
Commutative Algebra and Noncommutative Algebraic Geometry, II
MSRI Publications
Volume 68, 2015

Unipotent and Nakayama automorphisms of
quantum nilpotent algebras

KENNETH R. GOODEARL AND MILEN T. YAKIMOV

Automorphisms of algebras R from a very large axiomatic class of quantum
nilpotent algebras are studied using techniques from noncommutative unique
factorization domains and quantum cluster algebras. First, the Nakayama
automorphism of R (associated to its structure as a twisted Calabi–Yau algebra)
is determined and shown to be given by conjugation by a normal element,
namely, the product of the homogeneous prime elements of R (there are finitely
many up to associates). Second, in the case when R is connected graded, the
unipotent automorphisms of R are classified up to minor exceptions. This
theorem is a far reaching extension of the classification results previously
used to settle the Andruskiewitsch–Dumas and Launois–Lenagan conjectures.
The result on unipotent automorphisms has a wide range of applications to
the determination of the full automorphisms groups of the connected graded
algebras in the family. This is illustrated by a uniform treatment of the
automorphism groups of the generic algebras of quantum matrices of both
rectangular and square shape.

1. Introduction

This paper is devoted to a study of automorphisms of quantum nilpotent algebras,
a large, axiomatically defined class of algebras. The algebras in this class are
known under the name Cauchon–Goodearl–Letzter extensions and consist of
iterated skew polynomial rings satisfying certain common properties for algebras
appearing in the area of quantum groups. The class contains the quantized coor-
dinate rings of the Schubert cells for all simple algebraic groups, multiparameter
quantized coordinate rings of many algebraic varieties, quantized Weyl algebras,
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and related algebras. The quantized coordinate rings of all double Bruhat cells
are localizations of special algebras in the class.

Extending the results of [Alev and Chamarie 1992; Launois and Lenagan 2007;
Yakimov 2013; 2014b], we prove that all of these algebras are relatively rigid in
terms of symmetry, in the sense that they have far fewer automorphisms than
their classical counterparts. This allows strong control, even exact descriptions
in many cases, of their automorphism groups. We pursue this theme in two
directions. First, results of Liu, Wang, and Wu [Liu et al. 2014] imply that
any quantum nilpotent algebra R is a twisted Calabi–Yau algebra. In particular,
R thus has a special associated automorphism, its Nakayama automorphism,
which controls twists appearing in the cohomology of R. At the same time, all
algebras R in the class that we consider are equivariant noncommutative unique
factorization domains [Launois et al. 2006] in the sense of [Chatters 1984]. We
develop a formula for the Nakayama automorphism ν of R, and show that ν is
given by commutation with a special normal element. Specifically, if u1, . . . , un

is a complete list of the homogeneous prime elements of R up to scalar multiples,
then a(u1 · · · un) = (u1 · · · un)ν(a) for all a ∈ R. (Here homogeneity is with
respect to the grading of R arising from an associated torus action.) It was
an open problem to understand what is the role of the special element of the
equivariant UFD R that equals the product of all (finitely many up to associates)
homogeneous prime elements of R. The first main result in the paper answers
this: conjugation by this special element is the Nakayama automorphism of R.

In a second direction, we obtain very general rigidity results for the connected
graded algebras R in the abovementioned axiomatic class. This is done by com-
bining the quantum cluster algebra structures that we constructed in [Goodearl
and Yakimov 2012; 2013] with the rigidity of quantum tori theorem of [Yakimov
2014b]. The quantum clusters of R constructed in [Goodearl and Yakimov 2012;
2013] provide a huge supply of embeddings A⊆ R ⊂ T where A is a quantum
affine space algebra and T is the corresponding quantum torus. This allows for
strong control of the unipotent automorphisms of R relative to a nonnegative
grading on R, those being automorphisms ψ such that for any homogeneous
element x ∈ R of degree d, the difference ψ(x)− x is supported in degrees
greater than d. Such a ψ induces [Yakimov 2013] a continuous automorphism
of the completion of any quantum torus T as above, to which a general rigidity
theorem proved in [Yakimov 2014b] applies. We combine this rigidity with the
large supply of quantum clusters in [Goodearl and Yakimov 2012; 2013] and a
general theorem for separation of variables from the first of these two papers.

With this combination of methods and the noncommutative UFD property
of R, we show here that the unipotent automorphisms of a quantum nilpotent
algebra R have a very restricted form, which is a very general improvement of
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the earlier results in that direction [Yakimov 2013; 2014b] that were used in
proving the Andruskiewitsch–Dumas and Launois–Lenagan conjectures. Our
theorem essentially classifies the unipotent automorphisms of all connected
graded algebras in the class, up to the presence of certain types of torsion in
the scalars involved in the algebras. In a variety of cases the full automorphism
group Aut(R) can be completely determined as an application of this result.
We illustrate this by presenting, among other examples, a new route to the
determination of the automorphism groups of generic quantum matrix algebras
[Launois and Lenagan 2007; Yakimov 2013] of both rectangular and square
shape, in particular giving a second proof of the conjecture in [Launois and
Lenagan 2007].

In a recent paper, Ceken, Palmieri, Wang and Zhang [Ceken et al. 2015]
classified the automorphism groups of certain PI algebras using discriminants.
Their methods apply to quantum affine spaces at roots of unity but not to general
quantum matrix algebras at roots of unity. It is an interesting problem whether the
methods of quantum cluster algebras and rigidity of quantum tori can be applied
in conjunction with the methods of [Ceken et al. 2015] to treat the automorphism
groups of the specializations of all algebras in this paper to roots of unity.

We finish the introduction by describing the class of quantum nilpotent algebras
that we address. These algebras are iterated skew polynomial extensions

R := K[x1][x2; σ2, δ2] · · · [xN ; σN , δN ] (1.1)

over a base field K, equipped with rational actions by tori H of automorphisms
which cover the σk in a suitably generic fashion, and such that the skew derivations
δk are locally nilpotent. They have been baptized CGL extensions in [Launois
et al. 2006]; see Definition 2.3 for the precise details. We consider the class of
CGL extensions to be the best current definition of quantum nilpotent algebras
from a ring theoretic perspective. All important CGL extensions that we are aware
of are symmetric in the sense that they possess CGL extension presentations with
the generators in both forward and reverse orders, that is, both (1.1) and

R = K[xN ][xN−1; σ
∗

N−1, δ
∗

N−1] · · · [x1; σ
∗

1 , δ
∗

1 ].

The results outlined above apply to the class of symmetric CGL extensions
satisfying a mild additional assumption on the scalars that appear.

Throughout, fix a base field K. All automorphisms are assumed to be K-
algebra automorphisms, and all skew derivations are assumed to be K-linear. We
also assume that in all Ore extensions (skew polynomial rings) B[x; σ, δ], the
map σ is an automorphism. Recall that B[x; σ, δ] denotes a ring generated by
a unital subring B and an element x satisfying xs = σ(s)x + δ(s) for all s ∈ S,
where σ is an automorphism of B and δ is a (left) σ -derivation of B.
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We will denote [ j, k] := {n ∈ Z | j ≤ n ≤ k} for j, k ∈ Z. In particular,
[ j, k] =∅ if j � k.

2. Symmetric CGL extensions

In this section, we give some background on H-UFDs and CGL extensions,
including some known results, and then establish a few additional results that
will be needed in later sections.

2A. H-UFDs. Recall that a prime element of a domain R is any nonzero normal
element p ∈ R (normality meaning that Rp = pR) such that Rp is a completely
prime ideal, that is, R/Rp is a domain. Assume that in addition R is a K-algebra
and H a group acting on R by K-algebra automorphisms. An H-prime ideal of
R is any proper H-stable ideal P of R such that (I J ⊆ P =⇒ I ⊆ P or J ⊆ P)
for all H-stable ideals I and J of R. In general, H-prime ideals need not be
prime, but they are prime in the case of CGL extensions [Brown and Goodearl
2002, II.2.9].

One says that R is an H-UFD if each nonzero H-prime ideal of R contains a
prime H-eigenvector. This is an equivariant version of Chatters’ notion [Chatters
1984] of noncommutative unique factorization domain given in [Launois et al.
2006, Definition 2.7].

The following fact is an equivariant version of results of Chatters and Jordan
[Chatters 1984, Proposition 2.1; Chatters and Jordan 1986, p. 24]; see [Goodearl
and Yakimov 2012, Proposition 2.2] and [Yakimov 2014a, Proposition 6.18 (ii)].

Proposition 2.1. Let R be a noetherian H-UFD. Every normal H-eigenvector in
R is either a unit or a product of prime H-eigenvectors. The factors are unique
up to reordering and taking associates.

We shall also need the following equivariant version of [Chatters and Jordan
1986, Lemma 2.1]. A nonzero ring R equipped with an action of a group H is
said to be H-simple provided the only H-stable ideals of R are 0 and R.

Lemma 2.2. Let R be a noetherian H-UFD and E(R) the multiplicative subset
of R generated by the prime H-eigenvectors of R. All nonzero H-stable ideals of
R meet E(R), and so the localization R[E(R)−1

] is H-simple.

