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Bounding the socles of powers of squarefree
monomial ideals

JÜRGEN HERZOG AND TAKAYUKI HIBI

Let S = K [x1, . . . , xn] be the polynomial ring in n variables over a field K
and I ⊂ S a squarefree monomial ideal. In the present paper we are interested
in the monomials u ∈ S belonging to the socle Soc(S/I k) of S/I k , i.e., u 6∈ I k

and uxi ∈ I k for 1 ≤ i ≤ n. We prove that if a monomial xa1
1 · · · x

an
n belongs

to Soc(S/I k), then ai ≤ k − 1 for all 1 ≤ i ≤ n. We then discuss squarefree
monomial ideals I ⊂ S for which xk−1

[n] ∈ Soc(S/I k), where x[n] = x1x2 · · · xn .
Furthermore, we give a combinatorial characterization of finite graphs G on
[n] = {1, . . . , n} for which depth S/(IG)2

= 0, where IG is the edge ideal of G.

Introduction

The depth of powers of an ideal (especially, a monomial ideal) of the polynomial
ring has been studied by many authors. In the present paper, we are interested in
the socle of powers of a squarefree monomial ideal.

Let K be a field, S= K [x1, . . . , xn] the polynomial ring in n variables over K ,
and I ⊂ S a graded ideal. We denote by m= (x1, . . . , xn) the graded maximal
ideal of S. An element f + I ∈ S/I is called a socle element of S/I if xi f ∈ I
for i = 1, . . . , n. Thus f + I is a nonzero socle element of S/I if f ∈ I :m \ I .
The set of socle elements Soc(S/I ) of S/I is called the socle of S/I . Notice that
Soc(S/I ) is a K -vector space isomorphic to (I :m)/I . One has depth S/I = 0
if and only if Soc(S/I ) 6= {0}.

In the case that I is a monomial ideal, a case which we mainly consider
here, Soc(S/I ) is generated by the residue classes of monomials. If u and v are
monomials not belonging to I , then u+ I = v+ I , if and only if u = v. Thus,
if u is a monomial, it is convenient to write u ∈ Soc(S/I ) and to call u a socle
element of S/I if u+ I ∈ Soc(S/I ) and u+ I 6= 0. In other words, u ∈ Soc(S/I )
if and only if u 6∈ I and uxi ∈ I for all 1≤ i ≤ n.

The present paper is organized as follows. In Section 1, we show that, for a
squarefree monomial ideal I ⊂ S, if a monomial xa1

1 · · · x
an
n is a socle element of
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S/I k , then ai ≤ k − 1 for all 1 ≤ i ≤ n (Corollary 2.2). In Section 2, the edge
ideal IG arising from a finite graph G is discussed. We give a combinatorial
characterization of G for which depth S/(IG)2

= 0 (Theorem 3.1).
Let I ⊂ S be a squarefree monomial ideal. If the monomial u = xk−1

[n] happens
to be a socle element of S/I k , then, according Corollary 2.2, u is a socle element
of S/I k of maximal degree. In Section 3, we study squarefree monomial ideals
I ⊂ S with xk−1

[n] ∈ Soc(S/I k). It is proved that, for a squarefree monomial ideal
I ⊂ S with xk−1

[n] ∈ Soc(S/I k), one has k < n and depth S/I j > 0 for j < k
(Corollary 4.2). Furthermore, for a squarefree monomial ideal I ⊂ S generated
in degree d with xk−1

[n] ∈ Soc(S/I k), we show that if d > ((k − 1)n + 1)/k,
then depth S/I k > 0 and that if d = ((k− 1)n+ 1)/k and depth S/I k

= 0, then
xk−1
[n] ∈ Soc(S/I k) and depth S/I `

= 0 for all `≥ k (Corollary 4.4).

