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Reduction numbers and balanced ideals
LOUIZA FOULI

Let R be a Noetherian local ring and let I be an ideal in R. The ideal I is
called balanced if the colon ideal J : I is independent of the choice of the
minimal reduction J of I . Under suitable assumptions, Ulrich showed that
I is balanced if and only if the reduction number, r(I ), of I is at most the
“expected” one, namely `(I )− ht I + 1, where `(I ) is the analytic spread of
I . In this article we propose a generalization of balanced. We prove under
suitable assumptions that if either R is one-dimensional or the associated
graded ring of I is Cohen–Macaulay, then J n+1

: I n is independent of the
choice of the minimal reduction J of I if and only if r(I )≤ `(I )− ht I + n.

1. Introduction

Let R be a Noetherian ring and let I be an ideal in R. The Rees algebra R(I )
and the associated graded ring grI (R) of I are

R(I )= R[I t] =
⊕
i≥0

I i t i and grI (R)= R[I t]/I R[I t] =
⊕
i≥0

I i/I i+1.

The projective spectrums of R(I ) and grI (R) are the blowup of Spec(R) along
V (I ) and the normal cone of I , respectively. When studying various algebraic
properties of these blowups a natural question to consider is which properties
of the ring R are transferred to these graded algebras. When R is a local
Cohen–Macaulay ring and I an ideal of positive height then if R(I ) is Cohen–
Macaulay then so is grI (R) [Huneke 1982]. The converse does not hold true
in general. A celebrated theorem of Goto and Shimoda illustrates the intricate
relationship between the Cohen–Macaulay property of these blowup algebras and
the reduction number of I . It states that when (R,m) is a local Cohen–Macaulay
ring, with infinite residue field, dimension d > 0, and I an m-primary ideal,
then R(I ) is Cohen–Macaulay if and only if grI (R) is Cohen–Macaulay and
the reduction number of I is at most d − 1 [Goto and Shimoda 1982]. This
theorem has inspired the work of many researchers and many generalizations of
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it appeared in the literature in the late 1980s and early 1990s; see, for example,
[Grothe et al. 1984; Huckaba and Huneke 1992; 1993; Goto and Huckaba 1994;
Johnston and Katz 1995; Aberbach et al. 1995; Simis et al. 1995].

Recall that an ideal J is a reduction of I if J ⊂ I and R(I ) is integral over
R(J ) or equivalently if J ⊂ I and I n+1

= JI n for some nonnegative integer
n, see also Section 2. The smallest nonnegative integer such that the equality
I n+1
= JI n holds is called the reduction number of I with respect to J and is

denoted by rJ (I ). When the ring is local then we consider minimal reductions,
where minimality is taken with respect to inclusion. In this case the reduction
number of I , denoted by r(I ), is the minimum among all rJ (I ), where J ranges
over all minimal reductions of I .

We say that I is balanced if the colon ideal J : I is independent of the minimal
reduction J of I [Ulrich 1996, Theorem 4.8]. More precisely the definition of
balanced is given below.

Definition 1.1 [Ulrich 1996, Definition 3.1]. Let R be a Noetherian local ring,
let I be an ideal, and let s be a positive integer. For a generating sequence
f1, . . . , fn of I , let X be an n× n matrix of indeterminates, and write

[a1, . . . , an] = [ f1, . . . , fn] · X and S = R(X).

We say that I is s-balanced if there exist n ≥ s and f1, . . . , fn as above such
that (ai1, . . . , ais )S : I S yields the same S-ideal for every subset

{i1, . . . , is} ⊂ {1, . . . , n}.

An ideal I satisfies the condition Gs for some integer s if µ(Ip) ≤ dim Rp

for every p ∈ V (I ) with dim Rp ≤ s − 1. The condition Gs is local and rather
mild. For example when R is a Noetherian local ring with maximal ideal m
and dimension d , then any m-primary ideal satisfies Gd . We say that an ideal I
satisfies G∞ if I satisfies Gs for every s.

Let R be a local Gorenstein ring with infinite residue field and let I be an
ideal with g = ht I > 0. Suppose that I satisfies G` and that

depth R/I j
≥ dim R/I − j + 1,

for all 1≤ j ≤ `− g+ 1, where `= `(I ) is the analytic spread of I . In general,
there are many classes of ideals that satisfy both the depth condition and G`,
for example ideals in the linkage class of a complete intersection satisfy these
conditions; see [Corso et al. 2002] for more information.