Proof. The second conclusion is immediate from the first. To see the first, let
I be a nonzero H-stable ideal of R. Since R is noetherian, P1 P2 · · · Pm ⊂ I
for some prime ideals Pj minimal over I . For each j , the intersection of the
H-orbit of Pj is an H-prime ideal Q j of R such that I ⊆ Q j ⊆ Pj . Each Q j

contains a prime H-eigenvector q j , and the product q1q2 · · · qm lies in I . Thus,
I ∩ E(R) 6=∅, as desired. (Alternatively, suppose that I ∩ E(R)=∅, enlarge
I to an H-stable ideal P maximal with respect to being disjoint from E(R),
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check that P is H-prime, and obtain a prime H-eigenvector in P , yielding a
contradiction.) �

2B. CGL extensions. Throughout the paper, we focus on iterated Ore extensions
of the form

R := K[x1][x2; σ2, δ2] · · · [xN ; σN , δN ]. (2.1)

We refer to such an algebra as an iterated Ore extension over K, to emphasize
that the initial step equals the base field K, and we call the integer N the length
of the extension. For k ∈ [0, N ], we let Rk denote the subalgebra of R generated
by x1, . . . , xk . In particular, R0 = K and RN = R. Each Rk is an iterated Ore
extension over K, of length k.

Definition 2.3. An iterated Ore extension (2.1) is called a CGL extension [Lau-
nois et al. 2006, Definition 3.1] if it is equipped with a rational action of a K-torus
H by K-algebra automorphisms satisfying the following conditions:

(i) The elements x1, . . . , xN are H-eigenvectors.

(ii) For every k ∈ [2, N ], δk is a locally nilpotent σk-derivation of the algebra
Rk−1.

(iii) For every k ∈ [1, N ], there exists hk ∈H such that σk = (hk ·)|Rk−1 and the
hk-eigenvalue of xk , to be denoted by λk , is not a root of unity.

Conditions (i) and (iii) imply that

σk(x j )= λk j x j for some λk j ∈ K∗ for all 1≤ j < k ≤ N . (2.2)

We then set λkk := 1 and λ jk :=λ
−1
k j for j < k. This gives rise to a multiplicatively

skew-symmetric matrix λ := (λk j ) ∈ MN (K
∗).

The CGL extension R is called torsion-free if the subgroup 〈λk j | k, j ∈ [1, N ]〉
of K∗ is torsion-free. Define the rank of R by

rank(R) :=
∣∣{k ∈ [1, N ] | δk = 0}

∣∣ ∈ Z>0 (2.3)

(compare [Goodearl and Yakimov 2012, (4.3)]).
Denote the character group of the torus H by X (H) and express this group

additively. The action of H on R gives rise to an X (H)-grading of R. The
H-eigenvectors are precisely the nonzero homogeneous elements with respect to
this grading. We denote the H-eigenvalue of a nonzero homogeneous element
u ∈ R by χu . In other words, χu = X (H)-deg(u) in terms of the X (H)-grading.

Proposition 2.4 [Launois et al. 2006, Proposition 3.2]. Every CGL extension is
an H-UFD, with H as in the definition.
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The sets of homogeneous prime elements in the subalgebras Rk of a CGL
extension (2.1) were characterized in [Goodearl and Yakimov 2012]. The state-
ment of the result involves the standard predecessor and successor functions,
p = pη and s = sη, of a function η : [1, N ] → Z, defined as follows:

p(k)=max{ j < k | η( j)= η(k)},

s(k)=min{ j > k | η( j)= η(k)},
(2.4)

where max∅=−∞ and min∅=+∞. Define corresponding order functions
O± : [1, N ] → N by

O−(k) :=max{m ∈ N | pm(k) 6= −∞},

O+(k) :=max{m ∈ N | sm(k) 6= +∞}.
(2.5)

Theorem 2.5 [Goodearl and Yakimov 2012, Theorem 4.3, Corollary 4.8]. Let R
be a CGL extension of length N as in (2.1). There exist a function η : [1, N ]→ Z

whose range has cardinality rank(R) and elements

ck ∈ Rk−1 for all k ∈ [2, N ] with p(k) 6= −∞

such that the elements y1, . . . , yN ∈ R, recursively defined by

yk :=

{
yp(k)xk − ck if p(k) 6= −∞,
xk if p(k)=−∞,

(2.6)

are homogeneous and have the property that for every k ∈ [1, N ],

{y j | j ∈ [1, k], s( j) > k} (2.7)

is a list of the homogeneous prime elements of Rk up to scalar multiples.
The elements y1, . . . , yN ∈ R with these properties are unique. The function

η satisfying the above conditions is not unique, but the partition of [1, N ] into
a disjoint union of the level sets of η is uniquely determined by R, as are the
predecessor and successor functions p and s. The function p has the property
that p(k)=−∞ if and only if δk = 0.

Furthermore, the elements yk of R satisfy

yk x j = α
−1
jk x j yk, for all k, j ∈ [1, N ], s(k)=+∞, (2.8)

where

α jk :=

O−(k)∏
m=0

λ j,pm(k) for all j, k ∈ [1, N ].

The uniqueness of the level sets of η was not stated in Theorem 4.3 of
[Goodearl and Yakimov 2012], but it follows at once from Theorem 4.2 of the
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same work. This uniqueness immediately implies the uniqueness of p and s. In
the setting of the theorem, the rank of R is also given by

rank(R)=
∣∣{ j ∈ [1, N ] | s( j)=+∞}

∣∣ (2.9)

(compare [Goodearl and Yakimov 2012, (4.3)]).

Example 2.6. Let R :=Oq(Mt,n(K)) be the standard quantized coordinate ring
of t × n matrices over K, with q ∈ K∗, generators X i j for i ∈ [1, t], j ∈ [1, n],
and relations

X i j X im = q X im X i j X i j Xl j = q Xl j X i j

X im Xl j = Xl j X im X i j Xlm − Xlm X i j = (q − q−1)X im Xl j

for i < l and j < m. It is well known that R has an iterated Ore extension
presentation with variables X i j listed in lexicographic order, that is,

R = K[x1][x2; σ2, δ2] · · · [xN ; σN , δN ], N := tn,

x(i−1)n+ j := X i j for all i ∈ [1, t], j ∈ [1, n].
(2.10)

Now assume that q is not a root of unity. There is a rational action of the
torus H := (K∗)t+n on R by K-algebra automorphisms such that

(α1, . . . , αt+n)·X i j =αiαt+ j X i j for all (α1, . . . , αt+n)∈H, i ∈ [1, t], j ∈ [1, n],

and it is well known that R equipped with this action is a CGL extension.
Moreover, rank(R) = t + n− 1, because for k ∈ [1, N ] we have δk = 0 if and
only if either k ∈ [1, n] or k = (i − 1)n+ 1 with i ∈ [2, t].

The function η from Theorem 2.5 can be chosen so that

η((i − 1)n+ j)= j − i for all i ∈ [1, t], j ∈ [1, n].

The element y(i−1)n+ j is the largest solid quantum minor with lower right corner
in row i , column j , that is,

y(i−1)n+ j =
[
[i −min(i, j)+ 1, i]

∣∣ [ j −min(i, j)+ 1, j]
]
,

for all i ∈ [1, t], j ∈ [1, n],

and the list of homogeneous prime elements of R, up to scalar multiples, given
by Theorem 2.5 is

yn, y2n, . . . , y(t−1)n, y(t−1)n+1, y(t−1)n+2, . . . , ytn. (2.11)

Proposition 2.7. Let R be a CGL extension of length N as in (2.1). The following
are equivalent for an integer i ∈ [1, N ]:

(a) The integer i satisfies η−1(η(i))= {i} for the function η from Theorem 2.5.
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(b) The element xi is prime in R.

(c) The element xi satisfies xi x j = λi j x j xi for all j ∈ [1, N ].

We will denote by Px(R) the set of integers i ∈ [1, N ] satisfying the conditions
(a)–(c).

Proof. Denote by A, B, and C the sets of integers i occurring in parts (a), (b)
and (c). We will prove that A ⊆ B ⊆ A ⊆ C ⊆ A. The inclusions A ⊆ B and
A⊆ C follow at once from Theorem 2.5 and (2.8). Moreover, B ⊆ A because of
(2.6) and (2.7), since if xi is prime it must be a scalar multiple of yi .

Let i ∈ C . Then xi x j = σi (x j )xi for all j < i , whence δi = 0 and so p(i)=
−∞. Thus, η−1(η(i)) ⊆ [i, N ]. Assume that η−1(η(i)) 6= {i}, which implies
s(i) 6= +∞. Set j := s(i) ∈ η−1(η(i)). Then p( j)= i 6= −∞ and so δ j (xi ) 6= 0
by [Goodearl and Yakimov 2012, Proposition 4.7(b)], which contradicts the
equality x j xi = λ

−1
i j xi x j = σ j (xi )x j . Therefore η−1(η(i))= {i} and i ∈ A. �

One can show that the conditions in Proposition 2.7 (a)–(c) are equivalent to
xi being a normal element of R.

Recall that quantum tori and quantum affine space algebras over K are defined
by

T p =O p((K
∗)N ) := K〈Y±1

1 , . . . , Y±1
N | YkY j = pk j Y j Yk, for all k, j∈ [1,N ]〉,

A p =O p(K
N ) := K〈Y1, . . . , YN | YkY j = pk j Y j Yk, for all k, j∈ [1,N ]〉,

for any multiplicatively skew-symmetric matrix p= (pi j ) ∈ MN (K
∗).

Proposition 2.8 [Goodearl and Yakimov 2012, Theorem 4.6]. For any CGL
extension R of length N , the elements y1, . . . , yN generate a quantum affine
space algebra A inside R. The corresponding quantum torus T is naturally
embedded in Fract(R) and we have the inclusions

A⊆ R ⊂ T .

