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Scoring games: the state of play

URBAN LARSSON, RICHARD J. NOWAKOWSKI
AND CARLOS PEREIRA DOS SANTOS

We survey scoring-play combinatorial game theory, and reflect upon similari-
ties and differences with normal- and misere-play. We illustrate the theory by
using new and old scoring rulesets, and we conclude with a survey of scoring
games that originate from graph theory.

1. Introduction

Recent progress in scoring-play combinatorial game theory motivates a survey
on the subject. There are similarities with classical settings in normal- and
misere-play, but the subject is richer than both those combined. This survey has a
three-fold purpose: first to survey the combinatorial game theory (CGT) work in
the area (such as disjunctive sum, game comparison, game reduction and game
values), secondly to point at some important ideas about scoring rulesets (in
relation with normal- and misere-play), and at last we show that existing literature
includes many scoring combinatorial games which have not yet been studied
in the broader CGT context. Although CGT was first developed in positional
(scoring) games by Milnor (inspired by game decomposition in the game of Go),
the field took off only with the advances in normal-play during the 1970-80s,
and recently via successes in understanding misére games.

1.1. Normal- and misére-play. The family of combinatorial games consists of
two-player games with perfect information (no hidden information as in some card
games), no chance moves (no dice), and where the two players move alternately.
We primarily consider games in which the positions decompose into independent
subpositions. This class of games has been called additive to distinguish it from
maker-maker and maker-breaker positional games [5], such as HEX.
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When a player has no more moves (in any game component, which is called
the “long” disjunctive sum) the game ends and some convention is required to
be able to determine the outcome. There are two natural conventions that tie
together the last move and the outcome:

(1) Normal-play convention: last player wins;
(2) Misere-play convention: last player loses.

The obtained body of results considering these conventions is what we call
classical combinatorial game theory. See [16; 7; 1; 47] for background, [25] for
a survey, and [39] for a list of open problems.

The theory of normal-play was developed first. The analysis of NIM, by Charles
Bouton, was published in the early twentieth century [10]. After this, the Sprague—
Grundy theory for impartial combinatorial games' [49; 27] appeared, played
with normal-play convention. This was a fundamental step for the subsequent
establishment of combinatorial game theory; the important concept of disjunctive
sum of games was established, and this idea was already present in the game of
NIM, where, of course, the most central concept is that of “nim-sum”. The next
big step was in the 1950s, by Milnor, when the notion of game comparison first
appeared [38] in so-called “positional games”, and this theory was inspired by the
famous eastern game of GO. The game appears to decompose into components
during play; the longer play continues, the more independent the regions become.
By the end of play, the game board has decomposed into a finite number of
regions, and only the scoring part remains, where the difference of the total
numbers of captured pieces together with the “captured territories” determines
the final result. We will return to Milnor’s class of games in Section 2. Later, in
the 1970s, Conway [16] was able to expand the theory to include partizan game
theory? followed up in the 1980s with Conway, Berlekamp and Guy’s “Winning
Ways” [7].

It is important to note that normal-play convention is a very special case, with
many nice properties. (The notation for a normal-play game is G = {G* | G},
where G* is the set of G’s Left options, and similar for Right. Also, G* and
GR are elements of G, G, respectively.) A “ten commandments list” is given
next. The properties of all the other conventions are compared to this list.

Properties of normal-play. N1 Combinatorial games played with normal-play
convention, together with the disjunctive sum, are an ordered, abelian group.

N2 The inverse of G is obtained recursively by —G = {—G* | —G*}.

T impartial combinatorial ruleset is a ruleset in which the allowable moves depend only on
the positions and not on which of the two players is currently moving. In other words, from any
subposition, the options are exactly the same for both players.

2There are two players, Left and Right, with usually different move options.
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N3 To check if G = H, it is only necessary to see if Left wins G — H playing
second.

N4 The empty set is the worst possible set of options.

N5 There are two fundamental reductions: domination and reversibility. The
second happens when there is a Right response to a Left play in G such
that GE® < G (or the mirror image, from Right’s point of view). In that
case, G* may be replaced by GE®Z. This can be done even if GLR- = &
(atomic reversibility) and in this case, G* is erased. In other words, G is
replaced by the empty set!

N6 Given a game G, there is a unique simplest game equivalent to G. That game
is obtained by making all the possible reductions in G and its followers.

N7 There is a bijection between the outcome classes and the order:
G~0&6GeL; G=0&GeP; G0 GeN;, G<0&GeR.

N8 The disjunctive sum table of the outcome classes is not particularly complex:

+ P N R L
P P N R L
N | N al NUR NUL
R R NUR R all
L L NUL all L

N9 If LS(G) < RS(G) (“the number of move advantage is worse for Left if
Left plays first”) then G is a zugzwang. In the normal-play convention,
there is no canonical zugzwangs because this inequality always corresponds
to a number.

N10 If LS(G) > RS(G) then G is hot. If a game is hot then G* # @ and
GR =# &, because otherwise G would be a number, and numbers are cold.

