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The cone of Betti tables over a rational normal
curve

MANOJ KUMMINI AND STEVEN V SAM

We describe the cone of Betti tables of Cohen–Macaulay modules over the
homogeneous coordinate ring of a rational normal curve.

1. Introduction

The study of the cone generated by the graded Betti tables of finitely gener-
ated modules over graded rings has received much attention recently. (See
Definition 2.1 for the relevant definitions.) This began with a conjectural de-
scription of this cone in the case of polynomial rings by M. Boij and J. Söder-
berg [2008] which was proved by D. Eisenbud and F.-O. Schreyer [2009]. We
refer to [Eisenbud and Schreyer 2011; Fløystad 2012] for a survey of this devel-
opment and related results. Similarly, in the local case, there is a description of
the cone of Betti sequences over regular local rings [Berkesch et al. 2012b].

However, not much is known about the cone of Betti tables over other graded
rings, or over nonregular local rings. The cone of Betti tables for rings of the form
k[x, y]/q(x, y) where q is a homogeneous quadric is described in [Berkesch
et al. 2012a]. In the local hypersurface case, [Berkesch et al. 2012b] gives some
partial results and some asymptotic results. We also point to [Eisenbud and
Erman 2012, Sections 9–10] for a study of Betti tables in the nonregular case.

In this paper, we consider the coordinate ring of a rational normal curve.
These rings are of finite Cohen–Macaulay representation type, and the syzygies of
maximal Cohen–Macaulay modules have a simple description; see Discussion 2.2.
Our main result is Theorem 4.1, describing the cone generated by finite-length
modules over such a ring. Remark 4.10 explains how the argument extends
to Cohen–Macaulay modules of higher depth. We work out a few explicit
examples of our result in Section 5 for the rational normal cubic. In Remark 6.1,
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we consider the cone generated by sequences of total Betti numbers, and get
a picture reminiscent of the case of regular local rings from [Berkesch et al.
2012b].

2. Preliminaries

Let k be a field, which we fix for the rest of the article.

Definition 2.1. Let R be any Noetherian graded k-algebra. For a finitely gener-
ated R-module M , define its graded Betti numbers βR

i, j (M) :=dimk TorR
i (k,M) j .

Let t = pdim(R)+ 1 (possibly t =∞). The Betti table of M is

βR(M) :=
(
βR

i, j (M)
)

0≤i<t
j∈Z

,

which is an element of the Q-vector space

VR :=
∏

0≤i<t

⊕
j∈Z

Q.

The cone of Betti tables over R is the cone B(R) generated by the rays Q≥0·β
R(M)

in VR .

Let S = k[x, y]. Fix d ≥ 1. Let B =
⊕

n Snd ⊂ S, that is, the homogeneous
coordinate ring of the rational normal curve of degree d . For a coherent sheaf F

on P1, define
0(d)
∗
(F)=

⊕
j∈Z

H0(P1,F⊗O(d j)).

We set 0∗ = 0
(1)
∗ . Also, for a finitely generated B-module M , let M̃ be the

associated coherent sheaf on P1. There is an exact sequence

0→ H0
m(M)→ M→ 0(d)

∗
(M̃)→ H1

m(M)→ 0,

where Hi
m denotes local cohomology with respect to the homogeneous max-

imal ideal m ⊂ B [Iyengar et al. 2007, Theorem 13.21] and hence the map
M → 0

(d)
∗ (M̃) is an isomorphism if (and only if) M is a maximal Cohen–

Macaulay module by [Iyengar et al. 2007, Theorem 9.1].

Discussion 2.2 (Maximal Cohen–Macaulay modules over B). Ignoring the grad-
ing for a moment, the indecomposable maximal Cohen–Macaulay B-modules
are exactly the modules

M (`)
:=

⊕
n≥0

Snd+` for `= 0, . . . , d − 1.

