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A PSPACE-complete graph nim
KYLE BURKE AND OLIVIA C. GEORGE

We build off G. Stockman’s game NIMG to create a version named NEIGH-
BORING NIM. By reducing from GEOGRAPHY, we show that this game is
PSPACE-hard. The games created by the reduction share strong similarities
with UNDIRECTED (VERTEX) GEOGRAPHY and regular NIM, though these
are both solvable in polynomial-time. This application of graphs can be used
as a form of game sum with any rulesets, not only NIM.

1. Background

1.1. Algorithmic combinatorial game theory. Most of the results here revolve
around the computational complexity of determining which player has a winning
strategy from a given game position. There exist faster algorithms to solve this
problem for some rulesets than for others. For each ruleset, we consider the
computational problem that could be solved by such an algorithm. We will refer
to both the ruleset and problem by the same name.

We strongly encourage readers unfamiliar with these topics to refer to [1].

1.2. Terminology. A small amount of nonstandard terminology is used:

• We use the word sticks to refer to the objects in nim heaps. Thus, a nim
heap of size six contains six sticks.

• An optimal sequence set is a set of sequences of plays for both players such
that any move deviating from all of the sequences results in an N-position
(meaning, the Next player has a winning move). No move in that sequence
should be nonoptimal for either player. Thus, if a player does not know
whether they have a winning strategy, adhering to an optimal sequence is at
least as good as any other move.

1.3. NIM. NIM is an impartial game played on a collection of heaps, each with
a nonnegative number of sticks. On a player’s turn, they choose a nonempty pile
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and remove as many sticks as desired (at least one) from that pile. A player loses
when they cannot remove sticks (all piles are empty).

NIM is a classic impartial game, being the basis of Nimbers and Sprague–
Grundy theory [8; 5]. NIM has lots of nice properties, from easy evaluation of
games to obvious composition of two NIM games (the sum is just a new NIM

game).

1.4. NIMG. NIM has been extended to incorporate graphs so that nim heaps
are assigned to either edges or vertices. There are three different versions of the
game named NIMG. In all three versions, a turn consists of both traversing an
edge of the graph and removing sticks from a visited element.

1.4.1. Edge-heap NimG. Fukuyama describes NIMG where nim heaps are em-
bedded into the edges of the graph [4]. On each turn, the current player chooses
an edge to traverse (which has at least 1 stick on it) and removes any number of
sticks from that edge. The next player then starts on the vertex on the other end
of that edge and must choose an adjacent edge for their move. When there are
no more edges with sticks adjacent to the current vertex, the current player loses.
Many results for this game are known on complete graphs [2].

1.4.2. Vertex-heap NimG. In VERTEX NIMG, players similarly move from one
vertex to another, but heaps are connected to the vertices instead of edges [9].
The two variants can be easily described here as: “remove sticks, then move” and
“move, then remove sticks”. In both cases, a player loses if they cannot complete
their turn. The main topic of this paper is a variant of “move, then remove”.

1.5. Geography. We will use GEOGRAPHY to show the PSPACE-hardness of
NEIGHBORING NIM. There are many flavors of GEOGRAPHY; we use the term
to refer to DIRECTED VERTEX GEOGRAPHY. This impartial game is played on a
directed graph; each turn begins with a vertex already chosen. The current player’s
turn consists of selecting an arc leaving the chosen vertex that leads to a vertex
that hasn’t yet been visited during the game. The next player then starts their turn
with the resulting vertex selected. We formally describe the ruleset as follows:

Definition 1.1 (GEOGRAPHY — DIRECTED VERTEX). Geography positions are
described by G = (V, E) and v ∈ V . Move options for (G, v) are all (G ′, v′)
where

• (v, v′) ∈ E ,

• V ′ = V \ {v},

• E ′ is the subset of E induced by V ′, and

• G ′ = (V ′, E ′).

GEOGRAPHY is known to be PSPACE-complete [6; 7].
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2. NEIGHBORING NIM

We define the ruleset NEIGHBORING NIM to be similar to the “move, then
remove” version of NIMG, but also allow players to choose to play on the same
vertex as the last move as though each vertex has a self-loop. Note that standard
NIM is equivalent to a game of NEIGHBORING NIM on a complete graph with
each heap on a separate vertex. A more formal definition follows.