The algebras A and T in Proposition 2.8 are isomorphic to Aq and Tq , respec-
tively, where by [Goodearl and Yakimov 2012, (4.17)] the entries of the matrix
q = (qi j ) are given by

qk j =

O−(k)∏
m=0

O−( j)∏
l=0

λpm(k),pl ( j), for all k, j ∈ [1, N ]. (2.12)

Definition 2.9. Let p= (pi j ) ∈ MN (K
∗) be a multiplicatively skew-symmetric

matrix. Define the (skew-symmetric) multiplicative bicharacter � p :Z
N
×ZN

→

K∗ by
� p(ei , e j )= pi j for all i, j ∈ [1, N ],
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where e1, . . . , eN denotes the standard basis of ZN . The radical of � p is the
subgroup

rad� p := { f ∈ ZN
|� p( f, g)= 1 for all g ∈ ZN

}

of ZN . We say that the bicharacter � p is saturated if ZN/ rad� p is torsion-free,
that is,

n f ∈ rad� p =⇒ f ∈ rad� p for all n ∈ Z>0, f ∈ ZN .

Carrying the terminology forward, we say that the quantum torus T p is saturated
provided � p is saturated.

Finally, we apply this terminology to a CGL extension R via its associated
matrix λ, and say that R is saturated provided the bicharacter �λ is saturated.

For example, any torsion-free CGL extension R is saturated, because all values
of �λ lie in the torsion-free group 〈λk j | k, j ∈ [1, N ]〉 in that case.

Lemma 2.10. Let R be a CGL extension of length N as in (2.1), and let T be
the quantum torus in Proposition 2.8. Then R is saturated if and only if T is
saturated.

Proof. In view of (2.12), �q(ek, e j ) = qk j = �λ(ēk, ē j ) for all k, j ∈ [1, N ],
where

ēi := ei + ep(i)+ · · ·+ epO−(i) for all i ∈ [1, N ].

Since ē1, . . . , ēN is a basis for ZN , it follows that �λ is saturated if and only if
�q is saturated. �

Continue to let R be a CGL extension of length N as in (2.1). Denote by
N (R) the unital subalgebra of R generated by its homogeneous prime elements
yk , k ∈ [1, N ], s(k)=+∞. By [Goodearl and Yakimov 2012, Proposition 2.6],
N (R) coincides with the unital subalgebra of R generated by all normal elements
of R. As in Lemma 2.2, denote by E(R) the multiplicative subset of R generated
by the homogeneous prime elements of R. In the present situation, E(R) is also
generated by the set K∗t{yk | k ∈ [1, N ], s(k)=+∞}. It is an Ore set in R and
N (R) since it is generated by elements which are normal in both algebras. Note
that N (R)[E(R)−1

] ⊆ R[E(R)−1
] ⊆ T , where T is the torus of Proposition 2.8.

Proposition 2.11. The center of the quantum torus T in Proposition 2.8 coin-
cides with the center of R[E(R)−1

] and is contained in N (R)[E(R)−1
], i.e.,

Z(T )= Z
(
R[E(R)−1

]
)
={z∈N (R)[E(R)−1

] | zx= xz, for all x ∈ R}. (2.13)

Proof. It is clear that Z
(
R[E(R)−1

]
)
⊆ Z(T ), because these centers consist of

the elements in R[E(R)−1
] and T that commute with all elements of R, and that
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the set on the right hand side of (2.13) is contained in Z(R[E(R)−1
]). Hence, it

suffices to show that Z(T )⊆N (R)[E(R)−1
].

Recall that the center of any quantum torus equals the linear span of the central
Laurent monomials in its generators. If m is a central Laurent monomial in the
generators y±1

1 , . . . , y±1
N of T , then m is an H-eigenvector and

I := {r ∈ R | mr ∈ R}

is a nonzero H-stable ideal of R. By Lemma 2.2, there exists c ∈ I ∩ E(R),
and m = ac−1 for some a ∈ R. Since m centralizes R and c normalizes it,
the element a = mc is normal in R. Hence, a ∈ N (R), and we conclude that
m ∈N (R)[E(R)−1

]. Therefore Z(T )⊆N (R)[E(R)−1
], as required. �

Definition 2.12. We will say that an automorphism ψ of a CGL extension R as
in (2.1) is diagonal provided x1, . . . , xN are eigenvectors for ψ . Set

DAut(R) := {diagonal automorphisms of R},

a subgroup of Aut(R).
In particular, the group {(h·) | h ∈ H} is contained in DAut(R). It was

shown in [Goodearl and Yakimov 2012, Theorems 5.3, 5.5] that DAut(R) is
naturally isomorphic to a K-torus of rank equal to rank(R), exhibited as a closed
connected subgroup of the torus (K∗)N . This allows us to think of DAut(R) as
a torus, and to replace H by DAut(R) if desired. A description of this torus,
as a specific subgroup of (K∗)N , was established in [Goodearl and Yakimov
2012, Theorem 5.5]. Finally, it follows from Corollary 5.4 of the same work
that for any nonzero normal element u ∈ R, there exists ψ ∈ DAut(R) such that
ua = ψ(a)u for all a ∈ R.

2C. Symmetric CGL extensions. For a CGL extension R as in (2.1) and j, k ∈
[1, N ], denote by R[ j,k] the unital subalgebra of R generated by {xi | j ≤ i ≤ k}.
So, R[ j,k] = K if j � k.

Definition 2.13. We call a CGL extension R of length N as in Definition 2.3
symmetric if the following two conditions hold:

(i) For all 1≤ j < k ≤ N ,

δk(x j ) ∈ R[ j+1,k−1].

(ii) For all j ∈ [1, N ], there exists h∗j ∈H such that

h∗j · xk = λ
−1
k j xk = λ jk xk for all k ∈ [ j + 1, N ]

and h∗j · x j = λ
∗

j x j for some λ∗j ∈ K∗ which is not a root of unity.
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For example, all quantum Schubert cell algebras U+[w] are symmetric CGL
extensions, cf. Example 3.10 below.

Given a symmetric CGL extension R as in Definition 2.13, set

σ ∗j := (h
∗

j ·) ∈ Aut(R) for all j ∈ [1, N − 1].

Then for all j ∈ [1, N − 1], the inner σ ∗j -derivation on R given by

a 7→ x j a− σ ∗j (a)x j

restricts to a σ ∗j -derivation δ∗j of R[ j+1,N ]. It is given by

δ∗j (xk) := x j xk − λ jk xk x j =−λ jkδk(x j ) for all k ∈ [ j + 1, N ].

For all 1 ≤ j < k ≤ N , σk and δk preserve R[ j,k−1] and σ ∗j and δ∗j preserve
R[ j+1,k]. This gives rise to the skew polynomial extensions

R[ j,k] = R[ j,k−1][xk; σk, δk] and R[ j,k] = R[ j+1,k][x j ; σ
∗

j , δ
∗

j ]. (2.14)

In particular, it follows that R has an iterated Ore extension presentation with
the variables xk in descending order:

R = K[xN ][xN−1; σ
∗

N−1, δ
∗

N−1] · · · [x1; σ
∗

1 , δ
∗

1 ]. (2.15)

This is the reason for the name “symmetric”.
Denote the following subset of the symmetric group SN :

4N := {τ ∈ SN | τ(k)=max τ([1, k− 1])+ 1 or

τ(k)=min τ([1, k− 1])− 1, for all k ∈ [2, N ]}.
(2.16)

In other words, 4N consists of those τ ∈ SN such that τ([1, k]) is an interval for
all k ∈ [2, N ]. For each τ ∈4N , we have the iterated Ore extension presentation

R = K[xτ(1)][xτ(2); σ ′′τ(2), δ
′′

τ(2)] · · · [xτ(N ); σ
′′

τ(N ), δ
′′

τ(N )], (2.17)

where
σ ′′τ(k) := στ(k) and δ′′τ(k) := δτ(k),

if τ(k)=max τ([1, k− 1])+ 1, while

σ ′′τ(k) := σ
∗

τ(k) and δ′′τ(k) := δ
∗

τ(k),

if τ(k)=min τ([1, k− 1])− 1.

Proposition 2.14 [Goodearl and Yakimov 2012, Remark 6.5]. For every sym-
metric CGL extension R of length N and any τ ∈4N , the iterated Ore extension
presentation (2.17) of R is a CGL extension presentation for the same choice
of K-torus H, and the associated elements h′′τ(1), . . . , h′′τ(N ) ∈ H required by
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Definition 2.3(iii) are given by h′′τ(k) = hτ(k) if τ(k)=max τ([1, k− 1])+ 1 and
h′′τ(k) = h∗τ(k) if τ(k)=min τ([1, k− 1])− 1.

It follows from Proposition 2.14 that in the given situation,

σ ′′τ(k)(xτ( j))= λτ(k),τ ( j)xτ( j),

for 1≤ j < k ≤ N . Hence, the λ-matrix for the presentation (2.17) is the matrix

λτ := (λτ(k),τ ( j)). (2.18)

If R is a symmetric CGL extension of length N and τ ∈ 4N , we write
yτ,1, . . . , yτ,N for the y-elements obtained from applying Theorem 2.5 to the CGL
extension presentation (2.17). Proposition 2.8 then shows that yτ,1, . . . , yτ,N
generate a quantum affine space algebra Aτ inside R, the corresponding quantum
torus Tτ is naturally embedded in Fract(R), and we have the inclusions

Aτ ⊆ R ⊂ Tτ .

Proposition 2.15. If R is a saturated symmetric CGL extension of length N , then
the quantum tori Tτ are saturated, for all τ ∈4N .