To see this, let M be a maximal Cohen–Macaulay B-module. Then M̃ is a vector
bundle on P1, and by Grothendieck’s theorem, every vector bundle on P1 is a
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direct sum of line bundles. Note that 0(d)∗ (O(i)) = M (`) if i ≡ ` (mod d) and
0≤ ` < d . Since 0(d)∗ (M̃)∼= M , we conclude that M is a direct sum of the M (`)

for various `.
For each 0≤ `≤ d − 1, consider the exact sequence

0→ OP1(−1)`→ H0(P1,OP1(`))⊗OP1 → OP1(`)→ 0.

Applying 0(d)∗ to this sequence, we conclude that M (`) is minimally generated
by `+ 1 homogeneous elements of the same degree, and that for 1≤ `≤ d − 1,
the first syzygy module of M (`) is (M (d−1)(−1))`. Iterating this remark gives a
linear minimal free resolution for M (`) over B.

3. Pure resolutions

Definition 3.1. We say that a finite length B-module M has a pure resolution if
there is a minimal exact sequence of the form

0→ E2→ F1→ F0→ M→ 0,

where each Fi is generated in a single degree di , the modules F0, F1 are free,
and E2 = M (`)(−d2)

⊕r for some ` and r . In this case, we call (d0, d1, d2; `) the
degree sequence of M .

We remark that `= 0 means that the module has finite projective dimension.

Proposition 3.2. If M has a pure resolution of type (d0, d1, d2; `), then its Betti
numbers are determined up to scalar multiple. In particular, they are determined
by the first 3 Betti numbers (β0, β1, β2), which is a multiple of

βB(d0, d1, d2; `)=
(
d(d2− d1)− `, d(d2− d0)− `, d(d1− d0)(`+ 1)

)
.

The other Betti numbers satisfy

βi = (d − 1)i−3β2
d`
`+ 1

, (i ≥ 3).

Proof. The Hilbert series of B is

HB(t)=
1+ (d − 1)t
(1− t)2

.

Suppose that M is a finite length module with pure resolution of type (d0,d1,d2;`).
By definition, we have an exact sequence of the form

0→ M (`)(−d2)
β2 → B(−d1)

β1 → B(−d0)
β0 → M→ 0,

for some (β0, β1, β2). By Discussion 2.2, M (`) has a resolution of the form

· · · → B(−3)d(d−1)2`
→ B(−2)d(d−1)`

→ B(−1)d`→ B`+1
→ M (`)

→ 0,
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so M has a free resolution of the form

· · ·→ B(−d4)
β4→ B(−d2−1)β2d`/(`+1)

→ B(−d2)
β2→ B(−d1)

β1→ B(−d0)
β0.

For i > 3, we have

di = di−1+ 1= d2+ (i − 2),

βi = (d − 1)βi−1 = (d − 1)i−3β2d`/(`+ 1).

Taking the alternating sum, we get

HM(t)= β0td0 HB(t)−β1td1 HB(t)

+β2td2 HB(t)+β2
d`
`+ 1

td2 HB(t)
∑
i≥3

(−1)i (d − 1)i−3t i−2

=
(β0td0 −β1td1 +β2td2)(1+ (d − 1)t)

(1− t)2

−β2
d`
`+ 1

td2+1 1+ (d − 1)t
(1− t)2

1
1− (1− d)t

=
(β0td0 −β1td1 +β2td2)(1+ (d − 1)t)− d`

`+1β2td2+1

(1− t)2
.

Since HM(t) is a polynomial, the numerator h(t) of the last expression is divisible
by (1− t)2. This translates to h(1)= h′(1)= 0 (where h′ is the derivative with
respect to t), which gives two linearly independent conditions on (β0, β1, β2)

since d0 6= d1 and d 6= 0:(
d −d d

`+1

d0+(d0+1)(d−1) −d1−(d1+1)(d−1) d2+(d2+1)
( d
`+1−1

))
β0

β1

β2

= 0.