A result of Johnson and Ulrich states that under the above conditions if
r(I )≤ `− g+ 1 then grI (R) is Cohen–Macaulay. If in addition the height of I
is at least 2 this also forces R(I ) to be Cohen–Macaulay [Johnson and Ulrich



REDUCTION NUMBERS AND BALANCED IDEALS 171

1996]. Moreover, the Castelnuovo–Mumford regularity of R(I ) and grI (R) can
be calculated if r(I ) ≤ `− g + 1. The number `(I )− ht I + 1 is known as
the expected reduction number of I . This number was introduced by Ulrich
in [Ulrich 1996], where he shows that under these assumptions an ideal I has
reduction number at most the expected one if and only if the ideal is balanced
[Ulrich 1996, Theorem 4.8].

We usually say that I is balanced if I is `(I )-balanced, where `(I ) is the
analytic spread of I . It turns out that ideals that have the expected reduction
number have many good properties. It is then natural to ask what can be a
reasonable bound for the reduction number if the ideal is not balanced. The
purpose of this article is to suggest a generalization of the notion of balanced
and to establish bounds on the reduction number of an ideal in that case. We
propose the condition

J n+1
: I n is independent of the minimal reduction J

as a possible generalization of balanced.
We show that when the dimension of the ring R is one then J n+1

: I n is
independent of J if and only if n ≥ r(I ), Theorem 3.2. In the case of higher
dimensions, we are able to show that the independence of the colon ideal J n+1

: I n

from the choice of the minimal reduction J of I is equivalent to

r(I )≤ `(I )− ht I + n,

where `(I ) is the analytic spread of I , provided that grI (R) is Cohen–Macaulay,
Theorem 3.7.

Next we discuss an application of the characterization of balanced ideals as
in [Ulrich 1996, Theorem 4.8]. Corso, Polini, and Ulrich [Corso et al. 2002]
make use of the notion of balanced in order to establish a formula for the core of
I . We recall here that core(I ) is the intersection of all the reductions of I , see
Section 2 for more details. Their theorem states that under the same assumptions
as before one has that core(I )= J (J : I )= J 2

: I for all minimal reductions J
of I if and only if r(I )≤ `− g+ 1 [Corso et al. 2002, Theorem 2.6]. Therefore
in this case the ideal I is balanced if and only if core(I )= J 2

: I for all minimal
reductions J of I . Most notably, we see how the balanced condition, J : I being
independent of J , is intertwined with the formula for the core.

Theorem 1.2 [Polini and Ulrich 2005, Theorem 4.5]. Let R be a local Gorenstein
ring with infinite residue field k. Let I be an ideal with g = ht I > 0 and suppose
that I satisfies G` and that depth R/I j

≥ dim R/I − j + 1 for all 1≤ j ≤ `− g,
where ` = `(I ) is the analytic spread of I . Let J be a minimal reduction of I .
If either chark = 0, or char k > rJ (I )− `+ g, then core(I ) = J n+1

: I n for all
n ≥max{rJ (I )− `+ g, 0}.
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As one can see in Theorem 1.2 the characteristic of the residue field plays an
important role when computing the core of an ideal. When appropriate we will
be assuming that the characteristic of the residue field is 0. In particular, under
the set up of Theorem 1.2 the ideal J n+1

: I n is independent of the minimal
reduction J of I , since the formula for the core is independent of the choice
of minimal reduction J of I . Therefore, if n ≥ max{rJ (I )− `+ g, 0}, then
J n+1
: I n is independent of the minimal reduction J of I . Then it is natural to

ask under which assumptions the converse holds true. This question is answered
in part in Theorems 3.2, 3.7. Finally, our results state that when n = 1 then I
is balanced if and only if r(I )≤ `(I )− g+ 1 and therefore we recover [Ulrich
1996, Theorem 4.8].

2. Background

Let R be a Noetherian ring and I an ideal in R. Recall that an deal J is a
reduction of I if J ⊂ I and R(I ) is integral over R(J ) or equivalently if J ⊂ I
and I n+1

= JI n for some nonnegative integer n. When the ring is local then we
consider minimal reductions, where minimality is taken with respect to inclusion.
Northcott and Rees proved that if R is a Noetherian local ring with maximal
ideal m and infinite residue field then minimal reductions exist and either there
are infinitely many or the ideal is basic, that is, it is the only reduction of itself
[Northcott and Rees 1954]. They show that minimal reductions correspond to
Noether normalizations of the special fiber ring , F(I )=R(I )⊗ R/m, of I .

