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A note on polynomial profiles of
placement games

JASON I. BROWN, DANIELLE COX,
ANDREW H. HOEFEL, NEIL MCKAY, REBECCA MILLEY,
RICHARD J. NOWAKOWSKI AND ANGELA A. SIEGEL

The polynomial profile of a placement game enumerates the number of differ-
ent positions. For a subclass of placement games, the polynomial profile is
the independence polynomial of a related graph. For several important games,
we generate the profiles when the board is a path; in the process, we discover
some relationships between them.

1. Introduction

A natural enumeration question for combinatorial games is: “How many legal
positions are possible in a game?” Surprisingly, few have actually considered
this problem. Farr [7; 8], and Tromp and Farnebick [20] consider the problem of
“counting the number of end positions in GO.” Similar enumeration questions are
addressed by Hetyei [12], who analyses a game where the number of P-positions
(second player win positions) of length n is related to the n-th Bernoulli number
of the second kind, and in [17], where it is shown that for the game of TIMBER,
on paths, the number of P-positions of length # is related to the Catalan and
Fine numbers.

In Section 3, we enumerate the positions of several well-known games. A
natural subset of combinatorial games, which we call placement games, are those
that consist of placing pieces on a board until the board “fills” and there are no
further moves. For each game, except NOGO, we find an auxiliary graph for which
a position in the game corresponds to an independent set in the auxiliary graph.

In Section 4, we exhibit bijections between the games with identical generating
functions.
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2. Background

A placement game can be abstractly represented as a game on a graph, with the
following properties.

» The game begins on a graph that contains no pieces.

» A move is to place a piece on one (or more) vertices subject to the rules of
the particular game.

» The rules must imply that if a piece can be placed in a certain position on
the board then it was legal to place it in that position at any time earlier in
the game.

» Once played, a piece remains on the graph; it is never moved or removed
from the graph.

Placement games were first identified during the seminar which led to this
paper and have become of interest because of their properties; see [13; 6; 5;
16]. Some known examples of placement games are DOMINEERING [1], COL
[2], SNORT [2], NOGO [4] and NODE KAYLES [3; 10]. (Rules for the games
considered in this paper are given below.) CHESS and CHECKERS are not in this
class of games because pieces are moved and removed and the starting position
is not empty. The game of GO is likewise not a placement game since, while
pieces are placed and not moved around, they can be removed from the board.

In this paper, we consider several placement games that appear in the literature.
In all, a vertex that has not been played on will be called empty and at the start
all vertices are empty. A move by Left is to place a blue piece on one or more
(depending upon the rules) uncolored vertices. Similarly, Right places a red
piece. No two pieces can share the same vertex. The size of a piece refers to the
number of vertices it occupies when it is placed.

« CIS: Both blue and red pieces have size 1 and no two pieces can be adjacent.

¢ O12': A blue has size 1 and red piece size 2; pieces are allowed to be
adjacent.

e SNORT [2]: Both blue and red pieces have size 1; a blue piece and a red
piece cannot be adjacent but two pieces of the same color can be adjacent.

e COL [2]: Both blue and red pieces have size 1; no two blue vertices can be
adjacent, neither can two red, but a red can be adjacent to a blue.

e NOGO (also known as Anti-Atari Go) [4]: Both blue and red pieces have
size 1. Every maximal connected group of blue pieces must include a vertex
adjacent to an empty vertex, similarly for any maximal group of red pieces.

1012 0na strip is a partizan octal game (see [15]) and another generalization is NODE KAYLES

[31.
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approx. # . .
game positions on P, generating function
cIs 2 3
1—1—2¢2
012 2.414" ;
1—2t—1¢2
coL 2.414" .
1—2t—1¢2
SNORT 2.414n B
1—-2t—1¢2
NOGO 2.769" A+ =201
: (A—t+12=283)(1—1)

Table 1. Rates of growth.