So (β0, β1, β2) is determined up to simultaneous scalar multiple, and it is straight-
forward to check that βB(d0, d1, d2; `) is a valid solution. �

Since it will be used later, we record a relation amongst these pure Betti tables:

βB(d0, d1, d2; `)=

(
1−

`

d − 1

)
βB(d0, d1, d2; 0)+

`

d − 1
βB(d0, d1, d2; d−1).

(3.3)
This relation extends to all of the Betti numbers since the later Betti numbers are
multiples of β2.
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4. Main result

Theorem 4.1. The extremal rays of the subcone of B(B) generated by the Betti
tables of finite length modules are spanned by Betti tables of modules with pure
resolutions of type (d0, d1, d2; `) where d0 < d1 < d2 and `= 0 or `= d − 1.

The proof will be given at the end of the section. The idea is to embed this
cone as a certain quotient cone of B(S) and to deduce the result from [Eisenbud
and Schreyer 2009].

Let M be a finite length B-module. Let (F•, ∂•) be a minimal graded B-free
resolution of M ; then Fi =

⊕
j B(− j)β

B
i, j (M). Consider the exact sequences

0→ image ∂2→ F1→ image ∂1→ 0, 0→ image ∂1→ F0→ M→ 0.

Using [Eisenbud 1995, Corollary 18.6], we conclude that depth(image ∂i ) = i
for i = 1, 2, so image ∂2 is a maximal Cohen–Macaulay B-module. By Discus-
sion 2.2, we may write

image ∂2 =

d−1⊕
`=0

⊕
j∈Z

(M (`)(− j))b`, j (M),

for some integers b`, j (M). Hence

image ∂3 =
⊕
j∈Z

(M (d−1)(− j − 1))s j , where s j =

d−1∑
`=0

`b`, j (M). (4.2)

Sheafifying the complex 0→ image ∂2 → F1 → F0, we get the locally free
resolution

0→
d−1⊕
`=0

⊕
j∈Z

O(− jd + `)b`, j (M)→
⊕
j∈Z

O(− jd)β
B
1, j (M)→

⊕
j∈Z

O(− jd)β
B
0, j (M)

of M̃ = 0 over P1. Applying 0∗ to this complex, we get the complex

0→
d−1⊕
`=0

⊕
j∈Z

S(− jd + `)b`, j (M)→
⊕
j∈Z

S(− jd)β
B
1, j (M)→

⊕
j∈Z

S(− jd)β
B
0, j (M),

which is acyclic by [Eisenbud 1995, Lemma 20.11], and hence a resolution of
an S-module, which we denote by M ′. This resolution is minimal, and M ′ is a
finite length module. It follows that

βS
i, j (M

′)=


βB

i, j/d(M) if i ∈ {0, 1} and d | j,
bdd j/de− j,d j/de(M) if i = 2,
0, otherwise.

(4.3)
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Note, parenthetically, that the association M 7→ M ′ is functorial.
Since M (`) is minimally generated as a B-module by `+ 1 elements, we get

relations

βB
2, j (M)=

d−1∑
`=0

(`+ 1)b`, j (M)=
d−1∑
`=0

(`+ 1)βS
2, jd−`(M

′),

βB
3, j+1(M)= d

d−1∑
`=0

`b`, j (M)= d
d−1∑
`=0

`βS
2, jd−`(M

′).

(4.4)

From these, we obtain another relation

dβB
2, j (M)−β

B
3, j+1(M)= d

d−1∑
`=0

βS
2, jd−`(M

′). (4.5)

We want to say that the correspondence M 7→ M ′ descends to a combinatorial
map on Betti tables βB(M) 7→βS(M ′). Unfortunately, βB(M) does not uniquely
determine βS(M ′) as Example 4.6 shows (one needs the finer invariants b`, j (M)),
so such a map does not exist.

