
Commutative Algebra and Noncommutative Algebraic Geometry, II
MSRI Publications
Volume 68, 2015

The derived category of a graded
Gorenstein ring

JESSE BURKE AND GREG STEVENSON

We give an exposition and generalization of Orlov’s theorem on graded Goren-
stein rings. We show the theorem holds for nonnegatively graded rings that are
Gorenstein in an appropriate sense and whose degree zero component is an
arbitrary noncommutative right noetherian ring of finite global dimension. A
short treatment of some foundations for local cohomology and Grothendieck
duality at this level of generality is given in order to prove the theorem. As
an application we give an equivalence of the derived category of a commu-
tative complete intersection with the homotopy category of graded matrix
factorizations over a related ring.

1. Introduction

Let A be a graded Gorenstein ring. Orlov [2009] related the bounded derived
category of coherent sheaves on Proj A and the singularity category of graded A-
modules via fully faithful functors; the exact relation depends on the a-invariant
of A. This is a striking theorem that has found applications in physics, algebraic
geometry and representation theory. To give an idea of the scope of the theorem:
in the limiting case that A has finite global dimension (so the singularity category
is trivial), it recovers (and generalizes to noncommutative rings) Beı̆linson’s
result [1978] that the derived category of Proj A is generated by a finite sequence
of twists of the structure sheaf.

There has been much work related to this theorem. The idea of Orlov’s
construction perhaps first appears in van den Bergh’s paper [2004] on non-
commutative crepant resolutions where he described functors similar to those
considered by Orlov, in the case of torus invariants. After Orlov’s paper ap-
peared, the idea was further explored by the physicists Herbst, Hori and Page
[Herbst et al. 2008]. In turn these ideas were the inspiration for two papers on
the derived category of GIT quotients [Ballard et al. 2014; Halpern-Leistner
2014]. Segal and then Shipman gave geometric proofs of Orlov’s theorem for
commutative hypersurfaces in [Segal 2011] and [Shipman 2012]. Related results
are [Baranovsky and Pecharich 2010; Isik 2013]. The theorem has been used in
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similar ways in [Ballard et al. 2012; Keller et al. 2011]. Finally, it has been used
in representation theory, especially in the study of weighted projective lines; see,
for example, [Lenzing 2011].

Orlov assumed that A0 a field. In this paper, that we consider largely expos-
itory, we generalize his result to show that the same relation holds when A0

is a noncommutative noetherian ring of finite global dimension. This has an
immediate application to commutative complete intersection rings and we expect
there to be further applications, for instance to (higher) preprojective algebras.
The structure of our proof is very close to Orlov’s original arguments. We give
many details and we hope that these details may help the reader (even one only
interested in algebras defined over a field) to better understand Orlov’s work.

The main tool in the proof is a semiorthogonal decomposition. This sepa-
rates a triangulated category into an admissible subcategory and its orthogonal.
Derived global sections gives an embedding of Db(Proj A) into Db(gr≥i A) as
an admissible subcategory. When A0 is a field, Orlov showed that there is an
embedding of the singularity category Db

sg(gr A) into Db(gr≥i A). The existence
of such an embedding is rather remarkable and constitutes perhaps the key insight
required to prove the theorem. Orlov then used Grothendieck duality in a very
clever way to compare the orthogonals of Db(Proj A) and Db

sg(gr A) inside of
Db(gr≥i A). For example when A is Calabi–Yau, the orthogonals coincide and
so there is an equivalence between Db(Proj A) and Db

sg(gr A).
The arguments we present here follow those of Orlov. The main addition is

the observation that, when A0 has finite global dimension, one can construct
particularly nice resolutions of complexes of graded modules with bounded
finitely generated cohomology. This allows us to prove Orlov’s embedding
Db

sg(gr A)→ Db(gr≥i A) is valid in this more general setting. We also need
to develop some foundations concerning local cohomology and Grothendieck
duality over noncommutative rings to prove analogues of the other steps of Orlov’s
proof. These foundations do not seem to be contained in the literature in the form
and generality that we need, although the arguments we give here are relatively
straightforward generalizations of arguments by Artin and Zhang [1994].

Let us give a quick summary of the paper. The second section contains some
categorical background, especially on semiorthogonal decompositions. The third
section is devoted to the derived category of graded modules over a graded ring,
and some standard semiorthogonal decompositions that appear there. This section
contains the key observation, Lemma 3.10, needed to prove the embedding of the
singularity category works for the rings we work with. The fourth section deals
with local cohomology and the semiorthogonal decomposition it gives, while the
fifth deals with the embedding of the singularity category, Grothendieck duality,
and the semiorthogonal decomposition these give. The sixth section contains



THE DERIVED CATEGORY OF A GRADED GORENSTEIN RING 95

the proof of the main result as well as a sufficient condition for a Gorenstein
ring to satisfy Artin and Zhang’s condition χ , which is necessary for the proof.
Finally, in the last section, we apply the main theorem to give a description of
the bounded derived category of a complete intersection ring in terms of graded
matrix factorizations.

2. Background

We recall here some standard results on semiorthogonal decompositions of
triangulated categories that we will need. Throughout this section T denotes a
triangulated category.

Definition 2.1. For D a triangulated subcategory of T , define D⊥ to be the full
subcategory with objects those X ∈ T such that HomT (D, X)= 0 for all objects
D of D. Similarly, ⊥D has objects those X with HomT (X, D)= 0 for all D in
D. Both D⊥ and ⊥D are triangulated subcategories of T that are closed under
direct summands, that is, thick subcategories.

Definition 2.2. A triangulated subcategory D of T is left admissible in T if the
inclusion functor i : D→ T has a left adjoint; D is right admissible if i has a
right adjoint.

The following criterion for admissibility can be found as [Bondal 1989,
Lemma 3.1].

Lemma 2.3. Let D be a triangulated subcategory of T .

(1) The category D is left admissible if and only if for every X in T there is a
triangle:

EX → X→ DX →6EX ,

with DX in D and EX in ⊥D.

(2) The category D is right admissible if and only if for every X in T there is a
triangle:

DX → X→ EX →6DX ,

with DX in D and EX in D⊥.

Corollary 2.4. A subcategory D of T is left admissible if and only if ⊥D is right
admissible. In this case (⊥D)⊥ = D.

Definition 2.5. A semiorthogonal decomposition of T is a pair of subcategories
A and B such that A is left admissible and B = ⊥A (equivalently, B is right
admissible and A= B⊥). We write this as

T = (A,B).
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The following lemma follows from Lemma 2.3 in a straightforward way.

Lemma 2.6. There is a semiorthogonal decomposition T = (A,B) if and only if
B ⊆ ⊥A and for every X in T there is a triangle

BX → X→ AX →

with BX ∈ B and AX ∈A. We will call such a triangle the localization triangle
for X.

Orlov [2009] generalized the definition of semiorthogonal decomposition to:

Definition 2.7. A sequence of full triangulated subcategories (D1, . . . ,Dn) of T
is a semiorthogonal decomposition if for each i = 1, . . . , n− 1, the thick subcat-
egory generated by D1, . . . ,Di , that we denote 〈D1, . . . ,Di 〉, is left admissible
and

⊥
〈D1, . . . ,Di 〉 = 〈Di+1, . . . ,Dn〉.

We can (and will) construct semiorthogonal decompositions inductively:

Lemma 2.8. Let T = (A,B), A = (D1, . . . ,Di ), and B = (Di+1, . . . ,Dn) be
semiorthogonal decompositions. Then

T = (D1, . . . ,Dn)

is a semiorthogonal decomposition.

3. The bounded derived category of graded modules

We now provide some preliminary results on derived categories of graded
modules. We begin by exhibiting some semiorthogonal decompositions of the
bounded derived category that we will need in the sequel (and that are relatively
straightforward generalizations of those in Orlov’s work). We also prove the main
technical results concerning graded projectives and graded projective resolutions
that we will need.

In this section A =
⊕

i≥0 Ai is a positively graded right noetherian ring with
A0 a ring of finite global dimension.

