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1. Introduction

My goal here is to explain why a finite group representation theorist might be
interested in commutative algebra, and in particular the Orlov correspondence
[Orlov 2006]. I will then give an exposition of the Orlov correspondence for
an arbitrary zero-dimensional complete intersection. Rather than go down the
same route as Orlov, my description will be better suited to computation and will
have the added advantage of giving a lift of this correspondence from the stable
category to the derived category. Finally I shall explain the relevance to some
recent joint work with Julia Pevtsova [Benson and Pevtsova 2012] on realisation
of vector bundles on projective space from modular representations of constant
Jordan type.

I should point out that Theorem 2.4, the main theorem of this paper, is a
special case of Theorem 7.5 of Burke and Stevenson [2015]; even the functors
realising the equivalences in the theorem are the same. The proof presented here
uses a minimum of heavy machinery, taking advantage of the special situation in
hand to reduce to an explicit computation involving the “bidirectional Koszul
complex”, introduced in Section 5.

Let G be a finite group and k a field of characteristic p. Recall that many
features of the representation theory and cohomology are controlled by elemen-
tary abelian subgroups of G, that is, subgroups that are isomorphic to a direct
product E = (Z/p)" of cyclic groups of order p. The number r of copies of Z/p
is called the rank of E.

For example, Chouinard’s theorem [1976] states that a kG-module is projective
if and only if its restriction to every elementary abelian p-subgroup E of G is
projective.

A theorem of Quillen [1971a; 1971b] states that mod p cohomology of G
is detected up to F-isomorphism by the elementary abelian p-subgroups of G.
More precisely, the map

H*(G,k) — 1<i£1H*(E, k)
E
is an F-isomorphism, where the inverse limit is taken over the category whose
objects are the elementary abelian p-subgroups E of G and the maps are given
by conjugations in G followed by inclusions. To say that a map of [ ,-algebras
is an F-isomorphism means that the kernel is nilpotent, and given any element
of the target, some p-power power of it is in the image. This is equivalent to
the statement that the corresponding map of prime ideal spectra in the opposite
direction is a homeomorphism in the Zariski topology. The role of the coho-
mology ring in the representation theory of G has been investigated extensively.
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We refer the reader in particular to [Alperin 1987; Benson et al. 1997; 2011;
Linckelmann 1999].

So our goal will be to understand the stable module category stmod(kG). This
category has as its objects the finitely generated kG-modules, and its arrows are
given by

Homy (M, N) = Homg (M, N)/PHomyg (M, N),

where PHomy (M, N) denotes the linear subspace consisting of those homomor-
phism that factor through some projective kG-module. Note that the algebra kG
is self-injective, meaning that the projective and injective kG-modules coincide.

The category stmod(kG) is a not an abelian category, but rather a triangulated
category. This is true for any finite dimensional self-injective algebra, or more
generally for the stable category of any Frobenius category. The details can
be found in [Happel 1988]. This triangulated category is closely related to
the bounded derived category D”(kG). Let perf(kG) be the thick subcategory
of D?(kG) consisting of the perfect complexes, namely those complexes that
are isomorphic in D?(kG) to finite complexes of finitely generated projective
kG-modules.

Theorem 1.1. There is a canonical equivalence between the quotient
D’ (kG)/perf(kG)
and the stable module category stmod(kG).

This theorem appeared in the late 1980s in the work of several people and
in several contexts; see, for example, [Buchweitz 1986; Keller and Vossieck
1987; Rickard 1989, Theorem 2.1]. It motivated the following definition for any
ring R.

Definition 1.2. Let R be a ring, and let D?(R) be the bounded derived category
of finitely generated R-modules. Then the singularity category of R is the Verdier
quotient

Dsg(R) = D”(R)/perf(R).

Likewise, if R is a graded ring, we denote by D”(R) the bounded derived category
of finitely generated graded R-modules and Dy (R) the quotient by the perfect
complexes of graded modules.

Warning 1.3. In commutative algebra, this definition is much better behaved
for Gorenstein rings than for more general commutative Noetherian rings. For
a Gorenstein ring, the singularity category is equivalent to the stable category
of maximal Cohen—Macaulay modules [Buchweitz 1986], but the following
example is typical of the behaviour for non-Gorenstein rings.
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Example 1.4. Let R be the ring
KX, Y1/(X?, XY, Y.

Then the radical of R is isomorphic to k @ k, so there is a short exact sequence
of R-modules
0—>k®k—>R—k—0.

This means that in Dg(R) the connecting homomorphism of this short exact
sequence gives an isomorphism k = k[1] & k[1]. We have

k= k[1)®2 = k2] = k(3] =

and so k is an infinitely divisible module. Its endomorphism ring Endp,, () (k) is
the colimit of

k — Mat (k) — Maty(k) — Matg(k) — -- -,

where each matrix ring is embedded diagonally into a product of two copies,
sitting in the next matrix ring. In fact, this endomorphism ring is an example
of a von Neumann regular ring. For a generalisation of this example to finite
dimensional algebras with radical square zero, see [Chen 2011].

The reason why Dy (R) is called the “singularity category” is that it only
“sees” the singular locus of R.

