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Singularities with respect to Mather–Jacobian
discrepancies

LAWRENCE EIN AND SHIHOKO ISHII

As is well known, the “usual discrepancy” is defined for a normal Q-Gorenstein
variety. By using this discrepancy we can define a canonical singularity and
a log canonical singularity. In the same way, by using a new notion, Mather–
Jacobian discrepancy introduced in recent papers we can define a “canonical
singularity” and a “log canonical singularity” for not necessarily normal or
Q-Gorenstein varieties. In this paper, we show basic properties of these
singularities, behavior of these singularities under deformations and determine
all these singularities of dimension up to 2.

1. Introduction

In birational geometry, canonical, log canonical, terminal and log terminal
singularities play important roles. These singularities are all normal Q-Gorenstein
singularities and each step of the minimal model program is performed inside
the category of normal Q-Gorenstein singularities. But in turn, from a purely
singularity theoretic view point, the normal Q-Gorenstein property seems, in
some sense, to be an unnecessary restriction for a singularity to be considered
as a good singularity, because there are many “good” singularities without
normal Q-Gorenstein property (for example, the cone over the Segre embedding
P1 �P2 ,! P5).

In this paper, we take off the restriction normal Q-Gorenstein, give definitions
of “good” singularities which have some compatibilities with the usual canonical,
log canonical, terminal and log terminal singularities and study our “good”
singularities. To contrast, remember the definition of the usual canonical, log
canonical, terminal and log terminal singularities. We say that a pair .X; at /

consisting of a normal Q-Gorenstein variety X , a nonzero coherent ideal sheaf
a� OX and t 2 R�0 has canonical (resp. log canonical, terminal, log terminal)
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singularities if, for a log resolution ' W Y ! X of .X; a/, the log discrepancy
a.EIX; at / satisfies the inequality

a.EIX; at / WD ordE.KY=X /� t valE.a/C 1� 1 .resp. � 0; > 1; > 0/

for every exceptional prime divisor E. We say that .X; at / has klt singularities
if the above inequality holds for every prime divisor on Y . Here we note that the
discrepancy divisor KY=X DKY �

1
r
'�.rKX / is well defined if there is an integer

r such that rKX is a Cartier divisor, which means that X is a Q-Gorenstein
variety.

Now, consider a pair .X; at / under a more general setting. Let X be a con-
nected reduced equidimensional affine scheme of finite type over an algebraically
closed field k of characteristic zero. Let a be a coherent ideal sheaf of OX

nonvanishing identically on any component. For a log resolution ' W Y ! X

of .X; a/ which factors through the Nash blow-up, we can define the Mather
discrepancy divisor yKY=X (Definition 2.1). For the Jacobian ideal JX � OX we
define the Jacobian discrepancy divisor JY=X by OY .�JY=X /D JX OY . The
combination yKY=X �JY=X is called the Mather–Jacobian discrepancy divisor
and plays a central role in this paper. The basic idea is just to replace the
usual discrepancy KY=X by the Mather–Jacobian discrepancy, i.e., we define
the Mather–Jacobian log discrepancy

aMJ.EIX; a
t / WD ordE. yKY=X �JY=X /� t valE.a/C 1;

and by aMJ.EIX; a
t / � 1 (resp. � 0, > 1, > 0) for every exceptional prime

divisor E, we define that .X; at / is MJ-canonical (resp. MJ-log canonical, MJ-
terminal, MJ-log terminal). We say that .X; at / is MJ-klt if aMJ.EIX; a

t / > 0

for every prime divisor on Y . Here, we should be careful about the difference
between just a prime divisor over X and an exceptional divisor over X . The
definition of an exceptional divisor over X is given in Definition 2.15.

According to the basic idea of the replacement by Mather–Jacobian discrep-
ancy, the invariants the minimal log discrepancy mld and the multiplier ideal
J.X; at / defined by using the usual discrepancy divisor, can be modified to the
Mather–Jacobian versions mldMJ and JMJ.X; a

t /.
In some points, the Mather–Jacobian discrepancy behaves better than the

usual discrepancy divisor. One of the most distinguished properties of the
Mather–Jacobian discrepancy is the inversion of adjunction which was proved in
[de Fernex and Docampo 2014] and [Ishii 2013] independently:

Proposition 1.1 (inversion of adjunction [de Fernex and Docampo 2014; Ishii
2013]). Let X be a connected reduced equidimensional scheme of finite type
over k. Let A be a nonsingular variety containing X as a closed subscheme of
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codimension c and W a strictly proper closed subset of X . Let Qa � OA be a
nonzero coherent ideal sheaf such that its image a WD QaOX � OX is nonzero on
each irreducible component. Denote the defining ideal of X in A by IX . Then,

mldMJ.W IX; a
t /DmldMJ.W IA; Qa

tI c
X /Dmld.W IA; QatI c

X /:

This theorem was proved by using the discussion of arc spaces and jet schemes.
Many good properties follows from this formula.

In this paper we study basic properties of MJ-canonical, MJ-log canonical
singularities and determine these singularities of dimension up to 2. Concretely
we obtain the following. The first one below is about the relation of singularities
of MJ-version and singularities of the usual version.

Proposition 1.2 (Proposition 2.21). Let X be a normal Q-Gorenstein variety,
a�OX a nonzero coherent ideal sheaf of OX and t a nonnegative real number. If
.X; at / is MJ-canonical (resp. MJ-log canonical, MJ-terminal, MJ-log terminal,
MJ-klt), then it is canonical (resp. log canonical, terminal, log terminal, klt) in
the usual sense.

We call MJ-canonical singularities, MJ-log canonical singularities and so on
by the generic name “MJ-singularities”. As MJ-singularities are not necessarily
normal, it is reasonable to compare these with existing nonnormal singularities
which is considered as “good” singularities. The following gives the relation of
MJ-log canonical singularities and semilog canonical singularities.

Proposition 1.3 (Proposition 3.16). Assume X is S2 and Q-Gorenstein. If
.X; at / is MJ-log canonical, then it is semilog canonical.

We also obtain the relation of MJ-singularities and the singularities appeared
recently in [de Fernex and Hacon 2009].

Theorem 1.4 (Theorem 3.19). Assume that X is normal. If a pair .X; at / is
MJ-klt (resp. MJ-canonical, MJ-log canonical), then it is log terminal (resp.
canonical, log canonical) in the sense of de Fernex and Hacon.

By the property of de Fernex and Hacon’s singularities we obtain:

Corollary 1.5 (Corollary 3.20). If a pair .X; at / is MJ-klt (resp. MJ-log canon-
ical), then there is a boundary � on X such that ..X; �/; at / is klt (resp. log
canonical) in the usual sense.

By the proof of the above theorem, the relation of MJ-multiplier ideals and
de Fernex–Hacon’s multiplier ideals.

Theorem 1.6 (Theorem 3.21). Let .X; at / be a pair with a normal variety X , a
nonzero coherent ideal sheaf a on X and t 2 R�0. Then

JMJ.X; a
t /� Jm.X; a

t / for every m 2 NI
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in particular
JMJ.X; a

t /� J.X; at /:

It is known that canonical (resp. log canonical) singularities are stable under a
small flat deformation. We obtain the similar results for MJ-singularities. Here,
we do not need the flatness of the deformation. We define that f.X� ; at

� /g�2T

is a deformation of .X0; a
t
0
/, if there is a surjective morphism � WX ! T with

equidimensional reduced fibers X� D �
�1.�/ of common dimension r for all

closed points � 2 T and there exists a coherent ideal sheaf a�OX nonvanishing
on any component of the total space X such that at

� D atOX� are not zero on
any component of X� for all � 2 T .

Theorem 1.7 (Theorem 4.4, 4.9). Let f.X� ; at
� /g�2T be a deformation of .X0;a

t
0
/.

Assume .X0; a
t
0
/ is MJ-canonical (resp. MJ-log canonical) at x 2X0. Then there

are neighborhoods X � �X of x and T � � T of 0 such that X �� is MJ-canonical
(resp. MJ-log canonical) for every closed point � 2 T �.

The lower semicontinuity of MJ-minimal log discrepancies is also proved:

Proposition 1.8 (Proposition 4.11). Let f.X� ; at
� /g�2T be a deformation of

.X0; a
t
0
/ and let � W X ! T is the morphism giving the deformation. Let

� W T ! X a section of � . Then, the map T ! R; � 7!mldMJ.�.�/;X� ; a
t
� / is

lower semicontinuous.

In the last section we determine all MJ-canonical, MJ-log canonical singulari-
ties up to dimension 2.

Proposition 1.9 (Proposition 5.1). Let .X;x/ be a singularity on a one-dimen-
sional reduced scheme.

(i) .X;x/ is MJ-canonical if and only if it is nonsingular.

(ii) .X;x/ is MJ-log canonical if and only if it is nonsingular or ordinary node.

Theorem 1.10 (Theorem 5.3). Let .X;x/ be a singularity on a 2-dimensional
reduced scheme. Then .X;x/ is MJ-canonical if and only if it is nonsingular or
rational double.

The following theorem gives the total list of 2-dimensional MJ-log canonical
singularities. Here, we should note that the embedding dimension of MJ-log
canonical singularities are at most 4 (see Proposition 3.3).

Theorem 1.11 (Theorem 5.4, 5.6). Let .X; 0/ be a singularity on a 2-dimensional
reduced scheme with emb.X; 0/ D 3. Then, .X; 0/ is an MJ-log canonical
singularity if and only if X is defined by f .x;y; z/ 2 kŒŒx;y; z�� as follows:

(i) mult0 f D 3 and the projective tangent cone of X at 0 is a reduced curve
with at worst ordinary nodes.
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(ii) mult0 f D 2.

(a) f D x2Cy2Cg.z/, deg g � 2.
(b) f D x2Cg3.y; z/Cg4.y; z/, deg gi � i , g3 is homogeneous of degree

3 and g3 ¤ l3 (l linear).
(c) f D x2Cy3Cyg.z/C h.z/, mult0 g � 4 or mult0 h� 6.
(d) f D x2Cg.y; z/C h.y; z/, g is homogeneous of degree 4 and it does

not have a linear factor with multiplicity more than 2.

Let .X; 0/ be a singularity on a 2-dimensional reduced scheme with
emb.X; 0/D 4. Then, the following hold:

(iii) In case .X; 0/ is locally a complete intersection: X is MJ-log canonical
at 0 if and only if 1OX ;;0 ' kŒŒx1;x2;x3;x4��=.f;g/, where f;g satisfy the
conditions that mult0 f D mult0 g D 2 and V .in.f /; in.g// � P3 is a
reduced curve with at worst ordinary double points.

(iv) In case .X; 0/ is not locally a complete intersection: X is MJ-log canonical
at 0 if and only if X is a subscheme of a locally complete intersection surface
M which is MJ-log canonical at 0.

2. Preliminaries

In this paper X is always a connected reduced equidimensional affine scheme of
finite type over an uncountable algebraically closed field k of characteristic zero.
Sometimes we put some additional conditions on X , but in that case it is always
stated clearly. Denote the dimension dim X D d . A variety in this paper always
means an irreducible reduced separated scheme of finite type over k. A nonzero
ideal a on X always means a coherent ideal sheaf a� OX that does not vanish
on any irreducible component of X .

Let yX !X be the Nash blow-up (for the definition, see, for example, [de Fer-
nex et al. 2008]). The Nash blow-up has the following property:
If a resolution ' W Y ! X factors through the Nash blow-up yX ! X , the
canonical homomorphism '�.�d

X
/!�d

Y
has the invertible image [de Fernex

et al. 2008].

Definition 2.1 [de Fernex et al. 2008]. Let 'WY !X be a resolution of singular-
ities of X that factors through the Nash blow-up of X . By the above comment,
the image of the canonical homomorphism

'�.�d
X /!�d

Y

is an invertible sheaf of the form J�d
Y

, where J is the invertible ideal sheaf on
Y that defines an effective divisor supported on the exceptional locus of '. This
divisor is called the Mather discrepancy divisor and denoted by bKY=X .
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Definition 2.2. Recall that the Jacobian ideal JX of a variety X is the d-th
Fitting ideal Fittd .�X / of �X . If ' W Y ! X is a log resolution of JX , we
denote by JY=X the effective divisor on Y such that JX OY DOY .�JY=X /. This
divisor is called the Jacobian discrepancy divisor.

Here, we note that every log-resolution of JX factors through the Nash blow-up
[Ein et al. 2011, Remark 2.3].

Definition 2.3. Let a � OX be a coherent ideal sheaf on X nonvanishing on
any component of X , and t 2 R�0. Given a log resolution ' W Y ! X of JX a,
we denote by ZY=X the effective divisor on Y such that aOY D OY .�ZY=X /.
For a prime divisor E over X , we define the Mather–Jacobian-log discrepancy
(MJ-log discrepancy for short) at E as

aMJ.EIX; a
t / WD ordE. yKY=X �JY=X � tZY=X /C 1:

Remark 2.4. For nonzero ideals a1; : : : ; ar on X , one can similarly define a
mixed MJ-log discrepancy aMJ.EIX; a

t1

1
� � � atr

r / for every t1; : : : ; tr 2R�0. With
the notation in Definition 2.3, if f is a log resolution of JX a1 � � � ar , and if we
put aiOY D OY .�Zi/, then

aMJ.EIX; a
t1

1
� � � atr

r /D ordE. yKY=X �JY=X � t1Z1� : : :� tr Zr /C 1:

For simplicity, we will mostly state the results for a pair .X; at / with one ideal,
but all statements have obvious generalizations to the mixed case.

