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Bounding the socles of powers of squarefree
monomial ideals

JURGEN HERZOG AND TAKAYUKI HIBI

Let S = K[xy, ..., x,] be the polynomial ring in n variables over a field K
and I C § a squarefree monomial ideal. In the present paper we are interested
in the monomials u € S belonging to the socle Soc(S/I¥) of S/I*,i.e.,u & I*
and ux; € I* for 1 <i <n. We prove that if a monomial xf' -+ xym belongs
to Soc(S/I"), then a; <k — 1 for all 1 <i <n. We then discuss squarefree
monomial ideals I C S for which x{‘,ﬁl € Soc(S/Ik), where xp,) = x1x2 - - x5,
Furthermore, we give a combinatorial characterization of finite graphs G on
[n]={1, ..., n} for which depth S/(I(;)2 =0, where I is the edge ideal of G.

Introduction

The depth of powers of an ideal (especially, a monomial ideal) of the polynomial
ring has been studied by many authors. In the present paper, we are interested in
the socle of powers of a squarefree monomial ideal.

Let K be a field, S = K[xy, ..., x,] the polynomial ring in n variables over K,
and I C § a graded ideal. We denote by m = (x1, .. ., x,;) the graded maximal
ideal of S. An element f + I € S/I is called a socle element of S/I if x; f € 1
fori =1,...,n. Thus f+ [ is a nonzero socle element of S/1 if f el :m\[.
The set of socle elements Soc(S/I) of S/1 is called the socle of S/1I. Notice that
Soc(S/1) is a K-vector space isomorphic to (/ : m)/I. One has depth S/1 =0
if and only if Soc(S/I) # {0}.

In the case that / is a monomial ideal, a case which we mainly consider
here, Soc(S/1) is generated by the residue classes of monomials. If u and v are
monomials not belonging to /, then u + [ = v+ [, if and only if u = v. Thus,
if # is a monomial, it is convenient to write # € Soc(S/I) and to call u a socle
element of S/1 ifu+1 € Soc(S/I) and u+ I # 0. In other words, u € Soc(S/I)
ifandonly if u ¢ I and ux; € [ forall 1 <i <n.

The present paper is organized as follows. In Section 1, we show that, for a
squarefree monomial ideal I C S, if a monomial x{" - - -xp" is a socle element of
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S/I*, then a; <k —1 forall 1 <i <n (Corollary 2.2). In Section 2, the edge
ideal I arising from a finite graph G is discussed. We give a combinatorial
characterization of G for which depth S/(I5)?> = 0 (Theorem 3.1).

Let I C S be a squarefree monomial ideal. If the monomial u = x{‘n_]l happens
to be a socle element of S/I¥, then, according Corollary 2.2, u is a socle element
of S/I¥ of maximal degree. In Section 3, we study squarefree monomial ideals
I C S with xﬁil € Soc(S/I%). It is proved that, for a squarefree monomial ideal

I C S with x{‘njl € Soc(S/I%), one has k < n and depth S/I/ > 0 for j < k

(Corollary 4.2). Furthermore, for a squarefree monomial ideal I C S generated
in degree d with x;;' € Soc(S/1*), we show that if d > ((k — Dn + 1)/k,
then depth S/Ik > 0 and that if d = ((k — 1)n 4+ 1)/ k and depth S/Ik =0, then
xi' €Soc(S/1%) and depth S/1* = 0 for all £ > k (Corollary 4.4).
2. Socles of powers of squarefree monomial ideals
Proposition 2.1. Let I be a monomial ideal. Fori =1, ..., n set
¢; = max{deg, (u) :u € G(I)},
and let)cf1 co- X2 be a socle element of S/I. Thena; <ci—1fori=1,...,n.

Proof. Letu = x{" -+ - x," be a socle element of S/I. Thus u ¢ I and u € I : m.
Suppose that a; > ¢; for some i. Since x;u € I, there exists v € G(I) which
divides x;u.