In enumerating positions, we found that there is a bijection between the
positions of certain games and the independent sets of an associated graph.
These games are examples of independent placement games. C1S, COL, SNORT,
and O12 are independent placement games, but NOGO is not since it has a
“hyperedge” constraint. Enumerating independent sets was considered by earlier
researchers. Prodinger and Tichy [19], as well as others, showed that the number
of independent sets of a path with n vertices is the (n 4 2)-nd Fibonacci number.
They coined the term the Fibonacci number of a graph G to mean the number of
independent sets of G. For a placement game, placing a piece prevents another
piece from occupying the same vertex. For many of the games the number of
legal positions is the Fibonacci number of an auxiliary graph. Of interest is not
only the Fibonacci number but also the independence polynomial of a graph,
which is defined as

Igx)=)_ fix',
i=0

where f; is the number of independent sets of cardinality i (see [14] for example).

Table 1 contains the summary of our findings for the number of legal positions
on a path P, (i.e., n vertices). Note that O12, COL and SNORT have the same
generating functions.

Rather than just enumerating all legal positions, a finer measure of a game is
to count the number of legal positions with a total of k pieces. Surprisingly, even
this is not sufficient to distinguish between the games of COL and SNORT on a
bipartite graph (see Theorem 4.2). For full generality, in a hope to distinguish
between games, we define a bivariate polynomial. Let P be a placement game
played on a board (graph) G. Let n be the number of vertices of G. The
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polynomial profile of P on G is the bivariate polynomial

n k
Ppe, ) =YY fixx!y*7,

k=0 j=0

where f;;—; is the number of legal positions of P on G which have j Left
pieces and k — j Right pieces. Note that f o =1 since there is one position with
no pieces. Putting x =y gives Pp g(x,x) =) |, c;x', which we will shorten
to Pp g(x). This is the polynomial in which ¢; is the number of positions with
exactly i pieces. Finally, putting x = y = 1 counts the total number of positions.
We find that these last two objects sometimes give rise to sequences that are
listed in the Online Encyclopedia of Integer Sequences (OEIS) [18]. These we
note as they occur.
For example, in the game of COL, we have

Pcor,py(x,y) =143x+3y+6xy +x2+y2+x2y +xy2;
PCOL,P}(X) = 1 +6x + 8)62 +2x37 PCOL,P}(l) = 17

We construct generating functions for the polynomial profiles of these games
on a strip. We present only one explicit calculation since the others are similar.
(See [9, §1.3 and 1.4] or [11, Chapter 2] for some of the many possible calculation
methods.) For the game P, we define

GFp(e,x,y,1)= an Z fuij€"x'y,
n>0  h+i+j=n
where n is the number of vertices in the path P,, and fj,; ; is the number of
positions with 7 empty vertices, i Left pieces and j Right pieces. Note, as
in O12, i and j may not be the same as the number of colored vertices. In
GFp(e, x,y,t) the coefficient of ¢"* gives the polynomial that describes all the
positions. In practice, we are not interested in /, so we can set e = 1 to get

GFp(l,x,y,t)= Z Pg.p,(x, yt".
n=0
Several questions suggest themselves.

Question 2.1. For a given independent placement game P, does the closure of
the set of roots over all graphs of Pp g (x) cover the complex plane?

Question 2.2. Let P be an independent placement game. Are the coefficients of
Pp g (x) unimodal for all graphs G?

Games P and Q are called G-doppelgiinger if Pp (x) = Pg g(x) for all
graphs G € G. We show that COL and SNORT are dopplegénger on bipartite
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graphs. Under a restricted class of rules, it is shown in [13] that there are no
doppelginger.

Question 2.3. Do there exist placement games P and Q which are doppelgénger
for all graphs? Or for any other subclass of graphs other than bipartite? Are
there games for which Pp g (x, y) = Pg g (x, y) for some class of graphs?

3. Profiles of COL, SNORT, CIS, 012, and NOGO on paths

As mentioned in the Introduction, the methods for all the games are similar. We
give a proof for COL and omit the others since they similar. We note when the
sequences are related to known sequences.

We will be interested in the situation where the board is a strip or path of
n vertices which we will denote by P,. Throughout, we use B to represent a
blue (Left) piece and R a red (Right) piece, except in O12 when we’ll use RR.
In context of the game under consideration, let fr(n), fr(n), and fg(n) be the
bivariate polynomials that count the number of positions with, respectively, an
uncolored, a red, and a blue rightmost vertex.