The concept of a reduction of an ideal was first introduced by Northcott and
Rees [1954] in order to facilitate the study of ideals and their powers. Reductions
are in general smaller ideals with the same asymptotic behavior as the ideal
I itself. For example, all minimal reductions of I have the same height and
the same radical as I . Moreover, every minimal reduction J of I has the same
minimal number of generators `(I ), where `(I ) is the analytic spread of I and
is defined to be the Krull dimension of the special fiber ring F(I ) of I .

Let J be a minimal reduction of an ideal I in a Noetherian local ring. The
reduction number of I with respect to J , denoted by rJ (I ), is the smallest n for
which the equality I n+1

= JI n holds. In some sense the reduction number rJ (I )
measures how closely related J and I are. The reduction number r(I ) of I is
the minimum of the reduction numbers rJ (I ), where J ranges over all minimal
reductions of I .

In general, since an ideal has infinitely many reductions it is natural to consider
the core of the ideal, namely the intersection of all the (minimal) reductions of
the ideal [Rees and Sally 1988]. Several authors have determined formulas that
describe the core in various settings; see, for example, [Huneke and Swanson
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1995; Corso et al. 2001; 2002; Hyry and Smith 2003; 2004; Huneke and Trung
2005; Polini and Ulrich 2005; 2007; Fouli et al. 2008; 2010; Fouli and Morey
2012; Smith 2011].

The core has many connections to geometry. For instance, Hyry and Smith
have discovered a connection with a conjecture of Kawamata on the nonvanishing
of global sections of line bundles [Hyry and Smith 2004]. They prove that the
validity of the conjecture is equivalent to a statement about core.

In a recent paper with Polini and Ulrich we have uncovered yet another such
connection with geometry. A scheme X = {P1, . . . , Ps} of s reduced points in
Pn

k is said to have the Cayley–Bacharach property if each subscheme of the form
X\{Pi } ⊂ Pn

k has the same Hilbert function. It turns out that the structure of the
core completely characterizes this property, namely X has the Cayley–Bacharach
property if and only if core(m)=ma+2, where m is the homogeneous maximal
ideal of the homogeneous coordinate ring R of X and a is the a-invariant of R
[Fouli et al. 2010].

We now discuss the notion of ideals of linear type. Let R be a Noetherian
ring and I an ideal generated by f1, . . . , fn . Then there is an epimorphism
φ : S = R[T1, . . . , Tn] →R(I ) given by φ(Ti )= fi t . Let J = kerφ and notice
that J is a graded ideal. Let J =⊕∞i=1 Ji . Then R(I )' S/J and the ideal J is
often referred to as the defining ideal of R(I ). When J = J1 then I is called an
ideal of linear type. It turns out that when I is an ideal of linear type then I is
basic. The converse is not true in general.

The following is a well known result and we include it here for ease of
reference.

Lemma 2.1. Let R be a local Gorenstein ring and I an ideal with g = ht I > 0,
`= `(I ), and let J be a minimal reduction of I . Assume that I satisfies G` and
depth R/I j

≥ dim R/I − j + 1 for 1≤ j ≤ `− g. Then for every integer n ≥ 0
and every integer i ≥ 0,

J n+i
: J n
= J i .

Proof. First we note that ht J =ht I >0. Then I satisfies AN`−1, by Theorem 2.9
of [Ulrich 1994]. Here AN stands for the Artin–Nagata property as in that
reference. Using s = `− 1 in Ulrich’s Theorem 1.11 we obtain ht J : I ≥ ` and
hence J satisfies G∞. Therefore, J satisfies AN`−1, by Remark 1.12 of [Ulrich
1994]. Using Theorem 1.8 of the same article we also obtain that J satisfies
sliding depth. Therefore grJ (R) is Cohen–Macaulay by [Herzog et al. 1983,
Theorem 9.1]. Then the cancellation is clear, because grade(grJ (R)+) > 0, since
grJ (R) is Cohen–Macaulay and ht J > 0. �

We conclude this section with the following remark.



