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Introduction to uniformity
in commutative algebra

CRAIG HUNEKE AND CLAUDIU RAICU

This article is based on three lectures given by the first author as part of an
introductory workshop at MSRI for the program in Commutative Algebra,
2012–13. Additional comments and explanations are included, as well as a
new section on the uniform Artin–Rees theorem. We deal with the theme of
uniform bounds, both absolute and effective, as well as uniform annihilation
of cohomology.

1. Introduction

The goal of these notes is to introduce the concept of uniformity in commutative
algebra. Rather than giving a precise definition of what uniformity means, we will
try to convey the idea of uniformity through a series of examples. As we’ll soon
see, uniformity is ubiquitous in commutative algebra: it may refer to absolute
or effective bounds for certain natural invariants (ideal generators, regularity,
projective dimension), or uniform annihilation of (co)homology functors (Tor,
Ext, local cohomology). We will try to convince the reader that the simple
exercise of thinking from a uniform perspective almost always leads to significant,
interesting, and fundamental questions and theories. This theme has also been
discussed by Schoutens [2000], who shows how uniform bounds can be useful
in numerous contexts that we do not consider in this paper.

The first section of this paper, based on the first lecture in the workshop, is
more elementary and introduces many basic concepts. The next three sections
target specific topics and require more background in general, though an effort
has been made to minimize the knowledge needed to read them. Each section
has some exercises which the reader might solve to gain further understanding.
The first section in particular has a great many exercises.

We begin to illustrate the theme of uniformity with what is probably the most
basic theorem in commutative algebra:
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Theorem 1 (Hilbert’s basis theorem [Eisenbud 1995, Theorem 1.2]). If k is
a field and n is a nonnegative integer, then any ideal in the polynomial ring
S = k[x1, . . . , xn] is finitely generated.

As it stands, this theorem does give a type of uniformity, namely the property
of being finitely generated. But this is quite general, and not absolute or effective.
One first might try for absolute bounds:

Question 2. Is there an absolute upper bound for the (minimal) number of
generators of ideals in S?

This has a positive answer in the case n = 1: S = k[x1] is a principal ideal
domain, so any ideal in S can be generated by one element. However, for n ≥ 2,
it is easy to see that such an absolute bound cannot exist: the ideal I = (x1, x2)

N

can’t be generated by fewer than (N + 1) elements. One can then try to refine
Question 2, which leads us to several interesting variations:

Question 3. Is there an absolute upper bound for the number of generators of
an ideal I in S, if

(a) we assume that I is prime?

(b) I is homogeneous and we impose bounds on the degrees of the generators
of I ?

(c) we are only interested in the generation of I up to radical? (Recall that the
radical

√
I is the set { f ∈ S : f r

∈ I for some r}.)

For part (a) we have a positive answer in the case n = 2: any prime ideal
I ⊂ k[x1, x2] is either maximal, or has height one, or is zero, so it can be
generated by at most two elements (because the ring is a UFD, height one primes
are principal; for maximal ideals, see Exercise (1) on page 170). However, for
n ≥ 3 the assumption that I is prime is not sufficient to guarantee an absolute
bound for its number of generators: in fact in [Moh 1974; 1979] a sequence
of prime ideals pn ⊂ k[x, y, z] is constructed, where the minimal number of
generators of pn is n+1. For part (b), if we assume that I is generated in degree
at most d , then the absolute bound for the number of generators of I is attained
when I =md is a power of the maximal ideal m, and is given by the binomial
coefficient

(n+d−1
n−1

)
; see Exercise (2). Part (c) is already quite subtle: every ideal

I ⊂ S is generated up to radical by n elements [Eisenbud and Evans 1973; Storch
1972].

Another variation of Question 2 is to ask whether one can find effective lower
bounds for the number of generators of an ideal I of S. One such bound is
obtained as a consequence of Krull’s Hauptidealsatz (Principal ideal theorem),
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in terms of the codimension of the ideal I :

codim(I )= dim(S)− dim(S/I )= n− dim(S/I ).

Theorem 4 [Matsumura 1980, Chapter 12; Eisenbud 1995, Chapter 10]. The
number of generators of I is at least as large as the codimension of I (and this
inequality is sharp).

In order to discuss further uniformity statements, we need to expand the set
of invariants that we associate to ideals, and more generally to modules over the
polynomial ring S. We start with the following:

Definition 5 (Hilbert function and Hilbert series). Let M =
⊕

i∈Z Mi denote
a finitely generated graded S-module, written as the sum of its homogeneous
components (so that Si · M j ⊂ Mi+ j ). The Hilbert function hM : Z→ Z≥0 is
defined by

hM(i)= dimk(Mi ).

We write M(d) for the shifted module having M(d)i = Md+i . It follows that
hM(d)(i)= hM(i + d).

The Hilbert series HM(z) is the generating function associated to hM :

HM(z)=
∑
i∈Z

hM(i) · zi .

In the case when M = S is the polynomial ring itself, we have

hS(d)=

{(n+d−1
n−1

)
if d ≥ 0,

0 if d < 0.
(1-1)

The Hilbert series of S takes the simple form

HS(z)=
1

(1− z)n
.

It is a remarkable fact, which we explain next, that the Hilbert series of any finitely
generated graded S-module is a rational function. An equivalent statement is
contained in the following theorem of Hilbert.

Theorem 6 [Matsumura 1980, Chapter 10; Eisenbud 1995, Chapter 12]. If M is
a finitely generated graded S-module, then there exists a polynomial pM(t) with
rational coefficients, such that pM(i)= hM(i) for sufficiently large values of i .

The polynomial pM is called the Hilbert polynomial of M . Since the theorem
is true for M = S (as shown by (1-1)), it holds for free modules as well. To
prove it in general, it is then enough to show that any M can be approximated by
free modules in such a way that its Hilbert function is controlled by the Hilbert
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functions of the corresponding free modules.1 Such approximations are realized
via exact sequences. When working with graded modules, we will assume that
every homomorphism f : M→ N has degree 0, i.e., f (Mi )⊂ Ni for all i ∈ Z.
It follows that any short exact sequence of graded modules

0−→ M −→ N −→ K −→ 0

restricts in degree i to an exact sequence

0−→ Mi −→ Ni −→ Ki −→ 0,

yielding hN (i)= hM(i)+ hK (i), and therefore

HN (z)= HM(z)+ HK (z).

Now if f ∈ Sd is a form of degree d, then K = S/( f ) can be approximated by
free modules via the exact sequence

0−→ S(−d)
f
−→ S −→ K −→ 0.