2. Socles of powers of squarefree monomial ideals

Proposition 2.1. Let I be a monomial ideal. For i = 1, . . . , n set

ci =max{degxi
(u) : u ∈ G(I )},

and let xa1
1 · · · x

an
n be a socle element of S/I . Then ai ≤ ci − 1 for i = 1, . . . , n.

Proof. Let u = xa1
1 · · · x

an
n be a socle element of S/I . Thus u 6∈ I and u ∈ I :m.

Suppose that ai ≥ ci for some i . Since xi u ∈ I , there exists v ∈ G(I ) which
divides xi u.

It follows that degx j
(v) ≤ degx j

(xi u) = degx j
(u) for j 6= i , and degxi

(v) ≤

ci ≤ degxi
(u). Therefore, v divides u, and hence u ∈ I , a contradiction. �

Corollary 2.2. Let I be a squarefree monomial ideal, and let xa1
1 · · · x

an
n be a

socle element of S/I k . Then

ai ≤ k− 1 for i = 1, . . . , n.

3. Edge ideals whose square has depth zero

We consider the case of edge ideals.

Theorem 3.1. Let I = IG ⊂ S = K [x1, . . . , xn] be the edge ideal of graph G on
the vertex set [n]. The following conditions are equivalent:

(a) depth S/I 2
= 0;

(b) G is a connected graph containing a cycle C of length 3, and any vertex of
G is a neighbor of C.

Moreover, x[n] ∈ Soc(S/I 2) if and only if G is a cycle of length 3.
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Proof. (b)⇒ (a): Suppose that G has a cycle of length 3, say, {1, 2}, {1, 3} and
{2, 3} are edges of G and that, for each 4≤ j ≤ n, one of {1, j}, {2, j} and {3, j}
is an edge of G. It then follows immediately that the monomial u = x1x2x3

satisfies u 6∈ I 2 and u ∈ I 2
:m. Hence depth S/I 2

= 0, as required. This argument
also shows that x[n] ∈ Soc(S/I 2) if and only if G is cycle of length 3

(a)⇒ (b): Let I = IG be the edge ideal of a finite graph G with depth S/I 2
= 0.

Then there exists a monomial u with u 6∈ I 2 such that u ∈ I 2
:m. Let H denote

the induced subgraph of G whose vertices are those i ∈ [n] such that xi divides u.
Since u 6∈ I 2 it follows that H cannot possess two disjoint edges. If H possesses
an isolated vertex i , then xi u 6∈ I 2. This contradict u ∈ I 2

: m. Hence H is
connected without disjoint edges. Thus H must be either a cycle of length 3, or
a line of length at most 2.

First, if H is a line of length 1, i.e., H is an edge of G, then we may assume
that u = xa1

1 xa2
2 with each ai ≥ 1. If each ai ≥ 2, then u ∈ I 2, a contradiction.

Let a1 = 1 and u = x1xa2
2 . Then ux2 6∈ I 2. This contradicts u ∈ I 2

:m.
Now, let H be either a cycle of length 3, or a line of length 2. Thus we may

assume that u = xa1
1 xa2

2 xa3
3 with each ai ≥ 1, where {1, 2} and {1, 3} are edges

of G. Since u 6∈ I 2, it follows that a1 = 1. Thus u = x1xa2
2 xa3

3 . If {2, 3} is not an
edge of G, then x2u 6∈ I 2, a contradiction. Hence {2, 3} is an edge of G. Then,
since u 6∈ I 2, it follows that a2 = a3 = 1. Thus u = x1x2x3 and {1, 2}, {1, 3} and
{2, 3} are edges of G. Let j ≥ 4. Since x j u ∈ I 2, it follows that one of {1, j},
{2, j} and {3, j} must be an edge of G, as desired. �

This result has been shown independently by Terai and Trung [2014].

4. Powers of squarefree monomial ideals with maximal socle

Let I ⊂ S = K [x1, . . . , xn] be a squarefree monomial ideal. If the monomial
u = xk−1

[n] happens to be a socle element of S/I k , then, by Corollary 2.2, u is a
socle element of S/I k of maximal degree. The next proposition characterizes
those squarefree monomial ideals for which xk−1

[n] is indeed a socle element of
S/I k .

