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When is a squarefree monomial ideal
of linear type?

ALI ALILOOEE AND SARA FARIDI

In 1995 Villarreal gave a combinatorial description of the equations of Rees
algebras of quadratic squarefree monomial ideals. His description was based
on the concept of closed even walks in a graph. In this paper we will generalize
his results to all squarefree monomial ideals by defining even walks in a
simplicial complex. We show that simplicial complexes with no even walks
have facet ideals that are of linear type, generalizing Villarreal’s work.

1. Introduction

Rees algebras are of special interest in algebraic geometry and commutative
algebra since they describe the blowing up of the spectrum of a ring along the
subscheme defined by an ideal. The Rees algebra of an ideal can also be viewed
as a quotient of a polynomial ring. If I is an ideal of a ring R, we denote the
Rees algebra of I by R[I t], and we can represent R[I t] as S/J where S is
a polynomial ring over R. The ideal J is called the defining ideal of R[I t].
Finding generators of J is difficult and crucial for better understanding R[I t].
Many authors have worked to gain better insight into these generators in special
classes of ideals, such as those with special height, special embedding dimension
and so on.

When I is a monomial ideal, using methods from Taylor’s thesis [1966] one
can describe the generators of J as binomials. Using this fact, Villarreal [1995]
gave a combinatorial characterization of J in the case of degree 2 squarefree
monomial ideals. His work led Fouli and Lin [2015] to consider the question
of characterizing generators of J when I is a squarefree monomial ideal in
any degree. With this purpose in mind we define simplicial even walks, and
show that for all squarefree monomial ideals, they identify generators of J that
may be obstructions to I being of linear type. We show that in dimension 1,
simplicial even walks are the same as closed even walks of graphs. We then
further investigate properties of simplicial even walks, and reduce the problem
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of checking whether an ideal is of linear type to identifying simplicial even
walks. At the end of the paper we give a new proof for Villarreal’s theorem
(Corollary 4.10).

2. Rees algebras and their equations

Let I be a monomial ideal in a polynomial ring R = K[x1, . . . , xn] over a field
K. We denote the Rees algebra of I = ( f1, . . . , fq) by R[I t] = R[ f1t, . . . , fq t]
and consider the homomorphism ψ of algebras

ψ : R[T1, . . . , Tq ] −→ R[I t], Ti 7→ fi t.

If J is the kernel of ψ , we can consider the Rees algebra R[I t] as the quotient
of the polynomial ring R[T1, . . . , Tq ]. The ideal J is called the defining ideal
of R[I t] and its minimal generators are called the Rees equations of I . These
equations carry a lot of information about R[I t]; see for example [Vasconcelos
1994] for more details.

Definition 2.1. For integers s, q ≥ 1 we define

Is = {(i1, . . . , is) : 1≤ i1 ≤ i2 ≤ · · · ≤ is ≤ q} ⊂ Ns .

Let α = (i1, . . . , is) ∈ Is and f1, . . . , fq be monomials in R and T1, . . . , Tq be
variables. We use the following notation throughout, where t ∈ {1, . . . , s}.

• Supp(α)= {i1, . . . , is}.

• α̂it = (i1, . . . , ît , . . . , is).

• Tα = Ti1 . . . Tis and Supp(Tα)= {Ti1, . . . , Tis }.

• fα = fi1 . . . fis .

• f̂αt = fi1 . . . f̂it . . . fis = fα/ fit .

• T̂αt = Ti1 . . . T̂it . . . Tis = Tα/Tit .

• αt( j)= (i1, . . . , it−1, j, it+1, . . . , is), for j ∈ {1, 2, . . . , q} and s ≥ 2.

For an ideal I = ( f1, . . . , fq) of R the defining ideal J of R[I t] is graded and

J = J ′1⊕ J ′2⊕ · · · ,

where J ′s for s ≥ 1 is the R-module.
The ideal I is said to be of linear type if J = (J ′1); in other words, the defining

ideal of R[I t] is generated by linear forms in the variables T1, . . . , Tq .

Definition 2.2. Let I = ( f1, . . . , fq) be a monomial ideal, s ≥ 2 and α, β ∈ Is .
We define

Tα,β(I )=
(

lcm( fα, fβ)
fα

)
Tα −

(
lcm( fα, fβ)

fβ

)
Tβ . (2-1)
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When I is clear from the context we use Tα,β to denote Tα,β(I ).