174 LOUIZA FOULI

Remark 2.2. Let R be a local Gorenstein ring and I an ideal with g = ht I > 0,
` = `(I ), and let J be a minimal reduction of I . Assume that I satisfies G`

and depth R/I j
≥ dim R/I − j + 1 for 1≤ j ≤ `− g. Then {J i+1

: I i
}i∈N is a

decreasing sequence of ideals. To see this observe that for all i ≥ 0

J i+1
: I i
= (J i+2

: J ) : I i
= J i+2

: JI i
⊃ J i+2

: I i+1,

where the first equality holds according to Lemma 2.1.

3. Main results

We begin our investigation by considering the one-dimensional case. The first
Lemma is analogous to [Ulrich 1996, Lemma 4.7].

Lemma 3.1. Let R be an one-dimensional local Cohen–Macaulay ring with
canonical module ωR and let I be an ideal with ht I > 0. Assume that I i I−n

=

ai I−n for some a ∈ I and for some positive integers i and n, and that I r−1 ∼= ωR

for some positive integer r . Then I r+n
= aI r+n−1.

Proof. First note that a is a non-zerodivisor in R. Furthermore, we may assume
I r−1
= ωR . Since I i I−n

⊇ ai−1 I I−n
⊇ ai I−n and I i I−n

= ai I−n we have that
ai−1 I I−n

= ai I−n . Hence I I−n
= aI−n since a is a non-zerodivisor. Then for

all j > 0 it follows that I j I−n
= aI j−1 I−n

= · · · = a j I−n . For j = r + n we
obtain a−r I r+n I−n

= an I−n which yields the following inclusions of fractional
ideals:

a−r I r+n
⊂ an I−n

: I−n
⊂ R : I−n

= (ωR : ωR) : I−n

= ωR : (ωR I−n)
(∗)
⊂ ωR : (ar−1 I−n)

= a−r+1ωR : (R : I n)= a−r+1ωR : ((ωR : ωR) : I n)

= a−r+1ωR : (ωR : ωR I n)
(∗∗)
= a−r+1ωR I n

= a−r+1 I r+n−1,

where (*) holds since ar−1
∈ ωR and (**) holds since dim R = 1. Multiplication

by ar implies that I r+n
⊂ aI r+n−1 and thus I r+n

= aI r+n−1. �

Using Lemma 3.1 we are able to extend [Corso et al. 2002, Theorem 2.6] in
the case of a one-dimensional ring.

Theorem 3.2. Let R be a one-dimensional local Gorenstein ring with residue
field of characteristic 0. Let I be an ideal with ht I >0 and J a minimal reduction
of I . Then the following are equivalent for a positive integer n:

(a) J n+1
: I n is independent of J ;

(b) core(I )= J n+1
: I n for some J ;

(c) n ≥ r(I ).
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Proof. Notice that ht I = 1 = `(I ) since dim R = 1. By [Huckaba 1987,
Theorem 2.1] we have that rJ (I ) is independent of the minimal reduction J of
I . Hence rJ (I )= r(I ). Let r = rJ (I )= r(I ).

Suppose that n ≥ r . Then by [Polini and Ulrich 2005, Theorem 4.5, Re-
mark 4.8] we have that core(I ) = J n+1

: I n and J n+1
: I n is independent of

the minimal reduction J of I . This establishes the implications (c)⇒ (a) and
(c)⇒ (b).

To prove (b) ⇒ (c) suppose that core(I ) = J n+1
: I n . By [Polini and Ul-

rich 2005, Theorem 4.5] we know that core(I ) = J m+1
: I m for m ≥ r . Let

m ≥max{r, n}. Then

core(I )= J m+1
: I m
⊂ J m+1

: J m−n I n

= (J m+1
: J m−n) : I n (1)

= J n+1
: I n
= core(I ),

where (1) holds since J is generated by a single regular element. Therefore
J m+1

: I m
= J m+1

: J m−n I n . Since R is Gorenstein then by linkage we have
I m
= J m−n I n . Hence n ≥ r .

Finally, in order to prove that (a)⇒ (c) notice that there exists m� 0 such
that for general linear combinations f1, . . . , fm of the generators of I , we have
that ( fi ) forms a reduction of I for 1 ≤ i ≤ m and I n+1

= ( f n+1
1 , . . . , f n+1

m )

since chark = 0. For example one may take m = e(R), the multiplicity of the
ring R. Let J = (a). Then for all 1≤ i ≤ m,

an+1 I−n
= an+1

: I n
= f n+1

i : I n
= f n+1

i I−n.

Hence an+1 I−n
= I n+1 I−n . Then by Lemma 3.1 we obtain I n+1

= aI n and thus
n ≥ r . �

Next we give a description for the canonical module of the extended Rees
ring.