Remark 2.5. If X is normal and locally a complete intersection, then

aMJ.EIX; a
t /D a.EIX; at /;

where the right-hand side is the usual log discrepancy ordE.KY=X �tZY=X /C1.
Indeed, in this case the image of the canonical map �d

X
! !X is JX!X , hence

yKY=X �JY=X DKY=X . In particular, we see that aMJ.EIX; a
t /D a.EIX; at /

if X is smooth.

Definition 2.6. Let X be a normal and Q-Gorenstein variety. Let W be a proper
closed subset of X . The minimal log-discrepancy of .X; at / along W is defined
as follows: if dim X � 2,

mld.W IX; at /D inffa.EIX; at / jE prime divisor over X with center in W g:

When dim X D 1, we use the same definition as above, unless the infimum is
negative, in which case we make the convention that mld.W IX; at /D�1.

Now returning to the general setting on X , we define a modified invariant.
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Definition 2.7. Let W be a closed subset of X such that it does not contain an
irreducible component of X . (We call such a closed subset a “strictly proper
closed subset” in this paper.) Let � be a point of X such that its closure is a strictly
proper closed subset of X . The Mather–Jacobian minimal log-discrepancy of
.X; at / along W (resp. at �) are defined as follows: if dim X � 2,

mldMJ.W IX; a
t /

D inffaMJ.EIX; a
t / jE prime divisor over X with center in W g;

mldMJ.�IX; a
t /

D inffaMJ.EIX; a
t / jE prime divisor over X with center f�gg:

(Note that we strictly distinguish between “center in Z” and “center Z”.)
When dim X D 1, we use the same definition as above, unless the infimum is

negative, in which case we make the convention that mldMJ.W IX; a
t /D�1

(resp. mldMJ.�IX; a
t /D�1).

Remark 2.8. (i) By Remark 2.5, we have

mld.W IX; at /DmldMJ.W IX; a
t /;

if X is normal and locally a complete intersection.

(ii) In case dim X � 2, if there is a prime divisor E with the center in W

such that aMJ.EIX; a
t / < 0, then mldMJ.W IX; a

t /D�1. This is proved
by using yKY 0=X � JY 0=X D KY 0=Y C  

�.KY=X � JY=X / for another
resolution Y 0 ! X factoring through Y ! X , in the similar way as the
usual discrepancy case [Kollár and Mori 1998, Section 2.3].

(iii) There are some conflicts of notation in [de Fernex and Docampo 2014;
Ein et al. 2011; Ishii 2013; Ishii and Reguera 2013], since these papers
are working on the same materials and some of these papers were done
independently of others. Here, we propose the notation mldMJ.W IX; a

t /

for Mather–Jacobian minimal log discrepancy, while in [de Fernex and
Docampo 2014] it is denoted as mld˘.W IX; at / and in [Ishii and Reguera
2013] as bmld.W IX; JX at /. We hope the new notation here is appropriate
to unify the notation.

Proposition 2.9 (inversion of adjunction [de Fernex and Docampo 2014; Ishii
2013]). Let A be a nonsingular variety containing X as a closed subscheme
of codimension c and W a strictly proper closed subset of X . Let Qa � OA be
an ideal such that its image a WD QaOX � OX is nonzero on each irreducible
component of X . Denote the defining ideal of X in A by IX . Then,

mldMJ.W IX; a
t /DmldMJ.W IA; Qa

tI c
X /Dmld.W IA; QatI c

X /:
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The second equality is trivial by Remark 2.8(1). The inversion of adjunction
is proved by discussions of jet schemes and we also use them in this paper. Here,
we introduce the basic notion of jet schemes.

Definition 2.10. Let K � k be a field extension and m 2 Z�0. A morphism
Spec KŒt �=.tmC1/! X is called an m-jet of X and Spec KŒŒt ��! X is called
an arc of X .

2.11. Let Sch=k be the category of k-schemes and Set the category of sets.
Define a contravariant functor Fm W Sch=k! Set by

Fm.Y /D Homk.Y �Spec k Spec kŒt �=.tmC1/;X /:

Then, Fm is representable by a scheme Lm.X / of finite type over k, i.e., Lm.X /

is the fine moduli scheme of m-jets of X .
The scheme Lm.X / is called the scheme of m-jets of X .
In the same way, the fine moduli scheme L1.X / of arcs of X also exists and it

is called the scheme of arcs of X . We should note that L1.X / is not necessarily
of finite type over k. The canonical surjection kŒt �=.tmC1/ ! kŒt �=.tnC1/

.n < m �1/ induces a morphism  mn W L
m.X /! Ln.X /. In particular for

mD1, we write  m W L
1.X /! Lm.A/.

If X D Spec kŒx1; : : : ;xN �=.f1; : : : ; fr /, then

Lm.X /D Spec kŒx.0/;x.1/; : : : ;x.m/�=.F
.j/
i /1�i�r;0�j�m;

where x.j/ D .x
.j/
1
; : : : ;x

.j/
N
/ and

P1
jD0 F .j/tj is the Taylor expansion of

f
�P

j x.j/tj
�
; hence F .j/ 2 kŒx.0/; : : : ;x.j/�. If 0 2X � AN , we have

 �1
m0.0/D Spec kŒx.1/; : : : ;x.m/�=.F

.j/
i /1�i�r;0�j�m; (1)

where F
.j/
i is the image of F

.j/
i by the canonical projection map

kŒx.0/;x.1/; : : : ;x.m/�! kŒx.1/; : : : ;x.m/�;

which sends x.0/ to 0.

Remark 2.12. Under the notation above, for a polynomial f 2 kŒx1; : : : ;xN �,
let

f
�X

x
.j/
1

tj ; : : : ;
X

x
.j/
N

tj
�
D F .0/CF .1/t CF .2/t2

C � � �

be the Taylor expansion. Then a monomial in F .j/ is of the type

x
.e1/
i1
� � �x

.er /
ir

�
el � 0; il 2 f1; : : : ;N g;

X
l

el D j

�
:
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Here, if r > j , the monomial must contain a factor x
.0/
il

; therefore the image of
this monomial by the projection map

kŒx.0/;x.1/; : : : ;x.m/�! kŒx.1/; : : : ;x.m/�

is zero. By this observation we obtain that if j < mult0 f , then F .j/ D 0 and
if j Dmult0 f , then F .j/ D inf .x.1//, where inf is the initial term of f with
the usual grading in kŒx1; : : : ;xN �.

Definition 2.13 [Ein et al. 2004]. For an ideal a on a variety X , we define

Contm.a/D f˛ 2 L1.X / j ord˛.a/Dmg

and
Cont�m.a/D f˛ 2 L1.X / j ord˛.a/�mg:

These subsets are called contact loci of the ideal a. The subset Cont�m.a/ is
closed and Contm.a/ is locally closed; both are cylinders.

For a contact locus, we define the codimension in the arc space Lm.X /

[de Fernex et al. 2008, Section 3].

By the inversion of adjunction, we can describe Mather–Jacobian discrepancy
in terms of the jet schemes of A as follows:

Proposition 2.14. Let X , A, c, a and Qa be as in Proposition 2.9. Let N D dC c

and Z D V .Qa/. Let  m W L
1.A/! Lm.A/ and  mn W L

m.A/! Ln.A/ be the
canonical projections of jet schemes of A (not for X ). Then,

mldMJ.W IX; a
t /D inf

m;n2Z�0

˚
.M C 1/N � .mC 1/t � .nC 1/c

� dim
�
 �1

Mm.L
m.Z//\ �1

Mn.L
n.X //\ �1

M0.W /
�	
;

where M Dmaxfm; ng.
In particular for at D OX we obtain

mldMJ.W IX;OX /D inf
n2Z�0

f.nC 1/d � dim. X
n0/
�1.W /g; (2)

where  X
n0
W Ln.X /! L0.X / D X is the canonical projection of jet schemes

of X .

Proof. By the inversion of adjunction, we can represent

mldMJ.W IX; a
t /DmldMJ.W IA; Qa

tI c
X /Dmld.W IA; QatI c

X /:

By [Ishii 2013, Remark 3.8], this is represented as

mld.W IA; QatI c
X /

D inf
m;n2N

˚
codim.Cont�m.a/\Cont�n.IX /\Cont�1.IW //�mt � nc

	
;
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where codim is the codimension in the arc space L1.A/. By shifting m to mC1

and n to nC 1, this is represented as

inf
m;n2Z�0

˚
codim.Cont�mC1.a/\Cont�nC1.IX /\Cont�1.IW //

�.mC 1/t � .nC 1/c
	
;

Now noting that

Cont�mC1.a/D  �1
m .Lm.Z// and Cont�nC1.IX /D  

�1
n .Ln.X //;

we obtain the equality

codim.Cont�mC1.a/\Cont�nC1.IX /\Cont�1.IW //

D codim
�
 �1

Mm.L
m.Z//\ �1

Mn.L
n.X //\ �1

M0.W /;LM .A/
�
;

where M D maxfm; ng. As dim A D N , we have dimLM .A/ D .M C 1/N

which yields the required equality. �
Now we define an exceptional divisor over X , which is a generalization of an

exceptional divisor for normal variety (Note that if X is normal, an exceptional
divisor is defined as a divisor over X with the center of codimension � 2 on X .)

Definition 2.15. Let E be a prime divisor over X . Let ' W Y !X be a proper
birational morphism such that Y is normal and E appears on Y . Then E is
called an exceptional divisor over X if ' is not isomorphic at the generic point
of E. Here, we note that this definition is independent of the choice of '.

Definition 2.16. We call a pair .X; at / consisting of a connected reduced equidi-
mensional scheme X of finite type over k and a nonzero ideal a� OX with a
nonnegative real number t is MJ-canonical (resp. MJ-log canonical) if for every
exceptional prime divisor E over X , the inequality aMJ.EIX; a

t /� 1 (resp. � 0)
holds.

We say that .X; at / is MJ-canonical (resp. MJ-log canonical) at a point x 2X ,
if there is an open neighborhood U �X of x such that .U; at jU / is MJ-canonical
(resp. MJ-log canonical).

If .X;OX / is MJ-canonical (resp. MJ-log canonical), we say that X is MJ-
canonical (resp. MJ-log canonical), or X has MJ-canonical (resp. MJ-log canon-
ical) singularities.

In the similar way, we can define MJ-terminal and MJ-log terminal by the
conditions for all exceptional prime divisors. In addition, we say that .X; at /

is MJ-klt if for every prime divisor E over X , the inequality aMJ.EIX; a
t / > 0

holds.

Definition 2.17. Let .X; at / be a pair consisting of X and a nonzero ideal
a� OX with a nonnegative real number t . Let ' W Y ! X be a log resolution
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of .X; aJX /. Define a divisor ZY=X by OY .�ZY=X / D aOY . Then we can
define the Mather–Jacobian multiplier ideal (or MJ-multiplier ideal for short) as
follows:

JMJ.X; a
t /D '�

�
OY . yKY=X �JY=X � ŒtZY=X �/

�
;

where ŒD� is the round down of the real divisor D.

Remark 2.18. At the stage of the definition, this multiplier “ideal” is only a
fractional ideal sheaf for nonnormal X . But in [Ein et al. 2011] we proved that it
is really an ideal sheaf of OX in general. In [Ein et al. 2011], the MJ-multiplier
ideal is proved to have good properties which a “multiplier ideal” is expected to
have.

In [Ein et al. 2011] this multiplier ideal is called Mather multiplier ideal and
denoted by yJ.X; � � � /. On the other hand, in [de Fernex and Docampo 2014] MJ-
canonical (resp. MJ-log canonical) are called J-canonical (resp. log J-canonical).
Here we think that it is more appropriate to call these notions with both M and J.

Remark 2.19. Fix a log resolution Y ! X of .X; JX a/. Then .X; at / is MJ-
canonical (resp. MJ-log canonical, MJ-terminal, MJ-log terminal) if and only
if aMJ.EIX; a

t / � 1 (resp. � 0, > 1, > 0) for all exceptional prime divisor E

on Y . Also .X; at / is MJ-klt if and only if aMJ.EIX; a
t / > 0 for every prime

divisor E on Y . This is proved by using the fact that

yKY 0=X �JY 0=X DKY 0=Y C 
�. yKY=X �JY=X /

for another resolution Y 0!X factoring through Y !X .