Proposition 2.3 [Taylor 1966]. Let I = ( f1, . . . , fq) be a monomial ideal in R
and J be the defining ideal of R[I t]. Then for s ≥ 2 we have

J ′s = 〈Tα,β(I ) : α, β ∈ Is〉.

Moreover, if m = gcd ( f1, . . . , fq) and I ′ = ( f1/m, . . . , fq/m), then for every
α, β ∈ Is we have

Tα,β(I )= Tα,β(I ′),

and hence R[I t] = R[I ′t].

In light of Proposition 2.3, we will always assume that if I = ( f1, . . . , fq)

then
gcd ( f1, . . . , fq)= 1.

We will also assume Supp(α)∩Supp(β)=∅, since otherwise Tα,β reduces
to those with this property. This is because if t ∈ Supp(α) ∩ Supp(β) then
Tα,β = Tt Tα̂t ,β̂t

.
For this reason we define

Js = 〈Tα,β(I ) : α, β ∈ Is,Supp(α)∩Supp(β)=∅〉 (2-2)

as an R-module. Clearly J = J1S+ J2S+ · · · .

Definition 2.4. Let I = ( f1, . . . , fq) be a squarefree monomial ideal in R and J
be the defining ideal of R[I T ], s ≥ 2, and α= (i1, . . . , is), β = ( j1, . . . , js)∈ Is .
We call Tα,β redundant if it is a redundant generator of J , coming from lower
degree; i.e.,

Tα,β ∈ J1S+ · · ·+ Js−1S.

3. Simplicial even walks

By using the concept of closed even walks in graph theory, Villarreal [1995]
classified all Rees equations of edge ideals of graphs in terms of closed even
walks. In this section our goal is to define an even walk in a simplicial complex
in order to classify all irredundant Rees equations of squarefree monomial ideals.
Motivated by the work of S. Petrović and D. Stasi [2014], we generalize closed
even walks from graphs to simplicial complexes.

We begin with basic definitions that we will need later.

Definition 3.1. A simplicial complex on vertex set V= {x1, . . . , xn} is a collec-
tion 1 of subsets of V satisfying

(1) {xi } ∈1 for all i ,

(2) F ∈1,G ⊆ F =⇒ G ∈1.
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The set V is called the vertex set of1 and we denote it by V(1). The elements
of1 are called faces of1 and the maximal faces under inclusion are called facets.
We denote the simplicial complex 1 with facets F1, . . . , Fs by 〈F1, . . . , Fs〉. We
denote the set of facets of 1 with Facets(1). A subcollection of a simplicial
complex 1 is a simplicial complex whose facet set is a subset of the facet set
of 1.

Definition 3.2. Let 1 be a simplicial complex with at least three facets, ordered
as F1, . . . , Fq . Suppose

⋂
Fi =∅. With respect to this order 1 is

(i) an extended trail if

Fi ∩ Fi+1 6=∅ i = 1, . . . , q mod q;

(ii) a special cycle [Herzog et al. 2008] if 1 is an extended trail in which

Fi ∩ Fi+1 6⊂
⋃

j /∈{i,i+1}

F j i = 1, . . . , q mod q;

(iii) a simplicial cycle [Caboara et al.2007] if 1 is an extended trail in which

Fi ∩ F j 6=∅⇔ j ∈ {i + 1, i − 1} i = 1, . . . , q mod q.

We say that 1 is an extended trail (or special or simplicial cycle) if there is
an order on the facets of 1 such that the specified conditions hold on that order.
Note that

{simplicial cycles} ⊆ {special cycles} ⊆ {extended trails}.

Definition 3.3 (simplicial trees and simplicial forests [Caboara et al.2007; Faridi
2002]). A simplicial complex 1 is called a simplicial forest if 1 contains no
simplicial cycle. If 1 is also connected, it is called a simplicial tree.

Definition 3.4 [Zheng 2004, Lemma 3.10]. Let 1 be a simplicial complex. The
facet F of 1 is called a good leaf of 1 if the set {H ∩ F; H ∈ Facets(1)} is
totally ordered by inclusion.

Good leaves were first introduced by X. Zheng in her PhD thesis [2004] and
later in [Caboara et al. 2007]. The existence of a good leaf in every tree was
proved by J. Herzog, T. Hibi, N. V. Trung and X. Zheng:

Theorem 3.5 [Herzog et al. 2008, Corollary 3.4]. Every simplicial forest contains
a good leaf.