Example 4.6. Consider the case d = 5 and the degree sequences (0, 5, i) for
i = 6, . . . , 10 over the polynomial ring S = k[x, y]. The respective pure Betti
diagrams are

0 1 2
total: 1 6 5

0: 1 . .
1: . . .
2: . . .
3: . . .
4: . 6 5

0 1 2
total: 2 7 5

0: 2 . .
1: . . .
2: . . .
3: . . .
4: . 7 .
5: . . 5

0 1 2
total: 3 8 5

0: 3 . .
1: . . .
2: . . .
3: . . .
4: . 8 .
5: . . .
6: . . 5

0 1 2
total: 4 9 5

0: 4 . .
1: . . .
2: . . .
3: . . .
4: . 9 .
5: . . .
6: . . .
7: . . 5

0 1 2
total: 1 2 1

0: 1 . .
1: . . .
2: . . .
3: . . .
4: . 2 .
5: . . .
6: . . .
7: . . .
8: . . 1

Pick rational numbers c1, . . . , c5. Then there is some integer D > 0 so that the
weighted sum of these Betti diagrams with coefficients Dci is the Betti table
of some finite length S-module N . We will see in the proof of Lemma 4.8 that
N = M ′ for some B-module M . The data (βB

i, j (M))i=0,1,2,3 only contains 4
numbers which we can express as linear combinations of the ci :

βB
0,0(M)= c1+ 2c2+ 3c3+ 4c4+ c5,

βB
1,1(M)= 6c1+ 7c2+ 8c3+ 9c4+ 2c5,



THE CONE OF BETTI TABLES OVER A RATIONAL NORMAL CURVE 257

βB
2,2(M)= 5 · 5c1+ 4 · 5c2+ 3 · 5c3+ 2 · 5c4+ c5,

βB
3,3(M)= 5(4 · 5c1+ 3 · 5c2+ 2 · 5c3+ 5c4).

In particular, for any such data, there are infinitely many 5-tuples (c1, . . . , c5)

which give rise to this data, so (c1, . . . , c5) cannot be recovered from βB
i, j (M)

(even up to scalar multiple).

There is an easy solution though: we can define an equivalence relation on
B(S) to account for the fact that the sums on the right hand sides of (4.4) and
(4.5) are uniquely determined by βB(M). Then βS(M ′), under this equivalence
relation, is well-defined since the equivalence relation captures all possible
choices for the b`, j (M). We record this discussion now.

Notation 4.7. Define an equivalence relation on VS and B(S) by γ ∼ γ ′ if

d−1∑
`=0

γ2, jd−` =

d−1∑
`=0

γ ′2, jd−` and
d−1∑
`=0

`γ2, jd−` =

d−1∑
`=0

`γ ′2, jd−` for all j .

Write B(S)/∼ for the set of equivalence classes under this relation. Let

φ : VB→ VS/∼

be the following map: for β ∈ VB , define φ(β) to be the class of any γ ∈ VS

where γ is such that

(a) γi, j = βi, j/d if i ∈ {0, 1} and d | j ;

(b)
∑d−1

`=0 (`+ 1)γ2, jd−` = β2, j and
∑d−1

`=0 `γ2, jd−` =
1
dβ3, j+1 for all j ;

(c) γi, j = 0 if i ∈ {0, 1} and d - j or if i ≥ 3.

Lemma 4.8. (a) φ(βB(M))∼ βS(M ′).

(b) φ(β +β ′)∼ φ(β)+φ(β ′).

(c) If γ ∼ γ ′ and δ ∼ δ′, then γ + δ ∼ γ ′+ δ′.

(d) φ(B(B))⊆ B(S)/∼ .

(e) The restriction of φ to B(B) is injective, and its image is generated by
the classes of the Betti tables over S of degree sequences of the form
(da0 < da1 < a2) where a2 ≡ 0, 1 (mod d).