It follows that degx_/,(v) < deng (xju) = deng (u) for j # i, and deg, (v) <
ci < degxi (u). Therefore, v divides u, and hence u € I, a contradiction. ]

Corollary 2.2. Let I be a squarefree monomial ideal, and let x{" - - - x," be a
socle element of S/I*. Then

a<k—1 fori=1,...,n.

3. Edge ideals whose square has depth zero
We consider the case of edge ideals.

Theorem 3.1. Let [ = I C S = K|[xy, ..., x,] be the edge ideal of graph G on
the vertex set [n). The following conditions are equivalent:

(a) depth §/I% =0;

(b) G is a connected graph containing a cycle C of length 3, and any vertex of
G is a neighbor of C.

Moreover, xpn) € Soc(S/1?) if and only if G is a cycle of length 3.
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Proof. (b) = (a): Suppose that G has a cycle of length 3, say, {1, 2}, {1, 3} and
{2, 3} are edges of G and that, for each 4 < j <n, one of {1, j}, {2, j} and {3, j}
is an edge of G. It then follows immediately that the monomial u = xjx;x3
satisfies u & I? and u € I : m. Hence depth S/1? =0, as required. This argument
also shows that xp,; € Soc(S/1?) if and only if G is cycle of length 3

(a) = (b): Let I = I be the edge ideal of a finite graph G with depth S/1% = 0.
Then there exists a monomial u with u ¢ I? such that u € I? : m. Let H denote
the induced subgraph of G whose vertices are those i € [n] such that x; divides u.
Since u ¢ I? it follows that H cannot possess two disjoint edges. If H possesses
an isolated vertex i, then x;u ¢ I%. This contradict u € I*> : m. Hence H is
connected without disjoint edges. Thus H must be either a cycle of length 3, or
a line of length at most 2.

First, if H is a line of length 1, i.e., H is an edge of G, then we may assume
that u = x{'x3* with each ¢; > 1. If each ¢; > 2, then u € 12, a contradiction.
Leta;=1and u = xlxgz. Then ux; ¢ I?%. This contradicts u € I? : m.

Now, let H be either a cycle of length 3, or a line of length 2. Thus we may
assume that u = x{'x3°x5> with each a; > 1, where {1, 2} and {1, 3} are edges
of G. Since u ¢ I?, it follows that a; = 1. Thus u = xx5?x5>. If {2, 3} is not an
edge of G, then xu & 1 2 a contradiction. Hence {2, 3} is an edge of G. Then,
since u ¢ I2, it follows that a» = a3 = 1. Thus u = x;x2x3 and {1, 2}, {1, 3} and
{2, 3} are edges of G. Let j > 4. Since xu € 12, it follows that one of {1, j},
{2, j} and {3, j} must be an edge of G, as desired. Il

This result has been shown independently by Terai and Trung [2014].

4. Powers of squarefree monomial ideals with maximal socle

Let I C S =K][xy,...,x,] be a squarefree monomial ideal. If the monomial
U= x{‘nil happens to be a socle element of /7%, then, by Corollary 2.2, u is a
socle element of S/I* of maximal degree. The next proposition characterizes
those squarefree monomial ideals for which x{‘n? !is indeed a socle element of
S/,

We consider [ as the facet ideal of a simplicial complex A. Thus I = I(A)
where the set of facets (A) of A is given as

F(A) = {supp(u) :u € G(I)}.

In other words, G(I(A)) = {xr : F € #(A)} where we set xp = [ [,y x; for
F C [n].

Proposition 4.1. Let A be a simplicial complex on the vertex set [n], and

I=I(A)CS=K]|xi,...,x,]
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its facet ideal.
(a) The following conditions are equivalent:
Q) xf ' ¢ I~
(i) (o, F; £ @ forall Fy, ..., Fx € F(A).
(b) Assuming that x{‘njl & I*, the following conditions are equivalent:

(i) xjxi ' € I* forall j. .
(il) Foreach j=1,...,n,thereexist Fy, ..., Fx € F(A) suchthat (| F; ={j}.