It follows that

hK (i)= hS(i)− hS(i − d)=
( i+n−1

n−1

)
−

( i−d+n−1
n−1

)
,

which is a polynomial for i ≥ d. For an arbitrary finitely generated graded
module M , a similar approximation result holds, having Theorem 6 as a direct
consequence:

Theorem 7 (Hilbert’s syzygy theorem [Matsumura 1980, Chapter 18; Eisenbud
1995, Theorem 1.13]). If M is a finitely generated graded S-module, then there
exists a finite minimal graded free resolution

0−→ Fn −→ Fn−1 −→ · · · −→ F1 −→ F0 −→ M −→ 0. (1-2)

In this statement, minimal just means that the entries of the matrices defin-
ing the maps between the free modules in the resolution have entries in the
homogeneous maximal ideal m of S. Writing Fi =

⊕
j∈Z S(− j)βi, j , we call the

multiplicities βi, j = βi, j (M) the graded Betti numbers of M . We say that M has
a pure resolution if for each i there is at most one value of j for which βi, j 6= 0.
It has a linear resolution if βi, j = 0 for i 6= j (or more generally if there exists
c ∈ Z such that βi, j = 0 for i − j 6= c). It is not immediately obvious from (1-2)

1Although we are concentrating on the graded case, the Hilbert function of a local ring can be
defined easily by passing to the associated graded ring. A remarkable uniform result about Hilbert
functions was proved in [Srinivas and Trivedi 1997]: if the local ring is Cohen–Macaulay, and we
fix its dimension and multiplicity, then there are only finitely many possible Hilbert functions.
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that the Betti numbers are uniquely determined by M , but this follows from their
alternative more functorial characterization [Eisenbud 2005, Prop. 1.7]:

βi, j = dimk TorS
i (M, k) j .

Here we think of i as the homological degree, and of j as the internal degree.

Example 8 (The Koszul complex). If we take M equal to k = S/(x1, . . . , xn),
the residue field, then its minimal graded free resolution is pure (even linear),
given by the Koszul complex on x1, . . . , xn:

0−→ S(−n)(
n
n)−→ · · · −→ S(−i)(

n
i)−→ · · · −→ S(−1)n −→ S−→ k −→ 0.

The graded Betti numbers are given by

βi, j (k)=

{
0 if j 6= i,(n
i

)
if j = i.

The graded Betti numbers of a module are recorded into the Betti table, where
the entry in row j and column i is βi,i+ j :

0 1 2 · · ·

0 β0,0 β1,1 β2,2 · · ·

1 β0,1 β1,2 β2,3 · · ·
...

...
...

...
. . .

The Koszul complex in Example 8 has Betti table

0 1 2 · · · i · · · n− 1 n

0 1 n
(n

2

)
· · ·

(n
i

)
· · · n 1

The Hilbert function, the Hilbert series, and therefore the Hilbert polynomial
of M can all be read off from the Betti table of M . We have

hM(i)=
n∑

l=0

(−1)l ·
∑

j

( i− j+n−1
n−1

)
βl, j ,

and

HM(z)=

∑
j

(∑
l
(−1)lβl, j

)
· z j

(1− z)n
.

The following basic invariants of M are also encoded by the Betti table:

(1) Dimension:

dim(M)= dim(S/ann(M))= deg(pM)+ 1.
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(2) Multiplicity:

e(M)= (dim(M)− 1)! · (leading coefficient of pM).

(3) Projective dimension:

pd(M)= length of the Betti table (the index of the last nonzero column).

(4) Regularity:

reg(M)= width of the Betti table (the index of the last nonzero row).

Some of the most fundamental problems in commutative algebra involve
understanding the (relative) uniform properties that these invariants exhibit. For
example, it is true generally that

codim(I )≤ pd(S/I )≤ n, (1-3)

where the first inequality is a consequence of the Auslander–Buchsbaum formula
[Eisenbud 1995, Theorem 19.9], while the second follows from Theorem 7. If
the equality codim(I )= pd(S/I ) holds in (1-3) then we say that S/I is Cohen-
Macaulay.

How can one best use the idea of uniformity when considering the Hilbert
syzygy theorem? There are several ways. One can relax the condition that S be
a polynomial ring, and consider possibly infinite resolutions. But then what type
of questions should be asked? We will consider this idea below. One could also
ask for absolute bounds on the invariants (1)–(4) under certain restrictions on
the degrees of the generators of I . One such question is due to Mike Stillman:

Question 9 [Peeva and Stillman 2009, Problem 3.8.1]. Fix positive integers
d1, . . . , dm . Is pd(S/I ) bounded when S is allowed to vary over the polynomial
rings in any number of variables, and I over all the ideals I = ( f1, . . . , fm),
where each fi is a homogeneous polynomial of degree di ? With the same assump-
tions, is reg(S/I ) bounded?

It has been shown by Giulio Caviglia that the existence of a uniform bound
for pd(S/I ) is equivalent to the existence of one for reg(S/I ) [Peeva 2011,
Theorem 29.5].

There has been an increasing amount of work on Stillman’s question. Recent
contributions include [Ananyan and Hochster 2012], which gives a positive
answer to Stillman’s question when all the di equal 2, and the paper of Huneke,
McCullough, Mantero, and Seceleanu [Huneke et al. 2013], which gives a sharp
upper bound if all the di equal 2 and the codimension is also 2. See the exercises
for more references.
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We mentioned the idea of passing to infinite resolutions. What could possibly
be an analogue of Hilbert’s theorem in this case? One such analogue was
proved by Hsin-Ju Wang [1994; 1999]. His theorem gives an effective Hilbert
syzygy theorem in the following sense. If R is regular of dimension d, then
the syzygy theorem implies that modules have projective dimension at most d,
and in particular for every pair of R-modules M and N , Extd+1

R (M, N ) = 0.
In particular, if Rp is regular for some prime ideal p, then there is an element
not in p which annihilates any given one of these higher Ext modules. If the
singular locus is closed, this means that there is a power of the ideal defining it
which annihilates any fixed Extd+1

R (M, N ). What one can now ask is a natural
question from the point of view of uniformity: is there a uniform annihilator of
these Ext modules as M and N vary? The result of Hsin-Ju Wang answers this
question affirmatively:

Theorem 10. Let (R,m) be a d-dimensional complete Noetherian local ring,
and let I be the ideal defining the singular locus of R. Let M be a finitely
generated R-module. There exists an integer k such that for all R-modules N ,

I k Extd+1
R (M, N )= 0.

We can ask for more: can the uniform annihilators be determined effectively?
The answer is yes. If R= S/p is a quotient of a polynomial ring by a prime ideal,
it is well-known (see [Eisenbud 1995, Section 16.6]) that the singular locus is
inside the closed set determined by the appropriate size minors of the Jacobian
matrix, and is equal to this closed set if the ground field is perfect. Wang proves
that one can use elements in the Jacobian ideal to annihilate these Ext modules,
so his result is also effective in the sense that specific elements of the ideal I can
be constructed from a presentation of the algebra.