Proof. Let τ ∈4N , and recall (2.18). It follows that

�λτ ( f, g)=�λ(τ · f, τ · g) for all f, g ∈ ZN ,

where we identify τ with the corresponding permutation matrix in GL N (Z) and
write elements of ZN as column vectors. Since �λ is saturated by hypothesis,
it follows immediately that �λτ is saturated. Applying Lemma 2.10 to the
presentation (2.17), we conclude that Tτ is saturated. �

3. Nakayama automorphisms of iterated Ore extensions

Every iterated Ore extension R over K is a twisted Calabi–Yau algebra (see
Definition 3.1 and Corollary 3.3), and as such has an associated Nakayama
automorphism, which is unique in this case because the inner automorphisms of
R are trivial. Our main aim is to determine this automorphism ν when R is a
symmetric CGL extension. In that case, we show that ν is the restriction to R
of an inner automorphism u−1(−)u of Fract(R), where u = u1 · · · un for a list
u1, . . . , un of the homogeneous prime elements of R up to scalar multiples. On
the way, we formalize a technique of Liu, Wang and Wu [2014] and use it to give
a formula for ν in a more general symmetric situation, where we show that each
standard generator of R is an eigenvector for ν and determine the eigenvalues.

Recall that the right twist of a bimodule M over a ring R by an automorphism
ν of R is the R-bimodule Mν based on the left R-module M and with right
R-module multiplication ∗ given by m ∗ r = mν(r) for m ∈ M , r ∈ R.
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Definition 3.1. A K-algebra R is ν-twisted Calabi–Yau of dimension d , where ν
is an automorphism of R and d ∈ Z≥0, provided

(i) R is homologically smooth, meaning that as a module over Re
:= R⊗K Rop,

it has a finitely generated projective resolution of finite length;

(ii) As Re-modules, ExtiRe(R, Re)∼=

{
0 if i 6= d,
Rν if i = d.

When these conditions hold, ν is called the Nakayama automorphism of R. It is
unique up to an inner automorphism. The case of a Calabi–Yau algebra in the
sense of [Ginzburg 2007] is recovered when ν is inner.

Theorem 3.2 [Liu et al. 2014, Theorem 3.3]. Let B be a ν0-twisted Calabi–Yau
algebra of dimension d , and let R := B[x; σ, δ] be an Ore extension of B. Then
R is a ν-twisted Calabi–Yau algebra of dimension d + 1, where ν satisfies the
following conditions:

(a) ν|B = σ−1ν0.

(b) ν(x)= ux + b for some unit u ∈ B and some b ∈ B.

Corollary 3.3. Every iterated Ore extension of length N over K is a twisted
Calabi–Yau algebra of dimension N.

Note that the only units in an iterated Ore extension R over K are scalars,
and so the only inner automorphism of R is the identity. Hence, the Nakayama
automorphism of R is unique.

Liu, Wang and Wu [2014] gave several examples for which the Nakayama
automorphism can be completely pinned down by Theorem 3.2. These examples
are iterated Ore extensions which can be rewritten as iterated Ore extensions
with the original variables in reverse order. We present a general result of this
form in the following subsection, and apply it to symmetric CGL extensions in
Section 3B.

3A. Nakayama automorphisms of reversible iterated Ore extensions.

Definition 3.4. Let R be an iterated Ore extension of length N as in (2.1). We
shall say that R (or, more precisely, the presentation (2.1)) is diagonalized if
there are scalars λk j ∈K∗ such that σk(x j )= λk j x j for all 1≤ j < k ≤ N . When
R is diagonalized, we extend the λk j to a multiplicatively skew-symmetric matrix
just as in the CGL case.

A diagonalized iterated Ore extension R is called reversible provided there is
a second iterated Ore extension presentation

R = K[xN ][xN−1; σ
∗

N−1, δ
∗

N−1] · · · [x1; σ
∗

1 , δ
∗

1 ], (3.1)

such that σ ∗j (xk)= λ jk xk for all 1≤ j < k ≤ N .
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Every symmetric CGL extension is a reversible diagonalized iterated Ore
extension, by virtue of the presentation (2.15).

For any iterated Ore extension R as in (2.1), we define the subalgebras R[ j,k]
of R just as in Section 2C.

Lemma 3.5. Let R be a diagonalized iterated Ore extension of length N as in
Definition 3.4. Then R is reversible if and only if

δk(x j ) ∈ R[ j+1,k−1] for all 1≤ j < k ≤ N . (3.2)

Proof. Assume first that R is reversible, and let 1 ≤ j < k ≤ N . From the
structure of the iterated Ore extensions (2.1) and (3.1), we see that

δk(x j ) ∈ R[1,k−1] and δ∗j (xk) ∈ R[ j+1,N ].

Since R is diagonalized, we also have

δ∗j (xk)= x j xk − λ jk xk x j =−λ jk
(
xk x j − σk(x j )xk

)
=−λ jkδk(x j ),

and thus δk(x j ) ∈ R[ j+1,N ]. Since R[1,k−1] and R[ j+1,N ] are iterated Ore exten-
sions with PBW bases {x•1 · · · x

•

k−1} and {x•j+1 · · · x
•

N }, respectively, it follows
that δk(x j ) ∈ R[ j+1,k−1], verifying (3.2).

Conversely, assume that (3.2) holds. We establish the following by a downward
induction on l ∈ [1, N ]:

(a) The monomials

xal
l · · · x

aN
N for all al, . . . , aN ∈ Z≥0 (3.3)

form a basis of R[l,N ].

(b) R[l,N ] = R[l+1,N ][xl; σ
∗

l , δ
∗

l ] for some automorphism σ ∗l and σ ∗l -derivation
δ∗l of R[l+1,N ], such that σ ∗l (xk)= λlk xk for all k ∈ [l + 1, N ].

When l = N , both (a) and (b) are clear, since R[N ,N ]=K[xN ] and R[N+1,N ]=K.
Now let l ∈ [1, N − 1] and assume that (a) and (b) hold for R[l+1,N ]. For

k ∈ [l + 1, N ], it follows from (3.2) that

xk xl − λkl xl xk = δk(xl) ∈ R[l+1,k−1] ⊂ R[l+1,N ].

Consequently, we see that

R[l+1,N ]+ xl R[l+1,N ] = R[l+1,N ]+ R[l+1,N ]xl . (3.4)

In particular, (3.4) implies that
∑
∞

a=0 xa
l R[l+1,N ] is a subalgebra of R. In view

of our induction hypothesis, it follows that the monomials (3.3) span R[l,N ].
Consequently, they form a basis, since they are part of the standard PBW basis
for R. This establishes (a) for R[l,N ].
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Given the above bases for R[l,N ] and R[l+1,N ], we see that R[l,N ] is a free right
R[l+1,N ]-module with basis (1, xl, x2

l , . . . ). Via (3.4) and an easy induction on
degree, we confirm that R[l,N ] is also a free left R[l+1,N ]-module with the same
basis. A final application of (3.4) then yields R[l,N ] = R[l+1,N ][xl; σ

∗

l , δ
∗

l ] for
some automorphism σ ∗l and σ ∗l -derivation δ∗l of R[l+1,N ]. For k ∈ [l+ 1, N ], we
have

xl xk − λlk xk xl =−λlk
(
xk xl − σk(xl)xk

)
=−λlkδk(xl) ∈ R[l+1,k−1] ⊂ R[l+1,N ],

from which it follows that σ ∗l (xk)= λlk xk . Thus, (b) holds for R[l,N ].
Therefore, the induction works. Combining statements (b) for l = N , . . . , 1,

we conclude that R is reversible. �

Theorem 3.6. Let R = K[x1][x2; σ2, δ2] · · · [xN ; σN , δN ] be a reversible, diag-
onalized iterated Ore extension over K, let ν be the Nakayama automorphism
of R, and let (λ jk) ∈ MN (K

∗) be the multiplicatively antisymmetric matrix such
that σk(x j )= λk j x j for all 1≤ j < k ≤ N. Then

ν(xk)=

( N∏
j=1

λk j

)
xk for all k ∈ [1, N ]. (3.5)

Proof. In case N = 1, the algebra R is a polynomial ring K[x1]. Then R is
Calabi–Yau (e.g., as in [Farinati 2005, Example 13]), that is, ν is the identity.
Thus, the theorem holds in this case.

Now let N ≥ 2, and assume the theorem holds for all reversible, diagonalized
iterated Ore extensions of length less than N . It is clear from the original and
the reversed iterated Ore extension presentations of R that RN−1 and R[2,N ] are
diagonalized iterated Ore extensions, and it follows from Lemma 3.5 that RN−1

and R[2,N ] are reversible. If ν0 denotes the Nakayama automorphism of RN−1,
then the inductive statement together with Theorem 3.2 gives us

ν(xk)= σ
−1
N ν0(xk)= λ

−1
Nk

(N−1∏
j=1

λk j

)
xk =

( N∏
j=1

λk j

)
xk,

for all k ∈ [1, N − 1]. (3.6)

Similarly, if ν1 denotes the Nakayama automorphism of R[2,N ], we obtain

ν(xk)= (σ
∗

1 )
−1ν1(xk)= λ

−1
1k

( N∏
j=2

λk j

)
xk =

( N∏
j=1

λk j

)
xk for all k ∈ [2, N ].

(3.7)
The formulas (3.6) and (3.7) together yield (3.5), establishing the induction
step. �
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In particular, Theorem 3.6 immediately determines the Nakayama automor-
phisms of the multiparameter quantum affine spaces Oq(K

N ), as in [Liu et al.
2014, Proposition 4.1], and those of the Weyl algebras An(K) [loc.cit., Re-
mark 4.2].

Examples 3.7. Let R := Oq(Mt,n(K)) as in Example 2.6, with no restriction
on q ∈ K∗. It is clear that the iterated Ore extension presentation (2.10) of R is
diagonalized. Since R also has an iterated Ore extension presentation with the
X i j in reverse lexicographic order, one easily checks that R is thus reversible.