In particular, x{‘nil € Soc(S/Ik) if and only if (a)(ii) and (b)(ii) holdl. 1

Proof. (a) x{‘nil e I* if and only if there exist Fi, ..., F, € F(A) such that

X XF, -+ - XF, divides xﬁal. This is the case, if and only if no x{‘ divides

XFXF, - -+ XF,. This is equivalent to saying that ﬂf-‘zl F; = @. Thus the desired

conclusion follows.

(b) x‘,x{‘njl eI*ifand onlyif xp xF, - - - xF, divides x‘,x{‘njl forsome Fi, ..., F €
F(A). By (a), ﬂi.‘zl F; # @. Therefore, xp xp, - - - X, divides xjx{‘n? if and
only if ﬂle F;=1{j}. O
Corollary 4.2. Let I C S = K|[xy, ..., x,] be a squarefree monomial ideal. Let

n > 1 and suppose that x{‘njl € Soc(S/I*). Then k < n, and depth S/I7 > 0 for
Jj <k

Proof. The condition (b)(ii) of Proposition 4.1 guarantees the existence of
FD e F(A) with j € FU) and j+1 & FY for each 1 < j < n and the existence
of F™ € F(A) withn € F™ and 1 ¢ F™. Then (j_; FY’ = @. Thus if k > n,
then condition (a)(ii) of Proposition 4.1 is violated, and hence k < n.

Let j < k and suppose that depth S/I/ = 0. Then j > 2, since I is squarefree.
Let u € Soc(S/Ij); then ux; € I’ for all i and hence also x[jn?]xi e I’ for
all i. Since n > 1, the ideal I cannot be a principal ideal, because otherwise
depth S/1 /> 0 for all j. Hence we may assume that xox3 - - - x, € I. Then

j i—1 1
j] = (x[jn] xl)(x2x3 ceexp) e VL

x[n

It follows that
k=1 _ j k—j—1 _ ¢ j _k—j—1 k—j—1 k
Xl = XX = (x[n]x1 )(xpc3 ceexp) T e IR,
a contradiction. O
Examples 4.3. (a) The ideal

I = (X1x2 Xp—1, X1Xp, X2Xn, - . ., Xp—1Xpn)

in S=K|[xy, ..., x,] satisfies conditions (a)(ii) and (b)(ii) of Proposition 4.1
for k = 2. Hence depth(S/1%) =0.
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(b) Let n =2d — 1 and I a monomial ideal of S = K[xy, ..., x,] generated by
squarefree monomials of degree d. Then condition (a)(ii) in Proposition 4.1
is satisfied for k =2. Thus if a squarefree monomial w belongs to Soc(S/I?),
then w must be x(,). Hence depth S/1? = 0 if and only if I satisfies for
k = 2 condition (b)(ii) in Proposition 4.1.

For example, if I is generated by the following squarefree monomials

X1X2 "+ Xd,  X1Xg41Xd+2 " - X2d—15
XiXd41Xd+2 "+ X2a—1 With2 <i <d,

Xox3---xgx; Wwithd+1=<j<2d—1,

then depth S/1> = 0.

Examples 4.3(b) shows that for any odd integer n > 1 there exists a squarefree
monomial ideal I C K[x, ..., x,] generated in degree d = (n + 1)/2 such that
depth S/12 =0.

On the other hand for a squarefree monomial ideal generated in degree d >
(n+1)/2 one has depth §/I% > 0, as follows from Corollary 4.4.

Corollary 4.4. Let I C K|[x1, ..., x,] be a squarefree monomial ideal generated
in the single degree d.
@) Ifd > ((k —1)n+1)/k, then depth S/I* > 0.