All these properties fail in misere universes: for N1, misere games have only
monoid structures; for instance, considering impartial misere games, *2 has no
inverse. Also, it is possible to have invertible elements that don’t satisfy N2 [37;
40]. In misere, { | %} > 0 and Left does not win going second in { | *}, therefore
N3 fails. About N4, in misére, an empty set of options may be a good thing; in
{| «}, Left wins going first (the worst thing is an infinite string of moves, which
only exists in “loopy” games). In [21], the authors proposed nice reductions
for dicot misere games; for reversibility, in some situations, if GLRL = & then
G should be replaced by *. Hence, N5 also fails. The failure of N6 will be
discussed in the next section. N7 fails because, as we have seen, { | *} > 0 and
{| x} € N. For N8, the algebraic table of the outcomes is
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P N R L

all all all all
all all all all
all all all all
all all all all

DR =9+

Finally, in misere, N9 and N10 fail because we don’t have numbers to define stops.

2. Scoring combinatorial game theory

In scoring-play there is no direct correspondence between the last player and the
outcome. When a player has no more moves, the game ends, but an evaluation
about the outcome is still needed. In common language, the player wants to
get as many points as possible irrespective of who moves last. Therefore, the
information that the set of options is empty (G* = @ or G = @) is not enough.
It reveals the end of the game, but not the outcome of the game. It is necessary
to include that information in the description of the game forms.

In [50], Fraser Stewart introduced a notation based in triples, instead of pairs.
Considering a totally ordered group of results B, in Stewart’s notation, a game is
a triple {GX | b € B| G®} where, as usual, G* and G* are sets of games. For
instance, the game of day 0,

t3n = 3
definition
is a game where the players have no options, but the last player gets 3 points
(which is usually bad for Right, who wants a negative number of points). Another
example is the game {| 2 | —3}; if it is Left’s turn, she has no options, the
game ends, and she gets 2 points; if it is Right’s turn, he has an option, that is
—3={] —3|}. After that, the game ends and the final result is —3.

Later, in [34], the authors proposed an alternative notation with pairs instead of
triples. Basically, the different empty sets are adorned with elements of B. This
allows a representation of the result when a player has no more moves. Using the
new notation, { | 3|} becomes (&> | @3) and { | 2| —3} is represented by (@2 | —3).
The notation with adorns has two fundamental advantages: first, it is more suitable
for asymmetrical forms like (@ | @*), which is particularly interesting when
we discuss reductions to simplest form! Second, and the most important, it has
practical advantages when we want to relate classical combinatorial game theory
to scoring combinatorial game theory. On the other hand, Stewart’s notation
may be useful when analyzing operators different than the disjunctive sum. A
different type of bracket is used to distinguish scoring-play from the classical
context. See Figure 1 for how this relates to game trees.
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@1y + (=310% = ((2°1 (=11 =2)) | {{(=11=2). (=119 | (-2]8"))

@3 20
/ @0
-3

9> yo!
-1 -2-1 -2-1 =2
Figure 1. The disjunctive sum of two game trees.

There is a problem with inverses, so we define the conjugate as ~G = (~G™* |
~G*). The game G = ((1 | —1) | (1| —1)) is a zugzwang; if Left starts, the final
result is —1, if Right starts, the final result is 1. The conjugate of that form is
exactly the same, and so, G+ (~G) = ({1 | —1) [ (1| —=1))+ ({1 | —=1) | (1| —1)).
We may observe that G + (~G) is not zero, but a new zugzwang. In conclusion,
~G 1is not the inverse of G. In [23], Mark Ettinger proved that G is not invertible.
Therefore, as in misere-play, scoring-play often leads to monoid structures,
instead of group structures.

The research done on scoring combinatorial game theory always considered
short games, requiring that the sets G* and G* be finite. Also, in some works,
only dicot forms were considered — from any subposition, a player can move if
and only if the opponent also can.

The first mathematical approach to scoring-play was done by John Milnor
and Olof Hanner with the publication of the papers [38; 29]. In the first, Milnor
restricted the studied universe to nonzugzwang dicot forms. That means that
every Milnor dicot form G satisfies Ls(G) > Rs(G) so these games still satisfy
N9 and N10. (We write Ls, Left score, in scoring-play instead of LS, which is
the Left stop, in normal-play.) In fact, Milnor’s universe of scoring games is very
well behaved, constituting a group structure. Following Milnor’s approach, Olof
Hanner proved the existence of a mean value of a game; a kind of “average value”
for G [29]. This result was very important, inspiring the modern temperature
theory [16; 7; 1; 47]. Because of that, in a game theorist’s mind, this work
is fundamentally important for the establishment of CGT, more than a first
contribution for scoring-play analysis?.