3.1. The game of COL. Given a graph G, with vertices {x1, x2, ..., x,}, we de-
fine the auxiliary graph Gcop with V(Geor) = {x1, X2, ..., x,} x {1, 2}. Vertices
(xi, p) and (x;, g) are adjacent if x; ~x; and p=gq orifi = j and p # g. That
is, GcoL 1s the Cartesian product of G and K>.

In a position, a blue vertex x; is identified with (x;, 1) and a red vertex x;
with (x;, 2) and the reverse identification for an independent set of G¢o.. This
is a bijection between the positions in COL and independent sets of G oL Which
forms the proof of the result.

Theorem 3.1. Let G be a graph then Pcoy ¢(x) = I, (x) and thus COL is an
independent placement game.

Now we restrict the board to be a path. First we generate the recurrence
relations for the positions on P, .
Since these are the only three ways a path can end we see that

Peor. (X, y) = fE(+ D + fp(n+1) + frin+1).

If a position on P, ends with an empty vertex at the right end, the other n
vertices can form any legal COL position on Py; thus, fr(n+1) = Pcor, p,(x, y).
If it ends in a blue (red) vertex then the other n vertices form a legal position
that does not end with a blue (red) vertex; therefore,

fB(n+1) =x(fr() + fe(n)) =xPcor,p,(x,y) —xfp(Nn),
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n PCOL,P,I x,y) PCOL,P,l (x) PCOL,Pn(l)
0 1 1 1
1 1+x+y 2x +142x 3
2 142x 42y +2xy 2x2 +4x +1 7
3] 14+3x+3y+6xy+x2+y2+x2y+xy? | 146x +8x%+2x3 17

Table 2. The first 3 COL polynomials.

likewise,

fr(n+1) = y(fp(n) + fe(n)) = yPcor,p,(x, y) — yfr(n),
and so
Peov,py (X, ) = fe(n+ D+ frR(n+ 1)+ fe(n+1)
= (I4+x+y)Pcorp,(x,y) —xfp(n) — yfr(n).

In the case x = y, we have fp(n) = fr(n) so that

Pcor, p,y (¥) = (1 +2x) Peor, p, (x, y) —x(fp(n) — fr(n))
= (1+2x) Pcor, p, (x) = x(Pcor,p,(x, y) — fE(n))
= (14+x)Pcor,p, (x) +x Pcor, p,_; (X).
Putting x = 1 gives the number of positions, i.e., Pcor, p,,, (1) =2Pcor, p, (1) +
Pcor.p, ,(x,y). The first seven coefficients are 1, 3, 7, 17, 41, 99, 239. In [18],

this is sequence A001333 Numerators of continued fraction convergents to
sqri(2).

Theorem 3.2. The bivariate generating function for the number of COL positions
on a path is obtained from

A +xt)(1 4+ yt) )
1—(xyt2+t(1+xt)(1+y1))’
the univariate generating function is obtained from

(+4x)
1 —((1+x)t4+xt2)’

GFeo(1,x,y,1) =

GFeo(1,x,x,1) =

and the total number of positions on Py is ¢y = (1 +/2)" 4+ 0(1) ~ 2.414".

Proof. In COL, no adjacent vertices can be colored the same. Therefore, on a
path, a position

(1) starts with zero or more empty vertices;

(2) repeated patterns taken from
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B followed by zero or more occurrences of RB followed by at least

one E; or

» R followed by zero or more occurrences of BR followed by at least
one E; or

* BR followed by zero or more occurrences of BR followed by at least
one E; or

* RB followed by zero or more occurrences of RB followed by at least

one E;

(3) ends with nothing added;

» B followed by zero or more occurrences of RB; or

* R followed by zero or more occurrences of BR; or

e BR followed by zero or more occurrences of BR; or
* RB followed by zero or more occurrences of RB.