We consider I as the facet ideal of a simplicial complex 1. Thus I = I (1)

where the set of facets F(1) of 1 is given as

F(1)= {supp(u) : u ∈ G(I )}.

In other words, G(I (1)) = {xF : F ∈ F(1)} where we set xF =
∏

i∈F xi for
F ⊂ [n].

Proposition 4.1. Let 1 be a simplicial complex on the vertex set [n], and

I = I (1)⊂ S = K [x1, . . . , xn]
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its facet ideal.

(a) The following conditions are equivalent:
(i) xk−1

[n] 6∈ I k .

(ii)
⋂k

i=1 Fi 6=∅ for all F1, . . . , Fk ∈ F(1).

(b) Assuming that xk−1
[n] 6∈ I k , the following conditions are equivalent:

(i) x j xk−1
[n] ∈ I k for all j .

(ii) For each j=1, . . . , n, there exist F1, . . . , Fk ∈F(1) such that
k⋂

i=1
Fi ={ j}.

In particular, xk−1
[n] ∈ Soc(S/I k) if and only if (a)(ii) and (b)(ii) hold.

Proof. (a) xk−1
[n] ∈ I k if and only if there exist F1, . . . , Fk ∈ F(1) such that

xF1 xF2 · · · xFk divides xk−1
[n] . This is the case, if and only if no xk

i divides
xF1 xF2 · · · xFk . This is equivalent to saying that

⋂k
i=1 Fi =∅. Thus the desired

conclusion follows.

(b) x j xk−1
[n] ∈ I k if and only if xF1 xF2 · · · xFk divides x j xk−1

[n] for some F1, . . . , Fk ∈

F(1). By (a),
⋂k

i=1 Fi 6= ∅. Therefore, xF1 xF2 · · · xFk divides x j xk−1
[n] if and

only if
⋂k

i=1 Fi = { j}. �

Corollary 4.2. Let I ⊂ S = K [x1, . . . , xn] be a squarefree monomial ideal. Let
n > 1 and suppose that xk−1

[n] ∈ Soc(S/I k). Then k < n, and depth S/I j > 0 for
j < k.

Proof. The condition (b)(ii) of Proposition 4.1 guarantees the existence of
F ( j)
∈F(1) with j ∈ F ( j) and j+1 6∈ F ( j) for each 1≤ j < n and the existence

of F (n)
∈F(1) with n ∈ F (n) and 1 6∈ F (n). Then

⋂n
j=1 F ( j)

=∅. Thus if k ≥ n,
then condition (a)(ii) of Proposition 4.1 is violated, and hence k < n.

Let j < k and suppose that depth S/I j
= 0. Then j ≥ 2, since I is squarefree.

Let u ∈ Soc(S/I j ); then uxi ∈ I j for all i and hence also x j−1
[n] xi ∈ I j for

all i . Since n > 1, the ideal I cannot be a principal ideal, because otherwise
depth S/I j > 0 for all j . Hence we may assume that x2x3 · · · xn ∈ I . Then

x j
[n] =

(
x j−1
[n] x1

)
(x2x3 · · · xn) ∈ I j+1.

It follows that

xk−1
[n] = x j

[n]x
k− j−1
[n] =

(
x j
[n]x

k− j−1
1

)
(x2x3 · · · xn)

k− j−1
∈ I k,

a contradiction. �

Examples 4.3. (a) The ideal

I = (x1x2 · · · xn−1, x1xn, x2xn, . . . , xn−1xn)

in S= K [x1, . . . , xn] satisfies conditions (a)(ii) and (b)(ii) of Proposition 4.1
for k = 2. Hence depth(S/I 2)= 0.
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(b) Let n = 2d − 1 and I a monomial ideal of S = K [x1, . . . , xn] generated by
squarefree monomials of degree d . Then condition (a)(ii) in Proposition 4.1
is satisfied for k=2. Thus if a squarefree monomial w belongs to Soc(S/I 2),
then w must be x[n]. Hence depth S/I 2

= 0 if and only if I satisfies for
k = 2 condition (b)(ii) in Proposition 4.1.