The next stride forward is in the 1990s when Mark Ettinger published his
visionary PhD thesis ([23]; see also [22]). Ettinger studied dicot scoring games

3In their terminology they used a pay-off function instead of outcome function/Left stop/Left
score and so on, probably inspired by the novelties in economic game theory regarding Nash
equilibrium, mixed strategies, and so on. However, since then the fields ECG and CGT seem to
have developed in completely different directions. A big open question is if there is a merging
theory, but the authors are not yet aware of any.
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without the restriction Ls(G) > Rs(G), allowing zugzwang positions as G =
((1]—=1) | (1] —1)). Even with the dicot restriction, Ettinger was able to prove
useful reductions in forms and the conjugation property N2. Also, he proved a
very useful theorem for checking if a player should prefer a game G or some
number of points r ([23], Ettinger’s theorem, page 20). We used the adjective
“visionary” because his ideas, already in the 1990s, are very similar to those used
15 years later in misere theory. In particular, with different words, he proved
the “downlink concept” ([23], page 22), used later by Aaron Siegel [48] and a
“carousel” procedure for proving the conjugate property that is very useful in other
contexts [33]. Finally, in Ettinger’s universe, there are reversibility situations
with GLRX = &. In some of them, the reversible option cannot be erased, but
replaced by a well-chosen representative (atomic reversibility). Ettinger was the
first who understood this particular situation of reversibility, filling in the cases
that do not occur in the normal-play convention.

Fraser Stewart [50] analyzed scoring games almost without restrictions (only
asymmetrical empty trees like (23 | @*) were not allowed). The absence of
restrictions brought the possibility of non-well-behaved forms like (! | —1);
the problematic forms are those hot games without options (hot atomic games).
Left wants to have the right to move, even knowing that there are no available
moves (seemingly resembling local misere-play)! To understand the interesting
mathematical implications of these forms, we need to clarify first the different
nature of the concepts r-score and r moves. For instance, 1-score is the game
1 = (@' | @') whose tree is empty; on the other hand, one move is the game
(29| 2% | @), whose tree is analogous to the tree of 1 in classical normal-play
(a hat is used for moves, trees adorned only with zeros; 1= (2% 2% | 2%). In
the second, Left does not win points, but the extra move may be very useful in
presence of zugzwang components. In the symbiosis between scores and moves
lies the soul of scoring combinatorial game theory.

2.1. Normal-play behavior in scoring games. In misere- or scoring-play, if we
consider the game forms just like trees without scores, we can think about their
behavior under normal-play convention. For example, in scoring, if we replace all
the adorns by zero, we essentially obtain moves. Only the shape of the trees is rele-
vant. The relation between a specific convention (sc) and the normal-play conven-
tion (nc) is very interesting. Often, we have an order preserving relation, that is,

G =5 H= G =y H.

To give some intuition, consider G = H in misere-play and suppose that G 2 H
in normal-play. For some game X, in normal-play, we have Left loses playing first
G + X and Left wins playing first H + X or Left loses playing second G + X and
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Left wins playing second H+ X . Without loss of generality, assume the first. Now,
consider the form {7 | —71} where n is arbitrary large, 71 is a string of moves for Left,
and —7 a string of moves for Right. It is an easy check that, with misére conven-
tion, Left loses going firstin G+ X +{n | —n} and Left wins going firstin H 4+ X+
{n | —n}. This happens because {n | —n} works like a zugzwang and zugzwangs
promote normal-play (players want to make the last move in the disjunctive
sum of the remaining components). Hence, this situation contradicts G = H in
misere-play and we have the mentioned order-preserving. Of course, in scoring
context, we can build an analogous argument with a “large zugzwang” (—r | r).

The one million dollar question is the opposite question: are extra moves
always good? That is, is it true that 1= (2% | @°) | @°) = 0? In other words,
under what circumstances do we have an order embedding? In Stewart’s universe
we do not have it. Consider X = (@' | —1): if Left plays first in 1+ X, the final
result is —1, if Left plays first in O + X, the final result is 1. Therefore, 1 #0,
and that happens because of the existence of hot atomic games.

It is also possible to prove that if G =0 in Stewart’s universe then the game
tree of G is empty. Without loss of generality, consider G* # @ and r a negative
real number less than all the atoms of G. Playing first, Left loses G + (@' | r)
because she has a move in G. On the other hand, Left wins 0+ (@' | r) with the
final result 1. Hence G with options cannot be equal to 0. Again, that happens
because of the existence of hot atomic games.

Finally, consider an hypothetical atomic reversibility such that GFRE = & Tt
cannot exist! If so, G = (@ | GLER), for some real number a, and this inequality
is contradictory with a distinguishing game like X = (@! | ), where r is an
arbitrary small negative real number. Namely, G + X # (@“ | GERR) + X. The
importance of Stewart’s contribution was to bring this whole range of unusual
situations to scoring theory research.

In the 2010s, the authors and Jodo Pedro Neto proposed the analysis of
guaranteed scoring games, GS, in which all the atoms in G® of a game of
the form (@" | G®), have scores larger than or equal to r and analogously for
(G* | @") [34; 33]. In the guaranteed scoring universe, in each game component,
it is always good to continue playing instead of being without moves. More
importantly, in that universe there are no hot atomic games and, because of that,
an order-embedding of normal-play was proved [34]. Also, Ettinger’s ideas
were adapted in order to obtain comparison techniques, the conjugate property,
reductions (Figure 2), and to propose useful canonical forms [33].