Before we leave this first section, let’s look at yet another famous theorem
of Hilbert, his Nullstellensatz, which identifies the radical of an ideal I in a
polynomial ring S as the intersection of all maximal ideals that contain I . What
can one ask in order to change this basic result into a uniform statement? One
answer is that as it stands, the Nullstellensatz is a theoretical description of the
radical of I , but it is not effective in the sense that information about I is not tied
to information about its radical. There has been considerable work on making
the Nullstellensatz “effective”. We quote one result from [Kollár 1988], in a
somewhat simplified form:

Theorem 11. Let I be a homogeneous ideal in S = k[x1, . . . , xn]. Write I =
( f1, . . . , fm), where each fi is homogeneous of degree di ≥ 3. Let q be the
minimum of m and n. If we let D = d1d2 · · · dq , then

(
√

I )D
⊆ I.
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There are many variations, which include quadrics and non-homogeneous
versions. In fact Kollár’s theorem itself is more detailed and specific. Notice that
the number of the degrees di in the product is absolutely bounded by the number
of variables, even if the number of generators of I is extremely large compared
to the dimension. The version we give is sharp, however, as the next example
shows.

Example 12. Let S = k[x1, . . . , xn] be a polynomial ring over a field k. Fix a
degree d . Set

f1 = xd
1 , f2 = x1xd−1

n − xd
2 , . . . , fn−1 = x1xd−1

n − xd
n−1.

If I is the ideal generated by these forms of degree d , then it is easy to see that
the radical of I is the ideal (x1, . . . , xn−1). Moreover, x D

n−1 ∈ I for D = dn−1,
but not for smaller values. We leave this fact to the reader to check.

Exercises.

Generators:

(1) Let k be a field. Prove that every maximal ideal in k[x1, . . . , xn] is generated
by n elements. In particular, every prime ideal in k[x, y] is generated by at
most two elements.

(2) Suppose that I is a homogeneous ideal in S = k[x1, . . . , xn] generated by
forms of degrees at most d, such that every variable is in the radical of I .
Prove that I can be generated by at most the number of minimal generators
of md , where m= (x1, . . . , xn). Is the same statement true if one doesn’t
assume that the radical of I contains m?

(3) Let R be a standard graded ring over an infinite field, with homogeneous
maximal ideal m. We say that an m-primary homogeneous ideal I is m-full
if for every general linear form `, mI : `= I . Prove that if I is m-full and
J is homogeneous and contains I , then the minimal number of generators
of J is at most the minimal number of generators of I .

(4) Let p be a homogeneous prime ideal of a polynomial ring S such that
p contains no linear forms. It is not known whether or not p is always
generated by forms of degrees at most the multiplicity of S/p. Can you find
examples where this estimate is sharp? What about if p is not prime?

Radicals:

(5) Let M be an n by n matrix of indeterminates over the complex numbers
C, and let I be the ideal generated by the entries of the matrix Mn . Find n
polynomials generating an ideal with the same radical as that of I . (Hint:
use linear algebra.)
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(6) It is an unsolved problem whether or not every non-maximal prime ideal in
a polynomial ring S = k[x1, . . . , xn] can be generated up to radical by n−1
polynomials. Here is an explicit example in which the answer is not known,
from Moh. Let p be the defining ideal of the curve k[t6

+ t31, t8, t10
] in a

polynomial ring in 3 variables. Can you find a set of generators of p? It
is conjectured that p is generated up to radical by 2 polynomials. Why is
this the least possible number of polynomials that could generate p up to
radical? If the characteristic of k is positive it is known that p is generated
up to radical by 2 polynomials. Assuming the characteristic is equal to 2,
find such polynomials.

(7) Let k = C be the field of complex numbers, and let p be the defining
ideal of the surface k[t4, t3s, ts3, s4

]. Find generators for p, and find three
polynomials which generate p up to radical. It is unknown whether or not
there are 2 polynomials which generate p up to radical, although this is
known in positive characteristic.

(8) Let S be a polynomial ring, and let I be generated by forms of degrees
d1, . . . , ds . Suppose that f is in the radical of I , so that there is some N
such that f N

∈ I . Is there an effective bound for N? Take a guess. Find
the best example you can to see that N must be large.

(9) Let R be a regular local ring, and let I ⊆ R be an ideal such that R/I is
Cohen–Macaulay. Let

F• := 0→ Fn
fn
→ . . .

f1
→ R→ R/I → 0

be a minimal free resolution of R/I . Show that
√

I =
√

I ( f1)= · · · =
√

I ( fn),

where I ( fi ) is the ideal of R generated by the ki –minors of fi , where ki is
maximal with the property that the ki –minors of fi are not all zero.

Stillman’s question:
(10) Let S be a polynomial ring and let I be an ideal generated by two forms.

Show that the projective dimension of S/I is at most 2. What well-known
statement is this equivalent to?

(11) Let S be a polynomial ring. It is known that if I is generated by three
quadrics, then the projective dimension of S/I is at most 4. Find an example
to see that 4 is attained, and try to prove this statement.

(12) The largest known projective dimension of a quotient S/I where I is gener-
ated by three cubics and S is a polynomial ring is 5. Can you find such an
example?
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(13) Prove the following strong form of Stillman’s problem for monomial ideals:
if I is generated by s monomials in a polynomial ring S, then the projective
dimension of S/I is at most s.

(14) What about binomial ideals? Is there a bound similar to that in the previous
question?

Infinite resolutions:

(15) If R = S/I where S is a polynomial ring and I has a Gröbner basis of
quadrics, then R is Koszul, i.e., the residue field has a linear resolution.
Prove this.

(16) Suppose that R= S/I , where S is a polynomial ring, and I is homogeneous.
If the regularity of the residue field of R is bounded, show that the regularity
of every finitely generated graded R-module M is also bounded.

(17) Find an example of a resolution of the residue field of a standard graded
algebra so that the degrees of the entries of the matrices in a minimal
resolution (after choosing bases for the free modules) are at least any fixed
number N . It is a conjecture of Eisenbud, Reeves and Totaro that one
can always choose bases of the free modules in the resolution of a finitely
generated graded module so that the entries in the whole (usually infinite)
set of matrices are bounded.

(18) Let R be a Cohen–Macaulay standard graded algebra which is a domain
of multiplicity e. Prove that the i-th total Betti number (the sum of all βi, j

for j ∈ Z) of any quotient R/I is at most e times the (i − 1)-st total Betti
number of R/I for large i . What sort of uniformity for total Betti numbers
might one hope for?

Relations between invariants:

(19) Try to imagine a conjecture about effective bounds relating the multiplicity
of S/p, where S is a polynomial ring and p is a homogeneous prime not
containing a linear form, and the regularity of S/p. Why should there be
any relationship? Try the case in which p is generated by a regular sequence
of forms.

(20) Let S be a polynomial ring, and let I be an ideal generated by square-free
monomials. The multiplicity of S/I is just the number of minimal primes p
over I such that the dimension of S/p is maximal. Can you say anything
about the regularity? For example, what if I is the edge ideal of a graph
(see the discussion following Question 35)?

(21) Is there any relationship at all between the projective dimension (resp. regu-
larity) of a quotient S/I (S a polynomial ring, I a homogeneous ideal) and
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the projective dimension (resp. regularity) of S/
√

I ? Try to give examples
or formulate a problem.

(22) Answer the previous question when I is generated by monomials.