Remark 2.20. Assume that X is normal and locally a complete intersection.
Then by Remark 2.5, MJ-canonical (resp. MJ-log canonical) are equivalent to
canonical (resp. log canonical). For normal and Q-Gorenstein case, we have the
following:

Proposition 2.21. Let X be a normal Q-Gorenstein variety, a � OX a ideal
sheaf and t a nonnegative real number. If .X; at / is MJ-canonical (resp. MJ-log
canonical, MJ-terminal, MJ-log terminal, MJ-klt), then it is canonical (resp. log
canonical, terminal, log terminal, klt) in the usual sense.

Proof. Let the index of X be r . Then the image of the canonical map�Vd
�X

�˝r
! !

Œr �
X

is written as Ir!
Œr �
X

with an ideal Ir since !Œr �
X

is invertible. Then, by the
definition of the Mather discrepancy and the usual discrepancy, we have

IrOY .r yKY=X /D OY .rKY=X /
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for a log resolution Y ! X of .X; JX a/. Let Jr D JX
r
W Ir ; then Jr Ir and

JX
r have the same integral closures by [Ein and Mustat,ă 2009, Corollary 9.4].

Therefore if we write OY .�Zr /D IrOY and OY .�Z0r /DJrOY , then rJY=X D

Zr CZ0r and

r yKY=X � rJY=X D r yKY=X �Zr �Z0r D rKY=X �Z0r � rKY=X ;

which gives our assertions. �

Proposition 2.22. (i) A pair .X; at / is MJ-log canonical at a (not necessarily
closed) point x 2X if and only if

mldMJ.xIX; a
t /� 0:

(ii) If a pair .X; at / is MJ-canonical at a (not necessarily closed) point x 2X

then
mldMJ.xIX; a

t /� 1:

Proof. It is clear that if a pair .X; at / is MJ-log canonical (resp. MJ-canonical)
at a point x 2 X then mldMJ.xIX; a

t / � 0 (resp. mldMJ.xIX; a
t / � 1) by the

definitions. For the proof of the converse statement in (i), we have only to note
that

yKY 0=X DKY 0=Y C'
� yKY=X

for another resolution Y 0 of X that dominates Y by ' W Y 0! Y . The proof of
the proposition is the same as the corresponding statement for the usual minimal
log discrepancy. �

The converse of the statement of (ii) in Proposition 2.22 does not hold. The
following is an example for that.

Example 2.23. Let X be a hypersurface in A3 defined by x1x2 D 0, where
x1;x2;x3 are the coordinates of A3. Then the x3-axis C is the singular locus
of X . By the inversion of adjunction, we have

mldMJ.C IX;OX /Dmld.C IA3; .x1x2//;

where the right-hand side is known to be zero. Therefore X is not MJ-canonical
at the origin 0. On the other hand, again by the inversion of adjunction,

mldMJ.0IX;OX /Dmld.0IA3; .x1x2//;

where the right-hand side is known to be 1.

In the Definition 2.16 of MJ-log canonical singularities, the conditions are for
exceptional prime divisors over X . But we can replace them by prime divisors
over X .
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Proposition 2.24. A pair .X; at / is MJ-log canonical if and only if
aMJ.EIX; a

t /� 0 holds for every prime divisor E over X .

Proof. The “if” part of the proof is obvious. For the converse, we have only to
note that

yKY 0=X DKY 0=Y C'
� yKY=X

for another resolution Y 0 of X that dominates Y by ' W Y 0 ! Y . The proof
of the statement is the same as the corresponding statement for the usual log
discrepancy. �

3. Basic properties of the MJ-singularities

In this section, we show some basic properties on MJ-singularities. Before that,
we recall two known properties:

Proposition 3.1 [de Fernex and Docampo 2014; Ein et al. 2011]. If X is MJ-
canonical, then it is normal and has rational singularities.

Proposition 3.2 [de Fernex and Docampo 2014]. If k D C and X is MJ-log
canonical, then X has Du Bois singularities.

We will see that the class of Du Bois singularities is much wider than that of
MJ-log canonical singularities (see Example 5.2).

Proposition 3.3. Let x 2X be a closed point. If X is MJ-canonical at x, then
the embedding dimension emb.X;x/ � 2d � 1. If X is MJ-log canonical at x,
then the embedding dimension emb.X;x/� 2d .

Proof. By (2) in Proposition 2.14, with putting W D fxg we have

mldMJ.xIX;OX /D inf
n2Z�0

˚
.nC 1/d � dim. X

n0/
�1.x/

	
:

If X is MJ-canonical at x, then mldMJ.xIX;OX / � 1 and this implies that
dim. X

n0
/�1.x/� .nC 1/d � 1 holds for every n 2 N. Therefore, in particular

for nD 1, we have

dim.TX ;x/D dim. X
10/
�1.x/� 2d � 1;

where TX ;x is the Zariski tangent space of X at x. Hence the embedding
dimension of X at x is 2d �1. The proof for the statement on MJ-log canonical
singularities follows in the same way. �
Definition 3.4. Let X be embedded in a nonsingular variety A and IX the
defining ideal of X in A. Let ˆ WA!A be a proper birational morphism which
is isomorphic on the generic point of each irreducible component of X . Let X

be the strict transform of X in A and IX be the defining ideal of X in A. Then,
we call ˆ a factorizing resolution of X in A if the following hold:
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(i) ˆ is an embedded resolution of X in A;

(ii) There is an effective divisor R on A such that

IX OA D IX OA.�R/:

The existence of factorizing resolution of a given embedding X �A is proved
by A. Bravo and O. Villamayor [2003], and E. Eisenstein [2010] obtained a
modified version which can be applied to the case of log resolutions. The
following is an easy corollary of [Eisenstein 2010, Lemma 3.1].

Proposition 3.5. Let X �A be a closed embedding into a nonsingular variety
A and let a and b be ideals of OX and OA, respectively. Let Qa be an ideal
such that QaOX D a. Assume that a and b are not zero on the generic point of
each irreducible component of X . Then, there exists a factorizing resolution
ˆ WA!A of X in A such thatˆ is a log resolution of .A; Qab/ and the restriction
ˆjX of ˆ onto the strict transform X is a log resolution of .X; a/.

We sometimes come across the situation to compare the MJ-discrepancies of
two schemes connected by a proper birational morphism. The following gives
some information on that.

Theorem 3.6. Let ' W X 0! X be a proper birational morphism which can be
extended to a proper birational morphism ˆ WA0!A of nonsingular varieties
such that X 0�A0, X �A with codimension c andˆ is isomorphic at the generic
point of each irreducible component of X . Let IX and IX 0 be defining ideals of
X and X 0 in A and A0, respectively.

If IX 0b
0 � IX OA0 � IX 0b holds for some coherent ideal sheaves b, b0 in OA0

that do not vanish on any irreducible component of X 0, then there exists an
embedded resolution‰ WA!A0 of X 0 in A0 such that the restriction .ˆı‰/jX W
X !X is a log resolution of .X; aJX / and satisfying

yKX =X 0 �JX =X 0 � cR0jX �
yKX =X �JX =X �‰

�KA0=AjX

� yKX =X 0 �JX =X 0 � cRjX ;

where R and R0 are effective divisors on A such that bOA D OA.�R/ and
b0OA D OA.�R0/.

For the proof of the theorem, we need the following lemma which is a gener-
alization of [Eisenstein 2010, Lemma 4.3]:

Lemma 3.7. Let X be embedded into a nonsingular variety A with codimension
c,ˆ WA!A a proper birational morphism of nonsingular varieties isomorphic at
the generic points of the irreducible components of X and X the strict transform
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of X in A. Assume that X is nonsingular. Denote the ideal of X and X by IX

and IX , respectively. Assume

IX OA.�R0/� IX OA � IX OA.�R/; (3)

for some effective divisors R;R0 on A that do not contain any irreducible com-
ponent of X in their supports. Then, we have

.KA=A� cR0/jX �
yKX =X �JX =X � .KA=A� cR/jX : (4)

In particular, if IX OA D IX OA.�R/, then

yKX =X �JX =X D .KA=A� cR/jX :

Proof. We use the notation in [Eisenstein 2010]. The notation Œaij �c means the
ideal generated by c-minors of the matrix .aij /. Now since the problem is local,
it is sufficient to show the statement at a neighborhood of a point P 2A. Let IX

be generated by h1; : : : ; hm around ˆ.P /. Let .z1; : : : ; zN / be local coordinates
of A at ˆ.P / and .w1; : : : ; wd ; wdC1; : : : ; wN / local coordinates of A at P

such that .w1; : : : ; wd / is local coordinates of X . Then, by [Eisenstein 2010,
Lemma 4.3], it follows:

OX .�
yKX =X /

��
@.hi ıˆ/

@wj

�
c

�
OX D OA.�KA=A/

��
@hi

@zj

�
c

OA

�
OX ; (5)

where the right-hand side coincides with

OX .�KA=AjX �JX =X /:

Let g and g0 be local generators of OA.�R/ and OA.�R0/ at P , respectively.
As IX is generated by wdC1; : : : ; wN , the condition of the lemma implies:

.g0wdC1; : : : ;g
0wN /� IX OA D .h1 ıˆ; : : : ; hm ıˆ/� .gwdC1; : : : ;gwN /:

Then, we obtain:�
@.g0wi/

@wj

�
c

ˇ̌̌
X
�

�
@.hi ıˆ/

@wj

�
c

ˇ̌̌
X
�

�
@.gwi/

@wj

�
c

ˇ̌̌
X
: (6)

Here, we used a general fact: If I D .g1; : : : ;gn/� J D .f1; : : : ; fm/ are ideals.
Then for a closed subscheme Z �Z.J /, it holds that�

@gi

@wj

�
c

ˇ̌̌
Z
�

�
@fi

@wj

�
c

ˇ̌̌
Z
:

Note that

@.gwi/

@wj

ˇ̌̌
X
D

�
g
@wi

@wj
Cwi

@g

@wj

�ˇ̌̌
X
D g

@wi

@wj
;
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since wi D 0 on X for i D d C 1; : : : ;N . Here, we obtain�
@.gwi/

@wj

�
c

ˇ̌̌
X
D gc

jX ;

and similarly �
@.g0wi/

@wj

�
c

ˇ̌̌
X
D g0cjX :

Therefore, the inclusions of (6) turn out to be

.g0
c
/jX �

�
@.hi ıˆ/

@wj

�
c

ˇ̌̌
X
� .gc/jX :

Substituting this into (5) we obtain

OX .�
yKX =X � cR0/� OX .�KA=A�JX =X /� OX .�

yKX =X � cR/;

which proves the required inequalities. �

Proof of Theorem 3.6. Applying Proposition 3.5 to X 0 � A0, we obtain a
factorizing resolution ‰ WA!A0 of X 0 in A0, such that it is a log resolution of
.A0; bb0fJX

zJX 0/, where fJX and zJX 0 are ideals of OA0 such that fJX OX 0 D JX OX 0

and zJX 0OX 0 D JX 0 , respectively. Let bOA D OA.�R/ and b0OA D OA.�R0/.
As ‰ is a factorizing resolution of X 0 in A0, there exists an effective divisor G

on A such that
IX 0OA D IX OA.�G/:

By the assumption of the proposition, we have

IX 0OA.�R0/� IX OA D .IX OA0/OA � IX 0OA.�R/;

which yields

IX OA.�G �R0/� IX OA � IX OA.�G �R/:

Now by Lemma 3.7, we obtain

.KA=A� cG � cR0/jX �
yKX =X �JX =X � .KA=A� cG � cR0/jX :

By substituting

KA=A DKA=A0 C‰
�KA0=A and .KA=A0 � cG/jX D

yKX =X 0 �JX =X 0 ;

which follows from the second statement of Lemma 3.7, we conclude the in-
equalities:

yKX =X 0 �JX =X 0 � cR0jX �
yKX =X �JX =X �‰

�KA0=AjX

� yKX =X 0 �JX =X 0 � cRjX : �
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Remark 3.8. Let us make a comment about a condition of Theorem 3.6. Locally
on X , every projective birational morphism X 0 ! X can be extended to a
projective birational morphism A0!A of nonsingular varieties. This is proved
as follows. We can assume that X is embedded in AN and X 0 ! X is a
blow-up by an ideal I D .f1; : : : ; fr / of OX . Extend the canonical surjective
homomorphism kŒx1; : : : ;xN �! �.X;OX / to a homomorphism

kŒx1; : : : ;xN ;y1; : : : ;yr �! �.X;OX /

by yi 7! fi for i D 1; : : : ; r . Let X � ANCr be the embedding corresponding
to this homomorphism. Then the blow-up ˆ WA0!A by the ideal .y1; : : : ;yr /

gives the blow-up by the ideal I on X . Since the center of the blow-up ˆ is
nonsingular, A0 is also nonsingular.

The most effective application of Theorem 3.6 is for the case that X 0!X is
the blow-up at a closed point.