Let I = ( f1, . . . , fq) be a squarefree monomial ideal in R = K[x1, . . . , xn].
The facet complex F(I ) associated to I is a simplicial complex with facets
F1, . . . , Fs , where for each i ,

Fi = {x j : x j | fi , 1≤ j ≤ n}.
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Figure 1. Left: an even walk. Right: not an even walk.

The facet ideal of a simplicial complex 1 is the ideal generated by the products
of the variables labeling the vertices of each facet of 1; in other words

F(1)=
(∏

x∈F

x : F is a facet of 1
)
.

Definition 3.6 (degree). Let1=〈F1, . . . , Fq〉 be a simplicial complex, F(1)=
( f1, . . . , fq) be its facet ideal and α = (i1, . . . , is) ∈ Is , s ≥ 1. We define the
α-degree for a vertex x of 1 to be

degα(x)=max{m : xm
| fα}.

Example 3.7. Consider Figure 1 (left), where

F1 = {x4, x7, a3}, F2 = {x4, x5, a1}, F3 = {x5, x6, a2},

F4 = {x2, x3, a2}, F5 = {x1, x2, a1}, F6 = {x6, x7, a1}.

If we consider α= (1, 3, 5) and β= (2, 4, 6) then degα(a1)= 1 and degβ(a1)= 2.

Suppose I = ( f1, . . . , fq) is a squarefree monomial ideal in R with 1 =
〈F1, . . . , Fq〉 its facet complex and let α, β ∈ Is where s ≥ 2 is an integer. We
set α = (i1, . . . , is) and β = ( j1, . . . , js) and consider the following sequence of
not necessarily distinct facets of 1:

Cα,β = Fi1, F j1, . . . , Fis , F js .

Then (2-1) becomes

Tα,β(I )=( ∏
degα(x)<degβ (x)

xdegβ (x)−degα(x)
)

Tα −
( ∏

degα(x)>degβ (x)

xdegα(x)−degβ (x)
)

Tβ, (3-1)
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where the products vary over the vertices x of Cα,β .

Definition 3.8 (simplicial even walk). Let 1 = 〈F1, . . . , Fq〉 be a simplicial
complex and let α = (i1, . . . , is), β = ( j1, . . . , js) ∈ Is , where s ≥ 2. The
following sequence of not necessarily distinct facets of 1

Cα,β = Fi1, F j1, . . . , Fis , F js

is called a simplicial even walk, or simply “even walk”, if for every i ∈ Supp(α)
and j ∈ Supp(β) we have

Fi\F j 6⊂ {x ∈ V(1) : degα(x) > degβ(x)},

F j\Fi 6⊂ {x ∈ V(1) : degα(x) < degβ(x)}.

If Cα,β is connected, we call the even walk Cα,β a connected even walk.

Remark 3.9. It follows from the definition, if Cα,β is an even walk then

Supp(α)∩Supp(β)=∅.

Example 3.10. In Figure 1 by setting α = (1, 3, 5), β = (2, 4, 6) we have

F1\F2 = {x1, a1} = {x : degα(x) > degβ(x)}.

Remark 3.11. It turns out that a minimal even walk (that is, one not properly
containing another even walk) can have repeated facets. For instance, the bicycle
graph in Figure 2 is a minimal even walk, because of Corollary 3.24 below, but
it has a pair of repeated edges.

Proposition 3.12 (structure of even walks). Let Cα,β = F1, F2, . . . , F2s be an
even walk.

(i) If i ∈ Supp(α) (or i ∈ Supp(β)) there exist distinct j, k ∈ Supp(β) (or
j, k ∈ Supp(α)) such that

Fi ∩ F j 6=∅ and Fi ∩ Fk 6=∅. (3-2)

α = (1, 3, 3, 5) β = (2, 4, 6, 7)

Figure 2. A minimal even walk with repeated facets.
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(ii) The simplicial complex 〈Cα,β〉 contains an extended trail of even length
labeled Fv1, Fv2, . . . , Fv2l where

v1, . . . , v2l−1 ∈ Supp(α) and v2, . . . , v2l ∈ Supp(β).

Proof. To prove (i) let i ∈ Supp(α), and consider the following set

Ai = { j ∈ Supp(β) : Fi ∩ F j 6=∅}.