Example 1.5. If R is a regular ring then R has finite global dimension. So
D’(R) = perf(R) and hence Dsg(R) = 0.

More generally, we have the following.

Definition 1.6. Let R be a [graded] Noetherian commutative ring. Then the
singular locus of R is the set of [homogeneous] prime ideals p of R such that
the [homogeneous] localisation Ry, is not regular.

Remark 1.7. Provided that R satisfies a mild technical condition known as
“excellence”, the singular locus is a Zariski closed set, so that it is of the form
V(1) for some [homogeneous] radical ideal I of R. Thus a € I if and only if
R[a~"] is regular. Quotients of polynomial rings, for example, are excellent.

Theorem 1.8. Let R be a [graded] Noetherian commutative ring of finite Krull
dimension whose singular locus is a Zariski closed set. Then Dss(R) is generated
by [the graded shifts of] the modules R /p where p is a [homogeneous] prime
ideal in the singular locus of R.

Remark 1.9. In the ungraded case, the theorem of Schoutens [2003] implies the
above theorem, but it is stronger, and the proof is more complicated. Schoutens’
theorem also holds in the graded case, with minor adjustments to the proof.
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I’d like to thank Srikanth Iyengar for suggesting the simple proof presented
here. The idea behind this argument also appears in Lemma 2.2 of Herzog and
Popescu [1997]. This theorem will be used in the proof of Proposition 8.1.

Proof of Theorem 1.8. Let d = dim R and let V (1) be the singular locus of R. It
suffices to show that if M is a finitely generated [graded] R-module then M is
in the thick subcategory of D”(R) generated by [graded shifts of] R and of R/p
with p € V(I), that is, with p D 1.

The first step is to replace M by its d-th syzygy Q¢ (M), that is, the d-th kernel
in any [graded] resolution of M by finitely generated free [graded] R-modules
(we allow free graded modules to be sums of shifts of R). Thus we may assume
that M is a d-th syzygy.

We claim that if a is a [homogeneous] element of / then for some n > 0, a”"
annihilates Ext}e (M, 2(M)). This is because R[a~'] has global dimension at
most d, so the fact that M is a d-th syzygy implies that M[a~'] is also a d-th
syzygy and is hence projective as an R[a~!]-module. So

Extp (M, Q(M))[a~'] = Exty,,(Mla~'], Q(M[a~"]) =0.

Apply this to the extension 0 - Q(M) - F — M — 0, with F a finitely
generated free [graded] R-module. Multiplying this extension by a” amounts to
forming the pullback X in the following diagram:

0 QM) X M 0
0 QM) F M 0

The resulting extension splits, so X = M & Q2(M). The snake lemma implies
that the middle vertical arrow gives rise to an exact sequence

0— Ker(@,M)—>X—F— M/a"M — 0.

Now Ker (a", M) and M /a"M are annihilated by a”*. So X, and hence M, is
in the thick subcategory of D(R) generated by R and modules supported on
R/aR. Now inducting on a finite set of generators for the ideal /, we see that
M is in the thick subcategory of D”(R) generated by R and modules supported
on V (I). The latter are in turn generated by the R/p withp € V(). U

Example 1.10. Consider the graded ring A = R/(f) where R =k[X1, ..., X,],
each X; is given some nonnegative degree, and f is some homogeneous element
of positive degree. Then Buchweitz [1986] showed that

Dsg(A) > MCM(A),
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the stable category of (finitely generated, graded) maximal Cohen—Macaulay
A-modules. Eisenbud [1980] showed that this category is equivalent to the
category of reduced matrix factorisations of f over R.

If we let Y = Proj A, the quasiprojective variety of homogeneous prime ideals
of A, then the category Coh(Y) of coherent sheaves on Y is equivalent to the
quotient of the category mod(A) of finitely generated graded A-modules by the
Serre subcategory of modules which are only nonzero in a finite number of
degrees. We write Dy, (Y) for the corresponding singularity category, namely
the quotient D?(Coh(Y)) /perf(Y), where perf(Y) denotes the perfect complexes.
Thus we have

Dse(Y) =~ MCM(A),

where MCM(A) is the quotient of MCM(A) by the maximal Cohen—Macaulay
approximations of modules which are only nonzero in a finite number of degrees.

Grading conventions. We grade everything homologically, so that the differen-
tial decreases degree. When we talk of complexes of graded modules, there are
two subscripts. The first subscript gives the homological degree and the second
gives the internal degree. If C is a complex of graded modules with components
C;,j then we write C[n] for the homological shift: C[n]; ; = Ci4,,;, and C(n)
for the internal shift: C(n); ; = C; j1n.

2. The Orlov correspondence

In this section we give a version of the Orlov correspondence for a complete

intersection of dimension zero. Let C = k[Xy,..., X, 1/(f1,..., fr) where
fi, ..., fr is a regular sequence contained in the square of the maximal ideal
Xi1,..., Xp).

Example 2.1. Let
E=(g1,....8)=(Z/p)

and let k be a field of characteristic p. Let kE be the group algebra of E over k,
and let

Xi:gi—IGkE.

Then kE =k[X1, ..., X, 1/(XP, ..., XP)isa complete intersection of codimen-
sion r and dimension zero.