This gives the regular expression
E*((R(BR)" | B(RB)" | RB(RB)* | BR(BR)")EE™)*
“(R(BR)*| B(RB)" | RB(RB)* | BR(BR)" | €),

where ¢ is the empty word. The term R(BR)*| B(RB)* | RB(RB)* | BR(BR)*
occurs twice, and the corresponding expression in the generating function is
xt n vt 2xyt? _xt+yt+ 2xyt?
1—xyr2  1—xy2  1—xyt2  1—xy2

The generating function for COL is

GFeoL(e, x,y,1) =

1 2
1 ) 3 xt+yt+2xyt
= = 1),
(l—et 1_xt+yt+2xyt et ( 1 —xy2
I—xyt2  1—et

which gives

(I +xt)(14y1) )

1— ey +1(1+xt)(1+ y1))’
(A+x)
1 —((14+x)t+xt2)’

GFeoL(1,x,y,1)=

GFCOL(I,X,X, t) =

and

GFCOL(lv 17 lvt)

N (2;\?)(1 - (1(2\6):) " (22_\?)(1 - (1(1—)ﬁ)z>'
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From the latter equation we see that the coefficient of t" in G Feo (1,1, 1,¢) is
o, = 1=V2 —2*/5(1 —V) 4 —”2*/5(1 +V2)"

Since |1 — «/§| < 1 this contribution of this term goes to 0 and so ¢, = (1 +
V2)" 4 0(1) ~2.414". O

3.2. The game of SNORT. We already know that Psyorr,p, (X) = Pcor,p, (X)
but the bivariate polynomials are different.

We define the auxiliary graph Ggyorr With V (Ggnorr) = {X1, X2, ..., X} X
{1, 2}. Vertices (x;, p) and (x;, g) are adjacent if i = j and p # q or if both
x; ~ x; and p # q. Another description is that Gsyorr 1S the categorical product
of G and K3 together with the matching edges ((x;, 1), (x;,2)),i=1,2,...,n.

In a position, a blue vertex x; is identified with (x;, 1) and a red vertex x; with
(x;,2) and the reverse identification for an independent set of Ggyorr. This is a
bijection between the positions in SNORT on G and independent sets of Ggyorr
which forms the proof of the result.

Theorem 3.3. Let G be a graph then Psorr,G(X) = IG o, (X) and thus SNORT
is an independent placement game.

In SNORT, we would like to build a position on P, ;. Not surprisingly, we
have a similar construction as that for COL:

fe(m+1) =x(fp(n) + fe()) = x Psxorr, p, (¥, y) —xfr(n);
fr(n+1) = y(fr() + fe(n) = ySx,y(n) — yfr(n).
Since fp(1) =x, fr(1) =y, fe(1) =1 then
Psnor, Py (X, ) = fpn+ D+ fr(n+ 1) + fe(n+1) ()
= (I+x +y)Psnorr,p, (X, ¥) — yfe(n) —xfr(n). (2)
In the next table, the last two columns are the same as Table 2.

Theorem 3.4. The bivariate generating function for the number of SNORT posi-
tions on a path is given by

(1—xyr?) .
1 — (xt+yt +xyr2 +1(1 —xyr?))’

G Fsnorr(1, X, y, 1) =

the univariate polynomial is given by

(14+x1)

GF 17 9 7t = ,
sworr (1 X 0 = T T o v x2)

and the total number of positions on Py, is ¢, = (1 + \/E)” +o0(1) >~ 2.414".
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3.3. The game of C1S. If only one colored piece were being played then every
independent set would correspond to a legal position and, as reported in [19]
and other papers, the number of independent sets on a path with n vertices is the
(n + 2)-nd Fibonacci number.

Given a graph (board) G with V(G) ={a;, as, . .., a,} we construct the auxil-
iary graph G¢is where V(Ges) = {ay, an, ..., a,} x {1,2} and ((b, c), (d, e)) €
E(Gcys) if b is adjacent to d. This is also known as the strong product of G
and K».

Theorem 3.5. Let G be a graph then Pcis g(x) = g, (x) where I (x) is the
independence polynomial of G¢s; thus, CIS is an independent placement game.