We only need to prove that |Ai | ≥ 2.
Suppose |Ai | = 0 then for all j ∈ Supp(β) we have

Fi\F j = Fi ⊆ {x ∈ V(Cα,β) : degα(x) > degβ(x)},

because for each x ∈ Fi\F j we have degβ(x)= 0 and degα(x) > 0; a contradic-
tion.

Suppose |Ai | = 1 so that there is one j ∈ Supp(β) such that Fi ∩ F j 6=∅. So
for every x ∈ Fi\F j we have degβ(x)= 0. Therefore, we have

Fi\F j ⊆ {x ∈ V(Cα,β) : degα(x) > degβ(x)},

again a contradiction. So we must have |Ai | ≥ 2.
To prove (ii) pick u1 ∈ Supp(α). By using the previous part we can say there

are u0, u2 ∈ Supp(β), u0 6= u2, such that

Fu0 ∩ Fu1 6=∅ and Fu1 ∩ Fu2 6=∅.

By a similar argument there is u3 ∈Supp(α) such that u1 6= u3 and Fu2∩Fu3 6=∅.
We continue this process. Pick u4 ∈ Supp(β) such that

Fu4 ∩ Fu3 6=∅ and u4 6= u2.

If u4 = u0, then Fu0, Fu1, Fu2, Fu3 is an even length extended trail. If not, we
continue this process each time taking

Fu0, . . . , Fun ,

and picking un+1∈Supp(α) (or un+1 Supp(β)) if un ∈Supp(β) (or un ∈Supp(α))
such that

Fun+1 ∩ Fun 6=∅ and un+1 6= un−1.

If un+1 ∈ {u0, . . . , un−2}, say un+1 = um , then the process stops and we have

Fum , Fum+1, . . . , Fun

is an extended trail. The length of this cycle is even since the indices

um, um+1, . . . , un
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alternately belong to Supp(α) and Supp(β) (which are disjoint by our assump-
tion), and if um ∈ Supp(α), then by construction un ∈ Supp(β) and vice versa.
So there are an even length of such indices and we are done.

If un+1 /∈ {u0, . . . , un−2} we add it to the end of the sequence and repeat the
same process for Fu0, Fu1, . . . , Fun+1 . Since Cα,β has a finite number of facets,
this process has to stop. �

Corollary 3.13. An even walk has at least 4 distinct facets.

Theorem 3.14. A simplicial forest contains no simplicial even walk.

Proof. Assume the forest 1 contains an even walk Cα,β where α, β,∈ Is and
s ≥ 2 is an integer. Since 1 is a simplicial forest so is its subcollection 〈Cα,β〉, so
by Theorem 3.5 〈Cα,β〉 contains a good leaf F0. So we can consider the following
order on the facets F0, . . . , Fq of 〈Cα,β〉:

Fq ∩ F0 ⊆ · · · ⊆ F2 ∩ F0 ⊆ F1 ∩ F0. (3-3)

Without loss of generality we suppose 0 ∈ Supp(α). Since Supp(β) 6= ∅, we
can pick j ∈ {1, . . . , q} to be the smallest index with F j ∈ Supp(β). Now if
x ∈ F0\F j , by (3-3) we will have degα(x) ≥ 1 and degβ(x) = 0, which shows
that

F0\F j ⊂ {x ∈ V (Cα,β); degα(x) > degβ(x)},

a contradiction. �

Corollary 3.15. Every simplicial even walk contains a simplicial cycle.

An even walk is not necessarily an extended trail. For instance see the
following example.

Example 3.16. Let α = (1, 3, 5, 7), β = (2, 4, 6, 8) and Cα,β = F1, . . . , F8 as in
Figure 3. It can easily be seen that Cα,β is an even walk of distinct facets but
Cα,β is not an extended trail. The main point here is that we do not require that
Fi ∩ Fi+1 6=∅ in an even walk which is necessary condition for extended trails.
For example F4 ∩ F5 6=∅ in this case.

On the other hand, every even-length special cycle is an even walk.

Proposition 3.17 (even special cycles are even walks). If F1, . . . , F2s is a special
cycle (under the written order) then it is an even walk under the same order.

Proof. Let α = (1, 3, . . . , 2s − 1) and β = (2, 4, . . . , 2s), and set Cα,β =
F1, . . . , F2s . Suppose Cα,β is not an even walk, so there is i ∈ Supp(α) and
j ∈ Supp(β) such that at least one of the following conditions holds:

Fi\F j ⊆ {x ∈ V(Cα,β) : degα(x) > degβ(x)},

F j\Fi ⊆ {x ∈ V(Cα,β) : degα(x) < degβ(x)}.
(3-4)
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Figure 3. An even walk which is not an extended trail.