Let Ry =k[Xy,..., X,] and let R =k[yy, ..., y,] ®r Ro. We regard R as a
graded polynomial ring with the y; in degree one and the X; in degree zero. Let

f:y1fl+"'+yrfr€R’
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an element of degree one. Let

A:R/(f) and B:R/(flv"'9fr):k[yla"'vyr]®kc~

We have a diagram

B A\ R
C— k[Xy1, ..., X/]

Taking Proj of these graded rings, we get the diagram in Section 2 of [Orlov
2006]:

A SN

LN

X—§

Theorem 2.2 (Orlov). The functor Ri,p*: D?(X) — D®(Y) descends to an
equivalence of categories stmod(C) = Dgo(X) — Do (Y). The right adjoint

Rpsi® =Rp.Li*(— Q@ wz/y)[—r +1] (2.3)
gives the inverse equivalence.

Our goal is to prove the following lift of the Orlov correspondence to the
derived category.

Theorem 2.4. There is an equivalence of categories D?(C) ~ Dsg(A) lifting the
equivalence Dy (X) > Dsg(Y) of Orlov.

Remark 2.5. In Orlov’s version, he makes use of local duality as described in
Chapter III, Corollary 7.3 of [Hartshorne 1966] to identify the right adjoint (2.3).
In our version, this is replaced by the self-duality (6.1) of a complex aA4 giving
a Tate resolution of A as an A-A-bimodule. The discrepancy between the shift
of —r 41 in (2.3) and the shift of —r in (6.1) is explained by the fact that in our
situation the sheaf wz,y is just O(—1).

In the following corollary, we spell out the consequences for the modular
representation theory of elementary abelian p-groups.

Corollary 2.6. Let E be an elementary abelian p-group of rank r. Then the
following triangulated categories are equivalent:

(1) the derived category D (KE);
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(2) the singularity category of graded A-modules Dsz(A) where
A=R/(f)’ R=k[y1’7yr’X19aXr]s f=y1Xf++er;{)a

the X; have degree zero and the y; have degree one;
(3) the stable category of maximal Cohen—Macaulay graded A-modules;

(4) the category of reduced graded matrix factorisations of f over R.

We shall see that under the correspondence given by this Corollary, the image
of the trivial k E-module k is a 2" ~! x 2"~! matrix factorisation given by taking
the even and odd terms in a bidirectional Koszul complex. The perfect complexes
correspond to the maximal Cohen—Macaulay approximations to the A-modules
which are nonzero only in finitely many degrees, so that the equivalence descends
to Orlov’s equivalence

stmod(kE) >~ D (Proj (A)).

The elements y; correspond to the basis for the primitive elements in H?(E, k)
obtained by applying the Bockstein map to the basis of H'(E, k) dual to
X1, X,

3. The functors

First we describe the functor ®: D?(C) — Dsg(A). If M, is a bounded complex
of finitely generated C-modules then the tensor product

k[yls ,yr]®kM*

is a bounded complex of finitely generated B-modules, which may then be
regarded as a bounded complex of finitely generated A-modules. Passing down
to the singularity category Dy (A), we obtain ®(M,). Thinking of D (A) as
equivalent to MCM(A), we can view ®(M,) as a maximal Cohen—Macaulay
approximation to k[yy, ..., ¥,] ® M.

Next we describe the functor W: D (A) — D’(C). An object N in Dgg(A)
can be thought of as a maximal Cohen—Macaulay A-module. It is therefore
represented by a reduced graded matrix factorisation of the polynomial f over
R. Namely, we have a pair of finitely generated free R-modules F and F’ and
maps

FL L R,
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such that UV and VU are both equal to f times the identity map. Then we have
the following sequence of free C-modules:

14

C ®r, Fo —— C ®x, F|
\%4

C ®pg, I L)C@]qo FI,

Since the free modules are finitely generated, this is zero far enough up the page.
We shall see in Lemma 3.1 below, that the resulting complex only has homology
in a finite number of degrees. It is therefore a complex of free C-modules,
bounded to the left, and whose homology is totally bounded. It is therefore a
semi-injective resolution of a well defined object in D(C). We shift in degree
so that the term Fy ®g, C appears in degree —r, and this is the object W (N) in
Db(C).

Another way of viewing the object W (V) is to take a complete resolution of
N as an A-module:

-~—>P1—)P0 —)P_l—)---
NS
/N
0 \0

and then W (N) is the complex (B ®4 P,)o[—r], whose degree n term is (B ®4
P*)(n—r,O)-

Lemma 3.1. If M is a maximal Cohen—Macaulay A-module then for all j > 0,
Tor;‘ (B, M) is nonzero only in finitely many degrees.

Proof. This follows from the fact that B is locally (but not globally) a complete
intersection as an A-module. More explicitly, for 1 <i <, in the ring R[yl.’l]
we have the following equation:

XP =y (F=yifim o=y fo):
It follows that _
Bly 1= Ay "/ (Fo 4o f)
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is a complete intersection of codimension r — 1 over A[y;” . Using a Koszul
complex, it follows that for all A-modules M and all j > r we have

_ Aly! _ _
Tord (B, M)[y; 1 =Tor} " '(BLy; "1, MLy, ') =o0.