All modules will be right modules unless otherwise stated. We denote by
gr A the abelian category of finitely generated graded A-modules and degree
zero homogeneous maps. If M =

⊕
Mi is a graded A-module, then M(1) is the

graded A-module with M(1)i = Mi+1.
We denote by gr≥i A the full subcategory of gr A consisting of objects M such

that M j = 0 for all j < i . This is an abelian subcategory of gr A and there is an
adjoint pair of functors

gr≥i A
inc
// gr A,

(−)≥i

oo
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where M≥i =
⊕

j≥i M j is right adjoint to the inclusion.
We denote by Db(−) the bounded derived category of an abelian category.

Both functors of the above adjoint pair are exact and so induce functors

Db(gr≥i A)
inc
// Db(gr A)

(−)≥i

oo

that also form an adjoint pair. The functor induced by inclusion is fully faithful
and the essential image is the full subcategory of Db(gr A) consisting of objects
M such that H j (M) ∈ gr≥i A for all j ∈ Z. We denote this subcategory also by
Db(gr≥i A). It is a right admissible subcategory.

Definition 3.1. Define S<i to be the thick subcategory generated by the objects
A0(e), for all e > −i and S≥i to be the thick subcategory generated by A0(e),
for all e ≤−i .

Lemma 3.2. An object M of Db(gr A) is in S<i if and only if M≥i ' 0.

Proof. The full subcategory with objects those M satisfying M≥i ' 0 is thick by
virtue of being the kernel of an exact functor. Since A0(e)≥i = 0 for all e >−i ,
we see that S<i is contained in this thick subcategory. Thus if M is in S<i we
must have M≥i ' 0.

For the converse, we first assume M is a module, that is, concentrated in
homological degree 0, and that there is an integer e< i with M j = 0 for all j 6= e.
Since Me is a finitely generated A0-module and A0 has finite global dimension,
Me has a finite projective resolution over A0. Over A this says that Me is in the
thick subcategory generated by A0(−e), which is contained in S<i .

Now suppose M is a nonzero finitely generated graded A-module with M≥i '0.
As M is finitely generated there is an integer j with M≥ j = M and we may as
well choose a maximal such j , which is necessarily less than i . Consider the
triangle

M≥ j+1→ M→ M j → .

By the previous argument M j is in S<i and arguing inductively on the number
of degrees in which M is nonzero we see that M≥ j+1 is in S<i , and hence M is
in S<i .

For an arbitrary nonzero object M ∈Db(gr A), with M≥i ' 0 the result follows
from induction on the number of nonvanishing cohomology modules, using the
triangle

M<n
→ M→ H n(M)[−n] → ,

where n =max{ j | H j (M) 6= 0} and M<n is the truncation with respect to the
standard t-structure. �
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Remark 3.3. It follows from the definition that S≥i is contained in Db(gr≥i A).
We will show in Lemma 4.17 that S≥i is the full subcategory of Db(gr≥i A)
whose objects have torsion cohomology.

Lemma 3.4. There is a semiorthogonal decomposition

Db(gr A)= (S<i ,D
b(gr≥i A)).

The localization triangle for M ∈ Db(gr A) is given by the canonical maps

M≥i → M→ M/M≥i → .

Proof. Let M be in S<i and N be in Db(gr≥i A). Then

HomDb(gr A)(N ,M)∼= HomDb(gr≥i A)(N ,M≥i )= 0

by right adjointness of (−)≥i and since M≥i ' 0. Thus Db(gr≥i A)⊆ ⊥S<i . If
M is any object in Db(gr A) we have the triangle

M≥i → M→ M/M≥i → ,

with M≥i in Db(gr≥i A) and M/M≥i in S<i . Thus we may apply Lemma 2.6. �

Definition 3.5. Define P<i to be the thick subcategory generated by the objects
A(e) for all e > −i and P≥i to the thick category generated by A(e) for all
e ≤−i .

Remark 3.6. It follows from the definition that P≥i is contained in Db(gr≥i A).
In fact, P≥i is the full subcategory of Db(gr≥i A) whose objects are perfect
complexes of A-modules.

Lemma 3.7. There is a semiorthogonal decomposition

Db(gr A)= (Db(gr≥i A),P<i ).

Before the proof, we need two results on graded projective A-modules and
graded projective resolutions over A.

Lemma 3.8. Let P be a finitely generated graded projective A-module. Then
there is an isomorphism, for some integers n,m1, . . . ,mn ,

P ∼=
n⊕

i=1
Pi ⊗A0 A(mi ),

where the Pi are projective right A0-modules.

Proof. Let P be a nonzero finitely generated graded projective A-module. Con-
sider the graded projective A0-module P = P ⊗A A0 which is nonzero by the
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graded Nakayama lemma. We obtain a graded projective A-module P ⊗A0 A
fitting into a commutative diagram

P ⊗A0 A

��
{{

P // P // 0

where the vertical morphism is the canonical one and the dashed arrow exists
by projectivity of P ⊗A0 A. By construction the morphism P ⊗A0 A→ P is
surjective so it splits. But

P ⊗A0 A⊗A A0 ∼= P = P ⊗A A0,

and so by another application of the graded Nakayama lemma we see P∼= P⊗A0 A
is induced up from a graded projective A0-module proving the lemma. �

Definition 3.9. For every graded projective A-module Q, we define summands
Q≺i and Q<i with Q≺i in P<i and Q<i in P≥i via the unique up to isomorphism
split exact sequence of graded projective modules

0→ Q≺i → Q→ Q<i → 0

which exists by the previous lemma.

The next lemma is a key technical observation concerning the structure of
resolutions over A.

Lemma 3.10. Every object M in Db(gr A) is quasi-isomorphic to a complex of
finitely generated graded projective A-modules

P = · · · → P j
→ P j+1

→ · · ·

such that P j
= 0 for all j � 0 and for any i ∈ Z there exists a ki with P−k in

P≥i for all k ≥ ki .

Proof. It is sufficient to prove the result for graded A-modules as the condition
is closed under suspensions and taking cones, and every object of Db(gr A)
can be written as an iterated extension of suspensions of modules using the
standard t-structure. Let us introduce notation local to this proof. Given a finitely
generated A-module M define the integer

min(M)=min{i ∈ Z | Mi 6= 0}.

Let M be a finitely generated graded A-module and set

M = M ⊗A A0 = M/A≥1 M,
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which we consider as a graded A0-module. We may assume M has infinite
projective dimension as the result is trivial in the finite projective dimension
case. We will construct a projective resolution of the desired form. If M is zero
then, by Nakayama, so is M and thus we may suppose M 6= 0. We choose an
epimorphism from a graded projective A0-module P0→ M by writing

M ∼=
n⊕

i=1
Mi (ai ),

taking epimorphisms P0
i (ai )→ Mi (ai ) where the P0

i are projective A0-modules
and setting

P0 =
n⊕

i=1
P0

i (ai )

with the obvious morphism to M . This gives rise to an exact sequence of graded
A-modules

0→ Z0
→ P0

→ M→ 0,

where P0
= P0

⊗
A0

A, with the property that

min(Z0)≥min(P0)=min(M).

We have assumed A0 has finite global dimension, say d. Proceeding as above
we may find projectives P i for i = 1, . . . , d − 1 and exact sequences

0→ Z i
→ P i

→ Z i−1
→ 0,

with min(Z i ) ≥min(P i )=min(Z i−1). Thus, restriction to the graded compo-
nents in degree j =min(M) gives an exact sequence

0→ Zd−1
j → Pd−1

j → · · · → P0
j → M j → 0

of A0-modules with the P i
j projective. As A0 has global dimension d we see

Zd−1
j must be projective. Hence Zd−1 can be written as Zd−1

j ⊕ X with X living
in degrees strictly greater than j . As before we can pick an epimorphism Q→ X
from a graded projective A0-module Q which lives in the same degrees as X .
Setting Pd

= (Zd−1
j ⊕ Q)⊗A0 A we get a short exact sequence

0→ Zd
→ Pd

→ Zd−1
→ 0,

with min(Zd) >min(M); thus our recipe guarantees projectives with generators
in degrees less than or equal to min(M) cannot occur beyond the d-th step of the
resolution. We can now repeat this procedure starting at Zd to obtain a resolution
satisfying the desired properties. �
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Remark 3.11. It is easy to construct examples showing this lemma is no longer
true if A0 does not have finite global dimension. Indeed, let A= k[x, y]/(x2, y2),
with |x | = 0 and |y| = 1. The resolution of A/(x) is

· · · → A
x
−→ A

x
−→ A→ 0,

which does not satisfy the conclusion of the previous lemma.