For example, if I is generated by the following squarefree monomials

x1x2 · · · xd , x1xd+1xd+2 · · · x2d−1,

xi xd+1xd+2 · · · x2d−1 with 2≤ i ≤ d,

x2x3 · · · xd x j with d + 1≤ j ≤ 2d − 1,

then depth S/I 2
= 0.

Examples 4.3(b) shows that for any odd integer n > 1 there exists a squarefree
monomial ideal I ⊂ K [x1, . . . , xn] generated in degree d = (n+ 1)/2 such that
depth S/I 2

= 0.
On the other hand for a squarefree monomial ideal generated in degree d >

(n+ 1)/2 one has depth S/I 2 > 0, as follows from Corollary 4.4.

Corollary 4.4. Let I ⊂ K [x1, . . . , xn] be a squarefree monomial ideal generated
in the single degree d.

(a) If d > ((k− 1)n+ 1)/k, then depth S/I k > 0.

(b) For all positive integer d, k and n such that d = ((k − 1)n + 1)/k, there
exists a squarefree monomial ideal I ⊂ K [x1, . . . , xn] generated in degree
d such that depth S/I k

= 0.

(c) If d = ((k − 1)n + 1)/k and depth S/I k
= 0, then xk−1

[n] ∈ Soc(S/I k) and
depth S/I `

= 0 for all `≥ k.

Proof. (a) Let F1, . . . , Fk subset of [n] of cardinality d. We first show by
induction on i that ∣∣∣∣ i⋂

j=1
F j

∣∣∣∣> ((k− i)n+ i)/k.

The assertion is trivial for i = 1. By using the induction hypothesis, we see that∣∣∣∣ i⋂
j=1

F j

∣∣∣∣≥ ∣∣∣∣i−1⋂
j=1

F j

∣∣∣∣+ |Fi | − n

>
(k−i+1)n+(i−1)

k
+

(k−1)n+1
k

− n = (k−i)n+i
k

,

as desired.
It follows that any intersection of k subsets of [n] of cardinality d admits more

than one element. Therefore I satisfies condition (a)(ii) of Proposition 4.1, but
violates condition (b)(ii).
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Since condition (a)(ii) is satisfied, it follows from Proposition 4.1 that xk−1
[n]

is not in I k . Thus, if we assume that depth S/I k
= 0, Corollary 2.2 implies

that xk−1
[n] ∈ Soc(S/I k). However, since condition (b)(ii) is violated, this is not

possible.

(b) Suppose that d = ((k− 1)n+ 1)/k. Then n ≡ 1 mod k, say, n = (r + 1)k+ 1
for an integer r ≥ 0. It then follows that d = (r+1)k−r . Consider the monomial
ideal I generated by all squarefree monomials of degree d in K [x1, . . . , xn]. By
[Herzog and Hibi 2005, Corollary 3.4] one has

depth S/I k
=max{0, n− k(n− d)− 1}.

Since n− k(n− d)− 1= (r + 1)k+ 1− k(r − 1)− 1= 0, the assertion follows.

(c) Let u ∈ Soc(S/I k), u = xa1
1 xa2

2 · · · x
an
n . Then, by Corollary 2.2, ai ≤ k−1 for

all i , and hence deg u ≤ (k− 1)n = kd− 1. On the other hand, since uxi ∈ I k , it
follows that deg u+ 1≥ kd . Thus we conclude that deg u = kd − 1= (k− 1)n,
which is only possible if u = xk−1

[n] . Let ` > k and let v be a generator of I `−k .
Then uvxi ∈ I `+1, but uv 6∈ I `, because

deg uv = (kd − 1)+ (`− k)≤ kd − 1+ (`− k)d = `d − 1 < `d.