If M is a maximal Cohen—Macaulay module then the minimal resolution of M is
periodic and so Tor;‘ (B, M)[yi_l] =0 forall j > 0. Since Tor;4 (B, M) is finitely
generated, it is annihilated by a high enough power of each y; and is hence it is
nonzero only in finitely many degrees. O

4. An example

Before delving into proofs, let us examine an example in detail. Let £ =
(Z/p)* = (g1, g2), an elementary abelian group of rank two, and let k be a field
of characteristic p. Then setting X; = g; — 1, X»> = g» — 1, we have

C =kE =k[X1, X21/(X7, X5),
A =kly1, y2, X1, X21/ 01 X7 + 2 X5).
Let us compute @ (k), where k is the trivial kK E-module. This means we should

resolve k[y1, y2] as an A-module, and look at the corresponding matrix factori-
sation. This minimal resolution has the form

)’2)(571 —)’1Xf1) (Xz Y1Xf_l)
X X —-Xi )’2X§71
A(=D®A(=1) A A=) ADA

(x1 X2)
—> A = kl[y1, »2]-

This pair of 2 x 2 matrices gives a matrix factorisation of the polynomial
nX f + y2 X%, and it is the matrix factorisation corresponding to the trivial
k E-module.

Applying the functor W to this matrix factorisation, we obtain the minimal
injective resolution of the trivial kK E-module, shifted in degree by two. The
elements y; and y, give the action of the degree two polynomial generators of
H*(E, k) on the minimal resolution.

Similarly, we compute ® (k E) using the following resolution:

(yz -1 (Xé’ i
X7 X5 —X7 »
A B A —— 2 AgA(—1) — L

(x7 x5)
———> A —> kE ®r kly1, y2].
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This should be compared with the resolution of k[ X1, X5]:

(h -1
Xi X3

A @A) — > A(-D @ A=)

<X§ )’1>
XV » (y2 —ypD

—— > A(—D)BA(—1) —— A — k[ X1, X>].

This is eventually the same resolution as above, but shifted two places to the
left. Thus ®(kE) is a maximal Cohen—Macaulay approximation to a module
concentrated in a single degree.

5. The bidirectional Koszul complex

In this section, we construct the bidirectional Koszul complex. This first appears
in [Tate 1957], and reappears in many places. This allows us to describe the
minimal resolution of B as an A-module. This computes the value of the functor
® on the free C-module of rank one.
Let A, (0 <n <r) be the free R-module of rank (") on generators
ejy N Nej,

with 1 < j; <--- < j, <r. We use the convention that the wedge is alternating,
in the sense that e; Aej = —e; Ae; and e; Ae; =0, to give meaning to wedge
products with indices out of order or repeated indices.

We give A, a differential d: A, — A,_; described by

diej, A+ nej) =D (=1 £ (e, Aot ne), (5.1)

where the vertical arrow indicates a missing term. We also give A, a differential
in the other direction §: A, — A,+1(1) described by

Sejy A--nej) =Y yjej Alejy A Aej,). (5.2)
J
We call the graded R-module A, with these two differentials the bidirectional
Koszul complex with respect to the pair of sequences fi, ..., f and yi, ..., y:
LI — —
Ar 8 Ar_ 1 ce A1 ) Ao .
— — —

(1) 1

Lemma 5.3. The map dé + éd: A, — A, (1) is equal to multiplication by
f= Zi Yi fi
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Proof. We have

il Ji
8d(€jl /\"'/\ejn) :Z(—l) yjfjej /\(ejl ARREN) "-/\ejn),
i,J
whereas
d3(€j1 /\---/\ejn)
i—1 7
= Z(—l) yjfjej /\(ejl AR T .. -/\ejn)+2yiﬁ(ejl VANE /\ejn).D
i,j i
Thus, taking even and odd parts of A, we see that
L5 )

L5] 5]

d+6 d+38
Prun-1= P ru1r-1) =P Anm (54
n=0 n=1 n=0

is a matrix factorisation of f, called the Koszul factorisation. Note that the free
R-modules in this matrix factorisation all have rank 2" ~!, because this is the
sum of the even binomial coefficients as well as the sum of the odd binomial
coefficients. For notation, we write

Ko(—=1) £ k, 22 K, (5.5)
for the Koszul factorisation, and we write K for the cokernel of d +6§: K; — K.
For example, if r = 4 we get the Koszul factorisation

5 0

d s o0 d s
0ds 0d
As(D B A2 @ Ao(=1) ——— A3(D) @ A1 ——— A4(2) @ Az (1) @ Ao.

The minimal resolution of the A-module B is obtained by applying A ® g —
to

oo A A2 (DD AG(=2) > A3DAT (=D)L M@ Ae(—1) LS A1 S A

(5.6)
This takes r steps to settle down to the Koszul factorisation, but in large degrees
(i.e., far enough to the left) it agrees with

o Ko(=2) 2 k(=) S Ko=) S kS k. (5.7)

For notation, we write A; = A @g A, so that the minimal resolution of B as an
A-module takes the form
. - - - d+8 ~ = d+s ~ d -
s> M A (= 1D)BA(—2) > A3BA(—1) —> Ar®Ao(—1) —> A1 — Ao.
(5.8)
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Let us write A; ; for this complex. As usual, i denotes the homological degree
and j the internal degree. Thus A — B is a free resolution.