2. Reduction to characteristic p and integral closure

In this section we will discuss the solution to an uniformity question of John
Mather, and illustrate in the process two important concepts in commutative
algebra: reduction to characteristic p, and integral closure. Throughout this
section, S will denote the power series ring C[[x1, . . . , xn]]. Given f ∈ S, we will
write fi for its i-th partial derivative ∂ f/∂xi . We write J ( f ) for the Jacobian
ideal of f , J ( f )= ( f1, . . . , fn).

Question 13 (Mather [Huneke and Swanson 2006, Question 13.0.1]). Consider
an element f ∈ S satisfying f (0) = 0. Does there exist an uniform integer N
such that f N

∈ J ( f )?

The answer to this turns out to be positive as we’ll explain shortly, and in fact
one can take N = n. Notice however that there is no a priori reason for such an
N to even exist, that is, for f to be contained in

√
J ( f ). Let’s first look at some

examples:

• If f = x2
1 + x2

2 then J ( f )= (2x1, 2x2), so f ∈ J ( f ).

• If f = x2
− x then since f1 = 2x − 1 is a unit, we get f ∈ J ( f ).

• If f is a homogeneous polynomial, or more generally a quasihomogeneous
one, then f ∈ J ( f ) (recall that f is said to be quasihomogeneous if there
exist weights d and ωi ∈ Z≥0 with the property that f (tω1 x1, . . . , tωn xn)=

td f (x1, . . . , xn)). The conclusion f ∈ J ( f ) follows from the quasihomo-
geneous version of Euler’s formula:

n∑
i=1

ωi · xi · fi = d · f.

• Even when f is not quasihomogeneous, there might exist an analytic change
of coordinates which transforms it into a quasihomogeneous polynomial, so
the conclusion f ∈ J ( f ) still holds. For example, if f = (x1−x2

2)·(x1−x3
2),

one can make the change of variable y1 = x1− x2
2 , y2 = x2 ·

√
1− x2 and

get f = y1 · (y1+ y2
2) which is quasihomogeneous for ω1 = 2, ω2 = 1 and

d = 4. The following theorem gives a partial converse to this observation:

Theorem 14 [Saito 1971]. If the hypersurface f = 0 has an isolated singularity
(or equivalently

√
J ( f ) = (x1, . . . , xn)) then f is quasihomogeneous (with

respect to some analytic change of coordinates) if and only if f ∈ J ( f ).
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We begin answering Question 13 by looking first at the case n = 1: writing t
for x1, S = C[[t]] is a DVR, so any nonzero f ∈ S can be written as f = t i

· u,
where u(0) 6= 0, i.e., u is a unit; we get

∂ f
∂t
= t i−1

·

(
i · u+ t ·

∂u
∂t

)
= t i−1

· unit,

so f ∈ J ( f ). This calculation in fact shows that f ∈ J ( f ) even for n > 1,
provided that we first make a ring extension to a power series ring in one variable.
More precisely, assume that n > 1 and consider an embedding S ↪→ K [[t]], given
by xi 7→ xi (t), where K is any field extension of C. The above calculation shows
that f is contained in the ideal of K [[t]] generated by the derivative d f/dt . The
Chain Rule yields

d f
dt
=

n∑
i=1

fi ·
dxi

dt
∈ J ( f ) · K [[t]],

so we conclude that f ∈ J ( f ) · K [[t]]. This motivates the following

Definition 15 (Integral closure of ideals). Given an ideal I ⊂ S, the integral
closure I of I is defined by

I = {g ∈ S : ϕ(g) ∈ ϕ(I ) for every field extension C⊂ K
and every C–algebra homomorphism ϕ : S→K [[t]]}.

We have thus shown that f ∈ J ( f ), so our next goal is to understand better
the relationship between an ideal and its integral closure. We have the following
result.

Theorem 16 (Alternative characterizations of integral closure [Huneke and
Swanson 2006, Theorem 6.8.3, Corollary 6.8.12]). Given an ideal I ⊂ S and an
element g ∈ S, the following statements are equivalent:

(a) g ∈ I .

(b) There exist k ∈ Z≥0 and si ∈ I i for i = 1, . . . , k, such that

gk
= s1 · gk−1

+ · · ·+ si · gk−i
+ · · ·+ sk .

(c) There exists c ∈ S \ {0} such that

c · gm
∈ I m for every m ∈ Z≥0.

It is worth thinking for a moment about the differences between these three
characterizations. In fact, they are very different, and we shall need all three of
them. The first characterizes integral closure in a non-constructive way, since
the definition depends on arbitrary homomorphisms to discrete valuation rings.
Nonetheless, we have seen the power of this definition by using it to show that
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power series are integral over the ideal generated by their partials. The second
characterization shows that one needs only a finite set of data to determine integral
closures. In particular, it is clear from this characterization that integral closure
behaves well under numerous operations such as homomorphisms. Finally, the
third characterization is the easiest to use in the sense that it is a weak condition,
but the condition by its nature involves an infinite set of equations.

Since f ∈ J ( f ), part (b) of Theorem 16 implies that f k
∈ J ( f ) for some k,

but in principle k could depend on f . The goal of the rest of this section is to
show that we can choose k = n, independently of f . We will do so by passing
to characteristic p > 0. A word of caution is in order here, which is that the
conclusion f ∈

√
J ( f ) fails in positive characteristic: if f = g p, then J ( f )= 0.

Nevertheless, we will prove the following:

Theorem 17 [Skoda and Briançon 1974; Lipman and Sathaye 1981; Huneke
and Swanson 2006, Chapter 13]. Assume that R is a regular local ring of
characteristic p > 0, and consider an ideal J = (g1, . . . , gt) in R. If g ∈ J
then gt

∈ J .

The advantage of working in positive characteristic is the existence of the
Frobenius endomorphism F sending every element x to x p. In the case of a
regular local ring, the Frobenius endomorphism is in fact flat [Kunz 1969], which
yields the following:

Theorem 18 (Test for ideal membership). Consider a regular local ring R of
characteristic p > 0, an ideal J = (g1, . . . , gt), and an element g ∈ R. We have
that g ∈ J if and only if there exists c ∈ R \ {0} such that for all e, c · g pe

is in the
Frobenius power

J [p
e
]
:= (g pe

1 , . . . , g pe

t ).

Remark. This test for ideal membership has been conceptualized into an im-
portant closure operation called tight closure (see [Hochster and Huneke 1990]).
If R is a Noetherian ring of characteristic p, I is an ideal, and x ∈ R, we say that
x is in the tight closure of I if there exists an element c ∈ R, not in any minimal
prime of R, such that cx pe

∈ I [p
e
] for all large e. The set of all elements in the

tight closure of I forms a new ideal I ∗, called the tight closure of I .