Without loss of generality we can assume that the first condition holds. Pick
h ∈ {i − 1, i + 1} such that h 6= j . Then by definition of special cycle there
is a vertex z ∈ Fi ∩ Fh and z /∈ Fl for l /∈ {i, h}. In particular, z ∈ Fi\F j , but
degα(z)= degβ(z)= 1, which contradicts (3-4). �

The converse of Proposition 3.17 is not true: not every even walk is a special
cycle, see, for example, Figure 1 (left) or Figure 3, which are not even extended
trails. But one can show that it is true for even walks with four facets (see
[Alilooee 2014]).

3A. The case of graphs. We demonstrate that Definition 3.8 in dimension 1
restricts to closed even walks in graph theory. For more details on the graph
theory mentioned in this section we refer the reader to [West 1996].

Definition 3.18. Let G = (V, E) be a graph (not necessarily simple) where V is
a nonempty set of vertices and E is a set of edges. A walk of length n in G is a
list e1, e2, . . . , en of not necessarily distinct edges such that

ei = {xi , xi+1} ∈ E for each i ∈ {1, . . . , n− 1}.

A walk is called closed if its endpoints are the same, i.e., x1 = xn . The length
of a walk W is denoted by `(W). A walk with no repeated edges is called a
trail and a walk with no repeated vertices or edges is called a path. A closed
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Figure 4. An extended trail that is neither a trail nor a cycle.

walk with no repeated vertices or edges allowed, other than the repetition of the
starting and ending vertex, is called a cycle.

Lemma 3.19 [West 1996, Lemma 1.2.15 and Remark 1.2.16]. Let G be a simple
graph. Then we have:

• Every closed odd walk contains a cycle.

• Every closed even walk which has at least one nonrepeated edge contains a
cycle.

Note that in the graph case the special and simplicial cycles are the ordinary
cycles. But extended trails in our definition are not necessarily cycles in the case
of graphs or even a trail. For instance the graph in Figure 4 is an extended trail,
which is not neither a cycle nor a trail, but contains one cycle. This is the case in
general.

Theorem 3.20 (Euler’s theorem [West 1996]). If G is a connected graph, then
G is a closed walk with no repeated edges if and only if the degree of every vertex
of G is even.

Lemma 3.21. Let G be a simple graph and let C = ei1, . . . , ei2s be a sequence of
not necessarily distinct edges of G where s≥2 and ei ={xi , xi+1} and fi = xi xi+1

for 1 ≤ i ≤ 2s. Let α = (i1, i3, . . . , i2s−1) and β = (i2, i4, . . . , i2s). Then C is a
closed even walk if and only if fα = fβ .

Proof. (⇒) This direction is clear from the definition of closed even walks.
(⇐) We can give to each repeated edge in C a new label and consider C as

a multigraph (a graph with multiple edges). The condition fα = fβ implies
that every x ∈ V(C) has even degree, as a vertex of the multigraph C (a graph
containing edges that are incident to the same two vertices). Theorem 3.20
implies that C is a closed even walk with no repeated edges. Now we revert back



WHEN IS A SQUAREFREE MONOMIAL IDEAL OF LINEAR TYPE? 11

to the original labeling of the edges of C (so that repeated edges appear again)
and then since C has even length we are done. �

To prove the main theorem of this section (Corollary 3.24) we need the
following lemma.

Lemma 3.22. Let C = Cα,β be a 1-dimensional connected simplicial even walk
and α, β ∈ Is . If there is x ∈ V(C) for which degβ(x)= 0 (or degα(x)= 0), then
we have degβ(v)= 0 (degα(v)= 0) for all v ∈ V(C).

Proof. First we show the following statement.

ei = {wi , wi+1} ∈ E(C) and degβ(wi )= 0 =⇒ degβ(wi+1)= 0,

where E(C) is the edge set of C.
Suppose degβ(wi+1) 6= 0. Then there is e j ∈ E(C) such that j ∈ Supp(β) and

wi+1 ∈ e j . On the other hand since wi ∈ ei and degβ(wi )= 0 we can conclude
i ∈ Supp(α) and thus degα(wi ) > 0. Therefore, we have

ei\e j = {wi } ⊆ {z : degα(z) > degβ(z)},

and it is a contradiction. So we must have degβ(wi+1)= 0.
We proceed to the proof of our statement. Pick y ∈ V(C) such that y 6= x .