A complete resolution of B as an A-module is also easy to write down at this
stage. Namely, we just continue (5.7) to the right in the obvious way. Let us
write A i,j for this complete resolution. Then we notice a self-duality up to shift:

Homy (A, A) = A[—r] (5.9)
and a periodicity

AR1= A).

Next observe that the minimal resolution of A/(yy, ..., y,) =k[ Xy, ..., X;]
as an A-module takes the form
o A3 (=DBA (-2 B A, (@A (D) T A, (D S A,

(5.10)
This again takes r steps to settle down to the Koszul factorisation, but in large
degrees (i.e., far enough to the left) it agrees with the result of applying A Qg —
to

oo K2 ko175 ) S K (D) S5 Ko=), (511)

Theorem 5.12. The minimal resolutions over A of

A/(ylv ’y}’):k[x17 7Xr]
after r steps and of B after 2r steps are equal.
Proof. Compare (5.11) with (5.7). O

Now let M, be a bounded complex of C-modules, regarded as an object
in D?(C), and let X, j be a free resolution of k[yy, ..., y-] @« My as an A-
module. Thus for large positive homological degree i, this is a periodic complex
corresponding to a matrix factorisation of f, namely ®(M,). The maps A, .— B
and X, . — kl[y1, ..., y»] ® M, induce homotopy equivalences

B®aXiw < ANi s @4 Xi = Ay R4 (kly1, ...\ yr]1 ®r My).

Now fi, ..., fr annihilate M, and so actas zeroin A, «® 4 (k[y1, ..., Y- 1@ My).
So the operator d in the complex A, . acts as zero in the tensor product, which
therefore decomposes as a direct sum of pieces, each living in a finite set of
degrees. To be more explicit, it decomposes as a sum of the following pieces
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tensored over A with (k[y1, ..., ¥r] ®x M,):
Ao(—1) -2 A,
Ao(=2) 5> Ai(—1) —> Ay

Ao(=3) = A(=2) =5 Ay(—1) = A,

Eventually, this just consists of copies of the Koszul complex for parameters

Vis -5 ¥r ON K[y, ..., V] Q¢ M,, shifted in degree by (2n, —n 4 r). This
Koszul complex is quasi-isomorphic to M, shifted 2n, —n +r).
It follows that if we take a complete resolution over A of k[y1, ..., ¥, ] Qx My,

apply B ®4 — to it, and take the part with internal degree zero, we obtain a
complex which is quasi-isomorphic to M, shifted in degree by r. This process
is exactly the functor W applied to ® (M,). To summarise, we have proved the
following:

Theorem 5.13. The composite functor W o ®: D?(C) — D?(C) is naturally
isomorphic to the identity functor. Il

If we restrict just to C-modules rather than complexes, we have the following
formulation:

Theorem 5.14. Let M be a C-module. Then fori > 0 we have

TOT?H,]'(B,k[yl,--.,yr]®kM)ETOTfj(k[Xl,---,Xr],k[)’h-.-,yr]®kM)
(M i=2],
_{0 otherwise.

Proof. This follows from Theorems 5.12 and 5.13. O

6. A bimodule resolution

A similar bidirectional Koszul complex can be used to describe the minimal
resolution of A as an A-A-bimodule. This works more generally for any hy-
persurface (or indeed with suitable modifications for any complete intersection;
see Section 3 of [Wolffhardt 1972]), so we introduce it in that context. Let
S = kluy, ..., u,] where each u; is a homogeneous variable of nonnegative
degree. Let ¢ (uq, ..., u,) € S be a homogeneous polynomial of positive degree
and let H = §/(¢) be the corresponding hypersurface. We write

_ / ron "
S@iS=kluy,...,u,,uj,...,u,l,

H®H=S®S/(¢pW),....,u,), ¢, ...,u)).
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Then we can form the bidirectional Koszul complex on the two sequences

/ 7 / 1
Ml—l/tl,...,un—un

and

(Pl b ul) — P, uh, .. u,)) /) —ul),

(¢(u1,u2,u3,.. u)—¢(u1,u2,u3,.. un))/(uz—u2

(@, .. u_u) =@y, ... un_, un)/ (), —ul).

Note that the latter is indeed a sequence of polynomials, and that the sum of the
products of corresponding terms in these two sequences gives

Gy, ... o) —oWy, ... u)).