As in Ettinger’s universe, the guaranteed universe allows for atomic reversibil-
ity. To better understand this concept, we make some preliminary observations.
A game is a directed acyclic graph (P, (M L M™)) where the set of nodes P
contains the game positions, and the edges are partitioned into the distinguished
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sets M~ and M, which are the Left- and Right-moves respectively. On the other
hand, with a recursive construction and the definitions of disjunctive sum and
order, the structure of forms (GS, +, *=) is obtained (game positions are described
by forms) where the equivalence classes of the quotient (GS, +, =)/= are what
we call game values. In normal-play, because there is a unique simplest form in
each equivalence class [G], that is the natural choice for a representative — it is
called the canonical form. However, in scoring context, we lose the uniqueness:
there is more than one simplest form in an equivalence class [G]. Even so, the
problem of canonical forms has an interesting approach [34]: an atomic reversible
option G is replaced by r — n/ﬁ where n is minimal such that G > r — i (and
r is unique); this procedure constitutes a choice. With that choice, considering a
form G, it is possible to prove that, after all reductions, a unique and simplest form
is achieved, representing [G]. In conclusion, there is not a unique simplest form
in the class [G] but, after a choice in the atomic reversibility procedure, we get a
unique simplest form (canonical form). The reversibility is illustrated in Figure 2.

Milnor Ettinger Larssonetal. Stewart

structure group  monoid monoid monoid
existence of atomic reversible options | yes yes yes no
existence of zugzwangs no yes yes yes
existence of hot empty games no no no yes
large equivalence class of zero yes yes yes no

This section would be incomplete without mentioning Will Johnson. His work
imposes a big restriction on scoring games (which also restricts its relation to
surrounding work). Johnson’s universe consists of dicot games in which, for a
given game G, the length of any play (distance to any leaf on the game tree)
has the same parity [31]; see Section 4 for some graph games in this universe.
The games are called odd- or even-tempered if all the lengths are odd or even,
respectively. A game G is inversive if Ls(G + X) > Rs(G + X) for every even-
tempered game X. Johnson proved that the universe of inversive games is well
behaved, having a group structure. Every inversive game has a canonical form
and an additive inverse which is equal to its conjugate; moreover, G = H if G
and H have the same “temper” and Rs(G — H) > 0.

3. Scoring rulesets

Many rulesets, usually played in normal (or misére) convention adapt easily to
some scoring convention, and we may even mix rulesets in one and the same
game; the scoring aspects may vary to create various effects such as zugzwangs
or change the class of games for consideration to obtain more structure and nicer
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(G*reverses out)

Case 2.3 — Otherwise > G = (r — n+1,GE \ {GL} | GR), where n is minimal such that G > r — 72

Figure 2. Reversibility of guaranteed games.

game reductions. We consider some games and properties in detail in this section
and look briefly at many others in the next.

In scoring-play, as in normal- and misere-play, there are impartial rulesets, and
there are partizan rulesets, and between them, there are dicot rulesets (the latter
class is called “all-small” in normal-play). A scoring ruleset is impartial if all
subpositions can be expressed as r + G, where the game tree of G is symmetric
both in terms of moves and scores. A scoring ruleset is partizan if it is not
impartial. A scoring ruleset is dicot if, from any nonterminal position, both
players have moves; otherwise, the ruleset is nondicot.

In this section we also introduce another interesting classification for scoring
rulesets:

(1) In an all-normal ruleset, making the last move is never worse than allowing
the opponent to make the last move.

(2) In an all-misere ruleset, allowing the opponent to make the last move is
never worse than making the last move.

(3) A hybrid ruleset is a ruleset that does not satisfy any of the above items.
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We will return to this classification scheme, when we have defined some rulesets,
but we mention that being a hybrid ruleset is richer than either of the other two.

3.1. DOTS-AND-BOXES. A classical impartial scoring ruleset is DOTS-AND-
BOXES, a pencil and paper ruleset carefully studied in [7] and [6]. In DOTS-AND-
BOXES, zugzwang positions are very common. The players alternate to connect
nodes in an n x n grid. If you connect all four edges surrounding a cell, you
get another move, until you are not able to capture any more cells. By the end
of game, the captured number of cells is your score. Because of the nature of
the game, near the end it decomposes very nicely into many nearly filled strips
of cells, and the strategy depends only on parity. Therefore the concept of a
“double-box” is one of the most interesting features of this game. An open-ended
double-box, shown below, is a (scoring) zugzwang. Note however that in this
example, the parity problem can be avoided (in case parity is already in your
favor), by connecting the middle nodes.

If we for the moment ignore the “extra moves”, this position is the zugzwang
((21-2), 2,21 =2) 1 =2, 21=-2)1(21-2),(2,2]=2) | =2, 2] =2))).
Because of the special rule in DOTS-AND-BOXES where you get an extra move
(in another component) when you finish off a game component, disjunctive (long)
sum is not exactly the right concept.