Proof of Lemma 3.7. Given an object M in Db(gr A), let P
'
−→ M be a quasi-

isomorphism where P is a complex of projectives as in the previous lemma.
Apply the decomposition in Definition 3.9 degree-wise to P to get a triangle

P≺i → P→ P<i → ,

where P≺i is the subcomplex of P consisting of all projective summands gen-
erated in degrees less than i and P<i is the quotient complex consisting of all
projective summands generated in degree at least i . Since P−k is in P≥i for all
k� 0, we see that P≺i is bounded, and hence in P<i . Note that P<i has bounded
finitely generated cohomology by the triangle, and so must be in Db(gr≥i A).

There are no nonzero maps from objects in P<i to any module M in gr≥i A.
Thus gr≥i A is contained in P<i

⊥ and hence so is Db(gr≥i A) since it is generated
by gr≥i A and P<i

⊥ is thick. Thus P<i ⊆
⊥Db(gr≥i A). We can now apply

Lemma 2.6. �

Remark 3.12. Let M be an object of Db(gr A) and P a projective resolution of
M satisfying the conditions of Lemma 3.10. The proof shows that the localization
triangle for M is given by

P≺i → P ' M→ P<i → .

Remark 3.13. Although we have chosen to work throughout with the grading
group Z, the results are valid more generally. One can replace Z by any totally
ordered abelian group and work with graded rings concentrated in degrees greater
than or equal to the identity.

This will also be the case for the majority of the results that follow. However,
there are instances in which one does need additional hypotheses. For example
in Lemma 6.5 (and the main Theorem 6.4) one must assume the order admits
successors.

4. Noncommutative Proj and local cohomology

Let A be a graded noncommutative ring. Artin and Zhang in defined the category
of quasicoherent sheaves on the noncommutative projective scheme Proj A as
the category of graded modules modulo the full subcategory of torsion modules
[Artin and Zhang 1994]. (Here and throughout torsion means torsion with
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respect to the two-sided ideal A≥1.) In this section we adapt some of their
definitions and results, in particular concerning local cohomology functors, to
give a semiorthogonal decomposition of Db(gr≥i A) when A is Gorenstein.

We assume A =
⊕

i≥0 Ai is a positively graded right noetherian ring. We
consider Gr A, the abelian category of graded right A-modules. This contains
gr A, the category of finitely generated graded A-modules, as a full abelian
subcategory.

Definition 4.1. Let M be a graded A-module. An element m ∈ M is torsion if

m · (A≥n)= 0,

for some n ≥ 1. Denote by τ(M) the submodule of M consisting of all torsion
elements. The module M is torsion if τ(M)= M and torsion-free if τ(M)= 0.
Denote by Tors A the full subcategory of Gr A consisting of torsion modules and
set tors A = Tors A∩ gr A.

The subcategory Tors A (respectively, tors A) satisfies the property that for a
short exact sequence

0→ X ′→ X→ X ′′→ 0

in Gr A (gr A), we have X in Tors A (tors A) if and only if X ′ and X ′′ are in
Tors A (tors A) — that is, they are Serre subcategories. Moreover, Tors A is
closed under colimits. Thus we can form the quotient categories

Qcoh X = Gr A/Tors A and coh X = gr A/ tors A;

see, for example, [Popescu 1973, Section 4.3] for the construction. The relevant
features here are that:

(1) The categories Qcoh X and coh X have the same objects as Gr A and gr A,
respectively.

(2) The categories Qcoh X and coh X are abelian and there are canonical exact
functors Gr A→ Qcoh X and gr A→ coh X .

(3) A map f in Gr A is an isomorphism in Qcoh X if and only if ker f and
coker f are in Tors A. In particular the image of every object in Tors A is
isomorphic to zero in Qcoh X . The analogous statement holds for gr A.

For an object M in Gr A, we denote by M̃ the image of M in Qcoh X . For future
reference, we note that as Tors A is closed under the grading shifts, the shifts
induce automorphisms of Qcoh X and coh X which we also denote by (−)(i).

Remark 4.2. The notation Qcoh X and coh X reflects that these categories
should be thought of as sheaves of modules on the noncommutative projective
scheme X = Proj A. If A is commutative and generated in degree 1, then by a
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famous result of Serre, the category Qcoh X (respectively coh X ) is equivalent
to the category of quasicoherent (respectively coherent) sheaves on the scheme
X = Proj A. If A is generated in higher degrees, then coh X is equivalent to the
category of coherent sheaves on the Deligne–Mumford stack Proj A.

Definition 4.3. For M, N in Gr A, denote by HomGr A(M, N ) the graded abelian
group

HomGr A(M, N )=
⊕
i∈Z

HomGr A(M(−i), N )∼=
⊕
i∈Z

HomGr A(M, N (i)).

If M is an A-A-bimodule, for example, M = A, then HomGr A(M, N ) is a graded
right A-module and so is in Gr A.

For any integer p ≥ 0, we have a short exact sequence of A-bimodules:

0→ A≥p→ A→ A/A≥p→ 0.

Applying HomGr A(−,−), we have an exact sequence of endofunctors on Gr A:

0→ HomGr A(A/A≥p,−)→ HomGr A(A,−)→ HomGr A(A≥p,−).

We may take the colimit of these sequences as p →∞ to get another exact
sequence of functors; the sequence remains exact as both the abelian structure
and colimits for endofunctors are inherited value-wise from Gr A and Gr A has
exact filtered colimits. Note that for any M in Gr A we have isomorphisms in
Gr A:

colimp→∞HomGr A(A/A≥p,M)∼= τ(M) and HomGr A(A,M)∼= M.

This gives a functorial exact sequence

0→ τ(M)→ M→ colimp→∞HomGr A(A≥p,M). (4.4)

Proposition 4.5. The inclusion of Tors A into Gr A and the corresponding quo-
tient functor have right adjoints τ(−) and 0∗, respectively:

Tors A
inc
// Gr A

˜(−)
//

τ(−)

oo Qcoh X,
0∗

oo

where for M in Gr A, τ(M) is the torsion submodule of M and

0∗(M̃)= colimp→∞HomGr A(A≥p,M).

The functor 0∗ and the inclusion of Tors A are fully faithful so the correspond-
ing counit and unit respectively are isomorphisms. The remaining counit and
unit are given by (4.4).
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Proof. It is easy to see that τ(−) is a right adjoint to the inclusion of Tors A→Gr A
and it follows from abstract nonsense; see [Popescu 1973, Section 4.4], that
there exists a right adjoint 0∗ : Qcoh X→ Gr A. We give a direct proof that the
functor colimp→∞HomGr A(A≥p,−) induces a right adjoint, and that the unit is
given by (4.4).

Claim 1: If M is in Tors A, then colimp→∞HomGr A(A≥p,M)= 0.

Proof of claim. To see this, let φ be an element of HomGr A(A≥p,M), for some
p ≥ 0. As A is right noetherian, A≥p is finitely generated as a right ideal by
some x1, . . . , xk . We can find m ≥ 0 so that φ(xi ) · A≥m = 0 for all i , using
that M is torsion. Since φ(xi · A≥m) = φ(xi ) · A≥m = 0 and, picking m larger
if necessary, A≥m+p = (x1, . . . , xk)A≥m , we have φ|A≥m+p = 0 and so φ = 0 in
colimp→∞HomGr A(A≥p,M). �

Claim 2: There are no nonzero morphisms from torsion modules to modules in
the image of colimp→∞HomGr A(A≥p,−).