We therefore obtain a matrix factorisation of this difference over S ®; S looking
much like (5.4). The construction corresponding to (5.8) in this situation gives a
resolution of the module S = (S ®; S)/(u} —uy, ..., u, —u;) over the hypersur-
face (S ®x S)/ (¢’ — ¢”). Since ¢’ is a non zero-divisor on both the module and
the hypersurface, we can mod it out, retaining exactness, to obtain a resolution
of S/¢ = H as a module over (S ®; S)/(¢p' — ¢”,¢") = H @ H (i.e., as an
H-H-bimodule). We write gy Ay for this resolution. It is eventually periodic
with period two. The corresponding complete resolution is periodic with period
two, and we denote it by HA H.
Applying this in the particular case of A as an A-A-bimodule, we have

klyps ooy vyl Xy X0 XL X
O fi+ - +y r’yl 1”+ +y/ 1)

AQy =

Let oA be the corresponding complete resolution. Exactly as in (5.9) we have
a self-duality up to shift:

Homyg, A(AAx, AQy A) = g AA[—r] (6.1)

and a periodicity
AAA2] = 4A4(D). (6.2)

Now regarding B as an A-B-bimodule via the map A — B, we have a free
resolution given by 4 A4 ®4 4 Bp. We write 4 A p for this resolution, and AA B
for the corresponding complete resolution AA 4 ®4 aBp. Similarly, if we regard
B as a B-A-bimodule, we have a free resolution gA4 = B4 ®4 AA4 and a
complete resolution B& A=pBA®4 A& 4. The duality (6.1) gives

Hom g, 3(4Ap, A®; B) = gAs[—r], (6.3)
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and the periodicity (6.2) gives
aBp21= 4 Ap(D). (6.4)
Finally, for any left A-module N we have a free resolution 4A4 ®4 N and a

complete resolution A& A®aAN.

7. The adjunction

Proposition 7.1. The functor \V is right adjoint to ®.

Proof. Let M, be a bounded complex of C-modules. If N is a maximal Cohen—
Macaulay A-module, then 4A4 ®4 N is a complete resolution of N as an
A-module. Then

W(N) = (5Ba®4 (AAs @4 N))o[—r1= (A4 @4 N)o[—71.
Write Hom for homomorphisms of complexes modulo homotopy. Since
(A ®4 N)o[—7]

is semi-injective, homomorphisms in D?(C) from an object to it are just homotopy
classes of maps of complexes. So using the duality (6.3), we have

Hompy (¢ (M.., W(N)) = Hom{- (M., (A4 ®4 N)o[—r])
= Homg (k[yi. ..., ¥, ®k My, gAp ®4 N[—r])
= Homp (k[y1. ..., y,] ® Msx, Homa(4A5, N))
= Homu(aAp ®5 (k[y1. ...y, 1® M), N)
= Hom(® (M), N).
In the last line, we are using the fact that

AAE @5 (k[y1, ... ] @k My) = aAp @4 (kly1, ..., y] @k My)

is a complete resolution over A of a maximal Cohen—Macaulay approximation
to the complex k[y1, ..., yr] Qk M,. O

8. The equivalence

Proposition 8.1. The category Dy (A) is generated by the A-module k[y1, ..., y.].

Proof. The singular locus of A is defined by the equations df/dy; = 0 and
af/0X; = 0. The former give the equations f; =0, ..., f, = 0; since C is a
zero dimensional complete intersection, these equations define the same variety
as X1 =0, ..., X, =0. The latter give the equations Zj v;0f;/0X; =0. Since
fi, ..., fr are in the square of the maximal ideal, 0f; /0 X; has zero constant term
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and so no new conditions are imposed by these equations. So we have shown
that the prime ideals in the singular locus are those containing (X1, ..., X,).
By Theorem 1.8, the singularity category Dsg(A) is generated by the modules
A/p with p D (X4, ..., X;), namely the quotients of k[yy, ..., y.] by prime
ideals. These in turn are generated by the single object k[yy, ..., y.], by the
Hilbert syzygy theorem. U

Theorem 8.2. The composite functor ® o W: Ds(A) — Dsg(A) is naturally
isomorphic to the identity functor.

Proof. Consider the adjunction of Proposition 7.1. By Theorem 5.13, the unit
of this adjunction gives an isomorphism k£ — W® (k), where k is the residue
field of C, regarded as an object in D?(C) by putting it in degree zero. It follows
that ®W (P (k)) = (VP (k)) = P (k). An easy diagram chase shows that this
isomorphism is given by the counit of the adjunction. It follows that the counit
of the adjunction is an isomorphism for every object in the thick subcategory of
Dsg(A) generated by @ (k). Since ® (k) = k[yy, ..., y,], by Proposition 8.1 this
is the whole of Dgg(A). O

Theorem 8.3. The functors ®: D*(C) — Dsg(A) and W : Dy (A) — D?(C) are
inverse equivalences of categories.

Proof. This follows from Theorems 5.13 and 8.2. Il

Theorem 8.4. The equivalence

P
D*(C) . Dsg (A)

descends to an equivalence

)
stmod(C) MCM(A).

v

Proof. 1t follows from Theorem 5.12 that @ (C) is a shift of k[ X, ..., X,]. The
theorem now follows, because stmod(C) is the quotient of D?(C) by the thick
subcategory generated by C and MCM(A) is the quotient of MCM(A) by the
thick subcategory generated by k[ X1, ..., X,]. 0