Proof of Theorem 18. Assume that g /∈ J so that (J : g)= {x ∈ R : x · g ∈ J } is a
proper ideal, and consider the exact sequence

0−→ R/(J : g)
g
−→ R/J −→ R/(J, g)−→ 0. (2-1)

Since F is flat, pulling back (2-1) along Fe preserves exactness, yielding the
sequence
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0−→ R/(J : g)[p
e
] g pe

−→ R/J [p
e
]
−→ R/(J, g)[p

e
]
−→ 0. (2-2)

Since (J, g)[p
e
]
= (J [p

e
], g[p

e
]), we get by comparing (2-2) with the analogue of

(2-1), namely

0−→ R/(J [p
e
]
: g pe

)
g pe

−→ R/J [p
e
]
−→ R/(J [p

e
], g pe

)−→ 0,

that (J : g)[p
e
]
= (J [p

e
]
: g pe

). The condition c ·g pe
∈ J [p

e
] for all e then becomes

c ∈
⋂
e≥0
( J : g)[p

e
]
⊂
⋂
e≥0

(J : g)pe
= 0,

where the last equality follows from the Krull intersection theorem [Eisenbud
1995, Corollary 5.4]. �

Proof of Theorem 17. By Theorem 18, it suffices to find c 6= 0 such that
c · (gt)pe

∈ J [p
e
]. Since g ∈ J , we know by Theorem 16(c) that there exists

c 6= 0 such that c · gm
∈ J m for all m. Taking m = t · pe, we have in particular

that c · (gt)pe
∈ J t ·pe

. Since J t ·pe
is generated by monomials gi1

1 · · · g
it
t , with

i1+ · · · + it = t · pe, for each such monomial at least one of the exponents i j

satisfies i j ≥ pe. It follows that J t ·pe
⊂ J [p

e
], so c · (gt)pe

∈ J [p
e
], concluding

the proof of the theorem. �

We now explain the last ingredient needed to answer Mather’s question, which
is reduction to characteristic p. We will use it to show that the statement of
Theorem 17 holds in characteristic 0 for the power series ring S:

Theorem 19. Let S = C[[x1, . . . , xn]] and consider an ideal I = ( f1, . . . , ft) in
S. If f ∈ I then f t

∈ I .

Proof. Suppose that the conclusion of the theorem fails, so f t /∈ I . The idea is
to produce a regular ring R in characteristic p, an ideal J ⊂ R and an element
g ∈ R that fail the conclusion of Theorem 17, obtaining a contradiction. The
point here is that the hypotheses of Theorem 17 depend only on finite amount of
data, which can be carried over to positive characteristic: this is essential in any
argument involving reduction to characteristic p.

We now need a major theorem: Néron desingularization [Artin and Rotthaus
1988] states that we can write S as a directed union of smooth C[x1, . . . , xn]-
algebras. This amazing theorem allows one to descend from power series, which
a priori have infinitely many coefficients, to a more finite situation. Given any
finite subset, S say, of S, we can choose one such algebra T containing S.
According to the equivalent description of the condition f ∈ I in part (b) of
Theorem 16, there exist k and elements si ∈ I i such that

f k
=

∑
i

si · f k−i . (2-3)
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To express the containment si ∈ I i , we choose coefficients ci
α ∈ S such that

si =
∑

α=(α1,...,αt )
α1+···+αt=i

ci
α · f α1

1 · · · f αt
t . (2-4)

We will then require the smooth subalgebra T of S to contain S= { f, f j , si , ci
α}

for all j, i and α. We write IT for the ideal ( f1, . . . , ft) of T . Since f t /∈ I = IT S,
it must be that f t /∈ IT . Since T contains S, (2-4) can be interpreted as an equality
in T , which yields si ∈ I i

T . Furthermore, (2-3) is an equation in T , so Theorem 16
applies to show that f ∈ IT .

Since T is smooth over C[x1, . . . , xn], it is in particular a finite type algebra
over C, so it can be written as a quotient of a polynomial ring C[y1, . . . , yr ]

by some ideal (h1, . . . , hs). Each of the elements of S is then represented by
the class of some polynomial in C[y1, . . . , yr ], so collecting the coefficients
of all these polynomials, as well as the coefficients of h1, . . . , hs , we obtain
a finite subset A ⊂ C. We define A = Z[A] to be the smallest subring of C

containing A. A is a finitely generated Z-algebra, and we can consider the ring
TA = A[y1, . . . , yr ]/(h1, . . . , hs). TA is called a model of T , having the property
that TA⊗A C= T . Moreover, TA contains all the elements of S (we use here an
abuse of language: what we mean is that if we think of A[y1, . . . , yr ] as a subring
of C[y1, . . . , yr ], then every element of S is represented by some polynomial
in A[y1, . . . , yr ]). We write ITA for the ideal of TA generated by f1, . . . , ft , and
conclude as before that f t /∈ ITA and f ∈ ITA .

We are now ready to pass to characteristic p> 0. We first need to observe that
if we write Q(A) for the quotient field of A, then TA⊗A Q(A) is smooth over
Q(A), i.e., the map A→ TA is generically smooth: this follows from the fact that
T is smooth over C, together with the fact that applying the Jacobian criterion
to the map C→ T = C[y1, . . . , yr ]/(h1, . . . , hs) is the same as applying it to
Q(A)→ TA ⊗A Q(A) = Q(A)[y1, . . . , yr ]/(h1, . . . , hs). It follows that for a
generic choice of a maximal ideal n⊂ A, the quotient R = TA/nTA is smooth
over the finite field A/n, so in particular it is a regular local ring. Writing g
(resp. gi ) for the class of f ∈ TA (resp. fi ∈ TA) in the quotient ring R, letting
J = (g1, . . . , gt), and observing that the equations (2-3) and (2-4) descend to R,
we get that g ∈ J . The condition gt /∈ J follows from generic flatness and the
genericity assumption on n: TA is a finite type algebra over A, and multiplication
by f t on (TA/IA)⊗A Q(A) is nonzero (if it were zero, then it would also be
zero on (TA/IA)⊗A Q(A)⊗Q(A) C = T/I , but f t /∈ I ), i.e., multiplication by
f t on TA/IA is generically nonzero. It follows that for a generic choice of n,
the ring R is a regular local ring in characteristic p > 0, containing an ideal
J = (g1, . . . , gt) and an element g ∈ J with gt /∈ J . This is in contradiction with
Theorem 17, concluding our proof. �
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Exercises.
(23) Let S = C[[x1, . . . , xn]], let f ∈ S with f (0)= 0, and let m be the maximal

ideal of S. Prove that f ∈ m · J ( f ). It is not known whether or not f ∈
m · J ( f ). If true, this would give a positive solution to the Eisenbud–Mazur
conjecture (see Exercise (40) on page 181).

(24) Let f (t), g(t) be polynomials with coefficients in a ring R, say f (t) =
antn
+ · · · + a0, and g(t)= bntn

+ · · · + b0. Let ci be the coefficient of t i

in the product f g. Prove that the ideal generated by ai b j is integral over
the ideal generated by c2n, . . . , c0.

(25) Let S be a polynomial ring in n variables, and let g1, . . . , gn be a regular
sequence of forms of degree d (equivalently assume that they are forms of
degree d , and that the radical of the ideal they generate is the homogeneous
maximal ideal). Prove that (g1, . . . , gn)=md .