Proof of claim. Let T be in Tors A and let g : T→ colimp→∞HomGr A(A≥p, N )
be a map. For x ∈ T , let φ ∈ HomGr A(A≥p, N ) be a representative of g(x), for
some p. Pick m such that x · A≥m = 0. We have g(x) · A≥m = g(x · A≥m)= 0,
and φ · A≥m represents g(x) · A≥m . However, picking a larger m if necessary, we
see φ · A≥m is the image of φ under the map

HomGr A(A≥p, N )→ HomGr A(A≥m+p, N ),

and so φ = 0 in colimp→∞HomGr A(A/A≥p, N ). Thus g(x)= 0. �

To see that colimp→∞HomGr A(A≥p,−) induces a functor 0∗ : Qcoh X →
Gr A, it is enough to show that it takes morphisms f with ker f and coker f
in Tors A to invertible morphisms. This follows from Claims 1 and 2, and two
applications of the snake lemma. To show that 0∗ is right adjoint to the quotient
and (4.4) is the unit, it is enough to show that any map f : M→ 0∗(Ñ ) factors
through M → 0∗(M̃). Note that by construction, we may extend (4.4) to an
exact sequence:

0→ colimp→∞HomGr A(A/A≥p,M)→ M→

colimp→∞HomGr A(A≥p,M)→ colimp→∞ Ext1Gr A(A/A≥p,M)→ 0. (4.6)

Since HomGr A(A/A≥p,−) · A≥p = 0, subobjects and quotients of torsion mod-
ules are torsion, and the colimit of torsion modules is torsion, we see that the
last term

colimp→∞ Ext1Gr A(A/A≥p,M)
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is in Tors A. To see that the map

f : M→ 0∗(Ñ )= colimp→∞HomGr A(A≥p, N )

factors through M→ colimp→∞HomGr A(A≥p,M), by [Popescu 1973, 4.1], it
is enough to show that there are no nonzero morphisms from torsion modules to
modules in the image of 0∗, which was shown in Claim 2.

We now show 0∗ is fully faithful. Let ηM : M → 0∗M̃ be the unit of the
adjunction, which is the center arrow of (4.6). Since the outer two terms of that
sequence are torsion, it follows that η̃M is an isomorphism. Let

εM̃ : ˜(0∗M̃)→ M̃

be the counit of the adjunction. By definition, the composition

M̃
η̃M
−→ ˜(0∗M̃)

εM̃
−→ M̃

is the identity. Thus εM̃ is an isomorphism and so 0∗ is fully faithful. �

Remark 4.7. As the notation suggests, if A is a commutative ring generated in
degree 1, then 0∗(−̃) is isomorphic to

⊕
i∈Z 0(Proj A, ˜(−)(i)) as they are both

right adjoint to sheafification Gr A→ Qcoh X .

It is clear from the definition that the functor τ(−) takes gr A to tors A. How-
ever, 0∗ does not necessarily take objects of coh X to gr A:

Example 4.8. Let A = k[x] with k a field, graded by |x | = 1. The A-module
structure on

colimp→∞ Ext1Gr A(A/A≥p, A)

is easily computed: it has a k-basis e1, . . . , en, . . . with |en|=−n and xen= en−1.
In particular it is not finitely generated over A and so from (4.6) we see that
0∗( Ã) is not either.

In the example above, (0∗( Ã))≥i is finitely generated (in fact of finite length)
for any i ∈ Z. Artin and Zhang gave a criterion for A-modules that is equivalent
to this fact being true. It is often easy to check. For instance, it holds for all
modules over commutative rings.

Definition 4.9 (Artin, Zhang). An object M in gr A satisfies χ j (M) if there exists
an integer n0 such that ExtkGr A(A/A≥n,M)≥i is a finitely generated A-module
for all i ∈Z, k ≤ j and all n ≥ n0. The ring satisfies condition χ j if χ j (M) holds
for all M ∈ gr A.

If M satisfies χ1(M), then [Artin and Zhang 1994, 3.8.3] shows that

colimp→∞ Ext1Gr A(A/A≥p,M)≥i
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is a finitely generated A-module for all i ∈ Z. Thus by (4.6), we see that
0≥i (M̃) := (0∗(M̃))≥i is finitely generated.

Remark 4.10. As [Artin and Zhang 1994, 3.1.4] shows, if A is commutative,
then every module M satisfies χ j (M). Indeed, we can compute the A-module
Ext j

gr A(A/A≥p,M) using a graded free resolution of A/A≥p, which we can
assume to be finite in each degree. If A is not commutative then we must
use the bimodule structure on A/A≥p to compute the A-module structure on
Ext j

gr A(A/A≥p,M), that is, in this case we must look at the derived functor of
Homgr A(A/A≥p,−) (rather than deriving in the first variable) and so we cannot
necessarily use a free resolution of A/A≥p to compute the A-module structure
of Ext j

gr A(A/A≥p,M). In [Stafford and Zhang 1994], an example is given of a
noncommutative graded noetherian domain A such that χ j (A) does not hold for
any j > 0.

Recall that gr≥i A is the full subcategory of gr A with objects those M with
M = M≥i . We denote by Gr≥i A the analogous subcategory of Gr A. Let
Tors≥i A = Gr≥i A ∩ Tors A and tors≥i A = gr≥i A ∩ tors A. The functor τ(−)
restricted to Gr≥i A (respectively, gr≥i A) is a right adjoint of the inclusion
Tors≥i A→ Gr≥i A (respectively, tors≥i A→ gr≥i A). Moreover, it is easy to
check that the composition of the functors Gr≥i A→Gr A→Qcoh X induces an

equivalence Gr≥i A/Tors≥i A
∼=
−→Qcoh X and 0≥i = (0∗(−))≥i is a right adjoint

to the quotient map. There is also an equivalence

gr≥i A/ tors≥i A
∼=
−→ coh X.

Assume that A satisfies the condition χ1. Then, using the above, we have the
following diagram where the vertical arrows are inclusions and the horizontal
arrows form adjoint pairs with the left adjoint on top:

Tors≥i A
inc

// Gr≥i A
˜(−)

//

τ(−)

oo Qcoh X
0≥i

oo

tors≥i A

OO

inc
// gr≥i A

˜(−)
//

OO

τ(−)

oo coh X
0≥i

oo

OO
(4.11)

For any M in Gr≥i A, the counit and the unit are given by

0→ τ(M)→ M ∼= HomGr A(A,M)→ (colimp→∞HomGr A(A≥p,M))≥i ,

(4.12)
as in the case of Gr A. Also note that 0≥i is fully faithful, as it is the right adjoint
of a quotient functor.
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We wish to extend this diagram to functors between the bounded derived
categories of the above abelian categories. The existence of a corresponding
localization sequence involving the derived categories is standard but we provide
some details. We start with a simple lemma.

Lemma 4.13. Let M be an object of Gr≥i A and let M → I be an injective
resolution in Gr A. Then M → I≥i is an injective resolution in Gr≥i A. In
particular Gr≥i A has enough injectives.

Proof. The functor (−)≥i is exact and M≥i = M , thus M → I≥i is a quasi-
isomorphism. So to complete the proof it is sufficient to show I≥i is a complex
of injectives.

Let J be an injective object in Gr A. By adjunction there is an isomorphism of
functors HomGr A(inc(−), J )∼= HomGr≥i A(−, J≥i ). The former functor is exact
as J is injective and the inclusion is exact, and thus so is the latter showing J≥i

is injective in Gr≥i A. �

The functors to the right in (4.11) are exact and those to the left are left exact
(since they are right adjoints). Since Gr≥i A has enough injectives by the above
lemma and Qcoh X has enough injectives by [Artin and Zhang 1994, 7.1] (in
fact, by standard abstract nonsense both of these categories are Grothendieck
categories and so have enough injectives), we may form Rτ(−) and R0≥i , the
right derived functors of τ(−) and 0≥i , respectively. This gives two pairs of
adjoint functors

DTors≥i A(Gr≥i A)
inc

// D(Gr≥i A)
˜(−)

//

Rτ(−)
oo D(Qcoh X),

R0≥i

oo (4.14)

where DTors≥i A(Gr≥i A) is the full subcategory of D(Gr≥i A) consisting of com-
plexes with torsion cohomology.