Corollary 3.9. Let X �A be a closed embedding into a nonsingular variety A

with codimension c and a an ideal of OX . Letˆ WA0!A be the blow-up of A at
a closed point x 2X and X 0 the strict transform of X . Let E be the exceptional
divisor for ˆ and nonnegative integers a; b as

IX 0OA0.�aE/� IX OA0 � IX 0OA0.�bE/:

Then, there is a proper birational morphism ‰ WA!A0 with the strict transform
X of X in A such that the restriction ˆ ı‰jX W X ! X is a log resolution of
.X; aJX / and ‰jX WX !X 0 is a log resolution of .X 0; JX 0/ satisfying

yKX =X 0 �JX =X 0 � .ac � c � d C 1/‰�EjX �
yKX =X �JX =X

� yKX =X 0 �JX =X 0 � .bc � c � d C 1/‰�EjX :

In particular if IX 0OA0.�aE/D IX OA0 , then

yKX =X 0 �JX =X 0 � .ac � c � d C 1/‰�EjX D
yKX =X �JX =X :

Proof. As dim X D d , note that KA0=A D .cC d � 1/E and apply Theorem 3.6.
�

Example 3.10. Let .X;x/ be a singularity on a reduced 2-dimensional scheme
X and let ' WX 0!X be the blow-up at x. If .X;x/ is MJ-canonical (MJ-log
canonical) singularity, then X 0 has MJ-canonical (MJ-log canonical) singularities.

Here, if .X;x/ is nonsingular, then X 0 is also nonsingular and the above
statement is trivial. Therefore we may assume that .X;x/ is a singular point.
For the both statements of the example, it is sufficient to prove

yKX =X �JX =X �
yKX =X 0 �JX =X 0
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for a log resolution ‰ WX !X 0 of JX 0JX OX 0 . As .X;x/ is singular, we have
c � 1 and

IX OA0 � IX 0OA0.�2E/;

under the notation of Corollary 3.9. Let b D 2 and note that

bc � c � d C 1D c � 1� 0:

Then apply the corollary, we obtain the required inequality

yKX =X �JX =X �
yKX =X 0 �JX =X 0 :

Example 3.11. Let .X;x/ be a singular point in a 3-dimensional reduced scheme.
Assume .X;x/ is not a hypersurface double point. Let X 0 be the same as in
Example 3.10. If .X;x/ is MJ-canonical (MJ-log canonical), then X 0 has MJ-
canonical (MJ-log canonical) singularities.

As in Example 3.10, it is sufficient to prove that bc� c�dC1� 0. If .X;x/
is not a hypersurface singularity, then c � 2 and we can take b D 2 and obtain
bc�c�dC1D c�2� 0. If .X;x/ is a hypersurface singularity of multiplicity
� 3, then we can take b � 3; therefore bc � c � d C 1� 2� 3C 1D 0.

Example 3.12. Let S �PN�1 be a .d�1/-dimensional nonsingular projectively
normal closed subvariety defined by polynomials of common degree a. Let
X � AN be its affine cone. Then,

(i) X is MJ-canonical if and only if a� N�1
N�d

,

(ii) X is MJ-log canonical if and only if a� N
N�d

.

Let us check the MJ-log canonicity and MJ-canonicity of X . Let ˆ WA0! AN

be the blow-up at the origin, E the exceptional divisor and X 0 the strict transform
of X in A0. Then, by the defining equations of X in AN , we have

IX OX 0 D IX 0OX 0.�aE/:

By Corollary 3.9, we have

yKX =X 0 �JX =X 0 � .ac �N C 1/‰�EjX D
yKX =X �JX =X ;

with c D N � d for an appropriate log resolution ‰ W A! A0. Therefore we
obtain

yKX =X 0 �JX =X 0 � .a.N � d/�N C 1/‰�EjX D
yKX =X �JX =X : (7)

Here, we note that .X 0;EjX 0/ is nonsingular pair and .X 0; ˛EjX 0/ is log MJ-
canonical if and only if ˛ � 1. Then by the equality (7) we have X is MJ-log
canonical if and only if a.N �d/�N C 1� 1 which is equivalent to a� N

N�d
.

On the other hand, if a.N �d/�NC1� 0 which implies a� N�1
N�d

, we have that
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X is MJ-canonical by the equality (7). If a.N �d/�NC1D 1, then the equality
(7) implies aMJ.EIX;OX /D 0, which yields that X is not MJ-canonical.

Example 3.13. Under the same setting as in the previous example, let a D 2.
Then,

(i) X is MJ-canonical if and only if N � 2d � 1,

(ii) X is MJ-log canonical if and only if N � 2d .

Note that these conditions on N and d are only the necessary conditions for a
general X to be MJ-canonical and MJ-log canonical as are seen in Proposition 3.3.

We can see that the cones of many homogeneous spaces enjoy these conditions.
For example, the cones of G.2; 5/� P9, E6 � P26 [Lazarsfeld and Van de Ven
1984] and 10-dimensional Spinor variety in P15 [Ein 1986] are all MJ-canonical.

Let SrmDPr�Pm ,!PN�1 be the Segre embedding, i.e., the correspondence
of the homogeneous coordinates is .xi/� .yj / 7! .xiyj /. Then the subscheme
Srm is defined in PN by the equations

zij zkl � zilzkj D 0; .i D 0; : : : ; r; j D 0; : : : ;m/;

where zij ’s are homogeneous coordinates of PN�1 .N D .r C 1/.mC 1//. Let
Xrm � AN be the affine cone over Srm. Then, as d D r CmC 1, we have the
following:

(i) Xrm is MJ-log canonical if an only if .r � 1/.m� 1/� 2,

(ii) Xrm is MJ-canonical if and only if .r � 1/.m� 1/� 1.

In particular, X1m and Xr1 are all MJ-canonical. Here, we note that Xrm is
Q-Gorenstein if and only if r Dm. Thus, if r ¤ 1 or m¤ 1, then X1m and Xr1

are examples of MJ-canonical singularities which are not Q-Gorenstein.

Example 3.14. Three-dimensional terminal quotient singularities have been
determined as 1

r
.s;�s; 1/ .0 < s < r; gcd.s; r/ D 1/ by Morrison and Stevens

[1984]. If s¤1; r�1, then the singularity 1
r
.s;�s; 1/ is not MJ-log canonical. In-

deed, the singularity is at the origin of X DSpec kŒxr ;yr ; zr ;xy;xzr�s;yzs �D

kŒx1; : : : ;x6�=I; where I D .x3x4�x5x6;x1x2�xr
4
;x1xr�s

3
�xr

5
;x2xs

3
�xr

6
/.

Here, we note that the number of generators with order 2 is two.
Assume that X has MJ-log canonical singularity at 0; then

mldMJ.0;X;OX /� 0;

and therefore by the formula (2) in Proposition 2.14 we have

dim. X
n0/
�1.0/� d.nC 1/D 3.nC 1/:

In particular for nD 2, it follows that dim. X
20
/�1.0/� 9. Under the notation
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in 2.11, we have by Remark 2.12

. X
20/
�1.0/

D Spec kŒx
.1/
1
; : : : ;x

.1/
6
;x
.2/
1
; : : : ;x

.2/
6
�=.x

.1/
3

x
.1/
4
�x

.1/
5

x
.1/
6
;x
.1/
1

x
.1/
2
/

whose dimension is greater than 9, a contradiction. Therefore X is not MJ-log
canonical at 0.

Remark 3.15. The MJ-discrepancy has good properties: inversion of adjunc-
tion on minimal log discrepancies, lower semicontinuity of MJ-minimal log
discrepancies [de Fernex and Docampo 2014; Ishii 2013], ascending chain
condition (ACC) of MJ-log canonical thresholds [de Fernex and Docampo 2014].
So, if every step in a minimal model program (MMP) would preserve MJ-log
canonicity, we could prove MMP simply. But actually a divisorial contraction
does not preserve MJ-log canonicity. Kawamata [1996] determined the divisorial
contraction to a three-dimensional terminal quotient singularity as a certain
weighted blow-up. By this we can prove that every three-dimensional terminal
quotient singularity can be resolved by the successive weighted blow-ups which
are divisorial contractions. This gives a counterexample to the expectation that
MJ-log canonicity would be preserved under divisorial contractions.

Proposition 3.16. Assume X is S2 and Q-Gorenstein. If .X; at / is MJ-log
canonical, then it is semilog canonical.

Proof. The definition of a semilog canonical singularity requires S2 and Q-
Gorenstein property. The additional conditions for a semilog canonical singularity
are [Kollár 2013]:

(i) X is nonsingular or has normal crossing double singularities in codimension
one.

(ii) Let � WX�!X be the normalization, a� the pull back of a on X� and D� the di-
visor on X� defined by the conductor .OX W��.OX� //. Then, .X� ; at

�OX� .�D�//

is log canonical in the usual sense.

Let W be an irreducible component of singular locus of X of codimen-
sion 1. Then mldMJ.W IX;OX / � 0 implies . X

m0
/�1.W / � d.mC 1/ by (2)

in Proposition 2.14. As dim W D d � 1, for a general point x 2 W we have
. X

m0
/�1.x/� dmC 1; then again by (2) in Proposition 2.14, it follows that

mldMJ.xIX;OX /� d � 1:

In this case, mldMJ.xIX;OX / D d � 1 holds by [Ishii 2013, Corollary 3.15;
de Fernex and Docampo 2014, Corollary 4.15] and such .X;x/ is classified
in [Ishii and Reguera 2013] as to be normal crossing double or a pinch point
when it is nonnormal. As the pinch point locus is of codimension 2, we have the
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assertion (i). The condition (ii) is equivalent to that the usual log discrepancy
a.EIX� ; a

t
�OX� .�D�//� 0 for every prime divisor E over X� . As ��KX �Q

KX� CD� , it is equivalent to a.E;X; at / � 0. By the same argument as in
the proof of Proposition 2.21, we obtain aMJ.E;X; a

t / � a.E;X; at /, which
yields the assertion (ii). Here, we note that the proof of Proposition 2.21 used
Corollary 9.4 of [Ein and Mustat,ă 2009], which was stated under the condition
that X is normal. But the proof of the corollary works also for nonnormal
case. �

Corollary 3.17. Let X be locally a complete intersection. Then, .X; at / is
MJ-log canonical if and only if it is semilog canonical.

Proof. As X is locally a complete intersection, it is S2. Then, by Proposition 3.16,
if .X; at / is MJ-log canonical, it is semilog canonical. Conversely, if .X; at / is
semilog canonical, then by the condition (ii) of semilog canonical in the proof
of Proposition 3.16, we obtain

aMJ.E;X; a
t /D a.E;X; at /� 0

for every prime divisor E over X in the same way as in the proof above. This
yields the required equivalence. �

Here we note that the S2 condition is necessary for a MJ-log canonical
singularity to be semilog canonical. Actually there is an example of MJ-log
canonical singularity which does not satisfy S2 condition (see Example 5.7).

De Fernex and Hacon [2009] introduced in the notions log canonical, log
terminal singularities on an arbitrary normal variety. These are direct generaliza-
tions of usual log canonical, klt singularities for Q-Gorenstein case. Actually
they defined that .X; at / is log terminal (resp. log canonical) if there is m 2 N

such that

am.F IX; a
t / WD ordF .Km;Y=X /� t valF .a/C 1> 0 .resp.� 0/

for every prime divisor F over X . Note that the log terminal an log canonical in
their sense are not determined by finite number of exceptional divisors.

Here, in a local situation, as we can take an effective divisor mKX , we can
think a divisorial sheaf OX .�mKX / as an ideal sheaf. Let Y ! X be a log
resolution of an ideal OX .�mKX / and define the effective divisor Dm on Y by
OX .�mKX /OY D OY .�Dm/. Note that an arbitrary prime divisor F over X

can appear on such a resolution Y . Under this notation we define the divisor

Km;Y=X DKY �
1

m
Dm

with the support on the exceptional divisor.
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On the other hand de Fernex and Hacon also introduce “canonical singularities”
for a normal variety X in a slightly different line from log terminal and log
canonical case. Let X be a normal variety and f W Y ! X a resolution of the
singularities of X . The relative canonical divisor KY=X is defined as follows:

KY=X WDKY Cf
�.�KX /;

where f �.�KX / is the pull-back of a Weil divisor �KX introduced in [de Fernex
and Hacon 2009]. Here, we note that f �.�KX /¤�f

�.KX / in general. They
define that a pair .X; at / has canonical singularities if

adf h.F IX; a
t / WD ordF .KY=X /� t valF .a/C 1� 1

holds for every exceptional prime divisor F over X .
We will see the relation of MJ-singularities and de Fernex–Hacon’s singu-

larities. First the following gives the relation of the divisor Km;Y=X and our
MJ-discrepancy divisor.

Lemma 3.18. Let X be an affine normal variety and m a positive integer. Then,
there is a log resolution Y !X of JX OX .�mKX / such that

yKY=X �JY=X �Km;Y=X :

Proof. Fix a log resolution ' W Y ! X of JX OX .�mKX /. Take a reduced
complete intersection scheme M � AN of codimension c such that M contains
X as an irreducible component. Then we have a sequence of homomorphisms
of OX -modules: �Vd

�X

�˝m �
�! !