9. The trivial module

So, in the case C = kE, where does the trivial kK E-module k go to under the
correspondence of Theorem 8.3? To answer this, we must find the minimal
resolution of k[yi, ..., y-] as an A-module. This is again given in terms of a
bidirectional Koszul complex, this time for the pair of sequences X1, ..., X, and
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i X f _], e XF ~!. The sum of the products of corresponding terms in these

sequences again gives f =) . y; X f , and so we obtain a matrix factorisation of f

by taking the even and odd parts of this bidirectional Koszul complex. Adding up

the even and odd binomial coefficients, we see that this is a 2"~ x 2"~! matrix

factorisation of f. The minimal resolution of k[yy, ..., y,] as an A-module is

given by (5.8) with respect to this version of the bidirectional Koszul complex.
In a similar way, we can find the image of any module of the form

kE/(X{', ..., X)
under the correspondence of Theorem 8.3 by doing the same process with
a bidirectional Koszul complex for the pair of sequences X{', ..., X% and
nXP e X

Let us look at some examples. First we look at the case » = 1. In this case E
is cyclic of order p,

kE =k[X]/(XP), A=kly, X]/(yX?) and B=k[y, X1/(X").
The indecomposable k E-modules are the Jordan blocks
Jo =k[X]/(X") (1=n<p).

Resolving J, ® k[y] we get

s Al S A 2 A X A,

So the matrix factorisation corresponding to J, is given by the 1 x 1 matrices

p—n n
A[—1] 9X 4 &

A.

Next let r = 2, so that A = k[yq, y2, X1, Xz]/(y]X{7 + szg). To find the
matrix factorisation corresponding to the trivial module, we resolve the A-module
kly1, y2] = A/(X1, X»). Using the construction in Section 5, we obtain the
following minimal resolution:

Al-1]1® A[-1]

szfﬂ —y]X{)71 X2 lef71
X X5 —X1 »xy7 (X1 X2)

APA[-1] ——— APA — A.

The two square matrices in this resolution alternate, and so the matrix factorisation
corresponding to the trivial module is as follows:

X yle_l )’2X§_1 —)’1Xf_1
—X; yxi! X, X,
A

ABDA[—1] —— > A A

[1]1& A.
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In rank three, the minimal resolution of k[y;, y2, y3] as an A-module takes
the following form:

0 X3 —-X> le{Fl
—X; 0 X, ypxi!
X5 —Xi 0 )’3X§_l
—1 p—2 p—1
X mX 3 X 0
A[-11%° @ A[-2] : 2 ’ Al-11P @ A
0 —y3X§’71 )’2X2p71 X
v X! 0 —nx’ X,
—yzxé)_l y1X1p_] 0 X3
X, X> X3 0

AP @ A[-1]

0 X3 —X2 y1X{)—1
—X3 0 Xl yQXg_l
p—1
X2 —Xl 0 y3X3 A®3 (Xl X2 X'%)

The left-hand pair of matrices therefore gives the matrix factorisation of f
corresponding to the trivial k E-module.

10. Computer algebra

Here is some code in the computer algebra language Macaulay2 for computing
the functor mod(kE) <> D? (kE)iM( f). It is given here for the trivial
module for a rank two group with p =7, but the code is easy to modify. The last
two commands print out the sixth and seventh matrices in the minimal resolution,
which in this case is easily far enough to give a matrix factorisation.

1
\]

ZZ/pl[X1,X2,y1,y2]

X1"p * y1 + X27p * y2

= R/(f)

cokernel matrix {{X1,X2}}
resolution (U,LengthLimit=>8)
.dd_6

.dd_7

mom T C o koY
I
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To modify the code to work for other k E-modules M, the fifth line should be
changed to give a presentation of

U:k[y17'°'7yr]®kM

as an A-module. Don’t forget the relations saying that X Lp annihilates M. For
example, if M = Q2 (k) for the same rank two group above, then U has two
generators and three relations; it is the cokernel of the matrix

X? X, 0
1 :A€B3 AGBZ.
(0 X, Xé’) —

So the fifth line should be changed to
U = cokernel matrix {{X17p,X2,0},{0,X1,X27p}}.

11. Cohomology

For this section, we stick with the case C = kE. The elements y;,...,y, € A
act on maximal Cohen—Macaulay modules N as maps N — N(1). Now N(1) is
isomorphic to 27%(N), and Q! is the shift functor in the triangulated category
MCM(A). It follows that under equivalence of categories of Theorem 8.3, these
elements correspond to maps in D?(kE) from M, to M,[2]. We claim that these
elements act as the polynomial part of the cohomology ring, namely the subring
generated by the Bocksteins of the degree one elements.

Recall that kE is a Hopf algebra, either via the group theoretic diagonal map
defined by A(g;)) =g ®gi, AX;) =X, ®1+ 1R X; + X; ® X; or via the
restricted Lie algebra diagonal map defined by A(X;) = X; ® 1+ 1® X;. In both
cases, we make A into a right k E-comodule via A, A: A — A @ kE defined by
the same formula on X; and via A(y;) = A(yi) = y; ® 1. It is easy to check that
this is a coaction: (1@ A)oA=(A®1)oAand 1®A)oA=(A®1)oA.
We denote the corresponding tensor products N ® M and N Qi M, where M is
a kE-module and N and the tensor product are A-modules.

Lemma 11.1. If N is a maximal Cohen—Macaulay A-module and M is a kE-
module then N ®; M and N Qi M are maximal Cohen—Macaulay A-modules.

