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Restricted developments in
partizan misère game theory

REBECCA MILLEY AND GABRIEL RENAULT

Misère games have excited new interest over the past decade with the in-
troduction of an indistinguishability relation for analyzing positions modulo
restricted subsets of games. We present a survey of recent progress in the
theory of partizan misère games, including some results for general misère
play, but focusing primarily on this restricted misère play. We discuss new
and current work on game comparison and game inverses, as well as ongoing
research around reversibility and canonical forms in restricted misère play.
We also show how general results in each of these areas have been applied to
specific games to find solutions under misère play.

1. Introduction

Most research in combinatorial game theory assumes normal play, where the first
player unable to move loses, as opposed to misère play, where the first player
unable to move wins. It is rather remarkable how much changes when we simply
switch the goal from getting the last move to avoiding the last move. At first
glance one might think misère play is merely the “opposite” of normal play,
but this is not at all the case. There is actually no relationship between normal
outcome and misère outcome: for every pair of (not necessarily distinct) outcomes
O1, O2 ∈ {L, N, P, R}, there is a game with normal outcome O1 and misère
outcome O2 [11]. Likewise, strategies from normal play are in general neither
the same nor reversed for misère play. For example, in normal play, Left would
always choose a move to 1= {0|·} over a move to 0= {·|·}, but in misère play
there are situations1 in which Left should choose 1 over 0 and others where Left
prefers 0 over 1. This means that 0 and 1 are incomparable in misère play, which
goes against our intuition that Left is trying to run out of moves before Right.
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1Left wins playing first on the single game 0 and loses playing first on the single game 1, but
loses playing first on 0+∗ and wins playing first on 1+∗.
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So we really are in a fog in misère play. We look to the elegant algebra
of normal-play games and hope for some semblance of structure, but we are
dismayed at every turn:
• Zero is trivial. In normal play we have the wonderful property that every

previous-win game is equal to zero. In misère, the zero game is next-win,
but our hopes that perhaps every next-win game is equal to zero are more
than dashed; in fact, only the game {·|·} is equal to zero [11]. In particular,
for any game G 6=0, the game G−G is not equal to zero (a very troublesome
fact indeed). Consequently, there are no nonzero inverses, and there is no
longer an easy test for the equality and inequality of games.

• Equality (and inequality) is rare and difficult to prove. Partly due to the
triviality of zero, equivalence classes induced by the equality relation are
much smaller in misère play, and it is not often possible to simplify games.
Inequality is likewise uncommon, resulting in unfortunate situations like
the incomparability of 1 and 0.

• Addition is less intuitive. Disjunctive sum is defined in misère as in normal
play, but much of our intuition for the interaction of games in a sum is lost.
For example, the sum of two left-win games may be right-win! In fact,
nothing can be said about the addition table of outcomes in misére play:
for any three outcomes O1, O2, O3 ∈ {L, N, P, R}, we can find positions G
and H such that G has misère outcome O1, H has misère outcome O2, and
G+ H has misère outcome O3 [11]. Other problems arise with sums, due
to the lack of simplification under misère play: for example, the sum of a
game with value n ∈Q2 and a game with value m ∈Q2 may not even be a
number-valued game2, let alone the game with value n+m.

For these reasons and others, the study of misère games was neglected for most
of the 20th century. One chapter of On Numbers and Games presents an analysis
of “How to Lose When You Must”, and Winning Ways extends this work in
their chapter “Survival in the Lost World”, but both texts consider only impartial
misère games. The genus theory developed in the latter allowed for the analysis
of certain impartial misère games, but left most unsolvable [19]. A theory for
partizan misère games seemed, if possible, even more elusive.

The fog began to lift when Thane Plambeck [18; 20] and Aaron Siegel [20]
introduced a modified equality relation for games under misère play. Instead of
requiring games to be interchangeable in any sum of games, two games will be
considered equivalent modulo U if they can be interchanged in any sum of games
from the set U. For example, we might take U to be the set of all positions that

2This, along with the incomparability of number-valued games, demonstrates that the numerical
value system developed for normal play is virtually meaningless in misère.
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occur in some particular game, such as Domineering, and then two domineering
positions are equivalent “modulo Domineering” if they are interchangeable in
any sum of domineering positions. This is a natural and practical equivalence
relation, and its introduction has encouraged renewed interest in the study of
misère games.