Proof. Properties (a), (b), and (c) follow directly from the definition of ∼. Since
B(B) is additively generated by elements of the form βB(M), (d) follows from
(a), (b), and (c).

Let β, β ′ ∈ B(B). Set γ = φ(β), γ ′ = φ(β ′). If γ ∼ γ ′, then βi, j = β
′

i, j for
all 0≤ i ≤ 3 and for all j . To show that φ is injective we need that, if M is any
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graded B-module,
(
βB

i, j (M)
)

06i63
j∈Z

determines βB(M). Even stronger, by (4.2)
and (4.4), these invariants determine image ∂3:

image ∂3 ∼=
⊕
j∈Z

(M (d−1)(− j))β
B
3, j (M)/d .

Now we describe the image of φ. Let a0, a1, a2 be integers such that

da0 < da1 < a2.

Let N be a finite length graded S-module with pure resolution with degree
sequence (da0 < da1 < a2). Let M =

⊕
n∈Z Ndn . Then M is a finite length

graded B-module. Take a minimal S-free resolution

0→ S(−a2)
βS

2,a2
(N )
→ S(−da1)

βS
1,da1

(N )
→ S(−da0)

βS
0,da0

(N )

of N . Restricting this complex to degrees nd for n ∈ Z, we see that

b`, j (M)=
{
βS

2,a2
(N ) if jd − `= a2 with 0≤ `≤ d − 1,

0 otherwise,

and that, for i = 0, 1, βB
i, j (M) = β

S
i, jd(N ). Note that N = M ′, so the class of

βS(N ) is in imageφ. The converse inclusion, that imageφ is inside the cone
generated by the classes of the Betti tables over S of degree sequences of the
form (da0 < da1 < a2) follows from noting that for all B-modules M , βS(M ′)
has a decomposition into pure Betti tables of this form [Eisenbud and Schreyer
2009, Section 1].

We may further impose that a2≡ 0 (mod d) or a2≡ 1 (mod d) if we just want
generators for the cone. This follows from what we have just shown, additivity
of φ, and the relation (3.3). �

Proof of Theorem 4.1. Lemma 4.8 shows that the subcone of B(B) generated by
Betti tables of finite length B-modules is already generated by pure Betti tables
of type (d0, d1, d2; `) where d0 < d1 < d2 and ` ∈ {0, d − 1}, and also shows
that there exist finite length modules which have these Betti tables. To show
that these are extremal rays of this subcone, we have to show that no such pure
Betti table is a nonnegative linear combination of the other ones. We know that
in B(S), the pure Betti tables for different degree sequences have this property.
Hence we reduce to fixing d0, d1, d2 and showing there are no dependencies as
we vary `. But we only allow `= 0 and `= d−1, and it is clear that the images
of their Betti tables under φ are not scalar multiples of each other. �

Remark 4.9. By Theorem 4.1, the extremal rays of B(B) are of the form
(d0, d1, d2; `) where ` = 0 or ` = d − 1. The proof also gives a natural corre-
spondence between these extremal rays and a subset of the extremal rays of B(S)
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via
(d0, d1, d2; 0)↔ (dd0, dd1, dd2),

(d0, d1, d2; d − 1)↔ (dd0, dd1, dd2− (d − 1)).

The extremal rays in B(S) have a partial order structure by pointwise comparison,
that is, (e0, e1, e2) ≤ (e′0, e′1, e′2) if and only if ei ≤ e′i for i = 0, 1, 2. We can
transfer this partial order structure to the extremal rays of B(B) which gives
(d0, d1, d2; `)≤ (d ′0, d ′1, d ′2; `

′) if and only if

d0 ≤ d ′0, d1 ≤ d ′1 and dd2− `≤ dd ′2− `
′.