The scalars λ(i−1)n+ j, (l−1)n+m from (2.2) are equal to 1 except in the following
cases:

λ(i−1)n+ j, (i−1)n+m = q−1 (m < j), λ(i−1)n+ j, (i−1)n+m = q (m > j),

λ(i−1)n+ j, (l−1)n+ j = q−1 (l < i), λ(i−1)n+ j, (l−1)n+ j = q (l > i).

In view of Theorem 3.6, we thus find that the Nakayama automorphism ν of R
is given by the rule

ν(X i j )= q t+n−2i−2 j+2 X i j ,

for i ∈ [1, t], j ∈ [1, n].
Let us consider the multiparameter version of R only in the n×n case. This is

the K-algebra R′ :=Oλ, p(Mn(K)), where λ∈K\{0, 1} and p is a multiplicatively
skew-symmetric n× n matrix over K∗, with generators X i j for i, j ∈ [1, n] and
relations

Xlm X i j =


pli p jm X i j Xlm + (λ− 1)pli X im Xl j (l > i, m > j),
λpli p jm X i j Xlm (l > i, m ≤ j),
p jm X i j Xlm (l = i, m > j).

Iterated Ore extension presentations of R′ are well known, and as above, we see
that R′ is diagonalized and reversible. It follows from Theorem 3.6 that

ν(X i j )=

( n∏
l=1

pn
il

)( n∏
m=1

pn
mj

)
λn(i− j−1)+i+ j−1 X i j for all i, j ∈ [1, n].

3B. Nakayama automorphisms of symmetric CGL extensions. As noted above,
any symmetric CGL extension is reversible and diagonalized, so Theorem 3.6
provides a formula for its Nakayama automorphism. We prove that in this case,
the Nakayama automorphism arises from the action of a normal element, as
follows.

Theorem 3.8. Let R be a symmetric CGL extension of length N as in Defini-
tion 2.13 and ν its Nakayama automorphism. Let u1, . . . , un be a complete,
irredundant list of the homogeneous prime elements of R up to scalar multiples,
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and set u = u1 · · · un . Then ν satisfies (and is determined by) the following
condition:

au = uν(a) for all a ∈ R. (3.8)

Proof. Replacing the ui by scalar multiples of these elements has no effect on
(3.8). Thus, we may assume that, in the notation of Theorem 2.5,

{u1, . . . , un} = {yl | l ∈ [1, N ], s(l)=+∞}.

Hence, (2.8) implies that

xku = βkuxk with βk :=
∏

l∈[1,N ]
s(l)=+∞

αkl for all k ∈ [1, N ]. (3.9)

As l runs through the elements of [1, N ] with s(l)=+∞ and m runs from 0 to
O−(l), the numbers pm(l) run through the elements of [1, N ] exactly once each.
Hence,

βk =
∏

l∈[1,N ]
s(l)=+∞

O−(l)∏
m=0

λk,pm(l) =

N∏
j=1

λk j . (3.10)

In view of Theorem 3.6, we obtain from (3.9) and (3.10) that xku = uν(xk) for
all k ∈ [1, N ]. The relation (3.8) follows. �

Example 3.9. Return to R :=Oq(Mt,n(K)) as in Examples 2.6, 3.7, and assume
that q is not a root of unity. Recall the list of homogeneous prime elements of R
from (2.11). The product of these t + n− 1 quantum minors gives the element u
that determines the Nakayama automorphism of R as in Theorem 3.8.

Example 3.10. Let g be a simple Lie algebra with set of simple roots 5, Weyl
group W , and root lattice Q, and set Q+ := Z≥05. For each α ∈5, denote by
sα ∈W and $α the corresponding reflection and fundamental weight. Denote by
〈. , .〉 the W -invariant, symmetric, bilinear form on Q5, normalized by 〈α, α〉= 2
for short roots α. Let Uq(g) be the quantized universal enveloping algebra of
g over an arbitrary base field K for a deformation parameter q ∈ K∗ which is
not a root of unity. We will use the notation of [Jantzen 1996]. In particular,
we will denote the standard generators of Uq(g) by Eα, K±1

α , Fα, α ∈5. The
subalgebra of Uq(g) generated by {Eα | α ∈5} will be denoted by U+q (g). It is
naturally Q+-graded with deg Eα = α for α ∈5. For each w ∈W , De Concini–
Kac–Procesi and Lusztig defined a graded subalgebra U+[w] of U+q (g), given by
[loc.cit., Sections 8.21–8.22]. It is well known that U+[w] is a symmetric CGL
extension for the torus H := (K∗)|5| and the action

t · x :=
( ∏
α∈5

t 〈α,γ 〉α

)
x for all t = (tα)α∈5 ∈ (K∗)|5|, x ∈ U+q (g)γ , γ ∈ Q+.
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Here and below, for a Q+-graded algebra R we denote by Rγ the homogeneous
component of R of degree γ ∈ Q+. (Note that the H-eigenvectors in U+[w] are
precisely the homogeneous elements with respect to the Q+-grading.)

The algebra U+[w] is a deformation of the universal enveloping algebra
U(n+ ∩w(n−)) where n± are the nilradicals of a pair of opposite Borel subal-
gebras. For each w ∈ W , Joseph [1995, Section 10.3.1] defined a Q+-graded
algebra S−w in terms of a localization of the related quantum group algebra Rq [G].
The grading is given by [Yakimov 2014a, (3.22)]; here we will omit the trivial
second component. An explicit Q+-graded isomorphism ϕ−w : S

−
w → U+[w] was

constructed in [loc.cit., Theorem 2.6]. Denote the support of w

S(w) := {α ∈5 | sα ≤ w} ⊆5,

where ≤ denotes the Bruhat order on W .
For a subset I ⊆5, define the subset of dominant integral weights

P+I := Z≥0{$α | α ∈ I }.

Denote
ρI :=

∑
α∈I

$α,

which also equals the half-sum of positive roots of the standard Levi subalgebra
of g corresponding to I .

For each λ ∈ P+S(w), there is a nonzero normal element d−w,λ ∈ (S
−
w )(1−w)λ

given by [loc.cit., (3.29)]. It commutes with the elements of S−w by

d−w,λs = q〈(w+1)λ,γ 〉sd−w,λ for all s ∈ (S−w )γ , γ ∈ Q+.

We have

d−w,λ1
d−w,λ2

= q〈λ1,(1−w)λ2〉d−w,λ1+λ2
, for all λ1, λ2 ∈ P+S(w);

see [Yakimov 2014a, (3.31)]. By Theorem 6.1(ii) of the same work,

{d−w,$α | α ∈ S(w)}

is a list of the homogeneous prime elements of Sw
−

. Therefore, up to a nonzero
scalar multiple the product of the homogeneous prime elements of U+[w] is
ϕ−w (d

−
w,ρS(w)

). Theorem 3.8 implies that the Nakayama automorphism of U+[w]
is given by

ν(a)= ϕ−w (d
−

w,ρS(w)
)−1aϕ−w (d

−

w,ρS(w)
), for all a ∈ U+[w].

Furthermore, the above facts imply that it is also given by

ν(a)= q−〈(w+1)ρS(w),γ 〉a, for all a ∈ U+[w]γ , γ ∈ Q+.
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This is a more explicit form than a previous formula for the Nakayama automor-
phism of U+[w] obtained by Liu and Wu [2014].

4. Unipotent automorphisms

In this section, we prove a theorem stating that the unipotent automorphisms
(see Definition 4.2) of a symmetric CGL extension have a very restricted form.
The theorem improves the results in [Yakimov 2013; 2014b]. It is sufficient to
classify the full groups of unipotent automorphisms of concrete CGL extensions
apart from examples which have a nontrivial quantum torus factor in a suitable
sense. This is illustrated by giving a second proof of the Launois–Lenagan
conjecture [Launois and Lenagan 2007] on automorphisms of square quantum
matrix algebras, and by determining the automorphism groups of several other
generic quantized coordinate rings.

4A. Algebra decompositions of symmetric CGL extensions. Next, we define a
unique decomposition of every symmetric CGL extension into a crossed product
of a symmetric CGL extension by a free abelian monoid which has the property
that the first term cannot be further so decomposed.

Let R be a symmetric CGL extension of length N as in (2.1). Recall from
Section 2 that Px(R)⊆ [1, N ] consists of those indices i for which xi is a prime
element of R. They satisfy

xi xk = λik xk xi for all k ∈ [1, N ]. (4.1)

For all 1≤ j < k ≤ N , the element

Qk j := xk x j − λk j x j xk = δk(x j ) ∈ R[ j+1,k−1]

is uniquely a linear combination of monomials xm j+1
j+1 · · · x

m j−1
k−1 . Of course,

Qk j = 0 if k or j is in Px(R).
Denote by Fx(R) the set of those i ∈ Px(R) such that xi does not appear in

Qk j (more precisely, no monomial which appears with a nonzero coefficient in
Qk j contains a positive power of xi ) for any k, j ∈ [1, N ]\Px(R), j < k. Let
Cx(R) := [1, N ]\Fx(R). The idea for the notation is that Fx(R) indexes the set
of x s which will be factored out and Cx(R) indexes the set of essential x s which
generate the core of R. Denote the subalgebras

C(R) := K〈xk | k ∈ Cx(R)〉 and A(R) := K〈xi | i ∈ Fx(R)〉.