3.2. BRUSH. The game of BRUSH is an impartial scoring ruleset where the
players alternate to place a brush on any node of a given finite graph. A vertex is
“primed” if it has at least as many brushes as its degree. When a primed vertex v
is “fired”, a brush from v is placed on each adjacent vertex and v and all incident
edges are erased — the edges have been “cleaned”. If other vertices are primed
then chose one and fire it and continue until there are no more primed vertices.
(The order of firing is irrelevant.) For each move, the current player adds a
number of points according to the number of “cleaned” edges. For example:
b b bb

. . : . B b t.)

b : .

The left most picture represents the starting position, and the second picture
represents the first move. When the second player plays the brush on the lower

left vertex, as in the third picture, then a sequence of automatic cleaning finishes
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the game. As this happens, the second player obtains three points (before this
move no point was awarded). If the player instead would have played on the
upper vertex, then one more move would have been required to finish the game.

More generally, let S(/, d) be the star with [/ leaves and needing d brushes for
the center vertex to fire. It is easy to show

S, =(|=1) and S(U,2) =, {I|=1)]—L{]|=1).

When d = 3, the game is a zugzwang —the first play can take one edge
but, regardless, the second player will take all the remaining edges—and
S(,3) = (@71 | @!=1). The canonical forms become increasingly more
complicated as d increases.

We describe some other variants under CLEANING GAMES in Section 4.

3.3. Variations of KONANE. Konane is a traditional Hawaiian normal-play
game, played with black and white stones on an n x n grid. This game is
convenient to adapt to scoring-play. In KONANE, the players alternate to capture
the other player’s pieces by jumping neighboring pieces, one at the time, and not
changing direction in a single move. Played on the same game-board, the ruleset
for normal-play CLOBBER is even simpler; by moving, a player captures one
single neighboring piece by replacement. One interesting dicot scoring ruleset
is KOBBER, mixing the rulesets KONANE and CLOBBER. In KOBBER, a player
may choose between a capture as in KONANE or a capture as in CLOBBER. Each
captured piece as in KONANE provides one point. Pieces captured by a CLOBBER
move do not add to the score. KOBBER is dicot, but it is not impartial. (The
convention is that Left plays black.)

(0,110)=(110)

In KOBBER, as in DOTS-AND-BOXES, there are zugzwang positions. This is
one example:

|_[e]e]ofo] |

3.4. Bonus/penalty rules. For many (nondicot) rulesets, one can adjoin a natural
bonus/penalty at the end of play. When a player has no moves, he takes a final
penalty equal to the number of own dead stones over the board. Consider
TERMINAL KONANE: the rules are exactly as in KONANE except that each
captured piece corresponds to one gained point. When a player has no moves
he takes a final penalty equal to the number of his own stones still on the board.
Next, a zugzwang position of TERMINAL KONANE:
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[ (©)

Another KONANE variant is DISKONNECT. In this ruleset a piece is insecure
if it can be captured by the opponent with a well-chosen sequence of moves
(ignoring the alternating-move condition). Otherwise, the piece is safe. When a
player has no more moves he takes a final penalty equal to the number of own
insecure stones remaining on the board (this is a GO-type rule).

3.5. Examples of all-normal and hybrid games. These examples of partizan
scoring games fit well into our all-normal, all-misere, or hybrid classification.

In TERMINAL KONANE, if a player makes the last move, then he takes any
remaining opponent’s pieces. Therefore, to make the last move is never worse
than to allow the opponent to make the last move; it is all-normal. Played in a
disjunctive sum, the strategy is identical to that of normal-play.

DISKONNECT is a more interesting ruleset. In the following example, Left can
make the last move. However, in the only winning line for Left, Right makes the
last move. Therefore DISKONNECT is not all-normal. It is also easy to check
that it is not all-misere, and so it is hybrid.

o

o
® O

actual score = —1

Observe that classical normal-play theory is enough to analyze good TERMI-
NAL KONANE strategies. Although the last move is not guaranteed to win, if you
cannot win by making the last move, then you cannot win at all. On the other
hand, because DISKONNECT is hybrid (in a sense, it has both normal-play and
misere-play behavior), for that game we need scoring combinatorial game theory.
Note that in DISKONNECT, as in TERMINAL KONANE, players always prefer to
keep playing rather than having no moves. These rulesets satisfy the guaranteed
property, with the accompanying theory [34]. If a player, say Left, runs out of
moves in a component game, then the score of this component cannot decrease
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(in case of Right opening the component for more play). For instance, consider
the following DISCONNECT positions:

@) ©)
® | O ® | O ©) ® | O

It is known, and not difficult to see, that the canonical forms of these positions
are (1] 22), (222 =2+1, and ((2 | 22) | @2) = 2 + 2, respectively. (The
middle picture needs some theory, but intuitively it is clear that Left will never
jump just one stone: if she wants to play first in some other component, then
she will do this directly, otherwise she captures two stones, and lets Right play
first elsewhere. The penalty rule guarantees her 2 points in this component either
way.) We can also compare

(112 <2+1<2+2.

Online software [33] is available for computations of reduced guaranteed
forms, where more complicated positions may be analyzed. This module also
contains the games TAKE-SMALL and TAKE-TALL. It turns out that the former
is more interesting (because it is hybrid).