3. Uniform Artin–Rees

In the last section we saw how to use characteristic p techniques (in a power
series ring over the field C) in order to give a uniform bound on the power of an
element in the integral closure of an ideal I to be contained in I . The following
more general result was first proved in [Skoda and Briançon 1974] for convergent
power series over the complex numbers, and generalized to arbitrary regular
local rings in [Lipman and Sathaye 1981].

Theorem 20. Let R be a regular local ring and let I be an ideal generated by `
elements. Then for all n ≥ `,

I n ⊆ I n−`+1.

Although apparently ` depends on the number of generators of I , in fact it
can be made uniform. This is because if the residue field of R is infinite, every
ideal is integral over an ideal generated by d elements, where d is the dimension
of R. If the residue field is not infinite, then one can make a flat base change to
that case and still prove that one can always choose `= d .

What about for Noetherian local rings which are not regular? Is there a uniform
integer k such that for all ideals I , if n ≥ k then

I n ⊆ I n−k+1?

The following conjecture was made in [Huneke 1992]:

Conjecture 21. Let R be a reduced excellent Noetherian ring of finite Krull
dimension. There exists an integer k, depending only on R, such that I n ⊆ I n−k

for every ideal I ⊆ R and all n ≥ k?
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With a little thought, it is easy to see that at least one cannot choose such a k
equal to the dimension of the ambient ring. For example if the dimension is one,
then the statement I n ⊆ I n−1+1 forces powers of all ideals to be integrally closed.
For a local one-dimensional ring, this in turn forces the ring to be regular. On
the other hand there will often be a uniform k in this special case. For example,
let’s suppose that R is a one-dimensional complete local domain. Its integral
closure will be a DVR, say V. The integral closure of any ideal J in R is given by
J V ∩ R. There is a conductor ideal which is primary to the maximal ideal m, so
there is a fixed integer k such that for every ideal I of R, I k is in the conductor.
But then,

I n = I nV ∩ R ⊂ I n−k,

since I k V ⊂ R. Thinking about this analysis, it is not totally surprising that this
question is closely connected with another uniform question dealing with the
classical lemma of Artin and Rees.

The usual Artin–Rees lemma states that if R is Noetherian, N ⊆M are finitely
generated R-modules, and I is an ideal of R, then there exists a k> 0 (depending
on I,M, N ) such that for all n > k, I n M ∩ N = I n−k(I k M ∩ N ). A weaker
statement which is sometimes just as useful is that for all n > k,

I n M ∩ N ⊆ I n−k N .

How dependent upon I , M and N is the least such k? It is very easy to see
that k fully depends upon both N and M , so the only uniformity that might
occur is in varying the ideal I . The usual proof of the Artin–Rees lemma
passes to the module M := M ⊕ I M ⊕ I 2 M ⊕ · · · , which is finitely generated
over the Rees algebra R[I t] of I . Since the Rees algebra is Noetherian, every
submodule of M is finitely generated. Applying this fact to the submodule
N := N ⊕ I M ∩ N ⊕ I 2 M ∩ N ⊕ · · · of M then easily gives the Artin–Rees
lemma. On the face of it, there is no way that the integer k could be chosen
uniformly, since it depends on the degrees of the generators of the submodule N

over the Rees algebra of I . Nonetheless, one can still make a rather optimistic
conjecture [Huneke 1992]:

Conjecture 22. Let R be an excellent Noetherian ring of finite Krull dimension.
Let N ⊆ M be two finitely generated R-modules. There exists an integer k =
k(N ,M) such that for all ideals I ⊆ R and all n ≥ k,

I n M ∩ N ⊆ I n−k N .

In this generality, the conjecture is open. However, there is considerable
literature giving lots of information about this conjecture and related problems.
See, for example, [Aberbach 1993; Duncan and O’Carroll 1989; Ein et al. 2004;
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Giral and Planas-Vilanova 2008; O’Carroll 1987; O’Carroll and Planas-Vilanova
2008; Planas-Vilanova 2000; Striuli 2007; Trivedi 1997].

It turns out that there is a very close relationship between these two conjectures,
which is not at all apparent. One way to see such a connection is through results
related to tight closure theory. Suppose that R is a d-dimensional local complete
Noetherian ring of characteristic p which is reduced. The so-called “tight closure
Briançon–Skoda theorem” [Hochster and Huneke 1990] states that for every
ideal I , I n ⊆ (I n−d+1)∗, where J ∗ denotes the tight closure of an ideal J . If
R is regular, every ideal is tightly closed. The point here is that R will have a
nonzero test element c, not in any minimal prime. This means that c multiplies
the tight closure of any ideal back into the ideal. Such elements are uniform
annihilators, and are one of the most important features in the theory of tight
closure. Suppose that there is a uniform Artin–Rees number k for the pair of
R-modules, (c)⊂ R. Then for every ideal I ,

cI n ⊆ c(I n−d+1)∗ ⊂ (c)∩ I n−d+1
⊂ cI n−d−k+1.

Since c is not in any minimal prime and R is reduced, it follows that c is a
nonzerodivisor. We can cancel it to obtain that

I n ⊆ I n−d−k+1.

Thus in this case, uniform Artin–Rees implies uniform Briançon–Skoda. In fact
these conjectures are more or less equivalent.

Both conjectures were proved in fairly great generality in [Huneke 1992]:

Theorem 23 (Uniform Artin–Rees). Let S be a Noetherian ring. Let N ⊆ M be
two finitely generated S-modules. If S satisfies any of the conditions below, then
there exists an integer k such that for all ideals I of S, and for all n ≥ k

I n M ∩ N ⊆ I n−k N .

(i) S is essentially of finite type over a Noetherian local ring.

(ii) S is a reduced ring of characteristic p, and S1/p is module-finite over S.

(iii) S is essentially of finite type over Z.

We also have the following:

Theorem 24 (Uniform Briançon–Skoda). Let S be a Noetherian reduced ring.
If S satisfies any of the following conditions, then there exists a positive integer k
such that I n ⊆ I n−k for all ideals I of S and all n ≥ k.

(i) S is essentially of finite type over an excellent Noetherian local ring.

(ii) S is of characteristic p, and S1/p is module-finite over S.

(iii) S is essentially of finite type over Z.
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Exercises.
(26) If a Noetherian ring R has the uniform Artin–Rees property, show that R/J

(for any ideal J ⊆ R) also has the uniform Artin–Rees property.

(27) If a Noetherian ring R has the uniform Artin–Rees property and W is any
multiplicatively closed subset of R, show that the localization RW also has
the uniform Artin–Rees property.

(28) Suppose that a Noetherian ring R has the uniform Artin–Rees property.
Given a finitely generated R-module M , and an integer i ≥ 1, show that
there exists an integer k ≥ 1 such that for all ideals I of R and all n,

I k TorR
i (R/I n,M)= 0.

(29) Let R = k[[x, y]], k a field. Set I = (xn, yn, xn−1 y), J = (xn, yn). Prove
that if k < n then I ` 6= J `−k I k for some `≥ k+ 1.

(30) Let R be a Noetherian domain which satisfies the uniform Artin–Rees
theorem for every pair of finitely generated modules N ⊂ M . Let f be a
nonzero element of R. Prove that there exists an integer k such that for
every maximal ideal m of R, f /∈mk .