We can define a simplicial structure on B(B) by defining a simplex to be the
convex hull of any set of extremal rays that form a chain in this partial order.
Then any two simplices intersect in a common simplex since the same property
is true in B(S) [Boij and Söderberg 2008, Proposition 2.9]. Furthermore, every
point β ∈ B(B) lies in one of these simplices: from the proof of Lemma 4.8, we
see that φ(β) is a positive linear combination of pure Betti tables corresponding
to a chain {(da(i)0 , da(i)1 , da(i)2 − `

(i))}, and using (3.3), we can also assume that
it is a chain where `(i) ∈ {0, d − 1} for all i . This allows us to use a greedy
algorithm as in [Eisenbud and Schreyer 2009, Section 1] to decompose elements
of B(B) as a positive linear combination of pure diagrams.

Remark 4.10. We can modify Theorem 4.1 to describe the cone of Cohen–
Macaulay B-modules of a fixed depth. We have just described the depth 0 case,
and the depth 2 case corresponds to maximal Cohen–Macaulay modules, which
are easily classified (Discussion 2.2), so the only interesting case remaining is
depth 1. In this case, one sheafifies the complex 0→ image ∂1→ F0 and the
resulting module M ′ is Cohen–Macaulay of depth 1 (it has a length 1 resolution,
and its Hilbert polynomial is the same as the Hilbert polynomial of M , and hence
has dimension 1). The equivalence relation ∼ on B(S) needs to be changed, but
the required changes are straightforward. The end result is that we can define
depth 1 Cohen–Macaulay modules with pure resolutions (their type is of the
form (d0, d1; `)) and the analogue of Theorem 4.1 holds.

5. An example

We give a few explicit examples for d = 3. In this case, B is the homogeneous
coordinate ring of the rational normal cubic. We will use Macaulay2 [Grayson
and Stillman 1996] and the package BoijSoederberg.

We wish to construct a finite length B-module with pure resolution of type
(d0, d1, d2; `) where 0≤ `≤ 2. Consider the case (0, 2, 3; 1). Let N be a finite
length module over S=k[x, y]with pure resolution of degree sequence 0<6<8,
for example we can take N to be the quotient by the ideal of 4 random sextics.
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In any case we have N =
⊕6

i=0 Ni and we set M = N0⊕ N3⊕ N6, which is a
B-module. If we consider the free resolution 0→ S(−8)3→ S(−6)4→ S for
N and throw out all graded pieces whose degree is not divisible by 3 (and then
divide all remaining degrees by 3), then we get the exact sequence

0→ M (1)(−3)3→ B(−2)4→ B→ M→ 0.

We now give an example of decomposing the Betti table of a B-module M .
Set a= x3, b= x2 y, c= xy2, d = y3 so that we can identify B as the polynomial
ring in a, b, c, d modulo the 2× 2 minors of

(
a b c
b c d

)
. Consider the B-module

M = B/I where I is the ideal (a+ c, d2, cd). The Betti table of M over B is

0 1 2 3 4 5
total: 1 3 5 9 18 36

0: 1 1 . . . .
1: . 2 5 9 18 36 ...

and we wish to decompose it as a nonnegative sum of pure diagrams. Define
an S-module M ′ by using the same presentation matrix. Then M ′ = S/J where
J is the ideal (x3

+ xy2, y6, xy5). Its Betti table and its decomposition into a
nonnegative sum of pure Betti tables is:

0 1 2 1 / 0 1 2\ 2 / 0 1 2\ 1 / 0 1 2\
total: 1 3 2 (-)|total: 4 7 3| + (--)|total: 1 7 6| + (-)|total: 1 4 3|

0: 1 . . 7 | 0: 4 . .| 21 | 0: 1 . .| 3 | 0: 1 . .|
1: . . . | 1: . . .| | 1: . . .| | 1: . . .|
2: . 1 . = | 2: . 7 .| | 2: . . .| | 2: . . .|
3: . . . | 3: . . .| | 3: . . .| | 3: . . .|
4: . . . | 4: . . .| | 4: . . .| | 4: . . .|
5: . 2 1 \ 5: . . 3/ \ 5: . 7 6/ | 5: . 4 .|
6: . . 1 \ 6: . . 3/