Although initially designed only for impartial games, this “restricted” misère
analysis works equally well for partizan games [21]. The study of restricted
partizan misère games began with the doctoral theses of Paul Ottaway [16] and
Meghan Allen [2], and has continued with a relative flurry of recent activity from
a number of additional researchers. The present survey of partizan misère game
theory highlights the most significant results from recent research, including
canonical forms of partizan misère games, the invertibility of games under
restricted misère play, and applications to specific partizan misère versions of
Nim, Kayles, and Hackenbush. We begin with some prerequisite definitions.

2. Prerequisites

We use the notation G = {G L
| G R
}, where G L

= {GL1, GL2, . . .} is the set of
left options from G and GL is a particular left option. Any position which can
be reached from a game G is called a follower of G.

The outcome of a game is L if Left wins playing first or second, R if Right
wins playing first or second, N if either player can win going first, and P if
neither player can win going first. These outcomes are partially ordered as in
normal play; that is, L > P > R, L > N > R, and P‖N. We use the outcome
function o−(G) to denote the misère outcome of G and o+(G) to denote the
normal outcome of G. The outcome classes L−, N−, R−, P− are the sets of
all games with the indicated outcome under misére play, so that we can write
G ∈ L− when o−(G)= L.

In normal play, the negative of a game is defined recursively as −G =
{−G R

|−G L
}, and is so-called because G + (−G) = 0 for all games G under

normal play. As mentioned in the introduction, this property holds in misère
play only if G is the zero game {· | ·} [11]. To avoid confusion and inappropriate
cancellation, we generally write G instead of −G and refer to this game as the
conjugate of G.

Most other definitions from normal-play game theory are used without modi-
fication for misère games, including disjunctive sum, equality, and inequality.
See [1] for an excellent introduction to normal play. In this paper, when equality
and inequality relations are used, misère play is assumed unless otherwise stated.
The equivalence relation developed by Plambeck and Siegel is formalized in
Definition 2.1 below.
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Definition 2.1. For games G and H and a set of games U, the terms equivalence
and inequality, modulo U, are defined by

G ≡ H (mod U)⇐⇒ o−(G+ X)= o−(H + X) for all games X ∈U,

G = H (mod U)⇐⇒ o−(G+ X)≥ o−(H + X) for all games X ∈U.

The word indistinguishable is sometimes used instead of equivalent, and if
G 6≡ H (mod U) then G and H are said to be distinguishable modulo U. In
this case there must be a game X ∈U such that o−(G+ X) 6= o−(H + X), and
we say that X distinguishes G and H . The set U is called the universe. All
universes in this survey are closed under followers and disjunctive sum, and
most are also closed under conjugation. Although we usually assume G and H
are games in U, this stipulation is unnecessary, and it is sometimes useful to
compare games modulo a universe U even when the games do not belong to U.

Notice that G ≡ H (mod U) implies G ≡ H (mod V) for any subset V⊆U,
but in general games can be equivalent in the smaller universe and distinguishable
in the larger. Also note that this equivalence is actually a congruence relation
with respect to disjunctive sum of games.

2A. Specific universes and properties. A number of specific game universes
are discussed in the sections to follow, and we will define them here. Firstly, we
identify games where one or both players have no move: a left end is a position
with no first move for Left (that is, G with G L

=∅), a right end is a position
with no first move for Right (G R

=∅), and an end is a position that is either a
left end or a right end or both (the zero game).

A left (right) end is called dead if each of its followers is also a left (right)
end. Games in which every end follower is a dead end are called dead-ending.
Figures 1 and 2 provide examples to illustrate these definitions. By definition, in
dead-ending games, if Left has no move at some point, then Left will never have
a move again. This is a natural property held by well-studied games such as
Hackenbush, Domineering, and other so-called placement games (where players
move by placing pieces on a board). The set of all dead-ending games is denoted
E and has proven to be rich in interesting results for misère play. The set of all
dead ends and sums of dead ends is denoted Ee.

Figure 1. A dead left end and a left end that is not dead.
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Figure 2. A dead-ending game and a game that is not dead-ending.