Proof. We construct a bijection between the legal CIS positions on G and
the independent subsets of V(G¢is). A position with i blue pieces on B =
{ap,, ap,, ..., ap} and k —i red pieces on R = {a,,, a,, ..., ar_,} is paired with
the set of vertices

BR={(b,1):beB}U{(r,2):r €R}

in G¢s. Since B U R is independent, so is BR. Any independent set in G¢s can
be partitioned into two sets: those with coordinate 1 and those with coordinate 2.
The first set is the set of blue pieces and the other is the set of red pieces; the
combined set of vertices is an independent set so this is a legal position. U

The recurrence relations are

Pcis,p, (X, y) = Peis,p, (X, y) + (x + y) Pais, p,_, (X, y).
NOte that PCIS,Po(xv y) - 1 al‘ld PCIS,P] (x, y) - 1 +x +y

Theorem 3.6. The bivariate generating function for the number of CIS positions
is obtained from

(I+x+y)
—t—xt?2 —yt?’

GFos(1,x,y,1) = 1

the univariate polynomial is obtained from

(I+2x)

GF 17 ’ 7t =5
cas(1, x,x,1) 1 —7—2xz2

and the number of positions on P, is %(4 x 2" 4 (=)t

In particular, the sequence {c,} = {1, 3,5, 11, 21,43, ...} is the Jacobsthal
numbers (see A001045 in [18]).

The generating function for the game k-CIS, where there are pieces of k
different colors, can be found in a similar fashion.



252 BROWN, COX, HOEFEL, MCKAY, MILLEY, NOWAKOWSKI AND SIEGEL

Corollary 3.7. In k-C1S (that is, CIS played with k colors), the generating func-
tion is

1+ kt
1—1t—kt?

We leave the proof to the reader, but note that for k =3, 4, 5, 6, 7, 8 these are
the sequences A006130, A006131, A015440, A015441, A015442, and A015443
respectively in [18].

GF](-CIS(I’ 15 17 t) =

3.4. The game of O12. We can define an auxiliary graph G, for a graph G.
Let V(Go12) =V (G)UE(G) and (a, b) € E(Go12) if one of the following holds:

(1) aeV(G), be E(G),and a € b;
(i) a,be E(G)andaNb # o.

In other words, Go12 is the line graph of G plus the vertices of G where a vertex
of G is adjacent to all its incident edges.

Theorem 3.8. Let G be a graph. Then Po12,6(x) = I, (x), and thus O12 is
an independent placement game.

On a general graph, the profile is a symmetric polynomial.

Theorem 3.9. Let G be a graph on n vertices then Poi2.¢(x) = Z?zo cix' is sym-
metric, that is, ¢; = c,—;. If n =2m and then c,, has the same parity as the number
of perfect matchings in G. Moreover, in Poi2,G(x,y) =Y g Z?:O ci,jxiyj we
also have ¢; j = cy—i—2j, j.

Proof. The proof of all the statements comes from one observation. Let P be a
position on G with j Right dominoes and i — j Left pieces and, consequently,
n—(i—j)—2j=n—1i— jempty vertices. Interchange empty vertices and Left
pieces to get a position with j Right dominoes and n —i — j Left pieces, that is,
a position with n — i pieces. Moreover, this is a bijection except, possibly, for
the position in which all the vertices of G are occupied by all Right dominoes
(the dominoes form a perfect matching and i =0, j = %n) which is matched to
itself. Therefore ¢; j = c,—;—2;j, ;. Now

k k
k=D Chmjif = ) Cukmi] = Cumk
j=0 j=0

If G has 2m vertices, then every perfect matching is matched to itself and all
the other positions with m pieces are paired off, so the parity of ¢, is the same
as that of the number of perfect matchings of G. U

Considering just paths, the recurrence relation is

Poi2,p,,.(x,y) = +x)Po12,p,(x,y) +yPor2,p,_,(x,y).
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The coefficients of Pojz p,(x) (e, 1,1,1,1,3,1,1,5,5,...) are the Delan-
noy numbers; see A008288 [18].