3.6. TAKE-SMALL. A nondicot scoring ruleset is TAKE-SMALL. It is played
with a strip of a finite number of sticks of different (positive) integer length,
possibly with empty spots between some of the sticks. Left chooses two adjacent
sticks of lengths a and b where a > b (the a-stick to the left). She captures the
b-stick by removing it and putting the a-stick in its position. She is not allowed
to move the stick over an empty spot. Right plays similarly in the opposite
direction. If Right cannot move, Left will be rewarded a bonus: to complete all
her possible moves. The reverse bonus is applied to Right if Left cannot move.
The winner is the player who has accumulated the greater total length of sticks.

We’ll represent a TAKE-SMALL position as a string of numbers where empty
spots are indicated by - (dot). For example, in (3, 2, -, 1, 4) Left can move to the
position (-, 3, -, 4, 1) plus a capture of 2; Right can move to (3, 2, -, 4, -) plus a
capture of 1. Note that (3, 2, -, 1, 4) is actually the disjunctive sum (3, 2) 4 (1, 4).

TAKE-SMALL is a good example of a partizan scoring ruleset with zugzwang
positions that is not all-normal. A position like (1,0, 1) = ((1, 1) | (1, 1)) = ({1 |
—1)| (1] —1)) is a zugzwang. The canonical form for this position is (=12,
therefore the position behaves like a purely atomic game, the empty tree with a
Left-score and a Right-score.

Consider now the position (1, 2, 2,9, 8, 1) — 2. It has an interesting feature.
Left’s options are
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e (1,-,2,9,8,1);

e (1,2,2,-,9,1)+6;

e (1,2,2,9,-,8) — 1.
Right’s options are

« (2,,2,9,8,1)—3;

e (1,2,-,9,8,1)—4;

e (1,2,9,-,8,1) —4.

The canonical form of this position is
warrethyrey, (1rjety a1ty @t —4) -2.

Playing without points, as if it were normal-play, the option ((11 | @'1) | 6)
reverses out. However, regarded as a scoring game (which it is), the left option
((11 | @'y | 6) — 2 is the only winning move. Left does not make the last move,
but it does not matter. The existence of such positions in TAKE-SMALL explains
why it is a hybrid ruleset.

3.7. Order in scoring-play and outcomes. As mentioned before, scoring order
does not directly relate to outcomes. Consider the following DISKONNECT
position G:

O

After reductions, the canonical form of G is (1| 1). Left always wins, playing
first or second. However, G % 0. In order to distinguish G from 0, consider the
following zugzwang distinguishing game X:

O ® ®

® O o

In fact, X reduces a lot! Its canonical form is (@2 | @2); it behaves like
an empty tree. Hence, G+ X = (1| 1) + (@2 | @2) whose canonical form is
(o1 @) (7! 2%).
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Therefore, in X, Right loses going first and, in G 4+ X, Right wins going first.
Here we display the game G + X, as it might appear in a play-situation:

[ J
® | O
o
(e}
(@)
(@) [ [ ]
(@)
[ ]
[ J O ©)

3.8. Order in different contexts. We recall that the behavior of a position may
change depending on the context. Consider the following KOBBER position G:

Without reductions, the literal form of G is
0, (21 =1L, (1| =1)) [ (3,(3[1)]0)) [ (L]0)),

where the only Right option is (1 | 0) (the left-most white stone can capture a
black one via a COBBER move). Left has two options, and in the dicot context,
G =1, that is, in all situations Left should prefer to have this component rather
than add one point to her score [23]. On the other hand, in the partizan context,
there are situations where one point is better than having that form. Consider the
position G ) (Right has two free moves); Left cannot finish with a final score
better than 0.

3.9. A scoring games calculator. The algebra of games (disjunctive sums, ca-
nonical forms, and so on) is not a trivial task and cannot be done manually except
for very simple positions. A computer program is required for more complex
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situations. The scoring games calculator [33] is such a program, suitable for
the universe of guaranteed scoring games. It was implemented as a set of
Haskell modules that run on an interpreter available in any Haskell distribution
or embedded in a program that imports these modules.

4. Scoring games on graphs

Despite not having a theory of scoring-play, several scoring games have been
studied in the literature. A typical approach, first identified in [43], is to approx-
imate a graph parameter by having the players choose, for example, vertices
or edges. When the game is over, an instance of the structure or set has been
created. Left wants the cardinality of the structure or set as large as possible,
i.e., Left is the maximizer, and Right wants it as small as possible, i.e., he is the
minimizer. Left always wins because Right never scores points, therefore “this
is boring for Right” is a valid comment. To convert to a game to be potentially
interesting for both players, prelabel the connected components as either Left
subgraphs and Right subgraphs. Left’s score is then the sum of the cardinalities
in the Left components, Right’s score is the sum in the Right components and
the score in the game is the difference. In all of the games M2, O1, O3, 04, and
08, the game finishes after a fixed number of moves, which is either the number
of vertices or the number of edges. The techniques of Will Johnson [31] will be
useful in analyzing these games.