Games in which the only end is zero — that is, where Left can move if and
only if Right can move — are called all-small in normal play and dicot in misère.
The set of all dicot games is denoted D. Note that D is a proper subset of E.

A position is called alternating if neither player can make consecutive moves;
that is, if GL L and G R R are empty for all GL and all G R . This restriction allows
for easier analysis under misère play. The set of all sums of alternating games is
denoted A, and the set of all alternating ends and their sums is denoted Ae.

We end this section by mentioning two significant properties that universes may
have. The following definitions appear in recent work by Larsson, Nowakowski,
and Santos, as part of their new framework called “absolute game theory”, in
which they generalize the theories of normal, misère, and other types of play.
Note that their universes are closed under conjugates. We give the definition of
density specifically for the misère case, but it can be defined generally as well.

Definition 2.2 [8]. A universe U is parental if for any two nonempty sets
A, B⊆U, the position {A|B} is also in U.

Definition 2.3 [8]. A universe U is dense under misère play if, for all G ∈U and
any outcome O in {L, R, N, P}, there is an H ∈U such that the misère outcome
of G+ H is O.

These properties are relevant to the current research areas of comparability
and invertibility of misère games. These areas are discussed in Sections 3 and 4;
Section 5 discusses the problems with and very recent solutions to the reversibility
of misère games, and Section 6 discusses solutions to specific games under misère
play. We begin with the comparability of misère games.

3. Comparability

In normal play, G ≥ H if and only if G− H is previous-win, and so there is an
easy test for inequality of games. In general misère play, we do not have this test,
and so proving G ≥ H in misère play requires proving o(G+ X)≥ o(H + X)

for all games X .
We do at least have a slightly modified hand-tying principle for misère games

[11]. In normal-play, this principle says that if two games G and H differ only
by the addition of one or more extra left options to G, then Left can do at least
as well playing G as playing H (G ≥ H , in normal play); at worst, Left can
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“tie her hand” and ignore the extra options, thereby essentially playing the game
H instead of G. In misère play, the same argument holds, with one stipulation:
the set H L of left options cannot be empty. If it is, adding a left option is not
always beneficial to Left, who is sometimes happy to have no move in a position.
However, when there already exists at least one left option, Left can simply
ignore any additional ones. This principle was used in [12] and [6] to classify
day-2 and day-3 dicot games.

If we restrict ourselves to a particular universe of games U, then we need
only consider games X in U, and so we may be able to show G ≥ H (mod U)

even if G 6≥ H in general. When current research from absolute game theory [8]
(see also [7]) is applied to misère games, we see that comparability of games G
and H can be demonstrated without considering the sum of G and H with all
X ∈U, provided certain conditions are met by U. Specifically, if U is parental
and dense, then the following result holds.

Theorem 3.1 [8]. Let U be a universe that is conjugate-closed, parental, and
dense. Then G ≥ H (mod U) if and only if

(i) for all G R there is G RL
≥ H (mod U) or G R

≥ H R (mod U);

(ii) for all H L there is GL
≥ H L (mod U) or G ≥ H L R (mod U);

(iii) if H is a left end, then Left wins playing first in G+ X for any left end X in
U; and

(iv) if G is a right end, then Right wins playing first in H + X for any right end
X in U.

We will see this importance of ends in other areas of misère analysis, including
invertibility, where we look next.

4. Invertibility

As stated in the introduction, no nonzero game has an additive inverse in general
misère play. However, in a restricted universe U, a game G may satisfy G+G ≡
0 (mod U) — or perhaps even G + H ≡ 0 (mod U) for H 6≡ G (mod U), as
discussed in Section 4A — and then the game G is said to be invertible modulo U.
The first result of this kind was Meghan Allen’s demonstration that ∗+∗ ≡ 0 in
any universe of dicot games [3]. Allen’s result is generalized in [10] with the
following sufficient condition for invertibility in the universe of dicots.

Theorem 4.1 [10]. If G +G ∈ N− and H + H ∈ N− for all followers H of G,
then G+G ≡ 0 (mod D).
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invertible position universe of invertibility reference

∗ D [3]
∗ : x for x ∈Q2 D [10]
any dead end (e.g., n ∈ Z) E [15]
any alternating end A [14]
any alternating game not in P− A [12]

Table 1. Some known instances of invertibility in restricted misère play.