Œm�
X

u
�! .!M jX /

m: (8)

By [Ein and Mustat,ă 2009, Proposition 9.1] the image of u ı � is written as

.JM jX /
m.!M jX /

m: (9)

Then take a pull-back of the sequence (8):

'�
�Vd

�X

�˝m �
�! '�!

Œm�
X

u
�! '�.!M jX /

m: (10)

Define a divisor Dm on Y as OY .�Dm/D OX .�mKX /OY .
Then, we claim that

'�.OY .Dm//D OX .mKX /: (11)

The inclusion � holds because outside of the singular locus the both sheaves
coincide and the right hand side is reflective, For the opposite inclusion, regard
OX .mKX / as OX .�mKX /

� D HomOX
.OX .�mKX /;OX /. For the claim, it

is sufficient to prove that every homomorphism f W OX .�mKX /! OX comes



SINGULARITIES WITH RESPECT TO MATHER–JACOBIAN DISCREPANCIES 147

from a homomorphism OX .�mKX /OY !OY . The homomorphism f is lifted
to f 0 W '�.OX .�mKX //! OY . Here, the torsion elements are mapped to zero
by f 0. Therefore f 0 factors through '�.OX .�mKX //=Tor! OY , where Tor
is the subsheaf consisting of the torsion elements of '�.OX .�mKX //. But we
can prove that '�.OX .�mKX //=TorD OY .�Dm/: This completes the proof
of the claim (11).

By (11), the sequence (10) factors as

'�
�Vd

�X

�˝m �0

�! OY .Dm/
u0

�! '�.!M jX /
m; (12)

where u0 is the dual map of

OX .�mKX /OY  OX .�mKM jX /OY D .'
�.!M jX /

m/�:

As the second and the third sheaves in the sequence (12) are invertible, we can
write

Im �0 D IOY .Dm/; Im u0 D JM'�.!M jX /
m; (13)

with the ideals I;JM � OY . Then, by (9), we obtain

IJM D .JM jX /
mOY : (14)

Consider all M and define J D
P

M JM ; then IJ D
�P

M Jm
M

�
OY . By taking

the integral closure of the both sides, we get

IJ D Jm
X
OY : (15)

Now, given a prime divisor F over X , it appears on a log resolution � WY 0!Y

of IJ . Let  W Y 0!X be the composite � ı'. Define effective divisors B;C

on Y 0 such that OY 0.�B/D IOY 0 and OY 0.�C /D JOY 0 ; then

BCC DmJY 0=X : (16)

As  factors through the Nash blow-up, the torsion-free sheaf��
 �

Vd
�X

�
=Tor

�˝m

is invertible; therefore it is written as OY 0.G/ by a divisor G on Y 0. Then, by
the definition of yKY 0=X , we have m yKY 0=X D mKY 0 �G. On the other hand,
by (13) we have G D ��Dm�B and by (15) we have

m yKY 0=X �mJY 0=X

DmKY 0 �G � .BCC /DmKY 0 � �
�Dm�C �mKY 0 � �

�Dm;

which completes the proof of the lemma. �
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The following shows the relation of our MJ-singularities and the singularities
of de Fernex and Hacon.

Theorem 3.19. Assume that X is normal. If a pair .X; at / is MJ-klt (resp.
MJ-canonical, MJ-log canonical), then it is log terminal (resp. canonical, log
canonical) in the sense of de Fernex and Hacon.

Proof. Since the problem is local, we may assume that X is a closed subvariety
of the affine space AN of codimension c. It is sufficient to prove for a fixed
m 2 N that

aMJ.F IX;OX /� am.F IX;OX /� adf h.F IX;OX /

for every prime divisor F over X . The last inequality is given in [de Fernex and
Hacon 2009, Remark 3.3]. We will show the first inequality. As noted above,
we may assume that OX .�mKX / is an ideal sheaf of OX . By the lemma we
have a log resolution ' W Y !X of JX OX .�mKX / such that the inequality

yKY=X �JY=X �Km;Y=X

holds. Then, note that every resolution  W Y 0!X factoring through ' satisfies
the inequality. Therefore, every prime divisor F over X appears on a resolution
on which the inequality holds, which yields aMJ.F IX;OX /� am.F IX;OX /.

�
By [de Fernex and Hacon 2009, Theorem 1.2] a pair .X; at / is log terminal

(resp. log canonical) in de Fernex and Hacon’s sense if and only if there is a
boundary � (it means that � is a Q-divisor such that Œ��D 0 and KX C� is a
Q-Cartier divisor) such that ..X; �/; at / is klt (resp. log canonical) in the usual
sense. Here, we note that X is not necessarily affine. Therefore we obtain the
following corollary.

Corollary 3.20. Assume that X is normal. If a pair .X; at / is MJ-klt (resp.
MJ-log canonical), then there is a boundary � on X such that ..X; �/; at / is klt
(resp. log canonical) in the usual sense.

De Fernex and Hacon [2009] also introduced a multiplier ideal for a pair
.X; at / with a normal variety X and an ideal a on X . First for m 2 N they
defined m-th “multiplier ideal” as

Jm.X; a
t /D '�.OY .pKm;Y=X � tZq//;

where ' W Y !X is a log resolution of aOX .�mKX / and let aOY D OY .�Z/.
They proved that the family of ideals fJm.X; a

t /gm has the unique maximal
element and call it the multiplier ideal of .X; at / and denote it by J.X; at /. The
following is the relation between their multiplier ideal and our MJ-multiplier
ideal, which follows immediately from Lemma 3.18
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Theorem 3.21. Let .X; at / be a pair with a normal variety X , an ideal a on X

and t 2 R�0. Then

JMJ.X; a
t /� Jm.X; a

t / for every m 2 NI

in particular
JMJ.X; a

t /� J.X; at /:

The following proposition is an application of inversion of adjunction, where
the first result is contained in Corollary 3.20, but we think that it makes sense to
give a direct proof without using the result of [de Fernex and Hacon 2009].

Proposition 3.22. (i) Let X be an MJ-canonical variety. Then there exists
an effective Q-divisor � on X such that .X; �/ is klt (i.e., X is normal,
KX C� is Q-Cartier and KY D f

�.KX C�/C
P

aiEi with ai >�1 for
a log resolution f W Y !X .)

(ii) Let X be MJ-log canonical and W be a minimal MJ-log canonical center.
Then there exists an effective Q-divisor � on W such that .W; �/ is klt.

Proof. As X is MJ-canonical, it is irreducible and normal by [de Fernex and
Docampo 2014] or [Ein et al. 2011]. If there exist an open covering fUig of
X (resp. W ) and an effective Q-divisor �i on Ui such that .Ui ; �i/ is klt for
each i , then by [de Fernex and Hacon 2009, Theorem 1.2] there exists a global
Q-divisor � on X (resp. W ) such that .X; �/ (resp. .W; �/) is klt. So we may
assume that X is affine for both statement (i) and (ii). Let X be embedded in a
nonsingular affine variety A with codimension c and the defining ideal IX .

(i) As X is MJ-canonical, we have mldMJ.ZIX;OX /� 1 for every proper closed
subset Z �X . By inversion of adjunction we have

mld.ZIA; I c
X /� 1:

On the other hand, for any point � 62X in A

mld.�IA; I c
X /Dmld.�IA;OA/� 1;

because A is nonsingular. Finally for the generic point � of X , we have

mld.�;A; I c
X /D 0:

Hence, X is the unique log canonical center of .A; I c
X
/.

Now, take a log resolution ' W A! A of .A; IX /. Take a general element
g 2 I2c

X
and let D0 be the zero locus of g on A and then let D D 1

2
D0. Then,

by the generality of g, the morphism ' is also a log resolution of .A;D0/ and
for every exceptional prime divisor Ei on A we have

a.Ei IA; I
c
X /D a.Ei IA;D/:
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As .A;D/ is klt outside of X , .A;D/ has also unique log canonical center X .
Then, by local subadjunction formula by Fujino and Gongyo [2010], there exists
a Q-divisor � on X such that .X; �/ is klt.

(ii) By inversion of adjunction we have

mldMJ.W IA; I
c
X /D 0 and mldMJ.ZIA; I

c
X /� 0

for every strictly proper closed subset Z of X . By the minimality of W we have

mldMJ.ZIA; I
c
X / > 0

for every strictly proper closed subset Z�W . We also have mldMJ.�IA; I
c
X
/D0

for the generic point � of an irreducible component of X and mldMJ.�IA; I
c
X
/�1

for any point � 62X in A. Therefore, .A; I c
X
/ is log canonical and W is a minimal

log canonical center of .A; I c
X
/. Then, by the same argument as in (i), we have

.W; �/ is klt for some boundary �. �

4. Deformations

In this section we prove that MJ-canonical singularities and MJ-log canonical
singularities are preserved under small deformations. First we start with the
strengthening of inversion of adjunction. Proposition 2.9 does not hold for
singular A in general (see, [Ishii 2013, Example 3.13]), but if X is a complete
intersection in a singular A, then it holds.

Corollary 4.1 (strong inversion of adjunction). Let A be an affine connected
reduced equidimensional scheme of finite type over k of dimension d C c

containing X as a complete intersection, that is, X is defined by c equations
f1 D f2 D � � � D fc D 0 in A.

(i) Assume X is reduced and let W be a strictly proper closed subset of X . Let
Qa� OA be an ideal such that its image a WD QaOX � OX is nonzero on each
irreducible component of X . Then,

mldMJ.W IX; a
t /DmldMJ.W IA; Qa

t .f1; : : : ; fc/
c/:

(ii) If A satisfies S2, cD1 and .A; .f1// is MJ-log canonical, then automatically
X is reduced and the formula in (i) holds.

Proof. We may assume that A is embedded into the affine space AN . By using
the same idea as in Remark 3.8, we can construct an embedding A � ANCc

such that there exists a linear subspace L of codimension c in ANCc satisfying
L\ADX . Denote B DANCc . Let Na�OB be an ideal such that QaD NaOA and
let a0 D NaOL. Then we have aD a0OX . Let IX=L, IA=B , IL=B be the defining
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ideals of X in L, A in B, L in B, respectively. Then L\ADX implies that
IX=A D IL=BOA and IX=L D IA=BOL.

Noting that B and L are nonsingular, apply Proposition 2.9 for X �L, L�B

and A� B. Then we obtain

mldMJ.W IX; a
t /Dmld.W IL; a0t .IX=L/

N�d /;

mld.W IL; a0t .IX=L/
N�d /Dmld.W IB; Nat .IA=B/

N�d .IL=B/
c/;

mldMJ.W;A; Qat .IX=A/
c/Dmld.W IB; Nat .IL=B/

c.IA=B/
N�d /:

The required equality in (i) follows from just composing these equalities.
For the proof of (ii), first we see that A is smooth at the generic point of

every irreducible component of X . This is proved as follows: Assume A is
not smooth at the generic point � of an irreducible component of X . Then as
mldMJ.�IA; .f1// � 0, we have mldMJ.�IA;OA/ � 1, which implies that A is
MJ-canonical around general points of f�g. But MJ-canonical singularities are
normal, a contradiction. By restricting A to a neighborhood of X we may assume
that Z D Sing A is of codimension � 2. Let A0 D A nZ; then .A0; .f1// is
MJ-log canonical, but it is equivalent to that .A0; .f1// is log canonical in the
usual sense, because A0 is nonsingular. Therefore f1 is reduced on A0. For
every open subset U �A, define U0 WD U \A0 Consider the exact sequence

0! �.U; .f1//! �.U0; .f1//!H 1
Z\U .U; .f1//:

Since the ideal sheaf .f1/ is principal, the last term H 1
Z\U

.U; .f1// is isomorphic
to H 1

Z\U
.U;OU / and this is 0, because A is S2. Therefore by the exact sequence,

we obtain .f1/ D i�.f1jA0
/ D i�.

p
.f1jA0

/ / �
p
.f1/, where i W A0 ,! A is

the inclusion. This shows that the ideal .f1/ is reduced on A. Once we know
that X is reduced we can apply (i) to obtain the formula of mldMJ. �

Definition 4.2. Let T be a reduced scheme of finite type over k and 0 2 T a
closed point. Let � W X ! T be a surjective morphism with equidimensional
reduced fibers X� D �

�1.�/ of common dimension r for all closed points � 2 T .
Then � WX ! T is called a deformation of X0 with the parameter space T .

If moreover a pair .X; at / is given, at
� DatOX� are not zero on each irreducible

component of X� for all � 2 T and � WX ! T is a deformation of X0, then the
family f.X� ; at

� /g�2T is called a deformation of .X0; a
t
0
/.

From now on, for a morphism � W Z ! T from some scheme Z to the
parameter space T , we denote the fiber ��1.�/ by Z� .

Lemma 4.3. Let � W X ! T be a deformation of .X0; a
t
0
/ .0 2 T / given by a

nonzero ideal a�OX . Then, there exists an open dense subset T0 � T and a log
resolution ' W Y !X of .X; aJX / such that for every � 2 T0 the following hold:
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(i) '� W Y� !X� is a log resolution of .X� ; a�JX� /.