We observe that R is a split extension of either of these subalgebras by a corre-
sponding ideal:

R = C(R)⊕〈xi | i ∈ Fx(R)〉 =A(R)⊕〈xk | k ∈ Cx(R)〉.
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Let Cx(R) = {k1 < k2 < . . . < kt }. The algebra C(R) is a symmetric CGL
extension of the form

C(R)= K[xk1][xk2; σ
′

k2
, δ′k2
] . . . [xkt ; σ

′

kt
, δ′kt
],

where the automorphisms σ ′
•
, the skew derivations δ′

•
, and the torus action H

are obtained by restricting those for the CGL extension R. The elements h• and
h∗
•

entering in the definition of a symmetric CGL extension are not changed in
going from R to C(R); we just use a subset of those. The CGL extension C(R)
will be called the core of R. The algebra A(R) is a quantum affine space algebra
with commutation relations

xi1 xi2 = λi1i2 xi2 xi1 for all i1, i2 ∈ Fx(R). (4.2)

It is a symmetric CGL extension with the restriction of the action of H, but this
will not play any role below.

Finally, we can express R as a crossed product

R = C(R) ∗M, (4.3)

where M is a free abelian monoid on |Fx(R)| generators. The actions of these
generators on C(R) are given by the automorphisms formed from the commutation
relations

xi xk = λik xk xi for all i ∈ Fx(R), k ∈ Cx(R), (4.4)

and products of the images of the elements of M are twisted by a 2-cocycle
M ×M→ K∗. Both (4.2) and (4.4) are specializations of (4.1). An alternative
description of R is as an iterated Ore extension over C(R) of the form

R = C(R)[xl1; σ
′

l1
][xl2; σ

′

l2
] · · · [xls ; σ

′

ls
],

where Fx(R)= {l1 < l2 < · · ·< ls}.

Examples 4.1. Any multiparameter quantum affine space algebra R =O p(K
N )

is a CGL extension with all δk = 0. In this case, Fx(R) = Px(R) = [1, N ], so
Cx(R)=∅ and C(R)= K.

At the other extreme, many generic quantized algebras are CGL extensions
for which Fx(R)=∅ and so C(R)= R. This holds, for instance, when q is not a
root of unity and R = U+q (g) with g 6= sl2 (Proposition 4.6) or R =Oq(Mt,n(K))

with n, t ≥ 2 (Proposition 4.9).
For an intermediate situation, consider

R :=Oq(M3(K))/〈X21, X31, X32〉,

a quantized coordinate ring of the monoid of upper triangular 3× 3 matrices,
with q not a root of unity. This is a CGL extension with variables x1, . . . , x6
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equal to the cosets of the generators X11, X12, X13, X22, X23, X33. Here

Px(R)= {1, 3, 4, 6} and Fx(R)= {1, 6},

whence C(R) = K〈x2, x3, x4, x5〉 ∼= Oq(M2(K)) and A(R) = K[x1, x6] is a
commutative polynomial ring.

4B. Main theorem on unipotent automorphisms. Recall that a connected graded
algebra is a nonnegatively graded algebra R =

⊕
∞

n=0 Rn such that R0
= K. For

such an algebra, set R≥m
:=

⊕
∞

n=m Rn for all m ∈ Z≥0. We have used the
notation Rn for homogeneous components to avoid conflict with the notation Rk

for partial iterated Ore extensions (Section 2B). The algebra R is called locally
finite if all of its homogeneous components Rd are finite dimensional over K.

Suppose R is a CGL extension as in Theorem 2.5. Every group homomorphism

π : X (H)→ Z

gives rise to an algebra Z-grading on R, such that u∈ Rπ(χu) for all H-eigenvectors
u in R. This makes the algebra R connected graded if and only if π(χx j ) > 0
for all j ∈ [1, N ]. A homomorphism with this property exists if and only if the
subsemigroup generated by χx1, . . . , χxN in X (H) does not contain 0.

Definition 4.2. We call an automorphism ψ of a connected graded algebra R
unipotent if

ψ(x)− x ∈ R≥m+1 for all x ∈ Rm,m ∈ Z≥0.

It is obvious that those automorphisms form a subgroup of Aut(R), which will
be denoted by UAut(R).

Theorem 4.3. Let R be a symmetric saturated CGL extension which is a con-
nected graded algebra via a homomorphism π : X (H)→ Z. Then the restriction
of every unipotent automorphism of R to the core C(R) is the identity.

In other words, every unipotent automorphism ψ of R satisfies

ψ(xk)= xk, for all k ∈ Cx(R), (4.5)

ψ(xi )= xi + ai , for all i ∈ Fx(R), (4.6)

where for every i ∈ Fx(R), ai is a normal element of R lying in R≥deg xi+1 such
that ai x−1

i is a central element of R[E(R)−1
].

The proof of Theorem 4.3 is given in Section 4D.
The restriction of a unipotent automorphism to A(R) can have a very general

form as illustrated by the next two remarks.
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Remark 4.4. Consider the quantum affine space algebra

R =Oq(K
3) := K〈x1, x2, x3 | xi x j = qx j xi for all i < j〉,

for a nonroot of unity q ∈K∗, which is a symmetric CGL extension with respect
to the natural action of (K∗)3. In this case, A(R) = R and C(R) = K. All the
generators xi are prime, thus Px(R)= {1, 2, 3}. Introduce the grading such that
x1, x2, x3 all have degree 1. The unipotent automorphisms of this algebra are
determined [Alev and Chamarie 1992, Théorème 1.4.6] by

ψ(x1)= x1, ψ(x2)= x2+ ξ x1x3, ψ(x3)= x3, for some ξ ∈ K.

In particular, in this case the normal element a2 = ξ x1x3 is generally nonzero.
At the same time, the normal elements a1 and a3 vanish.

Remark 4.5. It is easy to see that the polynomial algebra R = K[x1, . . . , xN ]

is a symmetric CGL extension with the standard action of (K∗)N . In this case,
again we have A(R)= R. Currently, little is known for the very large group of
unipotent automorphisms of the polynomial algebras in at least 3 variables.

In Section 4C we show how one can explicitly describe the full automorphism
groups of many symmetric saturated CGL extensions R with small factors
A(R) using Theorem 4.3 together with graded methods. These “essentially
noncommutative” CGL extensions are very rigid; typically, all automorphisms
are graded with respect to the grading of Theorem 4.3, and often there are few
or no graded automorphisms beyond the diagonal ones. These types of CGL
extensions are very common in the theory of quantum groups. We illustrate
this by giving a second proof of the Launois–Lenagan conjecture [Launois and
Lenagan 2007] that states that

Aut(Oq(Mn(K))∼= Z2n (K∗)2n−1,

for all n > 1, base fields K, and nonroots of unity q ∈ K∗. Here, the nontrivial
element of Z2 acts by the transpose automorphism (Xlm 7→ Xml) and the torus
acts by rescaling the Xlm . This conjecture was proved for n = 2 in [Alev and
Chamarie 1992], for n = 3 in [Launois and Lenagan 2013] and for all n in
[Yakimov 2013]. We reexamine this in Section 4C, reprove it in a new way, and
give a very general approach to such relationships based on Theorem 4.3.

For a simple Lie algebra g, the algebra U+q (g) is the subalgebra of Uq(g)

generated by all positive Chevalley generators Eα, α ∈5, recall the setting of
Example 3.10. The Andruskiewitsch–Dumas conjecture [Andruskiewitsch and
Dumas 2008] predicted an explicit description of the full automorphism group of
U+q (g). This conjecture was proved in [Yakimov 2014b] in full generality. The
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key part of the conjecture was to show that

UAut(U+q (g))= {id}, (4.7)

for the Z≥0-grading given by deg Eα= 1, α ∈5. The next proposition establishes
that C(U+q (g))= U+q (g) for all simple Lie algebras g 6= sl2, and thus (4.7) also
follows from Theorem 4.3. Since the pieces of the proof in [Yakimov 2014b]
were embedded in the different steps of the proof of Theorem 4.3, this does not
give an independent second proof of the Andruskiewitsch–Dumas conjecture.
However, it illustrates the broad range of applications of Theorem 4.3 which
cover the previous conjectures on automorphism groups in this area.

Proposition 4.6. For all finite dimensional simple Lie algebras g 6= sl2, base
fields K and nonroots of unity q ∈ K∗,

Fx(U+q (g))=∅, i.e., C(U+q (g))= U+q (g).

Proof. In the setting of Example 3.10, the algebra U+q (g) coincides with the
algebra U+[w0] for the longest element w0 of the Weyl group of g. Fix a reduced
decomposition w0 = sα1 . . . sαN for α1, . . . , αN ∈5. Define the roots

β1 := α1, β2 := sα1(α1), . . . , βN := sα1 . . . sαN−1(αN )

and Lusztig’s root vectors

Eβ1 := Eα1, Eβ2 := Tα1(Eα1), . . . , EβN := Tα1 . . . TαN−1(EαN )

in terms of Lusztig’s braid group action [Jantzen 1996, Section 8.14] on Uq(g).
The algebra U+q (g) has a torsion-free CGL extension presentation of the form

U+q (g)= K[Eβ1][Eβ2; σ2, δ2] . . . [EβN ; σN , δN ],

for some automorphisms σ• and skew derivations δ•, the exact form of which
will not play a role in the present proof. Since β1, . . . , βN is a list of all positive
roots of g, for each α ∈5 there exists k(α) ∈ [1, N ] such that

βk(α) = α.