Remark 3.3. Let R be a local Gorenstein ring and I an ideal with g = ht I > 0,
`= `(I ), and J a minimal reduction of I . Write B = R[I t, t−1

]. Assume that I
satisfies G` and depth R/I j

≥ dim R/I− j+1 for 1≤ j ≤ `−g. We fix a graded
canonical module for the ring B such that ωB ⊂ R[t, t−1

] and [ωB]i = Rt i for
all i � 0. Notice that this uniquely determines ωB as a submodule of R[t, t−1

].
According to [Polini and Ulrich 2005, Remark 2.2] we have the following
description of ωB . For all n ≥max{rJ (I )− `+ g, 0}

ωB =
⊕
i∈Z

(J i
:R I n)t i−n+g−1

= · · ·⊕ Rtg−n−1
⊕ (J : I n)tg−n

⊕ · · · .

Let R be a Noetherian local ring that is an epimorphic image of a local
Gorenstein ring. Let B be a Z-graded Noetherian R-algebra with B0 = R and
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unique homogeneous maximal ideal m. We also assume that B/m is a field.
Let ωB be the graded canonical module of B. Recall that the a-invariant of
B is a(B) = −indeg(ωB ⊗B B/m). Notice that if B is positively graded then
a(B)=−indegωB .

In the setting of Theorem 3.2 the reduction numbers were independent of
the choice of minimal reduction as seen in the proof of Theorem 3.2. In the
next proposition we provide conditions that guarantee the independence of the
reduction numbers. This result was already known in the case I is equimultiple
and depth grI (R)+ ≥ dim R − 1 by [Huckaba 1987, Theorem 2.1]. In the
case that I is an m-primary ideal this result was also obtained by Trung [1987,
Theorem 1.2]. Our setup is more general.

Proposition 3.4. Let R be a local Gorenstein ring with infinite residue field. Let
I be an ideal with g = ht I > 0 and ` = `(I ). Assume that I satisfies G` and
depth R/I j

≥ dim R/I − j+1 for 1≤ j ≤ `−g. We further assume that grI (R)
is Cohen–Macaulay. Then r(I )= rJ (I ) for every minimal reduction J of I .

Proof. According to [Johnson and Ulrich 1996, Corollary 5.5] either r(I )= 0
or r(I ) > `− g. If r(I )= 0 then there is nothing to show. So we assume that
r(I ) > `− g. Let J be a minimal reduction of I . Then rJ (I ) > `− g.

Let p ∈ Spec(R) such that p ⊃ I and `(Ip) = ht p < `. Then Ip is of linear
type and thus r(Ip) = 0, according to [Ulrich 1994, Proposition 1.11]. Thus
r(Ip)− ht p≤−g < rJ (I )− ` and hence a(grI (R))= rJ (I )− ` by [Aberbach
et al. 1995, Corollary 4.5]. But the a-invariant of grI (R) is independent of the
choice of the minimal reduction J and thus rJ (I ) is independent of J . Hence
rJ (I )= r(I ). �

The next result is essentially obtained in [Ulrich 1996, Corollary 2.4] but we
are able to weaken the assumptions on the depth condition.

Proposition 3.5. Let R be a local Gorenstein ring with residue field of charac-
teristic 0. Let I be an ideal with g = ht I > 0, `= `(I ), and let J be a minimal
reduction of I . Suppose that I satisfies G` and depth R/I j

≥ dim R/I − j + 1
for 1≤ j ≤ `− g. We further assume that grI (R) is Cohen–Macaulay. Then

(a) J : I n
6= R for all n ≤max{r(I )− `+ g, 0},

(b) max{r(I )− `+ g, 0} =min{i | I i+1
⊂ core(I )}.

Proof. Write G = grI (R) and B = R[I t, t−1
]. As G is Cohen–Macaulay then

so is B, since G = grI (R)∼= B/(t−1). According to Proposition 3.4 one has that
rJ (I ) = r(I ). Furthermore a(G) = max{r(I )− `,−g} by [Simis et al. 1995,
Theorem 3.5]. On the other hand, a(G)= a(B)−1 since G is Cohen–Macaulay
and G∼= B/(t−1). Therefore a(B)=m−g+1, where m=max{r(I )−`(I )+g, 0}.
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Hence
[ωB]g−m−1 = R and J : I m

= [ωB]g−m 6= R,

by Remark 3.3, since rJ (I ) = r(I ). Hence J : I n
⊂ J : I m

6= R for all n ≤ m.
This proves (a).