We consider the maximizer/minimizer games first and then report on some
others.

4.1. Maximizer-minimizer games.

M1: CLEANING GAMES [9]. The toppling number of a graph can be defined
in the context of a zero-sum two-player game played on the graph as follows.
The maximizer (who moves first in the original game of [9]) and the minimizer
alternately place chips on the vertices of the graph. If the number of chips at
a vertex is equal to its degree, it sends one chip to each neighbor vertex. The
game ends if there exist an infinite sequence of vertices that send chips to their
neighbors. Player 1 wants to maximize the number of chips played during the
game, while player 2 tries to minimizes this.

M?2: COMPETITION-REACHABILITY OF A GRAPH [44]. On a turn, players
choose an undirected edge and give it an orientation. After all edges have been
chosen in a subgraph H, the score is

{(x,y) | x,y € V(H) and there is a directed path from x to y}|.

If H is a Left subgraph then the score is added to Left’s total, otherwise it is
added to Right’s total.
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Let P, be the path on n vertices. In [44], they give Rs(P,) and Ls(P,) and,
in particular, show that if » is even the game is a zugzwang. This is an impartial
game but not all-normal.

M3: DOMINATION GAME. Given a graph G, start with S = &. Players choose
a vertex and add it to S but a new vertex of G must be dominated by S. The
players are called Staller (Left) and Dominator (Right). This is an impartial
game but not all-normal.

This is considered in several papers. In [11] it is shown that |Ls(G) — Rs(G)]|
is at most 1 and that y (G) < Ls(G) <2y — 1, where y is the cardinality of the
least dominating set. In [30] they conjecture that Ls(G) < %|V(G)|.

M4: GAME CHROMATIC NUMBER and GRUNDY NUMBERS. In the CHROMATIC
NUMBER GAME, there is a graph G and a fixed number of colors k. On a turn a
player chooses an uncolored vertex and colors it with one of the allowed colors,
maintaining a proper coloring. Right wins if G can be colored and Left wins
otherwise. Note that for a given k this is a short disjunctive sum since Left only
has to win in one component. The game chromatic number of G is the least k
such that Right can win going first. Despite this concept not coming directly
from a scoring game there are several scoring games that have been used to
approximate it. See [35] for a follow up and [4] for a survey.

GAME COLORING NUMBER: There are two variants.

(1) MARKING GAME: Given a graph G, a move consists of a player marking
an unmarked vertex of G. The game ends when all vertices are marked. For
v € V(G), let b(x) be the number of neighbors of v that are marked before
v is marked. The score of the game is s = 1 4+ max{b(v), v € V(G)}. By
convention of this game, Right (the minimizer) starts. The game coloring
number colg (G) of G is Rs(G). Some known results include

4 if G is a forest, [24];
colg(G) < {17 if G is a planar, [55];
7 if G is a outerplanar, [28; 32].

(2) GAME GRUNDY NUMBER: The colors are the positive integers. Players
choose uncolored vertices and it is colored the least integer not in its neigh-
borhood, i.e., let c¢(x) be the color of vertex x, so that c(v) = mex{c(x) :
x ~ v}

M5: The GAME TRANSVERSAL NUMBER. Let H = (V, E) be a hypergraph
with vertex set V and edge set E of order n(H) = |V| and size m(H) = |E|. A
transversal in H is a subset of vertices in H that has a nonempty intersection
with every edge of H. A vertex hits an edge if it belongs to that edge. In the
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transversal game played on H, Left and Right choose vertices where each vertex
chosen must hit at least one edge not hit by the vertices previously chosen. The
game ends when the set of vertices chosen becomes a transversal in H. This
game was introduced in [12]. The game is impartial but not all-normal.

M6: GRAPH SATURATION GAME. Given a family of graphs { H;} and an integer n,
build a graph by adding edges such that no copy of any H; is built. The score is
the number of edges.

The original game, a misere- play game was proposed in [13] and rediscovered
by Hajnal. In both, the first player to create a triangle K3 lost.

In [8] they show that Ls(K3, n) < (nlogn)/2—2nloglogn+ O (n) and report
that Erdos claimed n? /5 as the correct value. See also [45; 35].

The most general formulation of the game is given by Doug West [52].

Also related is the GRAPH MATCHING GAME [53]. Players choose independent
edges, and the score is the number of edges. In [17] it is shown that |Ls(G) —
Rs(G)| <1 and that Ls(G) > %m(G), where m(G) is the cardinality of the
largest matching of G.

4.2. Other games.

Ol: EDGE-BALANCE INDEX GAME. Given a Graph G = (V, E), Left colors
edges blue and Right colors edges by red. Vertex v is colored as blue if it is
incident with more blue than red edges and is colored red if it is incident with more
red than blue edges and remains uncolored otherwise. The score is the difference
between the blue and red vertices. The game is impartial but not all-normal.