By [loc.cit., Proposition 8.20],

Eβk(α) = Eα for all α ∈5. (4.8)

Given α ∈ 5, choose α′ ∈ 5 which is connected to α in the Dynkin graph of
g. (This is the only place we use that g 6= sl2.) The Serre relations imply that
EαEα′ 6= ξEα′Eα for all ξ ∈ K. By (4.8),

k(α) /∈ Px(U+q (g)) for all α ∈5.
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Thus, Eα ∈ C(U+q (g)) for all α ∈5. Since U+q (g) is generated by {Eα | α ∈5},
we obtain that

C(U+q (g))= U+q (g).

The decomposition equation (4.3) then implies that Fx(U+q (g)) is empty. �

4C. Full automorphism groups. There is a large class of quantum nilpotent
algebras R for which Theorem 4.3 applies and C(R)= R. For such R, the only
unipotent automorphism is the identity. This lack of unipotent automorphisms
often combines with other relations to imply that all automorphisms of R are
homogeneous with respect to the grading from Theorem 4.3. We flesh out this
statement and analyze several examples in this subsection.

Definition 4.7. Let ψ be an automorphism of a connected graded algebra R.
The degree zero component of ψ is the linear map ψ0 : R→ R such that

ψ0(x) is the degree d component of x for all x ∈ Rd , d ∈ Z≥0.

The automorphism ψ is said to be graded (or homogeneous of degree zero) if
ψ = ψ0, that is, ψ(Rd)= Rd for all d ∈ Z≥0.

Lemma 4.8. Let R be a locally finite connected graded algebra, ψ an automor-
phism of R, and ψ0 the degree zero component of ψ . Assume that ψ(Rd)⊆ R≥d ,
for all d ∈ Z≥0. Then ψ0 is a graded automorphism of R, and the automorphism
ψ−1

0 ψ is unipotent.

Proof. It follows immediately from the hypotheses that ψ0 is an algebra endo-
morphism of R. We show that it is an automorphism by proving that ψ0 maps Rd

isomorphically onto Rd , for all d ∈ Z≥0. It suffices to show that ψ0(Rd)= Rd ,
since Rd is finite dimensional.

Obviously ψ0(R0)= R0. Now assume, for some d ∈ Z>0, that ψ0(R j )= R j

for all j ∈ [0, d−1]. Our hypotheses imply that R≥d
⊆ψ−1(R≥d), and we next

show that this is an equality. If x ∈ R\R≥d , then x = y+z with y nonzero, y ∈ R j ,
and z ∈ R≥ j+1, for some j ∈ [0, d − 1]. The assumption ψ0(R j )= R j implies
R j
∩ kerψ0 = 0, so ψ0(y) 6= 0. Since ψ(x)−ψ0(y) ∈ R≥ j+1, it follows that

ψ(x) /∈ R≥d . This shows that, indeed, R≥d
=ψ−1(R≥d), whenceψ(R≥d)= R≥d .

Consequently, any v ∈ Rd can be expressed as v = ψ(u) for some u ∈ R≥d ,
and thus v = ψ0(ud) where ud is the degree d component of u. This verifies
ψ0(Rd)= Rd and establishes the required inductive step.

Therefore φ0 is an automorphism of R. It is clear that ψ−1
0 ψ is unipotent. �

The condition on ψ in Lemma 4.8 is often satisfied in quantum algebras. In
particular, Launois and Lenagan established it [2007, Proposition 4.2] when R
is a locally finite connected graded domain, generated in degree 1 by elements
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x1, . . . , xn such that for all i ∈ [1, n], there exist x ′i ∈ R with xi x ′i = qi x ′i xi

for some qi ∈ K∗, qi 6= 1. If, in addition, R is a symmetric saturated CGL
extension such that C(R)= R and R is connected graded via a homomorphism
π : X (H)→ Z, we can conclude from Theorem 4.3 that all automorphisms of
R are graded. We illustrate this by giving a second proof of the descriptions of
Aut(Oq(Mt,n(K))) in [Launois and Lenagan 2007, Theorem 4.9, Corollary 4.11]
and [Yakimov 2013, Theorem 3.2].

Proposition 4.9. For all integers n, t ≥ 2, base fields K, and nonroots of unity
q ∈ K∗,

Fx
(
Oq(Mt,n(K))

)
=∅, i.e., C

(
Oq(Mt,n(K))

)
=Oq(Mt,n(K)). (4.9)

Consequently,

UAut(Oq(Mt,n(K)))= {id},

for the grading of Oq(Mt,n(K)) with deg Xlm = 1 for all l,m ∈ [1, n].

Proof. Recall the CGL extension presentation of R =Oq(Mt,n(K)) from (2.10)
and the function η from Example 2.6. We have already noted that R is a
symmetric CGL extension. The scalars λkl are all equal to powers of q . Thus, R
is a torsion-free CGL extension, and in particular it is saturated.

The only level sets of η of cardinality 1 are η−1(n− 1) and η−1(1− t), that
is, the only generators of R that are prime are X1n and X t1. Thus, Px(R) =
{n, (t − 1)n+ 1}. The identities

X1,n−1 X2n − X2n X1,n−1 = (q − q−1)X1n X2,n−1,

X t−1,1 X t2− X t2 X t−1,1 = (q − q−1)X t−1,2 X t1

imply (4.9). The final conclusion of the proposition now follows from Theo-
rem 4.3. �

Theorem 4.10 (Launois–Lenagan, Yakimov). For all integers n, t ≥ 2, base
fields K, and nonroots of unity q ∈ K∗,

Aut(Oq(Mt,n(K))=

{
DAut(Oq(Mt,n(K))∼= (K

∗)t+n−1 if n 6= t,
DAut(Oq(Mt,n(K))·{id, τ } ∼= (K∗)t+n−1oZ2 if n = t,

where τ is the transpose automorphism of Oq(Mn,n(K)) given by τ(X i j )= X j i ,
for all i, j ∈ [1, n].

Remark. In the cases where t or n is 1, Oq(Mt,n(K)) is a quantum affine space
algebra. In these cases a description of the automorphism groups was found
much earlier in [Alev and Chamarie 1992] using direct arguments.
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Proof. Let R=Oq(Mt,n(K)) as in Examples 2.6, 3.7, with n, t ≥ 2. This algebra
is a locally finite connected graded domain in which all generators X i j have
degree 1. By [Launois and Lenagan 2007, Corollary 4.3], all automorphisms ψ
of R satisfy ψ(Rd)⊆ R≥d , for all d ∈ Z≥0. Thus, by Lemma 4.8, Theorem 4.3,
and Proposition 4.9, all automorphisms of R are graded.

It remains to show that any graded automorphism ψ of R has the stated form.
We first look at the induced automorphismψ on the abelianization R := R/[R, R].
Note that the cosets in R of the generators X i j satisfy

X i j X lm = 0 if


(i = l, j 6= m), or
(i 6= l, j = m), or
(i < l, j > m),

and that the X 2
i j together with the products X i j X lm for i < l and j < m form a

basis for R 2. It is easily checked that the degree 1 part of the annihilator of X1n

has dimension tn−1, as does that of X t1, while no degree 1 elements of R other
than scalar multiples of X1n or X t1 have this property. Thus, ψ(X1n) must be a
scalar multiple of either X1n or X t1, and similarly for ψ(X t1). It follows that in
R, we have ψ(X1n), ψ(X t1) ∈ K∗X1n ∪K∗X t1.

Now define

Cs(x) := {y ∈ R1
| xy = qs yx} for all s ∈ Z, x ∈ R1,

and observe that ψ(Cs(x)) = Cs(ψ(x)). Since C1(X1n) and C1(X t1) have di-
mensions t − 1 and n− 1, respectively, we conclude that

ψ(X1n) ∈ K∗X1n and ψ(X t1) ∈ K∗X t1 (4.10)

if t 6= n. If t = n and ψ(X1n) ∈ K∗X t1, ψ(X t1) ∈ K∗X1n , then the composition
ψτ will have the property (4.10). Thus, it remains to show that every graded
automorphism ψ of R that satisfies (4.10) is a diagonal automorphism. It follows
from (4.10) that ψ preserves the space

V := R1
∩C−1(X1n)= KX11+ · · ·+KX1,n−1.

For j ∈ [1, n− 1], the elements v ∈ V for which

dimK(V ∩C1(v))= n− j − 1 and dimK(V ∩C−1(v))= j − 1

are just the nonzero scalar multiples of X1 j . Hence, ψ(X1 j ) ∈ K∗X1 j for all
j ∈ [1, n]. Similarly, ψ(X i1) ∈ K∗X i1 for all i ∈ [1, t].

Finally, for i ∈ [2, t] and j ∈ [2, n], the elements of C1(X i1)∩C1(X1 j ) are
exactly the nonzero scalar multiples of X i j . We conclude that ψ(X i j ) ∈K∗X i j

for all i ∈ [1, t], j ∈ [1, n], showing that ψ is a diagonal automorphism of R. �
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We give two additional examples which can be established in similar fashion,
leaving details to the reader.

Example 4.11. First, let R := Oq(sp k2n) be the quantized coordinate ring of
2n-dimensional symplectic space, with generators x1, . . . , x2n and relations as
in [Musson 1993, Section 1.1]. (This presentation gives a symmetric CGL
extension presentation, whereas the original presentation in [Reshetikhin et al.
1989, Definition 14] is not symmetric.) Then:

For all integers n > 0, base fields K, and nonroots of unity q ∈ K∗,

Aut(Oq(sp k2n))= DAut(Oq(sp k2n)∼= (K
∗)n+1.