Since 0≥i sends injectives to injectives and is fully faithful, one checks easily
that R0≥i is also fully faithful. In particular, ˜(−) is a quotient functor. As ˜(−) at
the level of the abelian categories is exact, the kernel of this functor at the level
of derived categories consists of precisely those complexes whose cohomology is
annihilated by ˜(−), that is, it is exactly DTors≥i A(Gr≥i A). This proves the above
functors give a localization sequence of triangulated categories.

It follows that for every M ∈ D(Gr≥i A) there is a localization triangle

Rτ(M)→ M→ R0≥i (M̃)→ , (4.15)

where the first map is the counit of the first adjunction of (4.14) and the second
map is the unit of the second adjunction of (4.14).

Remark. When A is commutative, (4.15) can be constructed using the Cech
complex.
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For the above adjoint pairs to restrict to the bounded derived categories of
complexes of finitely generated modules, we need to place two further restrictions
on A. Let R0∗ : D(Qcoh X)→ D(Gr A) be the right derived functor of the left
exact functor 0∗.

Definition 4.16 (Artin, Zhang). The cohomological dimension of A is

cd(A) := sup{d | H dR0∗( Ã) 6= 0}.

By [Artin and Zhang 1994, 7.10], if cd(A) is finite, then R0∗(M̃) is a bounded
complex for every M̃ ∈ Qcoh X and so restricts to a functor

R0∗ : Db(Qcoh X)→ Db(Gr A).

Since 0≥i is the composition of 0∗ and the exact functor (−)≥i , we see that
R0≥i = (R0∗)≥i and so R0≥i restricts to a functor

R0≥i : D
b(Qcoh X)→ Db(Gr≥i A).

By the long exact sequence in homology induced by (4.15), we see that Rτ also
restricts to a functor between bounded derived categories.

Now we consider finiteness. We want to compute the cohomology of Rτ(M).
We view τ(−)=colimp→∞HomGr A(A/A≥p,−) as a functor gr≥i A→ tors≥i A.
For M in gr≥i A, let M→ IM be an injective resolution in Gr A. Then (IM)≥i

is an injective resolution in Gr≥i A. Thus we have

Rτ(M)= colimp→∞HomGr A(A/A≥p, (IM)≥i )

= colimp→∞HomGr A(A/A≥p, IM)≥i ,

where the second equality follows from the commutativity of the square of
inclusions

Tors≥i A //

��

Gr≥i A

��

Tors A // Gr A

by taking right adjoints. This shows that

H kRτ(M)∼= colimp→∞ ExtkGr A(A/A≥p,M)≥i ,

for all k ≥ 0. By [Artin and Zhang 1994, 3.8.3], if M satisfies χ j (M), then
colimp→∞ Extkgr A(A/A≥p,M)≥i is a finitely generated A-module for all k ≤ j
and all p ∈ Z.

Assume now that A has finite cohomological dimension and satisfies χ j for
all j ≥ 0. The above shows that Rτ(−) restricts to a functor

Rτ(−) : Db(gr≥i A)→ Db
tors≥i A(gr≥i A).
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By the long exact sequence in cohomology coming from (4.15), we see that we
also have a functor

R0≥i : D
b(coh X)→ Db(gr≥i A).

This gives the following diagram of adjoint functors, where the top functors are
the left adjoints:

Db
tors≥i A(gr≥i A)

inc
// Db(gr≥i A)

Rτ(−)
oo

˜(−)
// Db(coh X).

R0≥i (−)

oo

The functor R0≥i is fully faithful and its image is left admissible. Also, any
object in this image is contained in (Db

tors≥i A(gr≥i A))⊥. Indeed, for M an object
with torsion cohomology and any N ∈ Db(gr≥i A), we have

HomDb(gr≥i A)(M,R0≥i Ñ )∼= HomDb(coh X)(M̃, Ñ )= 0,

since M̃ ' 0. From this containment and the triangle (4.15), we may apply
Lemma 2.6 to see that there is a semiorthogonal decomposition

Db(gr≥i A)=
(
R0≥iD

b(coh X),Db
tors≥i A(gr≥i A)

)
.

Recall that S≥i is the thick subcategory generated by A0(e) for all e ≤−i .

Lemma 4.17. There is an equality S≥i = Db
tors≥i A(gr≥i A).

Proof. It is clear that A0(e) is in tors≥i A for all e ≤−i , so S≥i is contained in
Db

tors≥i A(gr≥i A). Given M in Db
tors≥i A(gr≥i A), we have that H∗(M) is finitely

generated and torsion, thus M must have cohomology in only finitely many
degrees. Analogously to the proof of Lemma 3.2, this shows that M is in S≥i . �

The above shows the following:

Proposition 4.18. Let A be a positively graded right noetherian ring that sat-
isfies condition χ and has finite cohomological dimension. Then there is a
semiorthogonal decomposition

Db(gr≥i A)= (R0≥iD
b(coh X),S≥i ).

The corresponding localization triangle is given by (4.15).

5. Singularity category of a Gorenstein ring

In this section we assume that A =
⊕

i≥0 Ai is a positively graded (two-sided)
noetherian ring with A0 of finite global dimension, but not necessarily commuta-
tive. We denote by idA M the graded injective dimension of a graded module M .
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Definition 5.1. A ring A is (Artin–Schelter) Gorenstein if idA A and idAop are
finite and

R Homgr A(A0, A)∼= A0[n](a) for some n, a ∈ Z

in both Db(gr A) and Db(gr Aop). The unique integer a is the a-invariant of A.

Remark 5.2. In [Minamoto and Mori 2011] a different definition of Artin–
Schelter Gorenstein ring is given under the restriction that A0 is a finite dimen-
sional algebra over a fixed base field k. Their definition differs from ours in two
ways: Minamoto and Mori require the shift occurring to match the injective dimen-
sion of A, that is, n=− idA A, and that rather than R Homgr A(A0, A)∼= A0[n](a)
one asks for an isomorphism

R Homgr A(A0, A)∼= Homk(A0, k)[n](a).

We note both definitions restrict to the classical one in the case A0 = k.
As an example, if R is a commutative regular ring of positive Krull dimension

and we set A = R[x]/(xn) with x in degree 1 then A is AS-Gorenstein in our
sense but in that of Minamoto and Mori. On the other hand their definition covers
certain (higher) preprojective algebras which are in general excluded by ours.

From this point forward we will use the term Gorenstein ring to refer to a ring
that is Gorenstein either in the sense of Definition 5.1 or [Minamoto and Mori
2011]. Our results hold for both definitions. We will work with the definition we
give and, when necessary, point out what changes in the arguments are necessary
if one uses the definition of Minamoto and Mori. In fact, the only place in which
the arguments do not go through verbatim are Lemmas 6.2 and 6.6 which require
minor tweaking.

The most important feature of Gorenstein rings for us is the duality given
below. We will make a standard abuse of notation and not differentiate between
the two duality functors notationally.

Lemma 5.3. Assume that A is a Gorenstein ring. Then the functors

D = R Homgr A(−, A) : Db(gr A)→ Db(gr Aop)
op
,

D = R Homgr Aop(−, A) : Db(gr Aop)→ Db(gr A)
op
,

are quasiinverse equivalences.

Proof. We first observe that D does indeed take Db(gr A) to Db(gr Aop)op. Since
A has finite injective dimension as both a left and a right module over itself it is
clear that D preserves boundedness of cohomology. It is also clear that D sends
complexes with finitely generated cohomology groups to the same as we can
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resolve any object of Db(gr A) by a complex of finitely generated projectives
and A is noetherian.

These functors are adjoint so we can consider the unit of this adjunction

η : Id→ D2,

and we need to show it is an equivalence. But this is again clear: for a bounded
above complex of finitely generated projectives the map η is just componentwise
the natural map to the double dual and finitely generated projectives are reflexive.