For part (b) we claim that m =min{i | I i+1
⊂ core(I )}. To see this observe

that J ⊂ J : I m and J : I m is independent of J by [Polini and Ulrich 2005,
Remark 2.3], since rJ (I ) = r(I ). Thus I ⊂ J : I m and hence I m+1

⊂ J .
Consequently I m+1

⊂ core(I ). But since J : I m
6= R we have that I m

6⊂ J and
therefore I m

6⊂ core(I ). �

In order to extend Theorem 3.2 we prove the first two statements are equivalent
in higher dimensions without any additional assumptions.

Proposition 3.6. Let R be a local Gorenstein ring with residue field of charac-
teristic 0. Let I be an ideal with g = ht I > 0, `= `(I ), and let J be a minimal
reduction of I . Suppose that I satisfies G` and depth R/I j

≥ dim R/I − j + 1
for 1≤ j ≤ `− g. Then the following are equivalent for an integer n:

(a) J n+1
: I n is independent of J ;

(b) core(I )= J n+1
: I n for every J .

Proof. By [Polini and Ulrich 2005, Theorem 4.5] we have that

core(I )= J m+1
: I m

for m� 0 and any minimal reduction J of I .
Suppose that J n+1

: I n is independent of J . Notice that

J n+1
: I n
⊂ J n+1

: J n
= J,

where the equality holds by Lemma 2.1. Since J n+1
: I n is independent of J it

follows that J n+1
: I n
⊂ core(I ) = J m+1

: I m for m � 0. By Remark 2.2 we
have that {J i+1

: I i
}i∈N is a decreasing sequence of ideals and hence it follows

that core(I )= J n+1
: I n for every minimal reduction J of I .

The other implication is clear since the formula for core(I ) is independent of
the choice of the minimal reduction J of I . �

We are now ready to prove the main result of this article. If we assume that the
associated graded ring of I is Cohen–Macaulay then we obtain a generalization
to Theorem 3.2 in higher dimensions.

Theorem 3.7. Let R be a local Gorenstein ring with residue field of character-
istic 0. Let I be an ideal with g = ht I > 0, ` = `(I ), and let J be a minimal
reduction of I . Suppose that I satisfies G` and depth R/I j

≥ dim R/I − j + 1
for 1≤ j ≤ `− g. We further assume that grI (R) is Cohen–Macaulay. Then the
following are equivalent for an integer n:
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(a) J n+1
: I n is independent of J ;

(b) core(I )= J n+1
: I n for every J ;

(c) n ≥max{r(I )− `+ g, 0}.

Proof. The first two statements are equivalent as seen in Proposition 3.6. Write
G = grI (R) and B = R[I t, t−1

]. Since G is Cohen–Macaulay then so is B since
G = grI (R)' B/(t−1). Notice that rJ (I )= r(I ) by Proposition 3.4.

Let m = max{r(I ) − ` + g, 0} and suppose that n ≥ m. Then core(I ) =
J n+1
: I n for any minimal reduction J of I according to [Polini and Ulrich 2005,

Theorem 4.5], since rJ (I )= r(I ).
Finally, suppose that core(I ) = J n+1

: I n . Then J n+1
⊂ core(I ) for every

minimal reduction J of I . Since char k = 0 we obtain that I n+1
⊂ core(I ).

Therefore n ≥ m by Proposition 3.5. �

The following example is due to Angela Kohlhass. It establishes that without
the Cohen–Macaulay assumption on the associated graded ring the result of
Theorem 3.7 does not hold in general.

Example 3.8 (A. Kohlhass). Let R= k[[x, y]] be a power series ring over a field
k of characteristic 0. Let I = (x10, x4 y5, y9) and J a general minimal reduction
of I . Then I is m-primary, where m is the maximal ideal of R, r(I ) = 4, and
depth grI (R)= 0. It turns out that J 4

: I 3
= core(I )= J 5

: I 4.

Remark 3.9. We remark that in Example 3.8 the associated graded ring of
the ideal I has depth 0 and the ideal J 4

: I 3 is independent of the choice of
the minimal reduction J of I , whereas r(I ) = 4. This shows that in general
Theorem 3.7 does not hold without any assumptions on grI (R). It is conceivable
that when depth grI (R)≥ dim R− 1 then a similar statement might hold.
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