Now let R := Oq(o km) be the quantized coordinate ring of m-dimensional
euclidean space, with generators x1, . . . , xm and relations as in [Musson 1993,
Sections 2.1 and 2.2]. Then:

For all integers n > 0, base fields K, and nonroots of unity q ∈ K∗,

Aut(Oq(o k2n))= DAut(Oq(o k2n))·〈τ 〉 ∼= (K
∗)n+1oZ2,

Aut(Oq(o k2n+1))= DAut(Oq(o k2n+1))∼= (K
∗)n+1,

where τ is the automorphism of Oq(o k2n) that interchanges xn , xn+1 and fixes
xi for all i 6= n, n+ 1.

4D. Proof of Theorem 4.3. The proof of Theorem 4.3 is based on the rigidity
of quantum tori result of [Yakimov 2014b]. This proof is carried out in six steps
via Lemmas 4.12–4.17 below. Some parts of it are similar to the proof of the
Andruskiewitsch–Dumas conjecture in [loc.cit., Theorem 1.3], other parts are
different. Throughout the proof we use the general facts for CGL extensions
established in [Goodearl and Yakimov 2012; 2013].

Note that the Z≥0-grading on the algebra R in Theorem 4.3 extends to a
Z-grading on R[E(R)−1

], since E(R) is generated by homogeneous elements.

Lemma 4.12. In the setting of Theorem 4.3, for every k ∈ [1, N ] there exists
zk ∈ Z(R[E(R)−1

])≥1 such that

ψ(xk)= (1+ zk)xk .

Note. It follows from Proposition 2.11 that the elements zk satisfy

zk ∈N (R)[E(R)−1
] for all k ∈ [1, N ]. (4.11)

Proof. Fix k ∈ [1, N ]. There exists an element τ of the subset 4N of the
symmetric group SN defined in (2.16) such that τ(1)= k. For example, one can
choose

τ = [k, k+ 1, . . . , n, k− 1, k− 2, . . . , 1]
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in the one-line notation for permutations. For the corresponding sequence of
prime elements, we have yτ,1= xk . The corresponding embeddings Aτ ⊆ R⊂ Tτ
are X (H)-graded. We use the homomorphism π : X (H)→ Z to obtain a Z≥0-
grading on Aτ and a Z-grading on Tτ for which all generators yτ,1, . . . , yτ,N
have positive degree. The embeddings Aτ ⊆ R⊂ Tτ become Z-graded. It follows
from Proposition 2.15 that Tτ is a saturated quantum torus since R is a saturated
CGL extension.

Applying the rigidity of quantum tori result in [Yakimov 2014b, Theorem 1.2]
and the conversion result [Yakimov 2013, Proposition 3.3], we obtain that

ψ(yτ,k)= (1+ ck)yτ,k for some ck ∈ Z(Tτ )≥1 for all k ∈ [1, N ].

By Proposition 2.11, Z(Tτ )= Z(R[E(R)−1
]). Using that yτ,1 = xk and setting

zk := c1 leads to the desired result. �

From now on, all characters will be computed with respect to the torus
DAut(R), recall Definition 2.12 and the discussion after it. For an algebra A, we
denote by A∗ its group of units.

Lemma 4.13. In the setting of Theorem 4.3, the elements zk ∈ Z(R[E(R)−1
]),

k ∈ [1, N ], from Lemma 4.12 define a group homomorphism

X (DAut(R))→ Fract(Z(R[E(R)−1
]))∗

such that
χxk 7→ 1+ zk, (4.12)

for k ∈ [1, N ].
Consequently, if u is any homogeneous element of R and

χu = j1χx1 + · · ·+ jNχxN ,

for some j1, . . . , jN ∈ Z, then

ψ(u)= (1+ z1)
j1 · · · (1+ zN )

jN u. (4.13)

Proof. It follows from [Goodearl and Yakimov 2012, Theorem 5.5] that the
character lattice X (DAut(R)) is generated by χx1, . . . , χxN . For l∈[1, N ], denote
by X (DAut(R))l the subgroup of X (DAut(R)) generated by χx1, . . . , χxl .

We show by induction on l that there exists a group homomorphism

X (DAut(R))l→ Fract(Z(R[E(R)−1
]))∗

satisfying (4.12) for k ∈ [1, l]. The statement is obvious for l = 1. Assume its
validity for l − 1, where l ≥ 2. If δl = 0, then by [Goodearl and Yakimov 2012,
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Theorem 5.5],

X (DAut(R))l = X (DAut(R))l−1⊕Zχxl ,

and the statement follows trivially. Now consider the case δl 6= 0. Choose j < l
such that δl(x j ) 6= 0, in other words, Ql j 6= 0. Choose a monomial xm j+1

j+1 . . . x
ml−1
l−1

which appears with a nonzero coefficient in Ql j , and observe that

χxl =−χx j +m j+1χx j+1 + · · ·+ml−1χxl−1 .

The inductive step thus amounts to proving that

(1+ zl)= (1+ z j )
−1(1+ z j+1)

m j+1 . . . (1+ zl−1)
ml−1 . (4.14)

The inductive hypothesis, the fact that z1, . . . , zl are central, and that all mono-
mials appearing with nonzero coefficients in Ql j have the same X (DAut(R))-
degrees give

ψ(Ql j )= (1+ z j+1)
m j+1 . . . (1+ zl−1)

ml−1 Ql j .

Applying ψ to the identity Ql j = xl x j − λl j x j xl and again using that z1, . . . , zl

are central leads to

(1+ z j+1)
m j+1 . . . (1+ zl−1)

ml−1 Ql j = (1+ zl)(1+ z j )(xl x j − λl j x j xl)

= (1+ zl)(1+ z j )Ql j .

This implies (4.14) because Ql j 6= 0, and completes the induction, establishing
the first part of the lemma.

The last statement of the lemma follows from the first part of the lemma, the
centrality of the zk , and the fact that all monomials xm1

1 · · · x
m N
N appearing with

nonzero coefficients in u have the same X (DAut(R))-degree as u. �

Lemma 4.14. Any symmetric CGL extension R of length N is a free left N (R)-
module in which N (R)xk is a direct summand, for all k ∈ [1, N ]\Px(R).

If uxk ∈ R for some u ∈N (R)[E(R)−1
] and k ∈ [1, N ]\Px(R), then u ∈N (R).

Proof. Theorem 4.11 in [Goodearl and Yakimov 2012] proves that R is a free left
module over N (R) and constructs an explicit basis of it. For k ∈ [1, N ]\Px(R),
the element xk becomes one of the basis elements, because |η−1(η(k))|> 1. This
proves the first part of the lemma.

For the second part, write r := uxk and u = e−1 y for some e ∈ E(R) and
y ∈N (R). Then er = yxk ∈N (R)xk . It follows from the first part of the lemma
that r ∈N (R)xk , and therefore u ∈N (R). �
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Lemma 4.15. In the setting of Theorem 4.3, the elements zk from Lemma 4.12
satisfy

zk ∈ Z(R)≥1 for all k ∈ [1, N ]\Px(R).

Proof. By (4.11), zk ∈ N (R)[E(R)−1
]. Furthermore, zk xk = ψ(xk)− xk ∈ R.

We apply the second part of Lemma 4.14 to u := zk to obtain zk ∈N (R) and so

zk ∈ R ∩ Z(R[E(R)−1
])≥1
= Z(R)≥1,

for all k ∈ [1, N ]\Px(R). �

Lemma 4.16. In the setting of Theorem 4.3, the elements zk from Lemma 4.12
satisfy

zk = 0 for all k ∈ [1, N ]\Px(R).

Proof. Let k ∈ [1, N ]\Px(R) and denote

η−1(η(k))= {k1 < · · ·< km}.

By Theorem 2.5, ykm is a homogeneous prime element of R and

χym = χxk1
+ · · ·+χxkm

.

Applying (4.13) with u = ykm gives

ψ(ykm )= (1+ zk1) . . . (1+ zkm )ykm .

From Lemma 4.15, zk1, . . . , zkm ∈ Z(R). So, ψ(Rykm )⊆ Rykm . At the same time,
Rykm is a height one prime ideal of R, and so ψ(Rykm ) is a height one prime
ideal. Therefore ψ(Rykm )= Rykm , which implies that (1+ zk1) . . . (1+ zkm ) is a
unit of R. The group of units of a CGL extension is reduced to scalars, thus

(1+ zk1) . . . (1+ zkm ) ∈ K∗.

Since zk1, . . . , zkm ∈ R≥1, this is only possible if zk1 = · · · = zkm = 0. Therefore
zk = 0. �

Lemma 4.17. In the setting of Theorem 4.3, the elements zk ∈ Z(R[E(R)−1
]

from Lemma 4.12 satisfy

zk = 0 for all k ∈ Cx(R).

Proof. The statement was proved for k ∈ [1, N ]\Px(R) in Lemma 4.16. Now
let k ∈ Cx(R)∩ Px(R). There exist j, l ∈ [1, N ]\Px(R) such that j < k < l and
there is a monomial xm+1

j+1 . . . x
ml−1
l−1 with mk > 0 that appears with a nonzero

coefficient in Ql j . Applying ψ to the identity Ql j = xl x j − λl j x j xl and using
Lemmas 4.13 and 4.16 gives

(1+ z j+1)
m j+1 . . . (1+ zl−1)

ml−1 = (1+ zl)(1+ z j )= 1.
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Since z j+1, . . . , zl−1 ∈ Z(R[E(R)−1
])≥1 and R[E(R)−1

] is a graded domain,
zt = 0 for all t ∈ [ j+1, l−1] such that mt > 0. Thus zk = 0, because mk > 0. �

Proof of Theorem 4.3. This follows from Lemmas 4.12 and 4.17, setting ai = zi xi

for i ∈ Fx(R), recalling that xi is normal in R for all i ∈ Fx(R). �
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