These 3 pure diagrams translate to the exact sequences

0→ M (2)(−3)3→ B(−1)7→ B4,

0→ M (2)(−3)6→ B(−2)7→ B,

0→ M (1)(−3)6→ B(−2)4→ B,

and hence we get the sum of pure diagrams:

1 / 0 1 2 3 4 5 \ 2 / 0 1 2 3 4 5 \ 1 / 0 1 2 3 4 5 \
(-)|total: 4 7 9 18 36 72 | + (--)|total: 1 7 18 36 72 144 | + (-)|total: 1 4 6 9 18 36 |
7 | 0: 4 7 . . . . | 21 | 0: 1 . . . . . | 3 | 0: 1 . . . . . |

\ 1: . . 9 18 36 72 .../ \ 1: . 7 18 36 72 144 .../ \ 1: . 4 6 9 18 36 .../

Alternatively, we can use Remark 4.9 to get a decomposition of βB(M)without
understanding βS(M). Then the greedy algorithm in [Eisenbud and Schreyer
2009, Section 1] tells us to subtract the largest positive multiple of the pure
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diagram of type (0, 1, 3; 2) that leaves a nonnegative table. By Proposition 3.2,
this has Betti table

0 1 2 3 4 5
total: 4 7 9 18 36 72

0: 4 7 . . . .
1: . . 9 18 36 72 ...

So the largest multiple we can subtract is 1/7, which leaves us with

1 / 0 1 2 3 4 5 \
(--)|total: 4 14 26 45 90 180 |

7 | 0: 3 . . . . . |
\ 1: . 14 26 45 90 180 .../

Now we repeat by subtracting the largest possible multiple of the pure diagram
of type (0, 2, 3; 2) that leaves a nonnegative table. When we do this, the result is
another pure diagram. The final decomposition is

1 / 0 1 2 3 4 5 \ 5 / 0 1 2 3 4 5 \ 1 / 0 1 2 \
(-)|total: 4 7 9 18 36 72 | + (--)|total: 1 7 18 36 72 144 | + (-)|total: 1 3 2 |
7 | 0: 4 7 . . . . | 28 | 0: 1 . . . . . | 4 | 0: 1 . . |

\ 1: . . 9 18 36 72 .../ \ 1: . 7 18 36 72 144 .../ \ 1: . 3 2 /

Using (3.3), this pure diagram decomposition of β(M) is equivalent to the
previous one.

6. Questions

(1) Unfortunately, our techniques do not allow us to describe the cone B(B) of all
finitely generated B-modules (i.e., allowing those that are not Cohen–Macaulay).
Given the situation for polynomial rings [Boij and Söderberg 2012], we might
conjecture that B(B) is the sum (over c= 0, 1, 2) of the cones of Betti tables for
Cohen–Macaulay B-modules of codimension c. Is this correct?

(2) For the polynomial ring, the inequalities that define the facets of its cone
of Betti tables has an interpretation in terms of cohomology tables of vector
bundles on projective space [Eisenbud and Schreyer 2009, Section 4]. Are there
interpretations for the inequalities that define the cone of finite length B-modules?

Remark 6.1. With reference to Question 1, let us look at the cone Btot(B)
generated by the total Betti numbers (b0(M), b1(M), b2(M), b3(M)) ∈ Q4 of
finitely generated graded B-modules M . Consider an exact sequence

0→ E3→ F2→ F1→ F0→ M→ 0,

such that F0, F1, and F2 are free, E3 is a direct sum of copies of M (d−1) and
image(Fi+1 → Fi ) ⊆ mFi for i = 0, 1. (See Discussion 2.2.) Note that for
i = 0, 1, 2, bi (M) = rank Fi and that b3(M) = d rank E3. By considering the
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partial Euler characteristics of the above exact sequence, we get four inequalities:

b3(M)≥ 0, b2(M)≥
b3(M)
d − 1

,

b1(M)≥ b2(M)−
b3(M)

d
, b0(M)≥ b1(M)− b2(M)+

b3(M)
d

.