Proof. The k E-module M has a finite filtration in which the filtered quotients are
copies of the trivial k E-module k. So the tensor products N ® M and N ®; M
both have finite filtrations in which the quotients are isomorphic to N. The lemma
now follows from the fact that every extension of maximal Cohen—Macaulay
modules is maximal Cohen—Macaulay. U

Recall that the maximal Cohen—Macaulay module K corresponding to the
Koszul factorisation (5.5) is the image of the trivial k E-module k under ®.
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Proposition 11.2. If M is a kE-module then ®(M) may be taken to be the
maximal Cohen—Macaulay module K @i M (or K Qi M).

Proof. It follows from Lemma 11.1 that K ®; M, resp. K ®k M is a maximal

Cohen—Macaulay approximation to k[yq, ..., y,] Qx M. O
Let V be the linear space spanned by X1, ..., X,. Then we may use the
polynomial f to identify the space spanned by yi, ..., y, with the Frobenius

twist of the dual F(V*). There is an action of GL(V) on kE induced by linear
substitutions of the X;, and this induces an action on the linear space F (V™)
spanned by the y;.

Theorem 11.3. (i) The maps
Yy, ..., ¥(y): k— k[2]
form a vector space basis for the image of the Bockstein map
H'(E, k) —> H*(E,k).
(i1) For any M in stmod(k E), the induced map
V(i) M — Q7 (M)
is equal to the map
V)@l k@M — Q2 (k) @M
and also to the map
V)@ k@M — Q2k) @M.
Proof. (i) Consider the action of GL(V) on H?(E, k). For p odd, we have
H*(E, k) = F(V*) @ A*(V¥).

For p =2, we have H?(E, k) = S?(V); in this case S?(V*) has two composition
factors as a G L(V)-module, given by the nonsplit short exact sequence

0— F(V¥) = S3(V*) = A*(V*) = 0.

In both cases, there is a unique G L(V )-invariant subspace of H 2(E, k) isomor-
phic to F(V*), and this is the image of the Bockstein map. It therefore suffices
to prove that the W(y;) are not all equal to zero. To see this, take the Koszul
complex for K with respect to the parameters yy, ..., .. Since K is a maximal
Cohen—-Macaulay approximation to k[yi, ..., y.], the homology of this complex
disappears after applying W. If W(y;) were zero, this could not be the case. It
follows that W(y;) # 0 and the theorem is proved.

(ii) This follows from Proposition 11.2. O
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12. Modules of constant Jordan type

The study of modules of constant Jordan type was initiated by Carlson, Fried-
lander and Pevtsova [Carlson et al. 2008]. The definition can be phrased as
follows:

Definition 12.1. A finitely generated k E-module is said to have constant Jordan
type if every nonzero linear combination of X1, ..., X, has the same Jordan
canonical form on M.

It is a remarkable fact that if a module M satisfies this definition then every
element of J(kE) \ J>(kE) has the same Jordan canonical form on M.

Let O be the structure sheaf of P"~! = Projk[Yy, ..., Y,]. If M is a finitely
generated k E-module, we write M for M ®x 0, a trivial vector bundle of rank
equal to dimg (M). For each j € Z we define a map

0: M(j)— M(j+1)
via
,
Om® )= XimQY,f.
i=1
We then define

Ker6 Nimpi—!

FM)=———
Ker6 Nlm 6!

This is regarded as a subquotient of M, giving a coherent sheaf of modules

on Pr—1, Namely, when we write Ker6 we mean 6: M — M (1), and for the

images, Ol M(—i+1)— M, 6": M(—i) - M. The relationship between
this definition and constant Jordan type is given by the following proposition.

(I=i=<p).

Proposition 12.2. The kE-module M has constant Jordan type if and only if
F; (M) is a vector bundle for each 1 <i < p.

Here, “vector bundle” should be interpreted as “locally free sheaf of Opr-1-
modules”. See, for example, Exercise 11.5.18 of [Hartshorne 1977].
The following theorem appeared in [Benson and Pevtsova 2012].

Theorem 12.3. Let F be a vector bundle on P' . Then there exists a finitely
generated k E-module M of constant Jordan type, with all Jordan blocks of length
one or p, such that

() if p=2then F (M) = F, and

(2) if pis odd, then F1(M) = F*(%), the inverse image of % along the Frobe-
nius morphism F: P'~! — Pr—1,
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The proof of this theorem was somewhat elaborate, and relied on a construc-
tion in D?(kE) that mimics a resolution of a module over a polynomial ring,
followed by descent to stmod(kE). The case p = 2 is essentially the BGG
correspondence. In a sense for p odd it may be regarded as a weak version of
the BGG correspondence.

An alternative proof can be given using the equivalence in Theorem 8.3.
Namely, given a vector bundle on P’ !, there is a corresponding graded module
over k[yi, ..., y-]. Make this into an A-module via the map A — k[y1, ..., yr],
and let N be a maximal Cohen—Macaulay approximation to this module. Now
take W(N) € D?(kE), and look at its image in stmod(k E). This is the required
module M of constant Jordan type, in case p is odd. A careful analysis using
Theorem 11.3 of the construction given in [Benson and Pevtsova 2012] shows
that it gives an module isomorphic to the one produced using W (N).
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