Definition 2.1 (NEIGHBORING NIM). NEIGHBORING NIM positions are de-
scribed by G = (V, E), w : V → N, and x ∈ V . The options for (G, w, x) are
all (G, w′, x ′) where w′ : V → N and

• x ′ = x or {x, x ′} ∈ E ,

• w′(x ′) < w(x ′), and

• ∀v ∈ V \ {x ′} : w′(v)= w(v).

Our main result for this paper is that NEIGHBORING NIM is PSPACE-hard.
Since our analysis uses graphs with a small number of sticks on each vertex, we
define a version of the game with a bounded number of sticks per vertex.

Definition 2.2 (k-NEIGHBORING NIM). k-NEIGHBORING NIM is the same
ruleset as NEIGHBORING NIM, except that the weight function w has bounded
range [0, k].

We are able to show that 2-NEIGHBORING NIM is PSPACE-complete, and
thus c-NEIGHBORING NIM is also PSPACE-complete for any constant c≥2. The
case for 1-NEIGHBORING NIM is solvable in polynomial time, since this game is
equivalent to UNDIRECTED (VERTEX) GEOGRAPHY [3]. Thus, if P 6= PSPACE,
allowing a second stick on vertex-heaps is enough to increase the computational
hardness of determining the winning player!

3. Computational complexity of NEIGHBORING NIM

3.1. PSPACE-hardness. The following is the main result of this paper:

Theorem 3.1 (hardness). NEIGHBORING NIM is PSPACE-hard.

We will show the hardness of this problem by reducing from the game GEOG-
RAPHY, which is PSPACE-hard [6].

Proof. Given any GEOGRAPHY position, we will give an algorithm to construct
an equivalent NEIGHBORING NIM state, meaning that there is a win in the GE-
OGRAPHY position exactly when there is a win in corresponding NEIGHBORING

NIM position. First we will describe the method for generating these positions,
then prove their equivalence.
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Figure 1. Our main gadget: reduce each directed edge from y to z to
the undirected weighted graph shown here.

Let GG be a GEOGRAPHY position on the directed and unweighted graph
G = (V, E). We define a new undirected graph, G ′ = (V ′, E ′) with weights
on the vertices w : V ′→ N in the following way: ∀v ∈ V : let Xv ∈ V ′ and set
w(X)= 1. Also, ∀(y, z) ∈ E : (edge directed from y to z) let ay,z , by,z , cy,z , dy,z ,
ey,z , fy,z , gy,z ∈ V ′ where, ignoring the (y, z)-subscripts,

• w(a)= w(b)= w(c)= w(e)= w( f )= w(g)= 1,

• w(d)= 2, and

• {(X y, a), (a, b), (b, c), (c, d), (b, e), (e, f ), (d, f ), (d, g), ( f, g), (g, Xz)}

⊂ E ′.

See Figure 1 for a visual description of this gadget.
We soon show that the resulting G ′ is the graph for our NEIGHBORING NIM

position equivalent to GG. The only final step in the reduction is to declare
that if GG has a starting vertex v then Xv ∈ V ′ is the starting vertex (where the
previous play had been made) in our game and w(Xv) is set to 0 instead of 1.

To complete the reduction, we must show that the structure in Figure 1 “acts”
like a directed edge in GEOGRAPHY. Thus, we must prove:

• Moving “backwards” is a losing play. If the previous play was at Xz , then a
backwards play would be to remove the only stick at g(y,z). A backwards
play results in an N -position.

• The same player moving into the gadget should also move out. If a player
moves from X y to a(y,z), then in an optimal sequence of plays, the same
player will move from g(y,z) to Xz .

We prove the former in Lemma 3.2 and the latter in Lemma 3.3. The result is
that each of these gadgets (as in Figure 1) in the NEIGHBORING NIM position
works just like a (directed) edge in GEOGRAPHY. Trying to go backwards will
result in losing and, if players play optimally, they both might as well continue
normally through each gadget.
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Figure 2. This sequence of moves is “safe” for both players to traverse
the gadget. The two gray arrows indicate the potential additional moves
in the second sequence. Each move assumes that exactly one object is
taken from a vertex.