This shows that uv ∈ Soc(S/I `), and consequently depth S/I `
= 0, as required.

�

Example 4.5. Let k ≥ 2, and assume that d = ((k − 1)n + 1)/k. Then n =
(kd − 1)/(k − 1), and this is an integer if and only if d ≡ 1 mod(k − 1). One
solution is d = k. Then n = k + 1. With these data we may choose the ideal
I ⊂ S= K [x1, . . . , xn] generated by all squarefree monomials of degree d = k =
n− 1. Then obviously I satisfies conditions (a)(i) and (b)(i) of Proposition 4.1.
Thus xk−1

[n] ∈Soc(S/I k). In particular, depth S/I k
= 0. It is shown in [Herzog and

Hibi 2005] that depth S/I j > 0 for j < k. (This also follows from Corollary 4.2).
This example shows that arbitrary high powers of a squarefree monomial ideal
may have a maximal socle.

It is known by a result of Brodmann [1979] (see also [Herzog and Hibi 2005])
that the depth function f (k)= depth S/I k is eventually constant. In [Herzog et al.
2013] the smallest number k for which depth S/I k

= depth S/I j for all j ≥ k, is
denoted by dstab(I ). In [Herzog and Asloob Qureshi 2015] it is conjectured that
dstab(I ) < n for all graded ideals in K [x1, . . . , xn]. Corollary 4.2 together with
Corollary 4.4(c) show that this conjecture holds true for a squarefree monomial
ideal I ⊂ K [x1, . . . , xn] generated in degree d = ((k − 1)n + 1)/k for which
depth S/I k

= 0.



BOUNDING THE SOCLES OF POWERS OF SQUAREFREE MONOMIAL IDEALS 229

References

[Brodmann 1979] M. Brodmann, “Asymptotic stability of Ass(M/I n M)”, Proc. Amer. Math. Soc.
74:1 (1979), 16–18.

[Herzog and Asloob Qureshi 2015] J. Herzog and A. Asloob Qureshi, “Persistence and stability
properties of powers of ideals”, J. Pure Appl. Algebra 219:3 (2015), 530–542.

[Herzog and Hibi 2005] J. Herzog and T. Hibi, “The depth of powers of an ideal”, J. Algebra
291:2 (2005), 534–550.

[Herzog et al. 2013] J. Herzog, A. Rauf, and M. Vladoiu, “The stable set of associated prime
ideals of a polymatroidal ideal”, J. Algebraic Combin. 37:2 (2013), 289–312.

[Terai and Trung 2014] N. Terai and N. V. Trung, “On the associated primes and the depth of the
second power of squarefree monomial ideals”, J. Pure Appl. Algebra 218:6 (2014), 1117–1129.

juergen.herzog@uni-essen.de Fakultät für Mathematik, Universität Duisburg-Essen,
Campus Essen, D-45117 Essen, Germany

hibi@math.sci.osaka-u.ac.jp Department of Pure and Applied Mathematics, Osaka
University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan

http://dx.doi.org/10.2307/2042097
http://dx.doi.org/10.1016/j.jpaa.2014.05.011
http://dx.doi.org/10.1016/j.jpaa.2014.05.011
http://dx.doi.org/10.1016/j.jalgebra.2005.04.007
http://dx.doi.org/10.1007/s10801-012-0367-z
http://dx.doi.org/10.1007/s10801-012-0367-z
http://dx.doi.org/10.1016/j.jpaa.2013.11.008
http://dx.doi.org/10.1016/j.jpaa.2013.11.008
mailto:juergen.herzog@uni-essen.de
mailto:hibi@math.sci.osaka-u.ac.jp



	Introduction
	2. Socles of powers of squarefree monomial ideals
	3. Edge ideals whose square has depth zero
	4. Powers of squarefree monomial ideals with maximal socle
	References