4. Symbolic powers

In this section, S will denote either a polynomial ring k[x1, . . . , xn] over some
field k, or a regular local ring. The guiding problem will be the comparison
between regular and symbolic powers of ideals in S. From a uniform perspective,
we would like to understand whether the equality between small regular and
symbolic powers guarantees the equality of all regular and symbolic powers. As
we’ll see, this is a very difficult question, but it gives rise to many interesting
variations. We begin with a discussion of multiplicities, which will motivate the
introduction of symbolic powers.

Recall from Section 1 that if S is a polynomial ring, I is a homogeneous ideal,
and R = S/I , then dimk(Ri ) = h R(i) is a polynomial function for sufficiently
large values of i , and the multiplicity e(R) is defined by the property that

h R(i)=
e(R)

(dim R− 1)!
idim R−1

+ (lower order terms).

We can define the multiplicity of a local ring (R,m) by letting e(R)= e(grm(R)),
where

grm(R)= R/m⊕m/m2
⊕m2/m3

⊕ · · · =

⊕
i≥0

mi/mi+1

is the associated graded ring of R with respect to m. Let’s look at some examples
of multiplicities:
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Example 25. (a) If S = k[x1, . . . , xn] and f is a form of degree d then
e(S/( f ))= d . If S is a regular local ring, then

e(S/( f ))= ord( f ) :=max{n : f ∈mn
}.

(b) If S = k[x1, . . . , xn], and S/I is Cohen–Macaulay, having a pure resolution

0−→ S(−dc)
βc −→ · · · −→ S(−d2)

β2 −→ S(−d1)
β1 −→ S −→ S/I −→ 0,

where c = codim(I ), then

e(S/I )=

∏c
j=1 d j

c!
.

(c) If X ⊂ Pn is a set consisting of r points, and if we write RX for the
homogeneous coordinate ring of X , then

e(RX )= r.

Note that for a projective variety X , e(RX ) is also called the degree of X .

(d) If X = G(2, n) is the Grassmannian of 2-planes in n-space, in its Plücker
embedding, then its degree is (see for example [Mukai 1993])

e(RX )=
1

n− 1

(2n−4
n−2

)
,

the (n− 2)-nd Catalan number.

The following is a natural question when studying multiplicity:

Question 26. How does the multiplicity behave under flat maps?

We are interested in two types of flat maps:

I. A local flat ring homomorphism (R,m)→ (R′,m′).

II. A localization map R→ Rp, where p is a prime ideal.

For flat maps of type I, the behavior of multiplicity is the subject of an old
conjecture:

Conjecture 27 [Lech 1960]. If (R,m)→ (R′,m′) is a local flat homomorphism
then

e(R)≤ e(R′).

It is amazing that very little progress has been made on this conjecture,
although it is easy to state, and was made about 50 years ago! To paraphrase
a famous line of Mel Hochster, it is somewhat of an insult to our field that we
cannot answer this conjecture, one way or the other.
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For flat maps of type II, if S is a regular local ring and R = S/( f ), we have
(see [Nagata 1962, (38.3); Zariski 1949] and Exercise (36) on page 187)

e(Rp)=max{n : f ∈ pn Sp ∩ S} ≤max{n : f ∈mn
} = e(R).

If we denote by p(n) the intersection pn Sp ∩ S, also called the n-th symbolic
power of p, then the above inequality is equivalent to the containment

p(n) ⊆mn. (4-1)

For a ring R, we write Spec(S) (resp. Max(S)) for the collection of its prime
(resp. maximal) ideals. In general, if S = k[x1, . . . , xn] is a polynomial ring and
p ∈ Spec(S), then by the Nullstellensatz [Eisenbud 1995, Theorem 4.19],

p=
⋂

m∈Max(S)
p⊂m

m.

The symbolic powers of p can then be described (see [Eisenbud and Hochster
1979]) as

p(n) =
⋂

m∈Max(S)
p⊂m

mn, (4-2)

generalizing the inclusion (4-1). If we think of p as defining an affine variety X ,
then (4-2) characterizes p(n) as the polynomial functions that vanish to order n
at the points of X . Symbolic powers make sense in a more general context. If
I = p1 ∩ · · · ∩ pr is an intersection of prime ideals, then

I (n) = p(n)1 ∩ · · · ∩ p
(n)
r . (4-3)

For an arbitrary ideal I , see [Bauer et al. 2009, Definition 8.1.1].
One of the main questions regarding symbolic powers is the following:

Question 28 Regular versus symbolic powers. How do I n and I (n) compare? In
particular, when are they equal for all n?

Example 29. (a) If I is a complete intersection ideal, i.e., if it is generated by
a regular sequence, then I n

= I (n) for all n ≥ 1 (see Exercise (33) for the
case when I is a prime ideal).

(b) Let X denote a generic n × n matrix with n ≥ 3, let 1 = det(X) and
I = In−1(X), the ideal of (n− 1)× (n− 1) minors of X . We have on one
hand that the adjoint matrix adj(X) has entries in I , so det(adj(X)) ∈ I n ,
and on the other hand adj(X) ·X =1 ·In (where In denotes the n×n identity
matrix), so det(adj(X))=1n−1. We get 1n−1

∈ I n , from which it can be
shown that 1 ∈ I (2) \ I 2 (see Exercise (42)).
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(c) If S = k[x, y, z], p ∈ Spec(S) with dim(S/p) = 1, then the following are
equivalent:
• p(n) = pn for all n ≥ 1.
• p(2) = p2.
• p is locally a complete intersection.

The following conjecture is related to Example 29(b), and in particular it is
true in the said example:

Conjecture 30 [Hübl 1999, Conjecture 1.3]. If R is a regular local ring, p ∈
Spec(R) and f ∈ R, with the property that f n−1

∈ pn , then f ∈m · p.

As a consequence of Exercise (42), it follows under the assumptions of the
conjecture that f ∈ p(2), but the conclusion f ∈m ·p turns out to be significantly
harder. In characteristic 0, Conjecture 30 is equivalent to the Eisenbud–Mazur
conjecture on evolutions (see Exercise (40) and [Eisenbud and Mazur 1997;
Boocher 2008]).

A natural uniformity problem is to determine if it is enough to test the equality
in Question 28 for finitely many values of n, and moreover to determine a uniform
bound for these values. A precise version of this is the following:

Question 31. Assume that S is a regular local ring, or a polynomial ring, and
that p ∈ Spec(S). If p(dim S)

= pdim S , does it follow that p(n) = pn for all n ≥ 1?

One could ask the same question, replacing the condition p(dim S)
= pdim S with

a stronger one, namely p(i) = pi for all i ≤ dim(S). The equivalence between
the two formulations is unknown in general, but in characteristic zero it would
follow from a positive answer to the following:

Question 32. Let S be a regular local ring containing C, and let p ∈ Spec(S).
Does it follow that there exists a nonzerodivisor of degree 1 in the associated
graded ring grp(S)?