Lemma 3.2 (don’t go backwards). Any play from (Xz) to g(y,z) (for all y) results
in an N -position.

(See Appendix A for a proof of this claim.) This implies that our gadgets are
directed: if a player tries to go “backwards” from an X -vertex to an i-vertex, the
opponent will have a winning strategy.

To finish showing that our gadget acts like a directed edge, we must prove that
“nothing can go wrong” during a regular forward traversal of the structure. To
this end, we find two sequences that constitute an optimal sequence set through
the gadget, thus showing that neither player benefits from deviating from the
sequence. In order to get from one end of the gadget (as in Figure 1) to the other,
the following sequence of moves suffices (let Alice and Bob be our two players;
we will again ignore subscripts): Alice “takes” a, Bob takes b, Alice takes e,
Bob takes f , Alice decrements d by 1, Bob takes g, Alice takes Xz . Note that
the same player (in this example, Alice) who chooses to take a also moves to Xz .
The other sequence is where Bob takes c instead of g; here Alice will take the
remaining object at d and Bob will be forced to take g, rejoining with the first
sequence. See Figure 2 for a visual description of the safe sequences. We must
prove that neither player benefits from deviating from these sequences. To do
this, we show that any deviation is a losing move.

Lemma 3.3 (stick to the script). Let the notation k(p) denote taking p objects
from vertex k in a turn. Then, after the plays (. . . , X y(1), a(1)), any play
deviating from the following sequences is a losing move:

(b(1), e(1), f (1), d(1), g(1), Xz(1)),

(b(1), e(1), f (1), d(1), c(1), d(1), g(1), Xz(1)).

(See Appendix B for the proof of this claim.) This implies that once a player
makes an appropriate move onto the gadget (playing on an a-node) any “safe”
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sequence of moves in the gadget results in that same player making the play
at the opposite X node. The two above claims combined show that our gadget
correctly models a directed edge in a graph just between the X nodes.

Thus, for any edge (y, z) in our GEOGRAPHY position GG, the move to a(y,z)

will result in the same player moving to Xz as desired. Also, since we proved
players shouldn’t go backwards, this game is equivalent to GG; the first player
has a winning strategy in GG exactly when the first player has a winning strategy
in this NEIGHBORING NIM position.

Thus, NEIGHBORING NIM is PSPACE-hard. �

The hardness of VERTEX NIMG follows directly.

Corollary 3.4 (VERTEX NIMG hardness). VERTEX NIMG is PSPACE-hard.

Proof. Neighboring Nim is a special case of VERTEX NIMG where all vertices
have self-loops. Thus, VERTEX NIMG is also PSPACE-hard. �

3.2. Speculation on completeness. Unfortunately, NEIGHBORING NIM is not
automatically PSPACE-complete as games could take a number of moves ex-
ponential in the size of the description of the game. For example, a vertex can
have a number of sticks exponential in the amount of bits needed to express that
number and the rest of the graph. We leave this unsolved as Open Problem 6.1.
There are good arguments to conjecture either way.

On one hand, it seems to not be inside PSPACE. Games can last an exponential
number of turns, so the game trees are extremely tall. A straight-forward brute-
force traversal can’t be performed in polynomial space.

On the other hand, it might be inside PSPACE. Although there are many
EXPTIME-hard rulesets, the authors know only of loopy examples. This means
they can have positions that repeat during the course of a game, which cannot
occur in NEIGHBORING NIM. Additionally, Nim heaps are well-understood;
perhaps increasing the size of the heaps doesn’t greatly increase the difficulty of
finding strategies. It may also be that if there are only m different heap sizes on
vertices, you can substitute them with a set of m significantly smaller sizes.

3.3. PSPACE-complete versions. We can sidestep this problem a bit by using
our bounded-heap-size version of the game.

Corollary 3.5 (2-NEIGHBORING NIM completeness). k-NEIGHBORING NIM

is PSPACE-complete for any k ≥ 2.