Theorem 3.10. The bivariate generating function for the number of O12 posi-
tions on a path is obtained from

1 .
1—((x+ Dt +yr2)’

the univariate polynomials are obtained from

GFonn(l,x,y,t) =

1
1—((x+ Dt +xt2)’

and the total number of positions on Py, is ¢, = («/i + 1)l /(2«/5) +o(1).

GFonn(l,x,x,t) =

The sequence of numbers is 1, 2, 5, 12, 29, 70, 169, etc., which is the sequence
of Pell Numbers, A000129 in [18]. When played on K, the number of positions
is the sequence A005425 in [18], which is related to the Hermite polynomials.

3.5. The game of NOGO. The empty-vertex-adjacency constraint is a hyperedge
condition and so there is no auxiliary graph whose independent sets correspond to
the positions in the games. Consequently, NOGO is not an independent placement
game.

The recurrence relations for NOGO positions are trickier to generate via con-
sidering the last vertex because they do not always arise out of a smaller legal
position. These exceptions can be easily identified though.

Consider a position on P, ;. If this position ends with an unoccupied vertex
at the right end, the other n vertices can

« form any legal NOGO position on P,,
« be n blue pieces,
 be n red pieces,

» be i blue vertices which is then followed by legal position on P,_;, 1 <i <
n — 2 that starts with a red vertex, or

« as in the previous but with interchanging blue and red.

Thus
PNOGO,PHH(-X’ =fen+1)+ frR(n+1)+ fp(n+1).

It follows that
n—2
fE(+1) = Proco.p, (6, ) +x"+Y"+ D (frr —i)x' + fp(n —i)y');
i=1

fe(n+1) =x(fp(n) + fe(n)) = x(Pyoco,p, (X, y) — frR(N));
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and likewise
fr(n+1) = y(Pxoco,p, (x,y) — fp(n)).

Thus

PxocGo, Pysi(x,y) = X (Pxoco,p, (X, y) — fE(M)) + y(Pxoco,p, (X, y) — fE(n))
n—2
+ Pyoco.p, (X, Y) + X" +y" + Y _(frn —i)x' + fp(n —i)y").

i=1
Putting y = x gives
PNOGO,P,LH (x)

n—2
= (2x + 1) Pyoco,p, (¥) = 2f£() + 2" + Y _ x'(Pyoco, p,_, (x) — f5(n — i)).

i=1
The total number of positions, 1, 5, 15,41, 113, 313, 867, 2401, .. ., was al-
ready known to Tromp and Farnebick [20] and the sequence is A102620 in [18].

Theorem 3.11. The bivariate generating function for the number of NOGO
positions on a path is obtained from
t(1 —xyt?)(1 — xt — yt) .

(1 =x0)(1 = yt) =t —xytH (A —xt)(1 = yt)’
the univariate polynomial is obtained from

(I4+xt)(1 —2xt)t )
(1 =xt)2 =t =2xt3)(1 —x1t)’
and the total number of positions on P, is ¢, = 2.769296" 4 o(1).

G Fxoco(1, x,y, 1) =

G Fryogo(L, x,x, 1) =

4. Relationships between games

As mentioned in the Introduction, if games have the same profile there is the
possibility of a bijection between the positions.

4.1. Relationship between COL and SNORT. We now show that the enumera-
tion of positions for COL and SNORT on bipartite graphs are equal.

Lemma 4.1. Let G be a bipartite graph and let k be a nonnegative integer. The
number of legal COL positions with k pieces on G is the same as the number of
legal SNORT positions with k pieces on G.

Proof. Number the vertices of G with distinct but not necessarily consecutive
positive integers such that one color class consists of even numbers and the other
odd numbers. We define two transformations.
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A : (SNORT — COL) Let S; be a SNORT position with k pieces. Let H be the
subgraph of vertices occupied by a piece, and let H' be a connected component
of H (necessarily all the vertices of H’ are occupied by blue pieces or all by
red pieces). Let x € V(H') be the least numbered vertex in H'. If x is even
then in H' interchange red and blue pieces on all the odd numbered vertices.
This component forms a legal COL position since no two adjacent vertices are
occupied by the same colored piece. Do this for each component and we have a
legal COL position of k pieces in G.