There are two test cases where much is known about Question 31: points
in P2 and square-free monomial ideals.

Case I: points in P2
k . Consider a set X of r points in P2

k , and let I = IX be its
defining ideal. Since codim(I )= 2, it follows from [Ein et al. 2001; Hochster
and Huneke 2002] that I (2n)

⊂ I n for all n, so in particular I (4) ⊂ I 2. It is then
natural to ask:

Question 33 [Huneke 2006, Question 0.4]. Is it true that I (3) ⊂ I 2 ?

Bocci and Harbourne gave a positive answer to this question when I = IX is
the ideal of a generic set of points [Bocci and Harbourne 2010]. In characteristic
2, the inclusion follows from the techniques of [Hochster and Huneke 2002]
(see [Bauer et al. 2009, Example 8.4.4]). Harbourne formulated some general
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conjectures for arbitrary homogeneous ideals which would imply a positive
answer to Question 33 (see [Bauer et al. 2009, Conjecture 8.4.2, Conjecture 8.4.3]
or [Harbourne and Huneke 2013, Conjecture 4.1.1]). Unfortunately, it turns out
that the relation between symbolic powers and ordinary powers is much more
subtle, even in the case of points in P2: Question 33 was recently given a negative
answer in [Dumnicki et al. 2013].

One measure of how close the ordinary powers are to symbolic powers is
given by comparing the least degrees of their generators. Given a homogeneous
ideal J , we write α(J ) for the smallest degree of a minimal generator of J .
Since I n

⊂ I (n), α(I (n)) ≤ α(I n) = n · α(I ), or equivalently α(I ) ≥ α(I (n))/n.
The sequence α(I (n))/n is always convergent (see Exercise (43)), and it has
made a surprising appearance in the construction of Nagata’s counter-example
to Hilbert’s 14th problem.

Theorem 34 [Nagata 1960]. If X is a set of r generic points in P2
C

and I = IX

is its defining ideal, then

(1) limn→∞ α(I (n))/n ≤
√

r .

(2) If r = s2 is a perfect square with s ≥ 4, then α(I (n))/n > s.

If we take r = s2 with s ≥ 4, then the ring R =
⊕

n≥0 I (n) is a ring of invariants
that is not finitely generated.

Case II: square-free monomial ideals. Consider the ideal

I = (xy, xz, yz)= (x, y)∩ (x, z)∩ (y, z)

defining a set of 3 non-collinear points in P2. We have

I (2) = (x, y)2 ∩ (x, z)2 ∩ (y, z)2,

and it is easily checked that xyz ∈ I (2) \ I 2.
More generally, any square-free monomial ideal I can be written as an inter-

section p1∩· · ·∩ps of prime ideals, where each pi is generated by a subset of the
variables. If codim(pi )= ci then x1 · · · xn ∈ p

ci
i . Taking c= codim(I )=min(ci )

we get that
x1 · · · xn ∈ p

c
1 ∩ · · · ∩ p

c
s = I (c).

It follows that if I c
= I (c), then x1 · · · xn must be contained in I c; thus I contains

c monomials with disjoint support, i.e.,

I contains a regular sequence consisting of c monomials. (4-4)

If I (n) = I n for all n then (4-4) holds for all ideals J obtained from I by
setting variables equal to 0 or 1 (such an ideal J is called a minor of I ). This
raises the following question, posed by Gitler, Valencia and Villarreal.
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Question 35 [Gitler et al. 2007]. If (4-4) holds for all minors of I , does it follow
that I (n) = I n for all n?

This question is equivalent to a max-flow-min-cut conjecture due to Conforti
and Cornuéjols [Cornuéjols 2001, Conjecture 1.6], and it is open except in the
case when I is generated by quadrics. Note that to any square-free monomial
ideal I generated by quadrics one can associate a graph G as follows: the vertices
of G correspond to the variables in the ring, and two vertices xi and x j are joined
by an edge if xi x j ∈ I . Conversely, starting with a graph G one can reverse the
preceding construction to get a monomial ideal I generated by quadrics. I is
called the edge ideal of the graph G. With this terminology, we have:

Theorem 36 [Gitler et al. 2007]. If I is the edge ideal of a graph G, then the
following are equivalent:

(1) I (n) = I n for all n ≥ 1.

(2) I is packed, i.e., (4-4) holds after setting any subset of the variables to be
equal to 0 or 1.

(3) G is bipartite.

Exercises.
(31) A famous theorem of Rees says that if R is a Noetherian local ring which is

formally equidimensional (i.e., its completion is equidimensional), and I is
primary to the maximal ideal m, then f ∈ I if and only if e(I )= e(I + ( f )).
Prove the easy direction of this theorem.

(32) Let S= k[[x1, . . . , xn]] and let fi = xai1
1 +· · ·+xain

n . Assume that the ideal I
generated by the fi ’s has the property that S/I is a finite dimensional vector
space. Give a formula, in terms of the exponents ai j , for the dimension of
this vector space (which is also the length of S/I , or the multiplicity of the
ideal I ).

(33) Let p be a prime ideal generated by a regular sequence in a regular local
ring (or polynomial ring). Prove that p(n) = pn for all n ≥ 1.

(34) Prove that if I is a reduced ideal in a polynomial ring, then I (n) · I (m) ⊂
I (n+m).

(35) With the notation from the previous exercise, prove that the graded algebra

T :=
⊕
n≥0

I (n)

is Noetherian if and only if there exists an integer k such that for all n,

(I (k))n = I (kn).
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(36) Let S be a regular local ring and let f ∈ S be a nonzero, nonunit element in
S. Prove that the multiplicity of R := S/( f ) is equal to the order of f .

(37) Prove the following result of Chudnovsky [1981], which he showed using
transcendental methods: if I is the ideal of a set of points in the projective
plane over the complex numbers, then

α(I (N ))≥
Nα(I )

2
,

where (as before) α( ) denotes the least degree of a minimal generator of
a homogeneous ideal.

(38) Let I be the ideal of at most five points in the projective plane. Prove that
I (3) ⊂ I 2.

(39) Let I be an ideal of points in the projective plane over a field of characteristic
2. Prove that I (3) ⊂ I 2.

(40) The Eisenbud–Mazur conjecture states that if S is a power series ring over
a field of characteristic 0, then for every prime ideal p,

p(2) ⊂mp,

where m denotes the maximal ideal of S. Prove this when p is homogeneous.

(41) Prove the Eisenbud–Mazur conjecture assuming that for every f ∈ S (S
as in Exercise (40) and f not a unit) f is not a minimal generator of the
integral closure of its partial derivatives.

(42) Let R be a regular local ring, and let p be a prime ideal. Set G = grp(R),
the associated graded ring of p. If f ∈ R, write f ∗ for the leading form
of f in G. Show that if f ∗ is nilpotent in G, then f ∈ p(n) but f /∈ pn for
some n.

(43) Let I be a homogeneous ideal in a polynomial ring S, satisfying I =
√

I .
Prove that the limit of α(I (m))/m exists as m goes to infinity.
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