Proof. The result of the reduction from Theorem 3.1 is always a 2-NEIGHBORING-
NIM position. Thus, the PSPACE-hardness holds for this subset of positions as
well. The positions are in PSPACE because k bounds the maximum number of
moves per vertex. �
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4. Generalization

This graph-embedding technique works with games other than NIM. Given a
graph, assign different game states to the vertices, and use similar rules: players
may make one move legal in the game in any vertex neighboring the last play.
We define this formally.

Definition 4.1 (NEIGHBORING-R). Given any ruleset R, NEIGHBORING-R has
positions of the form G = (V, E), w : V → positions(R), and x ∈ V . The left
options for (G, w, x) are (G, w′, x ′) where w′ : V → positions(R) and

• x ′ = x or {x, x ′} ∈ E ,

• w′(x ′) is a left option of w(x ′), and

• ∀v ∈ V \ {x ′} : w′(v)= w(v).

The right options are defined analogously: w′(x ′) must be a right option of w(x ′).

4.1. Inequivalent positions. This new definition allows a NEIGHBORING NIM

vertex to contain multiple heaps instead of only a single heap. Although each
nim position is equivalent to a single heap, that equivalence doesn’t carry over
in the neighboring situation. Consider the two NEIGHBORING NIM games in
Figure 3. (The previous move was made on the leftmost vertex in both cases.)
The values of the games embedded in the left vertices are both 0, the values on
the middle vertices are both 0, and the values of the rightmost games are both ∗.
However, the overall value of the positions are not equivalent.

In the top game, there are no move options, so the value is 0. In the bottom
position, the next player can move to the middle vertex, even though the value
of the nim game there is also zero. After that move there are exactly two moves
remaining. Thus, the initial game has exactly three moves remaining and has a
value of ∗.

4.2. Generalized hardness. The next result allows us to say something about
the hardness of graph-embedded versions of many impartial games.

0
I
I

I

0 0 I

Figure 3. Two NEIGHBORING NIM positions. In both, the last move
was made on the dashed vertex. The value of the top game is zero, the
value of the bottom game is ∗.
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Theorem 4.2 (neighboring-R hardness). For any ruleset R which has positions
identical to 0, ∗, and ∗2, NEIGHBORING-R is PSPACE-hard.

Proof. Two positions are identical if they have isomorphic game trees. Replacing
the nim heaps of size 1 and 2 with ∗ and ∗2, respectively, in the reduction of
Theorem 3.1 doesn’t change the winnability of the resulting games. Thus, the
reduction applies to R. �

5. Conclusions

Building on algorithmic work analyzing different versions on NIMG, we present
NEIGHBORING NIM, a new PSPACE-hard game.

An interesting aspect of the hardness of NEIGHBORING NIM is the juxtapo-
sition with VERTEX GEOGRAPHY. 1-NEIGHBORING NIM is the same ruleset
as UNDIRECTED VERTEX GEOGRAPHY, which is solvable efficiently [3]. 2-
NEIGHBORING NIM, however, is PSPACE-hard.

Furthermore, we can replace NIM and apply the graph-embedding concept to
any other ruleset R to create NEIGHBORING-R.

6. Future work

There are many extensions to the work described here. The most prominent is
certainly the unknown completeness of NEIGHBORING NIM with any number
of sticks.

Open Problem 6.1. NEIGHBORING NIM ∈ PSPACE?

Additionally, the computational hardness of other flavors of NIMG remains
unsolved.

Open Problem 6.2. What is the computational complexity of EDGE NIMG?

Open Problem 6.3. What is the computational complexity of VERTEX NIMG
on graphs without self-loops?

Other explorable problems include the hardness of other versions of NEIGH-
BORING-R.

Open Problem 6.4. Is NEIGHBORING-R PSPACE-hard if R includes any posi-
tions equivalent to ∗ and ∗2?

(Note that Open Problem 6.4 is a stronger statement than shown here because
equivalent does not necessarily mean identical.)