Since C is connected there is a path γ = ei1, . . . , eit in C in which we have

• ei j = {xi j , xi j+1} for j = 1, . . . , t ;

• xi1 = x and xit+1 = y.

Since γ is a path it has neither repeated vertices nor repeated edges. Now note
that since degβ(x) = degβ(xi1) = 0 and {xi1, xi2} ∈ E(C) from 3A we have
degβ(xi2)= 0. By repeating a similar argument we have

degβ(xi j )= 0 for j = 1, 2, . . . , t + 1.

In particular we have degβ(xit+1)= degβ(y)= 0 and we are done. �

We now show that a simplicial even walk in a graph (considering a graph as a
1-dimensional simplicial complex) is a closed even walk in that graph as defined
in Definition 3.18.

Theorem 3.23. Let G be a simple graph with edges e1, . . . , eq . Let ei1, . . . , ei2s

be a sequence of edges of G such that 〈ei1, . . . , ei2s 〉 is a connected subgraph of
G and {i1, i3, . . . , i2s−1}∩ {i2, i4, . . . , i2s} =∅. Then ei1, . . . , ei2s is a simplicial
even walk if and only if

{x ∈ V(Cα,β) : degα(x) > degβ(x)} = {x ∈ V(Cα,β) : degα(x) < degβ(x)} =∅.
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Proof. (⇐) is clear. To prove the converse we assume α = (i1, i3, . . . , i2s−1),
β = (i2, i4, . . . , i2s) and Cα,β is a simplicial even walk. We only need to show

degα(x)= degβ(x) for all x ∈ V(Cα,β).

Assume without loss of generality degα(x) > degβ(x) ≥ 0, so there exists
i ∈ Supp(α) such that x ∈ ei . We set ei = {x, w1}.

Suppose degβ(x) 6= 0. Cα,β contains at least four distinct edges We can choose
an edge ek in Cα,β where k ∈ Supp(β) such that x ∈ ei ∩ ek . We consider two
cases.

(1) If degβ(w1)= 0, then since degα(w1)≥ 1 we have

ei\ek = {w1} ⊆ {z ∈ V(G) : degα(z) > degβ(z)},

a contradiction.

(2) If degβ(w1)≥ 1, then there exists h ∈ Supp(β) with w1 ∈ eh . So we have

ei\eh = {x} ⊆ {z ∈ V(G) : degα(z) > degβ(z)},

again a contradiction.

So we must have degβ(x) = 0. By Lemma 3.22 this implies that degβ(v) = 0
for every v ∈ V(Cα,β), a contradiction, since Supp(β) 6=∅. �

Corollary 3.24 (1-dimensional simplicial even walks). Let G be a simple graph
with edges e1, . . . , eq . Let ei1, . . . , ei2s be a sequence of edges of G such that
〈ei1, . . . , ei2s 〉 is a connected subgraph of G and

{i1, i3, . . . , i2s−1} ∩ {i2, i4, . . . , i2s} =∅.

Then ei1, . . . , ei2s is a simplicial even walk if and only if ei1, . . . , ei2s is a closed
even walk in G.

Proof. Let I (G)= ( f1, . . . , fq) be the edge ideal of G and α= (i1, i3, . . . , i2s−1)

and β = (i2, i4, . . . , i2s) so that Cα,β = ei1, . . . , ei2s . Assume Cα,β is a closed
even walk in G. Then we have

fα =
∏

x∈V(Cα,β )

xdegα(x) =
∏

x∈V(Cα,β )

xdegβ (x) = fβ,

where the second equality follows from Lemma 3.21.
So for every x ∈V(Cα,β) we have degα(x)= degβ(x). In other words we have

{x ∈ V(Cα,β) : degα(x) > degβ(x)} = {x ∈ V(Cα,β) : degα(x) < degβ(x)} =∅,

and therefore we can say Cα,β is a simplicial even walk. The converse follows
directly from Theorem 3.23 and Lemma 3.21. �
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We need the following proposition in the next section.

Proposition 3.25. Let Cα,β be a 1-dimensional even walk, and 〈Cα,β〉 = G. Then
every vertex of G has degree > 1. In particular, G is either an even cycle or
contains at least two cycles.