To prove the second inequality, we have an exact sequence

0→ E3→ F2→ N → 0,

where N is a maximal Cohen–Macaulay module, and so rank E3≤ (d−1) rank N .
Consider the set{
(b0, b1, b2, b3) ∈Q4

: b3 ≥ 0, b2−
b3

d−1
≥ 0, b1− b2+

b3
d
≥ 0,

b0− b1+ b2−
b3
d
≥ 0

}
.

This is a convex polyhedral cone, with extremal rays generated by (1, 0, 0, 0),
(1, 1, 0, 0), (0, 1, 1, 0) and (0, 1, d, d(d − 1)). We claim that this is the closure
of Btot(B); of course, the rays generated by (0, 1, 1, 0) and (0, 1, d, d(d − 1))
do not belong to Btot(B). This picture, and the proof below, are analogous to
the case of regular local rings [Berkesch et al. 2012b, Section 2]. The point
(1, 0, 0, 0) comes from a free module of rank one, while (1, 1, 0, 0) comes from
M = B/( f ) for some nonzero f ∈ B.

Consider the modules Mt , t≥1 with pure resolutions of type (0, t, t+1; 0). By
Proposition 3.2, (b0(Mt), b1(Mt), b2(Mt), b3(Mt)) is a multiple of (1, t+1, t, 0),
which limits to the ray (0, 1, 1, 0) as t → ∞. Now consider modules Nt ,
t ≥ 1 with pure resolutions of type (0, td, td + 1; d − 1). By Proposition 3.2,
(b0(Nt), b1(Nt), b2(Nt), b3(Nt)) is a multiple of (1, td2

+ 1, td3, td3(d − 1)),
which, as t→∞, approaches the ray generated by (0, 1, d, d(d − 1)).

Remark 6.2. One might wonder whether a similar argument works for the
Veronese embedding (P2,OP2(2)), whose homogeneous coordinate ring is the
only other Veronese subring with finite Cohen–Macaulay representation type.
There are significant obstacles to overcome, which we outline. In Section 4, we
took the sheafification of a resolution 0→ image ∂2→ F1→ F0 of the finite
length B-module M by maximal Cohen–Macaulay B-modules and, thereafter,
applied 0∗ to obtain a minimal S-free resolution of the finite length S-module
M ′; the key point is that for a maximal Cohen–Macaulay B-module N , 0∗(Ñ )
is a maximal Cohen–Macaulay (hence free) S-module. This is not true for the
Veronese embedding (P2,OP2(2)).

More specifically, set S = k[x, y, z] and B =
⊕

n S2n . Then, up to twists,
B has three nonisomorphic maximal Cohen–Macaulay modules M (0)

' B, the
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canonical module M (1) and the syzygy module M (3) of M (1) (see the proof of
[Yoshino 1990, Proposition 16.10]). The first syzygy of M (`) is (M (3))⊕`, for
`=0, 1, 3. However, 0∗(M̃ (3)) is not maximal Cohen–Macaulay over S; its depth
is two. To see this, note that the exact sequence 0→ M (3)

→ B3
→ M (1)

→ 0
gives the Euler sequence 0→�1

P2(1)→O3
P2→OP2(1)→0 on P2; it follows that

0∗(M̃ (3)) is the second syzygy of k(1) as an S-module and has depth two. From
this it follows that if we begin with a B-free resolution (F•, ∂•) of a B-module of
finite length and apply 0∗ to the sheafification of 0→ image ∂3→ F2→ F1→ F0,
the ensuing complex of S-modules need not consist of free S-modules.
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