Theorem 4.1 was used to show that the ordinal sum of ∗ and a number3, ∗ : x ,
is invertible in the universe of dicots. This result and others are presented in
Table 1, which lists some of the positions known to be invertible in the universes
of alternating games (A), dicots (D), or dead-ending games (E).

Many of these instances of invertibility were demonstrated using the following
sufficiency condition for invertibility in restricted misère play. Generally, one
proves G+G ≡ 0 (mod U) by showing that the outcome of G+G is the same
as the outcome of G+G+ X for any X in U. Theorem 4.2 essentially says that
you need only check the X positions that are ends, an idea that is paralleled by
the more recent result about comparability of misère games (Theorem 3.1).

Theorem 4.2 [15]. Let U be a universe of games closed under followers, sum,
and conjugation, and let S ⊆ U be a set of games closed under followers. If
G +G + X ∈ L− ∪N− for every game G ∈ S and every left end X ∈ U, then
G+G ≡ 0 (mod U) for every G ∈ S.

4A. Nonconjugal invertibility. A bizarre property of restricted misère play is
that a game G can have an additive inverse modulo some universe U without
that inverse being the conjugate G. The only known partizan result of this kind
appears in [13], where the games {0|·} and {1|0} sum to zero among the set of
all partizan Kayles4 positions, despite neither being equivalent to the conjugate
of the other in this universe. This inverse pair is further remarkable for the fact
that one position is right-win and the other is previous-win.

In the example from partizan Kayles, the actual conjugates of {0|·} and {1|0}
do not even belong to the universe. In [12] it was conjectured that being closed
under conjugation would prevent such occurrences of nonconjugal invertibility;
however, a counterexample can be seen in [20, Appendix 6] for a subset of
impartial games.

3By number (integer) in misère play, we mean a game that is identical to the normal-play
canonical form of a number (integer).

4The paper [13] solves a partizan version of the game Kayles, played on rows of pins, where
Left can knock down a single pin and Right can knock down two adjacent pins.
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This leads us to a pressing open question in misère theory: in what universes
U do we have no nonconjugate inverses, so that G + H ≡ 0 (mod U) only if
H ≡ G (mod U)? In-progress research suggests that adapting the proof of a
similar result on scoring games [9] can prove that no nonconjugate inverses occur
in dicot games, dead-ending games, or any universe that is parental, dense, and
amenable to a type of “replacement” reversibility through ends, as discussed in
the next section.

5. Reversibility and canonical forms

Given the relative lack of structure in misère play, it is perhaps surprising that we
have canonical forms here just as in normal play, with precisely the same defini-
tions of domination and reversibility (with inequality under misère play instead
of normal play). This was shown in the collaborative paper of G. A. Mesdal [11]
and subsequent work by Aaron Siegel [21]. The latter also demonstrated that, as
in normal play, the simplified game obtained by removing dominated options
and bypassing reversible ones is unique.

So canonical forms “work” in misère play; but in general the concept is less
useful than in normal play, because it is so hard to find instances of domination or
reversibility. If we restrict ourselves to a particular universe of games U, then we
may get domination or reversibility in the restricted universe that does not occur in
general, due to inequalities of the form G ≥ H (mod U). Consequently, a game
could have different “restricted canonical forms” in different universes. However,
the construction of a canonical form — specifically, how we deal with reversible
options — is not quite the same when the universe is restricted in this way.

The problem of reversibility in restricted universes is related to the following
result of [21], which is used in the construction of misère canonical forms.

Lemma 5.1 [21, Lemma 3.5]. If H is a left end and G is not, then G 6≥ H.

This result holds in the context of all misère games; however, it may be the case
that a non-Left-end G can be greater than a left end H modulo some universe U.
For example, in the universe of dicot games D, we have {0, ∗|∗}≥ 0 (mod D) [6].