(ii) . yKY=X �JY=X � tZ/jY� D
yKY�=X� �JY�=X� � tZ� ,

where '� is the restriction of ' onto the fiber Y� D .� ı'/
�1.�/ and

aOY D OY .�Z/ and a�OY� D OY� .�Z� /:

In particular, .X jT0
; at / is MJ-log canonical (resp. MJ-canonical) if and only

if .X� ; at
� / is MJ-log canonical (resp. MJ-canonical) for every � 2 T0.

Proof. As it is sufficient to prove the existence of such an open subset of T on
each irreducible component, we may assume that T is irreducible. Let r be the
common dimension of the fiber X� for closed points � 2T . Let JX=T be the r -th
Fitting ideal of �X=T . By Proposition 3.5, we can take a factorizing resolution
ˆ WA!A of X in A with the strict transform Y of X in A such that the restriction
' WY !X ofˆ is a log resolution of .X; aJX JX=T /. Let Ei .i D 1; : : : ; s/ be an
exceptional prime divisor of ˆ. Then, by the generic smoothness theorem, there
is an open dense subset T0 of T such that Ei1

\ � � � \Eij , Ei1
\ � � � \Eij \Y ,

Y , A, A are smooth over T0 for all collections fi1; : : : ; ij g if they are not empty.
On the other hand, since ˆ is a factorizing resolution of X in A, we have an
effective divisor R on A such that IX OA D IY OA.�R/. Replacing T0 by a
smaller open subset if necessary, we may assume that the support of R does not
contain A� .� 2 T0/. By restricting this equality on the fiber of � , we have

IX OA�
D IY�OA�

.�RjA� /:

Because of this, ˆ� WA� !A� is a factorizing resolution of X� in A� for every
� 2 T0.

Then, by �X=T ˝OX� D�X� and the functoriality of Fitting ideals, we have
JX=T OX� D JX� for every � 2 T0. This shows that '� is a log resolution of
.X� ; a�JX� /.

By the Lemma 3.7 we have

yKY=X �JY=X D .KA=A� cR/jY ;

where c D codim.X;A/. Noting that c is also the codimension of X� in A� for
a closed point � 2 T0, we have

yKY�=X� �JY�=X� D .KA�=A�
� cRjA� /jY� :

Since .KA=A/jA� DKA�=A�
, we obtain for � 2 T0

. yKY=X �JY=X /jY� D
yKY�=X� �JY�=X� :

For the statement (ii) we have only to note that ZjY� DZ� for � 2 T0. �
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Theorem 4.4. Let f.X� ; at
� /g�2T be a deformation of .X0; a

t
0
/. Assume .X0; a

t
0
/

is MJ-log canonical at x 2X0. Then there are neighborhoods X � �X of x and
T � � T of 0 such that .X �� ; a

t
� jX �� / is MJ-log canonical for every closed point

� 2 T �.

Proof. The statement is reduced to the case that T is a nonsingular curve. Then
X0 is defined by one equation, say f D0, and dim X0 is one less than dim X Dd .
By applying Corollary 4.1, we have

mldMJ.xIX0; a
t
0/DmldMJ.xIX; a

t .f //:

By the assumption we have mldMJ.xIX0; a
t
0
/� 0 which implies

mldMJ.xIX; a
t .f // � 0 and therefore mldMJ.xIX; a

t / � 0. Then, by Proposi-
tion 2.22 there is an open neighborhood X � �X of x such that .X �; at jX �/ is
MJ-log canonical. Then, by the last statement of Lemma 4.3, there exists an
open subset T � such that .X �� ; a

t
� jX �� / is MJ-log canonical for every � 2 T �. �

Remark 4.5. Replacing X by a small neighborhood of x, we can assume that
X � T �AN , since the morphism X ! T is of finite type. If T is nonsingular,
then A D T �AN ! T is a smooth morphism of nonsingular varieties. For
.X; at /, take Qa � A as the pull back of a by the canonical surjective map
OA! OX . Then, we can prove that .X� ; at

� / is MJ-log canonical if and only
if .A� ; Qa.IX� /

c/ is log canonical. By using this fact, Theorem 4.4 can also be
proved by discussions only on A and A� .

For the similar statement as Theorem 4.4 for MJ-canonical singularities we
need some notions and a lemma.

Definition 4.6. Let A be a nonsingular variety and � 2 A a (not necessarily
closed) point. For a cylinder C � L1.A/ we define the codimension of C \

 �1
10
.�/ as

codim C \ �1
10.�/ WD codim. m.C \ 

�1
0
.�//;Lm.A//;

for m� 0, where  m W L
1.A/! Lm.A/ is the canonical projection.

Here, note that the value of the right-hand side is constant for m� 0, where
C D  �1

n .S/ for S � Ln.A/.

Lemma 4.7. Let A be a nonsingular variety, � 2 A a (not necessarily closed)
point and a� OA .i D 1; : : : ; r/ a nonzero ideal. Then

mld.�IA; at /D inf
˚
codim

�
Contm.a/\ �1

0 .�/
�
�mt

	
:

Proof. First we prove the inequality �. Let E be a prime divisor over A with
the center f�g and let v D valE . Let mD v.a/; then there exists a open dense
subset C � CA.v/ such that C � Contm.a/ \  �1

0
.�/, where CA.v/ is the
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maximal divisorial set (for definition see, for example, [Ishii 2013]) in L1.X /

corresponding to v. This is because the generic point ˛ 2CA.v/ has ord˛.a/Dm

by [de Fernex et al. 2008] and the center of ˛ is �. Then

ordE.KA0=A/� tv.a/C 1D codim.CA.v//�mt

� codim.Contm.a/\ �1
0 .�//�mt;

where Y !X is a log resolution of a such that E appears on Y . Here, note that
we use the equality ordE.KA0=A/C 1 D codim.CA.v// proved in [de Fernex
et al. 2008]. This completes the proof of �.

Next we prove the opposite inequality �. We may assume that

ordE.KA0=A/� t valE.a/C 1� 0

for every prime divisor E over X with the center f�g, because otherwise the
claimed inequality is trivial. For an arbitrary m 2 N take

� 2 Contm.a/\ �1
0 .�/

such that f�g is an irreducible component of Contm.a/\ �1
0
.�/ and

 s.�/�  s.Contm.a/\ �1
0
.�//; s �m

gives the codimension of Contm.a/\ �1
0
.�/. Then

f�g D  �1
s . s.�//;

which is an irreducible cylinder. Then, a divisorial valuation v D q valE over
A corresponds to this cylinder [de Fernex et al. 2008, Propositions 2.12, 3.10].
Here, we note that E is a prime divisor with the center f�g and mD q valE.a/.
By the maximality of CA.v/, we have f�g � CA.v/. Hence

codim.Contm.a/\ �1
0 .�//� tm� codim CA.v/� tm

D q.ordE.KA0=A/C 1/� q valE.a/

� ordE.KA0=A/� t valE.a/C 1;

which gives the inequality � in the lemma as required. �

Remark 4.8. Let A and � be as above. Let ai � OA .i D 1; : : : ; r/ be nonzero
ideals and ti .i D 1; : : : ; r/ nonnegative real numbers. Then

mld.�IA; at1

1
� � � atr

r /

D inf
n
codim

�
Contm1.a1/\ � � � \Contmr .ar /\ 

�1
0 .�/

�
�
P
i

mi ti

o
D inf

n
codim

�
Cont�m1.a1/\ � � � \Cont�mr .ar /\ 

�1
0 .�/

�
�
P
i

mi ti

o
:
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Here, the first equality is proved in the similar way as in Lemma 4.7 and the
second equality follows from the same argument as the proof of [Ishii 2013,
Proposition 3.7].

Theorem 4.9. Let f.X� ; at
� /g�2T be a deformation of .X0; a

t
0
/. Assume .X0; a

t
0
/

is MJ-canonical at x 2 X0. Then there are neighborhoods X � � X of x and
T � � T of 0 such that .X �� ; a

t
� jX �� / is MJ-canonical for every � 2 T �.

Proof. As in Theorem 4.4, we reduce to the case that T is a nonsingular curve.
If the statement does not hold, then there is a horizontal irreducible closed subset
W (i.e., W dominates T ) such that x 2W and mldMJ.W IX; a

t / < 1. Replacing
X by a small neighborhood of x we can assume that X � T �AN DA. Then,
by inversion of adjunction, we have mld.W IA; QatIX / < 1, where Qa� OA is an
ideal such that aD QaOX . Then,

mld.�IA; QatIX / < 1:

Therefore, there exists a prime divisor E over A with the center W and satisfying
a.EIA; QatIX / < 1. Then, by Lemma 4.3, there is an open dense subset T0 � T

such that

mld.�.i/� IA� ; Qa
t
�IX� / < 1 for � 2 T0 (17)

where �.i/� is the generic point of an irreducible component W
.i/
� of W� .

mld.W� IA� ; Qa
t
�IX� /

DmldMJ.W� IX� ; Qa
t
� /

D inf
m;n

˚
.M C 1/N � .mC 1/t � .nC 1/c

� dim
�
 �1

Mm.L
m.Z� //\ 

�1
Mn.L

n.X� //\ 
�1
M0.W� /

�	
; (18)

where M Dmaxfm; ng and  Mn W L
M .A/! Ln.A/ and so on. Now, fix m; n.

For simplicity let us assume M D n. (for the other case M Dm, the proof is
similar). Let Ln.X=T / be the relative n-jet scheme with respect to � WX ! T .
It is defined as

Ln.X=T / WD ��1
n .†n.T //� Ln.X /;

where �n W L
n.X /! Ln.T / is the morphism of n-jet schemes induced from

� W X ! T and †n.T / � Ln.T / is the locus of trivial n-jets on T . Note that
.Ln.X=T //� DLn.X� /. Denote by �X

nm the canonical projection Ln.X=T /!

Lm.X=T /; then �X
nmj.Ln.X=T //� / is the canonical projection Ln.X�/!Lm.X� /.
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The description in (18) is then

mld.W� IA� ; Qa
t
�IX� /D inf

m;n

˚
.M C 1/N � .mC 1/t � .nC 1/c �Rn;m;�

	
;

where we have set

Rn;m;� D dim
�
.�X

nm/
�1.Lm.Z� //\Ln.X� /\ .�

X
n0/
�1.W� /

�
:

Let
R WD .�X

nm/
�1.Lm.Z=T //\Ln.X=T /\ .�X

n0/
�1.W /

and consider the restricted morphism � W R!W of �X
n0
W Ln.X=T /!X .

Here, note that Rn;m;� D dim ��1.W� / for every � 2 T . Assume dim W D s;
then dim W� D s � 1 since T is a nonsingular curve and therefore W� is a
hypersurface in W . Therefore

Rn;m;0 D dim ��1.W0/� dim ��1.y/C s� 1

for general closed point y 2W . Take � 2 T such that y 2W
.i/
� �W� ; then

dim ��1.y/C s� 1D dim ��1.�
.i/
� /:

Note that

mld.�.i/� IA� ; QaIX� /D inf
n;m

˚
.M C 1/N � .mC 1/t � .nC 1/c � dim ��1.�

.i/
� /
	

by Lemma 4.7. From (17) we obtain

1�mld.W0IA0; Qa0IX0
/�mld.�.i/� IA� ; QaIX� / < 1;

which is a contradiction. �
As a corollary, we obtain a sufficient condition for a hypersurface singularity

not to be MJ-log canonical or MJ-canonical. Terminologies “nondegenerate”,
“Newton polygon” in the corollary can be referred in [Ishii 1996].

Corollary 4.10. Let .X; 0/� .AdC1; 0/ be a reduced hypersurface singularity
defined by an equation f D 0. Let �.f / be the Newton polygon of f in RdC1.

(i) If .1; : : : ; 1/ 62 �.f /, then .X; 0/ is not MJ-log canonical.

(ii) If .1; : : : ; 1/ 62�.f /0, then .X; 0/ is not MJ-canonical. Here, �.f /0 means
the interior of �.f /.

Proof. It is known that the statements hold for nondegenerate f (see [Ishii
1996, Corollary 1.7]), since in this case MJ-canonical (resp. MJ-log canonical)
is equivalent to canonical (resp. log canonical) in the usual sense. Let f be
possibly degenerate and assume 1 WD .1; : : : ; 1/ 62 �.f /. Perturb the coefficients
of f to obtain f� with �.f�/ D �.f /. Let � 2 T WD Ar and f D f0. Then
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f� .� 2 T / gives a deformation of hypersurfaces X�. Then for general �, f� is
nondegenerate; therefore 1 62 �.f�/ implies that X� is not log canonical. Hence,
X0 D X is not MJ-log canonical by Theorem 4.4. For the statement of MJ-
canonical follows by using Theorem 4.9 in the similar way as above. �
Proposition 4.11 (lower semicontinuity of MJ-minimal log discrepancy). Let
f.X� ; a

t
� /g�2T be a deformation of .X0; a

t
0
/ and let � WX ! T be the morphism

giving the deformation. Let � W T ! X be a section of � . Then, the map
T ! R; � 7!mldMJ.�.�/;X� ; a

t
� / is lower semicontinuous.