B : (SNORT — COL) Let Cy be a COL position with k pieces. Let H be the
subgraph of vertices occupied by a piece, and let H' be a connected component
of H. In H’ all vertices occupied by B will be in one color class (i.e., odd or
even) and the vertices in the other will be occupied by R. Let x € V(H’) be
the least numbered vertex in H'. If x is even then change the pieces in all the
odd numbered vertices to the same as that occupying x, and leave the others as
they are. If x is odd then change nothing. This component forms a legal SNORT
position since no two adjacent vertices have different colored pieces. Do this for
each component and we have a legal COL position of k pieces in G.

Let S, be a SNORT position with k pieces then B(A(Sx)) = Si. Let Cy be a
COL position of k pieces then A(B(Cy)) = Sx. Therefore we have a bijection
between the positions of k pieces and the lemma is proved. U

This result gives the following.

Theorem 4.2. If G is a bipartite graph then Pcor ¢ (x) = Psnorr.c (x). In par-
ticular, Pcoyr,g(1) = Psnort,c (1), i.e., the number of positions on G is the same
for COL and SNORT.

4.2. The relationship between COL and O12.

Theorem 4.3. Let n be a positive integer; then

Pcov,p,,, (x) =2x Po12,p,(x) + Pcor, p, (X),
Po12,p,,,(x) =xPo12,p,(x) + PcoL,p, (X).

Proof. For each equality, we give a bijection between the positions.

First, we prove Pcor, p,,, (x) = 2xPo12,p, (x) + Pcor, p, (X).

The COL positions on P, that start with an empty vertex are paired with the
COL positions on P, (i.e., P, minus the first vertex).

Consider the COL positions with k pieces on P,y that start with a blue piece.
We will transform this in to an O12 position with k — 1 pieces on P, by starting
just after the beginning blue piece and converting the pieces as we progress to
the other end of the path by the following rules. For ease of translation, we will
change the O12 colors: aqua replaces blue and crimson replaces red.
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(1) A blue piece becomes aqua.
(2) A red piece preceded by a blue piece becomes aqua.

(3) An empty vertex followed by a red piece are both replaced by a crimson
domino.

(4) An empty vertex not followed by a red piece is left empty.
For the reverse, starting from a O12 position with kK — 1 pieces on P,:

(1) Start with a new blue piece.

(2) An aqua piece which now is preceded by an empty or a red piece becomes
blue, otherwise it is replaced by a red piece.

(3) A crimson domino is replaced by an empty vertex followed by a red piece.

(4) An empty vertex is left empty.

It is clear that two “blue-start” COL positions map to different O12 positions
and that two different O12 positions map to different “blue-start” COL positions.
Also, one piece in one game is mapped to one piece in the other. So the two sets
have the same cardinality and the COL position has one extra piece.

This leaves the COL positions that start with a red piece. For these, in the
previous transformation rules interchange “blue” and “red”.

Now we prove Poi12,p,,,(X) =xPo12,p,(x) + Pcor,p, (X).

The O12 positions on P, that start with an aqua piece correspond to all the
positions of O12 positions on P,. Using the transformations, the O12 positions
with k pieces on P, that start with

(a) a crimson piece correspond to all the COL positions with k pieces on P,
that start with a red piece;

(b) those that start with an empty-aqua pair of vertices correspond to a COL
positions that starts with a blue piece; and

(c) those that start with an empty-empty pair of vertices correspond to a COL
positions that starts with an empty vertex. 0

In [18], it is mentioned that Clark Kimberling in (Mar 09 2012) showed
that A008288 is jointly generated with A035607 via an array of coefficients
of polynomials u(n, x). Initially, u(1,x) = v(l,x) =1, forn > 1, u(n,x) =
xu(n—1,x)4+v(n—1) and v(n,x) =2xu(n — 1, x) + v(n — 1, x). These are
the same recursions as in the theorem. No proof is referenced in [18] but our
proof gives a combinatorial game theory explanation.
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