Proof. Suppose G contains a vertex v of degree 1. Without loss of generality we
can assume v ∈ ei where i ∈ Supp(α). So degα(v)= 1 and from Theorem 3.23
we have degβ(v) = 1. Therefore, there is j ∈ Supp(β) such that v ∈ e j . Since
deg(v)= 1 we must have i = j , a contradiction since Supp(α) and Supp(β) are
disjoint.

By Corollary 3.15, G contains a cycle. Now we show that G contains at least
two distinct cycles or it is an even cycle.

Suppose G contains only one cycle Cn . Then removing the edges of Cn leaves
a forest of n components. Since every vertex of G has degree > 1, each of the
components must be singleton graphs (a null graph with only one vertex). So
G = Cn . Therefore, by Corollary 3.24 and the fact that Supp(α) and Supp(β)
are disjoint, n must be even. �

4. A necessary condition for a squarefree monomial ideal
to be of linear type

We are ready to state one of the main results of this paper which is a combinatorial
method to detect irredundant Rees equations of squarefree monomial ideals. We
first show that these Rees equations come from even walks.

Lemma 4.1. Let I = ( f1, . . . , fq) be a squarefree monomial ideal in the poly-
nomial ring R. Suppose s, t, h are integers with s ≥ 2, 1≤ h ≤ q and 1≤ t ≤ s.
Let 0 6= γ ∈ R, α = (i1, . . . , is), β = ( j1, . . . , js) ∈ Is . Then:

(i) lcm( fα, fβ)= γ fh f̂αt ⇐⇒ Tα,β = λT̂αt T(it ),(h)+µTαt (h),β for some mono-
mials λ,µ ∈ R, λ 6= 0.

(ii) lcm( fα, fβ)= γ fh f̂βt ⇐⇒ Tα,β = λT̂βt T(h),( jt )+µTα,βt (h) for some mono-
mials λ,µ ∈ R, λ 6= 0.

Proof. We only prove (i); the proof of (ii) is similar.
First note that if h = it then (i) becomes

lcm( fα, fβ)= γ fα ⇐⇒ Tα,β = Tα,β (setting µ= 1),

and we have nothing to prove, so we assume that h 6= it .
If we have lcm( fα, fβ)= γ fh f̂αt , then the monomial γ fh is divisible by fit ,

so there exists a nonzero exists a monomial λ ∈ R such that

λ lcm( fit , fh)= γ fh . (4-1)
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It follows that

Tα,β =
lcm( fα, fβ)

fα
Tα −

lcm( fα, fβ)
fβ

Tβ =
γ fh

fit

Tα −
lcm( fα, fβ)

fβ
Tβ,

Tα,β = λT̂αt T(it ),(h)+
λ lcm( fit , fh)

fh
Tαt (h)−

lcm( fα, fβ)
fβ

Tβ . (4-2)

On the other hand, since

lcm( fα, fβ)= γ fh f̂αt = γ fαt (h), (4-3)

we see lcm( fαt (h), fβ) divides lcm( fα, fβ). Thus there exists a monomial µ ∈ R
such that

lcm( fα, fβ)= µ lcm( fαt (h), fβ). (4-4)

By (4-1), (4-3) and (4-4) we have

λ lcm( fit , fh)

fh
=
λ lcm( fit , fh) f̂αt

fαt (h)
=
γ fh f̂αt

fαt (h)
=

lcm( fα, fβ)
fαt (h)

=
µ lcm( fαt (h), fβ)

fαt (h)
. (4-5)

Substituting (4-4) and (4-5) in (4-2) we get

Tα,β = λT̂αt T(it ),(h)+µTαt (h),β .

For the converse since h 6= it , by comparing coefficients we have

lcm ( fα, fβ)
fα

= λ

(
lcm( fit , fh)

fit

)
= λ

∏
x∈Fh\Fit

x,

which implies

lcm ( fα, fβ)= λ
( ∏

x∈Fh\Fit

x
)

fα,

and hence lcm ( fα, fβ)= λ0 fh f̂αt , where 0 6= λ0 ∈ R. This concludes our proof.
�

Now we show that there is a direct connection between redundant Rees
equations and the above lemma.

Theorem 4.2. Let 1 = 〈F1, . . . , Fq〉 be a simplicial complex, α, β ∈ Is and
s ≥ 2 an integer. If Cα,β is not an even walk then

Tα,β ∈ J1S+ Js−1S.
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Proof. Let I = ( f1, . . . , fq) be the facet ideal of 1 and let

α = (i1, . . . , is), β = ( j1, . . . , js) ∈ Is .