Proof. For the statement of the proposition, we may assume that T is irreducible.
We use the same notation as in the proof of Theorem 4.9. First note that there
is a nonempty open subset T � � T such that mldMJ.�.�/;X� ; a

t
� / is constant

for all � 2 T �. This is proved as follows: Take a log resolution ' W Y ! X of
.X; aJX JX=T I†/, where I† is the defining ideal of the section† WD Im � . Then,
by Lemma 4.3, there exists a nonempty open subset T � � T such that for every
� 2 T � the restriction '� W Y� !X� is a log resolution of .X� ; a�JX�mX� ;�.�//

and
. yKY=X �JY=X � tZ/jY� D

yKY�=X� �JY�=X� � tZ� ;

where aOY D OY .�Z/ and a�OY� D OY� .�Z� /. Now take an exceptional
prime divisor E over X jT � with the center †. Then E� is the disjoint sum of
nonsingular exceptional divisors E

.i/
� with the center �.�/ and

ordE. yKY=X �JY=X � tZ/D ord
E
.i/
�
. yKY�=X� �JY�=X� �Z� /:

Hence, the constancy of the MJ-minimal log discrepancy follows as required.
For the lower semicontinuity of MJ-minimal log discrepancy follows just by

showing
mldMJ.�.0/;X0; a

t
0/�mldMJ.�.�/;X� ; a

t
� /; (19)

for some � 2 T �.
In the same way as to get (18) in the proof of Theorem 4.9, we obtain

mldMJ.�.�/IX� ; Qa
t
� /D inf

m;n

˚
.M C 1/N � .mC 1/t � .nC 1/c

� dim
�
 �1

Mm� .L
m.Z� //\ 

�1
Mn� .L

n.X� //\ 
�1
M0� .�.�//

�	
;

where M Dmaxfm; ng and  mn� W L
m.A� /! Ln.A� / is the canonical projec-

tion. For simplicity, let us assume M D n. (For the other case M Dm, the proof
is the same.) Then the scheme  �1

Mm
.Lm.Z� //\ 

�1
Mn
.Ln.X� //\ 

�1
M0
.�.�//

is the fiber of the point �.�/ by the canonical projection

�nm WWnm WD  
�1
nm.L

m.Z//\Ln.X=T /!†' T;

where  nm W L
n.A/! Lm.A/ is the canonical projection.
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Here, note that the space Wnm is Gm-invariant and also the subspace

Sr WD fQ 2Wnm j dim ��1
nm�nm.Q/� rg

is Gm-invariant for every r 2 N. For every r 2 N, the subset Sr is known to
be a closed subset (see, for example, [Mumford 1999, Chapter 1, Section 8]).
Therefore by [Ishii 2007, Proposition 3.2],

f� 2 T j dim ��1
nm.�/� rg D �nm.Sr /

is a closed subset of T . Therefore, for fixed m; n 2 N

� 7! dnm.�/ WD .M C 1/N � .mC 1/t � .nC 1/c � dim ��1
nm.�/

is lower semicontinuous. Therefore, there is a nonempty open subset Unm � T �

such that dnm.0/�dnm.�/ for all � 2Unm. As k is uncountable,
T

nm Unm¤∅
which completes the proof of (19). �

5. Low-dimensional MJ-singularities

In this section we determine MJ-canonical and MJ-log canonical singularities of
dimension 1 and 2.

Proposition 5.1. Let .X;x/ be a singularity on a one-dimensional reduced
scheme.

(i) .X;x/ is MJ-canonical if and only if it is nonsingular.

(ii) .X;x/ is MJ-log canonical if and only if it is nonsingular or ordinary node.

Proof. It is clear that a nonsingular point is MJ-canonical. On the contrary if
.X;x/ is MJ-canonical, then it must be normal by Proposition 3.1. We can see
the nonsingularity of .X;x/ also by emb� 2 dim X � 1D 1 (Proposition 3.3).

For (ii), assume .X;x/ is singular. Then it is MJ-log canonical if and only if
mldMJ.xIX;OX /D 0 by [Ishii 2013, Corollary 3.15] and it is equivalent to that
.X;x/ is ordinary node by [Ishii and Reguera 2013]. �
Example 5.2. It is known that the union of the three axes in the three-dimensional
affine space is a Du Bois curve. But it is not an MJ-log canonical curve by
Proposition 5.1(ii).

Theorem 5.3. Let .X;x/ be a singularity on two-dimensional reduced scheme.
Then .X;x/ is MJ-canonical if and only if it is nonsingular or rational double.

Proof. First note that for a complete intersection singularity, canonicity and MJ-
canonicity are equivalent. As a two-dimensional rational double point .X;x/ is a
hypersurface singularity and canonical; therefore it is MJ-canonical. Conversely,
if .X;x/ is MJ-canonical, then mldMJ.xIX;OX / � 1. Such singularities are
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classified in [Ishii and Reguera 2013] to be nonsingular or rational double or
normal crossing double or a pinch point. As an MJ-canonical singularity is
normal by Proposition 3.1, only rational double points among them can be MJ-
canonical. �

Next we will characterize MJ-log canonical singularities of dimension 2. By
Proposition 3.3, for an MJ-log canonical singularity .X;x/ of dimension 2, we
have

emb.X;x/� 4:

First we will determine the case emb.X;x/D 3. Many of the singularities listed
in the following theorem can be observed to be MJ-log canonical singularities
by the calculation in [Kuwata 1999]. But we give a self contained proof below.

Theorem 5.4. Let .X; 0/ be a singularity on a two-dimensional reduced scheme
with emb.X; 0/D 3. Then, .X; 0/ is an MJ-log canonical singularity if and only
if X is defined by f .x;y; z/ 2 kŒŒx;y; z�� as follows:

(i) mult0 f D 3 and the projective tangent cone of X at 0 is a reduced curve
with at worst ordinary nodes.

(ii) mult0 f D 2:

(a) f D x2Cy2Cg.z/, deg g � 2.
(b) f D x2Cg3.y; z/Cg4.y; z/, deg gi � i , g3 is homogeneous of degree

3 and g3 ¤ l3 (l linear).
(c) f D x2Cy3Cyg.z/C h.z/, 3�mult0 g � 4 or mult0 h� 6.
(d) f D x2Cg.y; z/C h.y; z/, g is homogeneous of degree 4 and it does

not have a linear factor with multiplicity more than 2 and mult0 h� 5.

Proof. Let .X; 0/ be an MJ-log canonical singularity defined by f 2 kŒŒx;y; z��.
By (2) in Proposition 2.14, we have

mldMJ.0IX;OX /D inf
n
f.nC 1/2� dim. X

n0/
�1.0/g � 0I

therefore in particular for nD 3, we have

dim. X
3;0/
�1.0/� 8:

Since . X
3;0
/�1.0/DSpec kŒx.i/;y.j/; z.k/ j i; j ; kD1; 2; 3�=.F .1/;F .2/;F .3//,

at least one F .j/ .j D 1; 2; 3/ must be nonzero in kŒx.i/;y.j/; z.k/�. By Remark
2.12, this implies that mult0 f � 3.

Case I: mult0 f D 3. Let .X; 0/� .A; 0/ be the embedding into the 3-dimen-
sional nonsingular variety, and let ˆ W A0! A be the blow-up at 0. Let E be
the exceptional divisor on A0, X 0 the strict transform of X in A0, ‰ W A! A0

a factorizing resolution of X 0 in A0 and X the strict transform of X 0 in A. We
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can take ‰ such that the restriction  D ‰jY W Y ! X 0 is a log resolution of
JX 0JX OX ;0 . As X is a hypersurface of multiplicity 3 at 0, we have

IX OA0 D IY OA0.�3E/:

Then, by Corollary 3.9, it follows

yKX =X 0 �JX =X 0 � 
�.EjX 0/D yKX =X �JX =X :

Therefore, .X; 0/ is MJ-log canonical if and only if .X 0;EjX 0/ is MJ-log canoni-
cal around EjX 0 . Since X 0 is a hypersurface, it is S2. Then, by Corollary 4.1(ii),
MJ-log canonicity of .X 0;EjX 0/ is equivalent to that EjX 0 is reduced and MJ-log
canonical. As dim.EjX 0/D 1 we can apply Proposition 5.1(ii), and obtain that
EjX 0 has ordinary nodes. Note that EjX 0 is a hypersurface in P2 defined by
in.f /.

Case II: mult0 f D2. Letˆ WA0!A be the blow-up at 0, X 0 the strict transform
of X in A0 and E the exceptional divisor with respect to ˆ. Then as the same
discussion using Corollary 3.9 as in (I), it follows that X has MJ-log canonical
singularities if and only if X 0 has MJ-log canonical singularities along E.

Here we introduce an invariant for a hypersurface singularity. The smallest
possible dimension �.f / of a linear subspace V0 of V D kxC kyC kz such
that in.f / lies in the subalgebra kŒV0� of kŒx;y; z� is an invariant of the germ
.X; 0/ [Ishii and Reguera 2013, 3.15]. (For mult0 f D 2, in particular, � is just
the rank of the quadratic forms defining the tangent cone; therefore it is clear
that � is an invariant of .X;x/.)

(II-1) �.f /�2. In this case, by Weierstrass preparation theorem and a coordinate
transformation (for example, see [Ishii and Reguera 2013]) the equation f D 0

is written as

x2
Cy2

Cg.z/D 0;

where mult0 g�2 (if gD0 we define mult0 gD1). Then mldMJ.0IX;OX /D1

by [Ishii and Reguera 2013]; therefore .X; 0/ is MJ-log canonical.

(II-2) �.f /D 1. In this case the equation f D 0 is written as

x2
Cg.y; z/D 0;

where mult0 g� 3. Now let us consider the germ of the hypersurface g.y; z/D 0

at 0 in Spec kŒŒy; z��. Although this germ depends on the choice of the coordinates,
its multiplicity m2 WDmult g, and its � -invariant at 0, let it be �2, only depends
on .X; 0/ (this follows from [Hironaka 1967]. See [Ishii and Reguera 2013,
Remark 3.19]).
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(II-2-1) �.f /D1;m2�5. In this case .X;x/ is not MJ-log canonical. Indeed we
can see that .1; 1; 1/ 62 �.f /, which implies that .X; 0/ is not MJ-log canonical
by Corollary 4.10.

(II-2-2) �.f /D 1;m2 D 4. In this case the equation f is written as

x2
Cg4.y; z/Cg5.y; z/D 0;

where g4 is homogeneous of degree 4 and mult0 g5 � 5. Then, we can see that
the singular locus C of X 0 lying on E is isomorphic to P1. Let ˆ0 WA00!A0 is
the blow-up with the center C , X 00 the strict transform of X in A00 and F the
exceptional divisor with respect to ˆ0. Then, as IX 0OA00 D IX 00OA00.�2F / and
KA00=A0 D F , by Theorem 3.6 we obtain

yKX =X 00 �JX =X 00 �‰
0�.F jX 00/D yKX =X 0 �JX =X 0 ;

where ‰0 WA!A00 is a factorizing resolution of X 00 in A00 and X is the strict
transform of X 00 in A. The above equality yields the X 0 has MJ-log canonical
singularities if and only if .X 00;F jX 00/ is MJ-log canonical. Here, as X 00 is a
hypersurface, so in particular satisfies S2 condition, by Corollary 4.1 the curve
F jX 00 is reduced and MJ-log canonical. We can see that F jX 00 has at worst
ordinary nodes if and only if g4 does not have a linear factor with multiplicity
more than 2.

(II-2-3) �.f /D 1;m2 D 3.

(II-2-3-a) �.f / D 1;m2 D 3; �2 > 1. Proposition 3.21 of [Ishii and Reguera
2013] then gives mldMJ.0IX;OX /D 1: Therefore .X; 0/ is MJ-log canonical.

(II-2-3-b), �.f /D 1;m2 D 3; �2 D 1. In this case the equation f is written as

f D x2
Cy3

Cyg.z/C h.z/;

where mult0 g � 3 and mult0 h� 4.
If mult0 gD3 or mult0 h�5, then mldMJ.0IX;OX /D1 by [Ishii and Reguera

2013, Proposition 3.23]. Therefore .X; 0/ is MJ-log canonical.
If mult0 gD 4 or mult0 hD 6, by a coordinate transformation we may assume

g.z/D az4 and h.z/D bz6C .higher degree term in z/ (a; b 2 k). Here, note
that the condition “mult0 g D 4 or mult0 hD 6” implies “a¤ 0 or b ¤ 0”. Take
a blow-up ˆ WA0!A and look at the equation defining X 0 on each canonical
affine chart of A0, we can see that on two affine charts X 0 is nonsingular and on
one affine chart X 0 is defined by

u2
C v3wC avw3

C bw4
C h0.w/D 0;
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where mult0 h0�5. Here, as a¤0 or b¤0, the degree 4 part v3wCavw3Cbw4

does not have a linear factor with multiplicity 3. Therefore, by (II-2-2) the
singularity is MJ-log canonical at the point with the coordinate .u; v; w/ D
.0; 0; 0/ and the other points are nonsingular. Thus, in this case .X; 0/ is MJ-log
canonical.