�

Recall that P≥i is the thick subcategory of Db(gr A) generated by those A(e)
with e≤−i and P<i is the thick subcategory generated by the A(e) with e>−i .

Lemma 5.4. If A is Gorenstein, there is a semiorthogonal decomposition

Db(gr≥i A)= (P≥i , (
⊥P≥i )∩D

b(gr≥i A)).

For M ∈ Db(gr≥i A), the localization triangle is given by

D(G)≺i → M ∼= D(G)→ D(G)<i → ,

where the notation is as in Definition 3.9, and G → D(M) is a projective
resolution of the dual of M as in Lemma 3.10.

Proof. Let M be an object of Db(gr≥i A) and let G → D(M) be a projective
resolution as in Lemma 3.10, where D(M)= R Homgr A(M, A) is the image of
M under the duality functor. As in the proof of Lemma 3.7, there is a triangle

G≺−i+1→ G→ G<−i+1→ ,

where G≺−i+1 is an object of P<−i+1 and every component of G<−i+1 is gener-
ated in degree at least −i+1. If P = P0⊗A0 A(e) is any indecomposable graded
projective A-module, then

D(P)∼= Homgr A(P, A)∼= (P0)
∗
⊗A0 A(−e),

where (P0)
∗ is the A0-dual of P0. Thus

D(G≺−i+1)= D(G)<i and D(G<−i+1)= D(G)≺i .

Applying D to the triangle above gives a triangle

D(G)≺i → D(G)→ D(G)<i → .

Note that D(G)<i is in P≥i and that there are isomorphisms

M
'
−→ D(D(M))

'
−→ D(G).
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We can now apply Lemma 2.6, once we show that D(G)≺i is in

(⊥P≥i )∩D
b(gr≥i A).

It follows from the long exact sequence in homology of the above triangle that
each of the homology groups of D(G)≺i is generated in degrees at least i and
thus D(G)≺i is in Db(gr≥i A). That D(G)≺i is in ⊥(P≥i ) follows from the fact
that Homgr A(A(e), A( f ))= 0 for e > f . �

Let us denote by Bi the subcategory (⊥P≥i )∩D
b(gr≥i A), which by the above

lemma is a right admissible subcategory of Db(gr≥i A). There is a description of
Bi using the well-known singularity category of A.

Definition 5.5. Let A be a graded ring.

(1) An object M in Db(gr A) is perfect if M is in the thick subcategory generated
by A(e) for all e ∈ Z, that is, it is quasi-isomorphic to a bounded complex
of projectives. We denote the subcategory of perfect complexes by perf(A).
We see from the definitions that perf(A)= 〈P≥i ,P<i 〉.

(2) The singularity category of A is

Db
sg(gr A) := Db(gr A)/ perf(A).

Orlov showed that when A is a connected graded Gorenstein algebra over a
field, there is an embedding of Db

sg(gr A) in Db(gr A) for every i ∈ Z, and the
image is equal to Bi . We now show this holds in the generality in which we are
working. First we recall a lemma whose proof is left to the reader.

Lemma 5.6. Let A be a left admissible subcategory in a triangulated category
T with iL : T →A the left adjoint to the inclusion i :A→ T . Then iL induces
an equivalence

T /⊥A→A,

with inverse equivalence the composition A→ T → T /⊥A. The analogous
statement holds for right admissible subcategories.

Applying the above lemma to Lemma 3.7 shows that there is an equivalence

ψi : D
b(gr A)/P<i

∼=
−→ Db(gr≥i A).

Remark 3.12 shows that ψi (M) = P<i , where P → M is a projective resolu-
tion as in Lemma 3.10. If we apply Lemma 5.6 again to the semiorthogonal
decomposition Db(gr≥i A)= (P≥i ,Bi ), we have an equivalence

φi : D
b(gr≥i A)/P≥i

∼=
−→ Bi ,
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with φi (N ) = D(Q)≺i , where Q → D(N ) is a projective resolution as in
Lemma 3.10. Let us set bi =φi ◦π ◦ψi where π : Db(gr≥i A)→Db(gr≥i A)/P≥i

is the quotient functor. This gives an equivalence

bi : D
b
sg(gr A)= Db(gr A)/〈P<i ,P≥i 〉

∼=
−→ Bi , (5.7)

with bi (M) = D(Q)≺i , where Q → D(P<i ) and P → M are projective res-
olutions as in Lemma 3.10. The inverse of the equivalence is given by the
composition of the inclusion and quotient Bi → Db(gr A)→ Db(gr A)/ perf(A).
Moreover, bi followed by the inclusion Bi → Db(gr≥i A) is left adjoint to the
quotient functor

Db(gr≥i A)= Db(gr A)/P<i → Db(gr A)/〈P<i ,P≥i 〉 = Db
sg(gr A).

To sum up, we have shown the following:

Proposition 5.8. If A is a graded Gorenstein ring, the quotient

Db(gr≥i A)→ Db
sg(gr A)

has a fully faithful left adjoint

bi : D
b
sg(gr A)→ Db(gr≥i A).

The image of bi is the subcategory Bi = (
⊥P≥i ) ∩ Db(gr≥i A) and there is a

semiorthogonal decomposition:

Db(gr≥i A)= (P≥i ,Bi ).

The localization triangle is described in Lemma 5.4.

6. Relating the bounded derived category of coherent sheaves
and the singularity category

In this section we prove the main theorem by comparing the semiorthogonal
decompositions constructed in the previous sections. We assume that A =⊕

i≥0 Ai is a positively graded noetherian Gorenstein ring with A0 a ring of
finite global dimension, but not necessarily commutative.

Gorenstein rings often satisfy the two properties we need to apply Proposi-
tion 4.18.

Lemma 6.1. If A is a Gorenstein ring, then A has finite cohomological dimen-
sion.

Proof. We need to show

cd(A)= sup{d | H dR0∗( Ã) 6= 0}<∞.
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Since A is Gorenstein we can choose a bounded injective resolution I for A
as a right A-module. Hence Rτ(A) = τ(I ) has bounded cohomology and the
localization triangle

Rτ(A)→ A→ R0∗( Ã)→

then implies R0∗( Ã) also has bounded cohomology. �

We have remarked earlier that any commutative ring satisfies condition χ . The
next lemma gives some noncommutative and not necessarily graded connected
examples.

Lemma 6.2. Let k be a commutative ring and A a flat Gorenstein k-algebra.
Then A satisfies condition χ .

Proof. As A is flat over k it follows that the enveloping algebra A⊗k Aop is flat
over both A and Aop. Thus the restriction of scalars functors induced by the maps
A→ A⊗k Aop and Aop

→ A⊗k Aop preserve injectives. Taking an injective
resolution I of A over A⊗k Aop thus gives a bimodule resolution of A which
is an injective resolution as both a complex of left and of right A-modules. We
may use such a resolution to compute D = R Homgr A(−, A) as Homgr A(−, I ),
and obtain the correct Aop-module structure and similarly for the inverse duality
functor; this is just a consequence of the fact that I and A are quasi-isomorphic
as complexes of bimodules. Given a complex of injectives M ∈ Db(gr A) we
now compute, using the duality of Lemma 5.3, that there are quasi-isomorphisms
of right A0-modules

Homgr A(A0,M)∼= R Homgr Aop(Homgr A(M, I ),Homgr A(A0, I ))
∼= Homgr Aop(P,Homgr A(A0, I ))
∼= Homgr Aop(P, ν A0[n](a)),

where P is a projective resolution of Homgr A(M, I ) over Aop and ν is a twist by
some, possibly nontrivial, automorphism which needs to be accounted for as we
view Homgr A(A0, I ) as a bimodule rather than just a right module (see, for ex-
ample, [Minamoto and Mori 2011, Lemma 2.9]). Now Homgr Aop(P, 6n

ν A0(a))
is a complex of finitely generated A0-modules and so in particular has finitely
generated cohomology over A0 and hence over A. In particular, if M is an
injective resolution of a right A module N this shows Extigr A(A0, N ) is finitely
generated over A for all i ∈ Z.