Open Problem 6.5. For which other computationally easy rulesets R is NEIGH-
BORING-R hard?
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Open Problem 6.6. Are there strictly partisan positions of a ruleset R that can
be used to show NEIGHBORING-R is hard? How small can the game trees be to
get a hard game?
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Appendix A: Proof of Lemma 3.2

Lemma 3.2 (don’t go backwards). Any play from (Xz) to g(y,z) (for all y) is
suboptimal.

We will refer to the player who moves from Xz to g (we will leave out the
subscript for the internal vertices) as the “foe” while the other player is the “hero”.
We will show that the hero has a winning strategy after a backwards move. We can
now look at two cases, each depending on the state of the game outside the gadget.

The first is the case where the move from a to X y would be a winning play.
In this case, the hero can next move from g to d and take both of the objects
there. The foe has two options, both of which, we show, allow the hero to win:

(1) The foe moves to c. In this case the hero must choose to go to b. The foe
can now either choose to move to a — in which case the hero will gladly
move to X y and win as we assumed — or to e. Then the hero simply takes
the object at f and, as there are no more moves, the hero has won.

(2) The foe moves to f . The hero must then take e and the foe must take b. The
hero can then move to c and win the game.

The second major case assumes that the move from a to X y is a losing play.
Here, the hero can still move to d (from g) but will take only one of the objects.
Now the foe has three options: taking the other object at d, moving to c or
moving to f . We show all to be losses:

(1) Foe moves to c. Now the hero should take the remaining object at d. The
following sequence must occur: foe must take f , hero at e, foe at b, hero
at a, followed by the foe at X y , a losing move by our assumption.

(2) Foe takes the remaining object at d. The hero will choose to take c, so the
foe must take b. The hero can then take a, forcing the foe to take X y , a
losing move by our assumption.
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(3) Foe takes f . The hero should then take e so the foe must take b. Again,
the hero can take a, so the foe must move to X y , a losing move by our
assumption.

Thus, it is a losing play to move from an X -vertex to a g-vertex.

Appendix B: Proof of Lemma 3.3

Lemma 3.3 (stick to the script). Let the notation k(p) denote taking p objects
from vertex k in a turn. Then, after the plays (. . . , X y(1), a(1)) any play deviating
from the following sequences is a losing move:

(b(1), e(1), f (1), d(1), g(1), Xz(1)),

(b(1), e(1), f (1), d(1), c(1), d(1), g(1), Xz(1)).

We continue by analyzing all possible deviations from these sequences and
show that they result in a loss. In this claim, we will refer to the deviating player
as the foe and the other player as the hero. We will show that the foe loses in
each case. It may be helpful to refer to Figure 2 during these case descriptions.

(1) c(1) instead of e(1). Here we have two subcases: either moving from g
to Xz is a winning (result is a P-position) or losing (an N -position) move.
If it’s in N , then the hero can respond to c(1) with d(1). If the foe then
chooses g(1), the hero can take the remaining stick in d with d(1); f (1)

and e(1) must follow with the hero winning. If the foe instead chooses f (1),
the hero can win instantly by choosing e(1). For the foe’s last chance, they
could select d(1), removing the other stick from d . The hero should respond
with g(1). The foe will lose by selecting f (1), because the hero will win
at e(1), but the foe will also lose with Xz(1), an N -position, as assumed.

If Xz(1) is instead leaves the board in P , the hero should respond to c(1)

with d(2). The foe could choose f (1), but the hero can then win with e(1).
Instead, the foe can choose g(1) in which case the hero can choose Xz(1)

and win, as assumed.

(2) d(2) instead of (the first) d(1). Here the hero has a simple move to win. By
taking c(1) there are no further moves and the foe has lost.

(3) g(1) instead of (the first) d(1). The hero can respond with d(1). This leaves
two different adjacent vertices with 1 object apiece and no other adjacent
nonempty vertices. Either move by the foe results in one remaining move
and a win for the hero.

(4) d(1) instead of c(1). The hero can respond with c(1) and win.

(5) d(1) instead of Xz(1). This cannot happen in the second sequence, but if
it happens in the first, the hero can respond with c(1) and win.
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Thus, any deviation from the two sequences specified in the claim puts the
game in an N -position.
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