If mult0 g � 5 and mult0 h � 7, then the Newton polygon �.f / does not
contain the point 1D .1; 1; 1/. Therefore by Corollary 4.10 the singularity .X; 0/
is not MJ-log canonical. �

Next we consider the case emb.X; 0/D 4.

Lemma 5.5. Assume that X is two-dimensional MJ-log canonical at a point
0 2X with emb.X; 0/D 4.

(i) When we write 1OX ;;0 ' kŒŒx1;x2;x3;x4��=I , the ideal I contains two el-
ements f;g with mult0 f D mult0 g D 2 and in.f /; in.g/ form a regular
sequence in kŒx1;x2;x3;x4�.

(ii) The projective scheme EX WD V .in.I// � P3 is a reduced curve with at
worst ordinary nodes.

Proof. By (2) in Proposition 2.14, we have

mldMJ.0IX;OX /D inf
n
f.nC 1/2� dim. X

n0/
�1.0/g � 0I

therefore in particular for nD 2, we have

dim. X
20/
�1.0/� 6: (20)

Here, note that

. X
20/
�1.0/DSpec kŒx

.i/
1
;x
.j/
2
;x
.k/
3
;x
.l/
4
j i; j ; k; lD 1; 2�=.F .1/;F .2/ jf 2 I/

under the notation in Remark 2.12. Since 4 is the embedding dimension of
.X; 0/, it follows that mult0 f � 2 for all f 2 I ; therefore F .1/ D 0 for all f by
Remark 2.12. By the inequality (20) we obtain that there exist f;g 2 I such that

F .2/.x
.1/
i /;G.2/.x

.1/
i /

form a regular sequence in

kŒx
.i/
1
;x
.j/
2
;x
.k/
3
;x
.l/
4
j i; j ; k; l D 1; 2�I

therefore these form a regular sequence in

kŒx
.1/
1
;x
.1/
2
;x
.1/
3
;x
.1/
4
�:

As in.f /.x.1/i /DF .2/; in.g/.x.1/i /DG.2/, it follows that mult0f Dmult0 gD2
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by Remark 2.12 and that in.f /; in.g/ form a regular sequence in kŒx1;x2;x3;x4�.
This completes the proof of (i).

Now let A be a nonsingular variety of dimension 4 containing a neighborhood
of the singularity .X; 0/ and let A0!A be the blow-up at 0 with the exceptional
divisor E ' P3. Let X 0 �A0 be the strict transform of X in A0. Then, note that
EjX 0 DEX and we have

IX OA0 � IX 0OA0.�2E/:

By taking a factorizing resolution‰ WA!A0 of X 0 in A0 with the strict transform
X of X 0, we obtain

yKX =X 0 �JX =X 0 �‰
�EjX �

yKX =X �JX =X (21)

by Corollary 3.9. Now, by the assumption that X is MJ-log canonical at 0, it
follows that .X 0;EX / is MJ-log canonical, which implies mldMJ.yIX

0;EX /� 0

for every y 2EX . Therefore we obtain

mldMJ.yIX
0;OX ;0/� 1:

But such a two-dimensional singularity .X 0;y/ is determined as either non-
singular or a hypersurface singularity (see, for example [Ishii and Reguera
2013, Lemma 3.6]). Hence X 0 satisfies S2 condition around EX . Then, by
Corollary 4.1, EX is reduced and MJ-log canonical, which yields (ii). �
Theorem 5.6. Let .X; 0/ be a singularity on a two-dimensional reduced scheme
with emb.X; 0/D 4.

(i) In case .X; 0/ is locally a complete intersection, X is MJ-log canonical
at 0 if and only if 1OX ;;0 ' kŒŒx1;x2;x3;x4��=.f;g/, where f;g satisfy the
conditions that mult0 f D mult0 g D 2 and V .in.f /; in.g// � P3 is a
reduced curve with at worst ordinary nodes.

(ii) In case .X; 0/ is not locally a complete intersection, X is MJ-log canonical
at 0 if and only if X is a closed subscheme of a locally complete intersection
surface M which is MJ-log canonical at 0.

Proof. For the proof of (i), assume that .X; 0/ is locally a complete intersection
and 1OX ;;0 ' kŒŒx1;x2;x3;x4��=.f;g/. Assume that .X; 0/ is MJ-log canonical.
Then, by Lemma 5.5 it follows mult0 f Dmult0 gD 2. Because in Lemma 5.5 it
is proved that EX D V .in.I// is a reduced curve with at worst ordinary nodes, it
is sufficient to prove that V .in.f /; in.g//D V .in.I//. In general for a complete
intersection singularity defined by f;g the inequality

mult.X; 0/� .mult0 f /.mult0 g/

holds. We have mult.X; 0/ D deg.V .in.I// � P3/. Noting that V .in.I// is
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contained in V .in.f /; in.g//, we obtain deg V .in.I// � deg V .in.f /; in.g//,
which implies

mult.X; 0/� .mult0 f1/.mult0 f2/:

Therefore the equalities hold, in particular V .in.I//D V .in.f /; in.g//.
Conversely, if 1OX ;;0 ' kŒŒx1;x2;x3;x4��=.f;g/ and f;g satisfy the condi-

tions in (i). The conditions claim that EX is a MJ-log canonical curve. By
Corollary 4.1, we have .X 0;EX / is MJ-log canonical around EX . On the other
hand, in this case we have

IX OA0 D IX 0OA0.�2E/:

Therefore by Corollary 3.9, we obtain the equality in (21)

yKX =X 0 �JX =X 0 �‰
�EjX D

yKX =X �JX =X ;

which yields that X is MJ-log canonical at 0.
For the proof of (ii), first assume that X is a subscheme of an MJ-log canonical

two-dimensional locally complete intersection scheme M . By adjunction formula
in [Ishii 2013, Corollary 3.12] we have

mldMJ.0IX;OX /�mldMJ.0IM;OM /:

As the right-hand side is nonnegative by the assumption, we obtain that X is
MJ-log canonical at 0.

Conversely assume that X is MJ-log canonical at 0. Assume also that X is not
locally a complete intersection at 0. Then, by Lemma 5.5, there are two elements
f;g 2 I such that mult0 f Dmult0 gD 2 and in.f /; in.g/ define a curve in P3.
Here I is the ideal as in the proof of Lemma 5.5. Let E0DV .in.f /; in.g//�P3.
Let

A
‰
�!A0!A; X !X 0!X; E �A0; EX �X 0;

as in the proof of Lemma 5.5. Then, as in.f /; in.g/ 2 in.I/, we have EX �E0.
Therefore deg EX � deg E0 D 4 in P3. By the assumption that X is not locally
a complete intersection at 0, it follows that EX is not a complete intersection;
therefore

deg EX � 3: (22)

On the other hand EX is reduced and has at worst ordinary nodes by Lemma 5.5.
By the result of (i), for the proof of the statement, it is sufficient to prove that
there are two elements f 0;g0 2 I such that V .in.f 0/; in.g0// is a reduced curve
with at worst ordinary nodes. Therefore it is sufficient to prove that there exists in
P3 a complete intersection reduced curve E00 which contains EX such that E00
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has at worst ordinary nodes. Here, we note that EX is not a complete intersection,
because if it is a complete intersection, then X is also a complete intersection.

An irreducible curve in P3 of degree � 3 is classified as follows:

(a) deg C D 1, C is a line.

(b) deg C D 2, C is a conic in P2.

(c) deg C D 3, C is either a plane cubic with genus 1 or a twisted cubic.

Case 1: The case deg EX D 1 does not happen. Because, if deg EX D 1, then EX

must be irreducible and by (a) it is a line; therefore EX is a complete intersection,
a contradiction.

Case 2: The case deg EX D 2. In this case, the possibilities for EX are as
follows:

(1) a plane conic;

(2) the union of two lines which intersect at one point;

(3) the disjoint union of two lines.

The cases (1), (2) do not happen as EX , because in these cases the curve becomes
a complete intersection. In case (3), EX is the union of skew lines; therefore by
a suitable coordinate system in P3, we can write EX D V .x1;x2/[V .x3;x4/.
Then EX is contained in a complete intersection scheme V .x1x3;x2x4/. We
can see that this scheme is a cycle of four P1’s with ordinary nodes. We can
take this scheme V .x1x3;x2x4/ as E00.

Case 3: The case deg EX D 3. In this case, the possibilities for EX are as
follows:

(4) a plane cubic of genus 1;

(5) a twisted cubic;

(6) the union of a plane conic and a line;

(7) the union of three lines.

The case (4) does not happen as EX , because in this case the curve is a
complete intersection. If EX is as in (5), then EX is defined by

x1x3�x2
2 D x2x4�x2

3 D x1x4�x2x3 D 0:

Then the complete intersection curve V .x1x3�x2
2
Cx2x4�x2

3
;x1x4�x2x3/

contains EX and it is reduced and has only ordinary nodes. So take this scheme
as E00.

In case (6), first we show that the conic Q and the line l intersect. Let S be a
surface defined by a general element in the vector space

fa.in.f //C b.in.g// j a; b 2 kg:



166 LAWRENCE EIN AND SHIHOKO ISHII

Then S must be an irreducible surface, because otherwise S must be the union
of two hyperplanes and E0 becomes a line, a contradiction. Therefore S is a
cone over a plane conic or nonsingular. If S is a cone, then a plane conic on S

and a line on S intersect. If S is nonsingular, then S ' P1 �P1 and the lines
on S are either of the type Cp D fpg�P1 or of the type Dq D P1 �fqg, where
p; q are points in P1. A conic on S is linearly equivalent to CpCDq which has
a positive intersection number with Cp and Dq . Now we obtained Q\ l ¤∅.

Here, if the conic and the line lie on a plane, then the curve becomes a complete
intersection. Therefore EX is not of this type. Assume that the conic Q and
the line l do not lie on a plane. We can take Q on a hyperplane x1 D 0. By a
suitable choice of the coordinate system, we may assume that l D V .x2;x3/.
Let g D g.x2;x3;x4/ be the defining equation of Q in the hyperplane and
`D ax2C bx3 a general linear combination of x2 and x3. Then the complete
intersection scheme V .g;x1`/ contains Q[l and it is a reduced curve consisting
of a plane conic and two lines l; l 0 intersecting normally at the point .1; 0; 0; 0/
with ordinary double intersection also at Q\ l 0. Therefore if EX DQ[ l , we
can take V .g;x1`/ as E00.

In case (7), take S as above. If S is a cone over a plane conic and if EX

consists of three lines, then by EX � S three lines must intersect at the vertex;
therefore it is not ordinary double, which shows that EX is not of this type. If S

is nonsingular, then, as was stated above, a line on S is either of the form Cp or
Dq . Because of the symmetry of C and D, we may assume that the union of
three lines on S is either the union of three Cp’s or the union of two Cp’s and
one Dq . The union of three Cp’s is not possible for EX . Because otherwise,
EX �E0 and E0 D S \H , where H is a hypersurface of degree 2. Then

3D .EX �Dq/S � .E
0
�Dq/S DH �Dq D 2;

which is a contradiction. Here, . � /S is the intersection number of the divisors on
S and H �Dq is the intersection number of the divisor H and a curve Dq in P3.

Now if EX is the union of Cp1
;Cp2

and Dq , then it is a chain of lines
and by a suitable choice of the coordinate system, these are represented as
Cp1
D V .x1;x2/;Cp2

D V .x3;x4/ and Dq D V .x2;x3/. Then the complete
intersection V .x1x3;x2x4/ contains EX and V .x1x3;x2x4/ is reduced and has
at worst ordinary nodes. Thus every possible EX is contained in a complete
intersection curve which is reduced and has at worst ordinary nodes. �

Example 5.7. Let X �A4 be defined by f Dx1x3;gDx2x42kŒx1;x2;x3;x4�.
Then in.f /D f , in.g/D g and V .f;g/ is a cycle consisting of four P1’s such
that the intersection of each two components is ordinary double. Then, by
Theorem 5.6, X is MJ-log canonical at 0. Let Ci .i D 1; 2; : : : ; 4/ be the
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irreducible component of V .f;g/ such that Ci �CiC1 D 1 for i D 1; : : : ; 4 and
let C5 WD C1. Note that X is the cone over the reduced projective schemeS4

iD1 Ci � P3.
Now take the cone X1 over the reduced projective scheme C1[C2[C3�P3.

By Theorem 5.6, X1 is MJ-log canonical at 0. This example was proved to be
non-semi-log canonical singularity by Kollár [2013, Example 5.16].

Next take the cone X2 over the reduced projective scheme C1[C3 � P3. By
Theorem 5.6, .X2; 0/ is also MJ-log canonical. This is an example of MJ-log
canonical singularity but not S2. Indeed X2 is the union of two irreducible
surfaces which intersect at a point 0; therefore X2 does not satisfy S2.
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