It only remains to observe that A/A≥n has a filtration, as bimodules, by copies
of A0( j) for j ∈Z and considering the corresponding long exact sequences shows
R Homgr A(A/A≥n,M) has finitely generated cohomology for all M ∈ Db(gr A).
Hence A satisfies condition χ . �
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Remark 6.3. In Lemma 6.2, if A is AS-Gorenstein in the sense of [Minamoto
and Mori 2011] then one has to replace ν A0(a) by Homk(ν A0(a), k) but this does
not alter the argument as Homgr Aop(P, 6n Homk(ν A0(a), k)) is still a complex
of finitely generated A0-modules.

Theorem 6.4. Let A =
⊕

i≥0 Ai be a positively graded noetherian Gorenstein
ring with A0 of finite global dimension, but not necessarily commutative. We
assume in addition that A satisfies condition χ . Let a be the a-invariant of A
defined in Definition 5.1.

(1) If a > 0, then for every i ∈ Z there is a semiorthogonal decomposition

Db(coh X)=
(
O(−i − a+ 1), . . . ,O(−i), B̃i

)
,

where O( j) is the image of A( j) in coh X and Bi is the image of Db
sg(gr A)

under the fully faithful functor bi : D
b
sg(gr A)→ Db(gr≥i A) described in

(5.7).

(2) If a < 0, then for every i ∈ Z there is a semiorthogonal decomposition

Db
sg(gr A)=

(
p A0(−i), . . . , p A0(−i + a+ 1), pR0≥i−aD

b(coh X)
)
,

where p : Db(gr≥i A)→ Db
sg(gr A) is the canonical quotient.

(3) If a = 0, then for every i ∈ Z the functors ˜(−)bi : D
b
sg(gr A)→ Db(coh X)

and pR0≥i : D
b(coh X)→ Db

sg(gr A) are inverse equivalences.

Before beginning the proof, we need two lemmas. For the rest of the section
we rely heavily on notation introduced earlier: recall that S<i (respectively S≥i ) is
the thick subcategory generated by the objects A0(e), for all e>−i (respectively
e ≤ −i) and P<i (respectively P≥i ) is the thick subcategory generated by the
objects A(e) for all e >−i (respectively e ≤−i).

Lemma 6.5. Let A be a graded ring.

(1) For every i ∈ Z there is a semiorthogonal decomposition

P≥i = (P≥i+1, A(−i)).

(2) For every i ∈ Z there is a semiorthogonal decomposition

S<i+1 = (S<i , A0(−i)).

Proof. It is clear that A(−i) ⊆ ⊥P≥i+1. We know that any object in P≥i

is isomorphic in Db(gr≥i A) to a bounded complex X of finitely generated
graded projective modules and so we may restrict ourselves to working with
such complexes. As in the proof of Lemma 3.7, using the structure of graded
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projectives given in Lemma 3.8 and the notation of Definition 3.9, we see that
there is a short exact sequence of complexes, split in each degree

0→ X≺i+1→ X→ X<i+1→ 0,

where X≺i+1 is the subcomplex of X which is termwise the projective summands
generated in degree i and X<i+1 is the quotient complex which is termwise
all those projective summands generated in degree at least i + 1. This gives a
triangle

X≺i+1→ X→ X<i+1→ ,

with X≺i+1 in the thick subcategory generated by A(−i) and X<i+1 in P≥i+1.
By Lemma 2.6 we have proved part 1.

We have A0(−i) ∈ ⊥S<i , since R Homgr A(A0(e), A0( f )) ' 0 for all e < f .
Indeed, we may find a graded free resolution of A0(e) that exists entirely in
degrees at least e. For any X ∈ S<i+1, we have the triangle

X≥i → X→ X/X≥i → ,

as in Lemma 3.4. Since X≥i+1 = 0 we see X≥i has cohomology concentrated
in grading degree i and so is in the thick subcategory generated by A0(−i). On
the other hand X/X≥i is killed by (−)≥i so is in S<i by Lemma 3.2. Applying
Lemma 2.6 now proves part 2. �

For the sake of clarity we introduce the following notation for the next lemma.
We denote by S<i (A) and S<i (Aop) the thick subcategories generated by the
A0(e), for all e >−i , in Db(gr A) and Db(gr Aop) respectively. We use similar
notation for S≥i , P≥i , and P<i in order to indicate in which category we are
working.

Lemma 6.6. Under the hypothesis of Theorem 6.4, we have S≥i
⊥
=
⊥P≥i+a as

subcategories of Db(gr≥i A).

Proof. As A is Gorenstein we have Grothendieck duality by Lemma 5.3. We
note that restricting the duality functor D = R Homgr A(−, A) to S≥i gives an
equivalence

D : S≥i (A)
∼=
−→ (S<−i−a+1(Aop))op.

Indeed, one can see this simply by computing D applied to the generators and
observing equivalences send thick subcategories to thick subcategories. Similarly
we can also restrict D to get an equivalence

D : P<−i−a+1(A)
∼=
−→ (P≥i+a(Aop))op.
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By Lemmas 3.4, 3.7, and the definition of a semiorthogonal decomposition, we
have in Db(gr A)

⊥S<−i−a+1(A)= Db(gr A≥−i−a+1)= P<−i−a+1(A)⊥.

We thus have

S≥i (A)⊥
∼=
−→
(
(S<−i−a+1(Aop))op)⊥

= (⊥S<−i−a+1(Aop))op

= (P<−i−a+1(Aop)⊥)op

=
⊥
(
(P<−i−a+1(Aop))op) ∼=

−→
⊥P≥i+a(A),

that is, the functor D2, which is isomorphic to the identity functor, takes S≥i (A)⊥

to ⊥P≥i+a(A) and hence these categories are equal. �

Remark 6.7. If A is AS-Gorenstein in the sense of [Minamoto and Mori 2011]
then one needs a minor additional argument to prove the above lemma. We need
to check D(S≥i (A)), the thick subcategory of Db(gr Aop)op generated by the
D(A0(e)) for e ≤−i , is (S<−i−a+1(Aop))op. By definition

R Homgr A(A0(e), A)∼= Homk(A0, k)[−n](−e+ a),

and it is sufficient to check this object generates the same thick subcategory as
A0(−e+ a) (of course we can ignore the degree shift). This follows essentially
immediately from the equivalence

Homk(−, k) : Db(mod A0)
∼=
−→ Db(mod Aop

0 )
op,

which sends the generator A0 to Homk(A0, k).

Proof of Theorem 6.4. Combining the decompositions of Lemma 3.4 and
Proposition 5.8 via Lemma 2.8, there is a semiorthogonal decomposition

Db(gr A)= (S<i ,P≥i ,Bi ). (6.8)

Similarly, by Lemma 3.4, Proposition 4.18, and Lemma 2.8, there is a semiorthog-
onal decomposition

Db(gr A)= (S<i ,R0≥iD
b(coh X),S≥i ).

Using Lemma 6.6, we see that ⊥P≥i+a = S≥i
⊥
=
(
S<i ,R0≥iD

b(coh X)
)
, and

thus there is a semiorthogonal decomposition

Db(gr A)= (P≥i+a,S<i ,R0≥iD
b(coh X)). (6.9)

The rest of the proof boils down to comparing the decompositions (6.8) and
(6.9), depending on the sign of a.
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Assume first that a ≥ 0. Then P≥i+a ⊆ Db(gr≥i A) by definition, and
Db(gr≥i A) = ⊥S<i by Lemma 3.4. Hence the first two factors of (6.9) are
mutually orthogonal and we may swap them to get

Db(gr A)= (S<i ,P≥i+a,R0≥iD
b(coh X)). (6.10)

Comparing with (6.8) we see that

Db(gr≥i A)= (P≥i ,Bi )= (P≥i+a,R0≥iD
b(coh X)).

By Lemma 6.5 there is a decomposition

P≥i =
(
P≥i+a, A(−i − a+ 1), . . . , A(−i + 1), A(−i)

)
.