The edge balance index is defined in [26] where the indications are that it
will be difficult to find this number. In [15] the game is introduced. In addition,
the edge-balance index with terminals is also introduced. Here, there are two
specified vertices s and ¢. The play is the same but Left wins if there is a
completely blue path (both edges and vertices) from s to ¢; Right wins if there is
completely red path and there is a tie if there is one of each. This is not a scoring
game but a normal-play partizan game, except a tie is possible. This becomes an
impartial, not all-normal game by making the Left score is the number of blue
paths and the Right score the number of red paths.

O2: BRIDGE BUILDING. Suppose a directed graph G, where each arc has an
associated cost, and some s, t € V(G). The goal is to build a path from s to 7.
The first choice is an edge out of s and then, from each vertex, the next player
selects the next vertex to be visited among all neighboring vertices of the current
vertex — a path from s to ¢ must still be constructible. The player has to pay the
associated cost of the arc. The score is the difference between what the players
pay. This is an impartial game but not all-normal, particularly if negative costs
(a profit can be made) are allowed.
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B

The game was introduced in [19] where the authors consider the “economic’
game where each player minimizes its costs taking into account that also the other
player acts in a selfish and rational way. They show that the decision problem asso-
ciated with such a path is PSPACE-complete even for bipartite graphs. They also
note that forcing the play around an even cycle is not a rational play. If we play the
difference-of-scores then playing around an even cycle could be a good strategy.

In [20], the authors introduce a variant, SHORTEST CONNECTION GAME,
where the two players start at different vertices, say s and ¢, and build their own
paths. The game ends when the two paths first intersect say at vertex m. There
are now two paths: L, which is Left’s from s to m, and R, Right’s from ¢ to m.
Left’s score Sy is the sum of the edges of L and Right’s score Ry is the sum of
the edges of R and the game score is the Ry — L. They prove some complexity
results; for example, SHORTEST CONNECTION GAME is PSPACE-complete for
directed bipartite graphs even if all costs are bounded by a constant. This is not
impartial nor all-normal.

0O3: GRAPH GRABBING GAME. The vertices of the graph have coins, of possibly
different denominations, at each vertex. On a turn, a player removes a noncut
vertex and pockets the coins on the vertex. The score is the difference; that is, the
winner is the player with the most coins. This is an impartial, not all-normal game.

This is a generalization of the original game played on a path [54]. The next
version was played on trees [41] and generalized to the graphs in [36]. In [42], it
is shown that if played on a tree 7 with an even number of vertices then Ls(T)
is at least half the total amount of money.

O4: MEDIAN GRAPH GAME. For aset of vertices X, setd(v, X)=)_ .y d(x, v)
and med(X) = min{d (v, X) : v € X}. The players choose vertices until all are
chosen. Let L be the set chosen by Left and R that by Right. The Left and Right
scores are — med(L) and — med(R) respectively and the alternating play score,
assuming Left plays first, is 4 (G) = med(R) — med(L). Compare this with the
Weiner game OS .

The game was introduced in [14], where the authors give ©(G) for various G
including a subset of trees and for complete bipartite graphs K, ,, m > n, where

1 if m # and both are odd;
(K ) = 0 if m = n and both are even;
HiRmn) = —1 if m 1s odd and n is even;

—2 if m 1s even and n is odd.

O5: GRAPH OCCUPATION GAME. Let G be a connected graph and let L and
R be empty sets. On a turn, Left chooses a vertex and adds it to L, and Right
adds a vertex to R. The extra condition is that both sets must be connected and
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LN R =g. If a player cannot move the other player is allowed to take the rest
of the (legal) vertices. The Left score is |L|/|V (G)| and Right’s is |R|/|V (G)].

The game is introduced in [46]. The author notes a similarity to GO and shows
that for each € > 0 there exists graphs where Ls(G) > 1 — € but also that there
exists graphs with Ls(G) <e.

06: PIRATES AND TREASURE. Suppose a graph G with weights on some
vertices (treasure) and some blue and red tokens on some vertices — there is no
standard starting position. On a turn, Left must move a blue token to an adjacent
vertex that contains treasure that they take and which is added to the player’s
score. The game is over when the player to move cannot and the player with the
greatest amount of treasure wins.

The game is introduced in [51] where it is shown to be NP-hard to determine
the final scores. In [2] it is shown to be PSPACE complete to determine if Right
can win.

O7: SUBSET SUM GAME. Suppose an integer n and a set of weights {w;}. The
sum S starts at 0 and is not allowed to exceed n. On a turn, a player chooses a
weight, removes from the set and adds it to the sum. A player’s score is the sum
of the weights they added to S.

The game, coming from the knapsack problem, is introduced in [18], where
they consider two strategies: the greedy strategy and the one move look-ahead.

O8: WEINER INDEX GAME. Given a graph G, players choose vertices. The Left
score is the sum of all the distances between the vertices Left chose. Similarly
for Right. Since the winner is the player with the least sum, the score is defined
as Rs — Ls. This is introduced in [3], where the authors require that |V (G)| be
even. It arises out of the study of the Weiner index from mathematical chemistry.
They report that |Ls(K1 2,—1) — Rs(K12n-1)|=n—1.
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