(b) For all positive integer d, k and n such that d = ((k — 1)n + 1)/ k, there
exists a squarefree monomial ideal I C K[xy, ..., x,] generated in degree
d such that depth S/I* = 0.

(¢) Ifd = ((k — D)n + 1)/k and depth S/I* = 0, then x*~' € Soc(S/1*) and
[n]
depth S/I* =0 for all £ > k.

Proof. (a) Let Fy, ..., Fy subset of [n] of cardinality d. We first show by

induction on i that .
1
M Fj

j=1

> ((k—i)n+1i)/k.

The assertion is trivial for i = 1. By using the induction hypothesis, we see that
i

M Fj

j=1

=

i—1
m Fj +|Fi|—I’L
j=1

- k—i+Dn+@G—-1) n (k—Dn+1 n— (k—i)n+i ’
k k k
as desired.
It follows that any intersection of k subsets of [#] of cardinality d admits more
than one element. Therefore / satisfies condition (a)(ii) of Proposition 4.1, but
violates condition (b)(ii).
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Since condition (a)(ii) is satisfied, it follows from Proposition 4.1 that xﬁﬁl
is not in 7*. Thus, if we assume that depth S/7% = 0, Corollary 2.2 implies
that x{‘njl € Soc(S/I*). However, since condition (b)(ii) is violated, this is not
possible.

(b) Suppose that d = ((k—1)n+1)/k. Then n = 1 mod k, say, n = (r + 1)k + 1
for an integer r > 0. It then follows that d = (r + 1)k —r. Consider the monomial
ideal I generated by all squarefree monomials of degree d in K[xy, ..., x,]. By
[Herzog and Hibi 2005, Corollary 3.4] one has

depth S/I* = max{0, n —k(n — d) — 1}.

Sincen—k(n—d)—1=@+1)k+1—k(r —1)—1=0, the assertion follows.

(c) Let u € Soc(S/I%), u = x{"x5% - - x,". Then, by Corollary 2.2, a; <k — 1 for
all i, and hence degu < (k — 1)n = kd — 1. On the other hand, since ux; € 1%, it
follows that degu + 1 > kd. Thus we conclude that degu = kd — 1 = (k — 1)n,
which is only possible if u = x{‘,al. Let £ > k and let v be a generator of 1¢7*,
Then uvx; € I*T!, but uv & I¢, because

deguv = (kd — 1)+ —k) <kd — 1+ —k)d = td — 1 < ¢d.

This shows that uv € Soc(S/1%), and consequently depth S/1¢ = 0, as required.
O

Example 4.5. Let £ > 2, and assume that d = ((k — 1)n 4+ 1)/k. Then n =
(kd —1)/(k — 1), and this is an integer if and only if d = 1 mod(k — 1). One
solution is d = k. Then n = k + 1. With these data we may choose the ideal
I CS=K]|xi,...,x,] generated by all squarefree monomials of degree d =k =
n — 1. Then obviously [ satisfies conditions (a)(i) and (b)(i) of Proposition 4.1.
Thus x{‘n_]l € Soc(S/I%). In particular, depth §/I* =0. It is shown in [Herzog and
Hibi 2005] that depth S/1/ > 0 for j < k. (This also follows from Corollary 4.2).
This example shows that arbitrary high powers of a squarefree monomial ideal

may have a maximal socle.

It is known by a result of Brodmann [1979] (see also [Herzog and Hibi 2005])
that the depth function f (k) =depth S/I* is eventually constant. In [Herzog et al.
2013] the smallest number k for which depth S/I¥ = depth §/I/ for all j > k, is
denoted by dstab(/). In [Herzog and Asloob Qureshi 2015] it is conjectured that
dstab(/) < n for all graded ideals in K[xy, ..., x,]. Corollary 4.2 together with
Corollary 4.4(c) show that this conjecture holds true for a squarefree monomial
ideal I C K[xy, ..., x,] generated in degree d = ((k — 1)n + 1)/k for which
depth S/I* = 0.
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