It follows there is an equality in Db(gr≥i A):(
A(−i − a+ 1), . . . , A(−i + 1), A(−i),Bi

)
= R0≥iD

b(coh X).

Applying ˜(−) to both sides gives the semiorthogonal decomposition

Db(coh X)=
(
O(−i − a+ 1), . . . ,O(−i), B̃i

)
.

Assume now that a ≤ 0. In this case, P≥i ⊆ S<i
⊥, that is,

HomDb(gr A)(S<i ,P≥i )= 0.

To see this, it is enough to check that HomDb(gr A)(A0(e)[m], A( f ))= 0 for all
e >−i, f ≤−i and all m ∈ Z. But

HomDb(gr A)(A0(e)[m], A( f ))∼= HomDb(gr A)(A0, A)( f − e)[−m]

= (H−mR Homgr A(A0, A)) f−e.

By the definition of Gorenstein, this is nonzero if and only if −m = n and
f − e =−a, however f − e < 0 and −a ≥ 0. Thus we may switch the order of
the first two factors of (6.8) and we have a semiorthogonal decomposition

Db(gr A)= (P≥i ,S<i ,Bi ). (6.11)

We also have, substituting i − a for i in (6.9),

Db(gr A)= (P≥i ,S<i−a,R0≥i−aD
b(coh X)).

This shows that

(S<i ,bDb
sg(gr A))= (S<i−a,R0≥i−aD

b(coh X)).

By Lemma 6.5 we have

S<i−a =
(
S<i , A0(−i), A0(−i − 1), . . . , A0(−i + a+ 1)

)
.
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Thus we have

Bi =
(

A0(−i), A0(−i − 1), . . . , A0(−i + a+ 1),R0≥i−aD
b(coh X)

)
,

and applying the functor p : Db(gr≥i A)→ Db
sg(gr A) gives the desired decom-

position. �

7. Complete intersection rings and matrix factorizations

In this section we apply the main theorem to relate the derived category of a
commutative complete intersection ring to the homotopy category of graded
matrix factorizations over a “generic hypersurface”.

7.1. Graded matrix factorizations. Let S=
⊕

i≥0 Si be a commutative noether-
ian graded ring and let W ∈ Sd , for some d ≥ 1. A graded matrix factorization
of W is a pair of graded projective S-modules E1, E0 and morphisms in gr S,

e1 : E1→ E0, e0 : E0→ E1(d),

such that e0e1 =W · 1E1 and e1(d)e0 =W · 1E0 . A morphism h between

E= (E1
e1
−→ E0

e0
−→ E1(d)) and F= (F1

f1
−→ F0

f0
−→ F1(d))

is a pair of maps h1 : E1→ F1 and h0 : E0→ F0 making the obvious diagrams
commute. One defines a homotopy between two such maps analogously to
the case of a map of complexes. The category with objects graded matrix
factorizations of W and morphisms homotopy equivalence classes of morphisms
of matrix factorizations is the homotopy category of graded matrix factorizations
of W and denoted [gr-mf(S,W )].

Now assume that S0 is a regular commutative ring and S is a polynomial
ring over S0. Set A = S/(W ) and consider the singularity category Db

sg(gr A) as
defined in Definition 5.5. The assignment that sends

E= (E1
e1
−→ E0

e0
−→ E1(d))

to the image of coker e1 in Db
sg(gr A) induces a functor

coker : [gr-mf(S,W )] → Db
sg(gr A). (7.1)

It follows from work of Eisenbud [1980] and Buchweitz [1987], and appears
explicitly in [Orlov 2009, Section 3], that this functor is an equivalence of
categories.
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7.2. Generic hypersurface. Let R= Q/( f ), where Q is a commutative regular
ring of finite Krull dimension, and f = f1, . . . , fc is a Q-regular sequence.
Define S= Q[T1, . . . , Tc] to be the graded polynomial ring over Q with |Ti | = 1.
Let W = f1T1+ · · ·+ fcTc ∈ S1 and set A = S/(W ).

Let Y = Proj A and note that there is a diagram

Pc−1
R = Proj (S⊗Q R)

β
//

π

��

Y // Proj S = Pc−1
Q

��

Spec R // Spec Q

(7.2)

where the vertical arrows are the canonical proper maps and each horizontal arrow
is a regular closed immersion and thus has finite Tor dimension. In particular
the map β : Pc−1

R → Y is a regular closed immersion of codimension c − 1.
Orlov [2006] used this setup to show that there is an equivalence between the
singularity categories of R and Y . This equivalence was used in [Burke and
Walker 2015; Stevenson 2014].

Lemma 7.3. The functor β∗π∗ : Db(R)→ Db(coh Y ) is fully faithful and has a
right adjoint. Thus the image R is a right admissible subcategory of Db(coh Y )
equivalent to Db(R). Moreover, the right orthogonal of R is

(β∗π
∗Db(R))⊥ = 〈OY (−c+ 2), . . . ,OY (−1),OY 〉.

Proof. Orlov [2006, 2.2] shows that the functor β∗π∗ : Db(R)→ Db(coh Y ) is
fully faithful and has a right adjoint (the existence of a right adjoint to β∗ is one
formulation of Grothendieck duality in this context). He also shows in [loc.cit.,
2.10] that the left orthogonal of the image is 〈OY (1), . . . ,OY (c− 1)〉; a slight
reworking of this argument shows the right orthogonal is as claimed. �

7.3. The equivalence. We continue to assume that R is a complete intersec-
tion of the form Q/( f ), where Q is a commutative regular ring of finite
Krull dimension, and f = f1, . . . , fc is a Q-regular sequence. Recall that
A= Q[T1, . . . , Tc]/( f1T1+· · ·+ fcTc)= S/(W ). We wish to apply Theorem 6.4
to this ring. We first must show A is Gorenstein. This holds by “graded local
duality” as in [Bruns and Herzog 1993, Section 3.4].

Lemma 7.4. There is an isomorphism in Db(gr A),

R Homgr A(A0, A)∼= A0[−n](c− 1),

where n = dim A. Thus A is a graded Gorenstein ring with a-invariant c− 1.
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Theorem 7.5. There is an equivalence

9 : Db(R)
∼=
−→ [gr-mf(S,W )]

given by 9 = q(R0≥0)β∗π
∗, where q is the composition

Db(gr A≥0)
p
−→ Db

sg(gr A)
∼=
−→ [gr-mf(S,W )].

Proof. By Theorem 6.4 applied to A with i = 0, we know that Db(coh Y ) has
a semiorthogonal decomposition (OY (−c + 2), . . . ,OY , B̃i ) where Bi is the
image of Db

sg(gr A) under the fully faithful functor bi : D
b
sg(gr A)→ Db(gr≥i A)

described in (5.7). Thus

B̃i
⊥
= (OY (−c+ 2), . . . ,OY ),

which by Lemma 7.3 is also equal to R⊥, where R is the image of Db(R) under
β∗π

∗. Thus R= B̃i and applying qR0≥0 to both sides we have an equivalence

Db(R)
qR0≥0β∗π

∗

−−−−−−→ Db
sg(gr A).

Finally, the equivalence (7.1) finishes the proof. �

In [Burke and Walker 2015], it was shown that there is an equivalence

Db
sg(R)∼= [MF(Pc−1

Q ,O(1),W )],

where [MF(Pc−1
Q ,O(1),W )] is the homotopy category of matrix factorizations

of locally free sheaves on Pc−1
Q . This category has objects pairs of locally free

sheaves (E1, E0) on Pc−1
Q and maps e1 : E1→ E0 and e0 : E0→ E1(1) such that

composition is multiplication by W . Morphisms are defined analogously as in
the affine case above, however there is a further localization at objects that are
locally contractible. There is an obvious functor

˜(−) : [gr-mf(S,W )] → [MF(Pc−1
Q ,O(1),W )].

This equivalence fits into the following commutative diagram, where the left
hand arrow is the natural projection onto the singularity category.

Db(R)
∼=

//

��

[gr-mf(S,W )]

˜(−)
��

Db
sg(R) ∼=

// [MF(Pc−1
Q ,O(1),W )].
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