then the generic degree bound for ideal inclusion in the polynomial ring is 19.
Therefore by Theorem 5.8 the generic degree bound for tight closure inclusion
in a three-dimensional graded ring is 21.

Example 5.10. Suppose that n = d + 1 in the situation of Theorem 5.8. Then
the generic elements f1, . . . , fd+1 are parameters. In the polynomial ring P =
K [x0, x1, . . . , xd ] we have for parameters of degree a1, . . . , ad+1 the inclusion

P
≥

d∑
i=0

ai−d
⊆ ( f1, . . . , fd+1),

because the graded Koszul resolution ends in R(−
∑d

i=0 ai ) and

(H d+1
m (P))k = 0 for k ≥−d.

So the theorem implies for a graded ring R finite over P that

P
≥

d∑
i=0

ai

⊆ ( f1, . . . , fd+1)
∗

holds for generic elements. But by the graded Briançon–Skoda theorem [Huneke
1998] this holds for parameters even without the generic assumption.
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