If Cα,β is not an even walk, then by Definition 3.8 there exist it ∈ Supp(α) and
jl ∈ Supp(β) such that one of the following is true:

(1) F jl\Fit ⊆ {x ∈ V(1) : degα(x) < degβ(x)};

(2) Fit\F jl ⊆ {x ∈ V(1) : degα(x) > degβ(x)}.

Suppose (1) is true. Then there exists a monomial m ∈ R such that

lcm ( fα, fβ)
fα

=

∏
degβ (x)>degα(x)

xdegβ (x)−degα(x) = m
∏

x∈F jl \Fit

x . (4-6)

So we have
lcm ( fα, fβ)= m fα

∏
x∈F jl \Fit

x = m0 f jl f̂αt ,

where m0 ∈ R. On the other hand by Lemma 4.1 there exist monomials 0 6= λ,
µ ∈ R such that

Tα,β = λT̂αt T(it ),( jl )+µTαt ( jl ),β

= λT̂αt T(it ),( jl )+µT jl Tα̂t ,β̂l
∈ J1S+ Js−1S (since jl ∈ Supp(β)).

If case (2) holds, a similar argument settles our claim. �

Corollary 4.3. Let 1= 〈F1, . . . , Fq〉 be a simplicial complex and s ≥ 2 be an
integer. Then

J = J1S+
( ∞⋃

i=2

Pi

)
S,

where Pi = {Tα,β : α, β ∈ Ii and Cα,β is an even walk}.

Theorem 4.4 (main theorem). Let I be a squarefree monomial ideal in R and
suppose the facet complex F(I ) has no even walk. Then I is of linear type.

The following theorem, can also be deduced from combining Theorem 1.14
in [Soleyman Jahan and Zheng 2012] and Theorem 2.4 in [Conca and De Negri
1999]. In our case, it follows directly from Theorem 4.4 and Theorem 3.14.

Corollary 4.5. The facet ideal of a simplicial forest is of linear type.

The converse of Theorem 4.2 is not in general true. For example:

Example 4.6. Let α = (1, 3), β = (2, 4). In Figure 5 we see that Cα,β =
F1, F2, F3, F4 is an even walk, but

Tα,β = x4x8T1T3− x1x6T2T4

= x8T3(x4T1− x2T5)+ T5(x2x8T3− x5x6T4)+ x6T4(x5T5− x1T2) ∈ J1S.
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Figure 5. A counterexample to the converse of Theorem 4.2.

By Theorem 4.2, all irredundant generators of J of deg > 1 correspond to
even walks. However irredundant generators of J do not correspond to minimal
even walks in 1 (even walks that do not properly contain other even walks). For
instance C(1,3,5),(2,4,6) as displayed in Figure 1 (left) is an even walk which is not
minimal (since C(3,5),(2,4) and C(1,5),(2,6) are even walks which contain properly
in C(1,3,5),(2,4,6)). But T(1,3,5),(2,4,6) ∈ J is an irredundant generator of J .

We can now state a simple necessary condition for a simplicial complex to be
of linear type in terms of its line graph.

Definition 4.7. Let 1= 〈F1, . . . , Fn〉 be a simplicial complex. The line graph
L(1) of 1 is a graph whose vertices are labeled with the facets of 1, and two
vertices labeled Fi and F j are adjacent if and only if Fi ∩ F j 6=∅.

Theorem 4.8 (a simple test for linear type). Let 1 be a simplicial complex and
suppose L(1) contains no even cycle. Then F(1) is of linear type.

Proof. We show that1 contains no even walk Cα,β . Otherwise by Proposition 3.12
Cα,β contains an even extended trail B, and L(B) is then an even cycle contained
in L(1) which is a contradiction. Theorem 4.4 settles our claim. �

Theorem 4.8 generalizes results of Lin and Fouli [2015], where they showed
if L(1) is a tree or is an odd cycle then I is of linear type.

The converse of Theorem 4.8 is not true:

Example 4.9. In the simplicial complex 1 of Figure 6, L(1) contains an even
cycle but its facet ideal F(1) is of linear type.

By applying Theorem 4.4 and Proposition 3.25 we recover the following:

Corollary 4.10 [Villarreal 1995]. Let G be a graph which is either tree or
contains a unique cycle and that cycle is odd. Then the edge ideal F(G) is of
linear type.
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Figure 6. A counterexample to the converse of Theorem 4.8.
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