Why is this a problem? In general, Lemma 5.1 means we never have to worry
about reversibility through an end; it cannot happen that G ≥ GL R if GL R is a
left end, and so in such a case GL could not be reversible. This fact is exploited
in the proof that reversibility works in misère play: that G ′ = G when G ′ is
obtained from G by replacing a reversible option GL with the left options of
GL R [21]. Since the same fact does not hold in restricted misère play, the result
from [21] no longer applies, and so we cannot necessarily bypass all reversible
options. In the example above from [6], even though G = {0, ∗|∗} ≥ 0 (mod D)

and 0= ∗R
= GL R , it is not the case that {0, ∗|∗} ≡ {0|∗} (mod D). Left’s only
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good move in G is to ∗, so removing ∗ and replacing it with no options does not
result in a game that is just as good for Left.

In [6], the proof from [21] of uniqueness of misère canonical forms was
adapted to construct unique restricted canonical forms in the universe of dicot
games. For dicots, the problem of reversibility through ends is dealt with as
follows: if GL is reversible through a left end, then replacing GL with ∗ results in
an equivalent game. This solution should be further adaptable to other restricted
universes: we would just need to find a suitable “replacing game”, that might
depend on G, to replace an option GL that is reversible through a left end. As
the invertibility of ∗ (modulo dicots) is used in the proof of the uniqueness of the
canonical forms for dicots, the replacing game in other universes will most likely
have to be invertible. Solving the problem of reversibility in specific misère
universes is an open area of research; notably, in-progress work from the authors
of [8] suggests a solution for certain universes, including dead-ending games.

This completes our survey of the recent developments in misère theory, in-
cluding comparability, invertibility, and reversibility of misère games. We next
show how some of these advancements have been applied to solve specific games
under misère play.

6. Applications to specific games

A number of specific partizan games have been successfully solved using the
theory of restricted misère play. These solutions consider equivalence modulo
the universe of all positions that occur under the specific game rule set, and take
advantage of results for broader superset universes.

Penny Nim is a partizan variant of Nim played with stacks of coins. In each
stack, coins are all heads up or all tails up, and the entire stack may be lying
sideways. On her turn, Left chooses a stack with tails-up or sideways orientation,
removes any number of coins from it, and turn it heads up. Right plays similarly
on heads-up or sideways coins stacks, but leaves them tails-up. Notice that
any position of this game is alternating, and the potential for sideways stacks
means that not all components are initially ends. The game is solved in [12],
using the analysis of the alternating universe A, in which most “single-stack”
positions are invertible. The solution involves first simplifying single stacks of
coins, modulo A, and then determining outcomes of sums of these finitely many
simplified positions.

Partizan Kayles is a variant of Kayles, played on a row of pins, where Left
can knock down a single pin and Right can knock down exactly two adjacent
pins. Notice that any position of this game is dead-ending. The game is solved
in [13]. The key is to see that Left should always take an isolated single pin
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when she can; this allows for removal of dominated options and decomposition
of long rows of pins into shorter rows — into only isolated single pins and pairs
of pins, in fact — and then all that remains is to see who wins on a sum of such
positions. This is easily done once it is shown that an isolated single pin and an
isolated pair of adjacent pins “cancel” (that is, they are additive inverses).

Hackenbush Sprigs is a particular case of the game of Hackenbush. The game
can be seen as rows of blue, green and red dominoes where each row has exactly
one green domino, which is the leftmost domino. A move of Left is to pick a
blue or green domino and remove it with all dominoes of the same row to its
right. Right plays similarly with red or green dominoes. Notice that any position
of this game is dicot. The game is solved in [10]. The authors first show that all
games are invertible by finding the canonical forms of all rows, modulo dicot
games, and then finding the outcomes of sums of such positions. They end by
showing that no other simplification can be made, completely solving the game.

7. Current and future directions

We conclude by highlighting two of the open problems that were introduced
above.

(1) Nonconjugal invertibility. In what universes does G+H ≡ 0 imply G ≡ H?
Can we indeed prove that this is true for certain parental, dense universes,
and if so, what known games naturally occur in such universes? Can we
find other examples of universes in which this is not true, besides the one
impartial and one partizan example that have been identified to date?

(2) Reversibility through ends. There is a solution for dicots, where options that
are reversible through ends are replaced with ∗, and there is a suggestion
that a similar solution will work in a few other specific universes. Can
we solve reversibility in other universes, perhaps starting even with small
ruleset-specific universes? Can we find a general process for constructing
the necessary “replacement” games? Are there universes in which the
problem of reversibility through ends does not even arise — that is, in which
Lemma 5.1 holds?
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