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A nontrivial surjective map onto
the short Conway group

ALDA CARVALHO AND CARLOS PEREIRA DOS SANTOS

This paper explores the general question “Is there a natural habitat for the short
Conway group?” by looking for a ruleset with a legal position for each short
game value. Surprisingly, a ruleset with this property exists in combinatorial
game theory literature and it is implemented in Siegel’s CGSuite software.
A proof that KONANE is an affirmative answer to the question is presented,
making it the first known universal ruleset.

1. Introduction

The main result of this paper states that all the short combinatorial games are
game values of particular positions of KONANE (Theorem 14 in Section 4). To
prove this result constructively, two instrumental lemmas giving the needed
building “pieces” are used (Lemmas 12 and 13 in Section 3). Some fundamental
results of combinatorial game theory, like reduction concepts and the largest
game value of the day #n, are also used. Readers can find these results in Section 3.
The next paragraphs of this introduction and Section 2 have some basics: the
rules of KONANE, the state of the art and motivation for this research, and the
definitions of habitat and universality of a ruleset (Definitions 3 and 7). Readers
who know the rules of KONANE and are fluent in combinatorial game theory may
wish to proceed to Lemma 12, Lemma 13 and Theorem 14 (Sections 3 and 4).

One of the principal goals of combinatorial game theory (CGT) is the study of
combinatorial rulesets with the following properties ([1; 2; 5; 15] are fundamental
references, [7] is a complete survey):

o There are two players who take turns moving alternately.

» No chance devices such as dice, spinners, or card deals are involved, and
each player is aware of all the details at all times.
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» Even ignoring the alternating condition, the play must end in a finite number
of moves, and the winner is often determined on the basis of who made the
last move. Under normal play, the last player wins, while in misere play,
the last player loses.

We distinguish between multiple meanings of the word game by using the
words ruleset and game. The word ruleset has a concrete meaning related to
some particular set of rules (KONANE, AMAZONS, NIM are examples of rulesets).
The word game, by contrast, has the abstract mathematical meaning defined by
Conway [2; 5]. When we speak of the game value of a game, we are emphasizing
that it is being considered in this latter sense, as an algebraic object which can
be compared for equality with, or added to, other games.

The options of a game are all those positions which can be reached in one
move. In CGT, games can be expressed recursively as G = {GL | G®} where G
are the Left options and G® are the Right options of G. The followers of G are
all the games that can be reached by all the possible sequences of moves from G.

Conway made a recursive construction based in a transfinite sequence of
days [5]. His inductive definition constructs the proper class of combinatorial
games (we will only consider the normal play). The games with finite sets of
options G* and GR are called short games and are born before the day w. The
games born on day w or after are called long games.

Founding fathers of CGT observed that independent components naturally
arise in several rulesets. The analysis of these decompositions led to the definition
of a disjunctive sum.

Definition 1 (disjunctive sum). Let G and H be games. Then,
G+H={G"+H, G+H"GR+H,G+HF}

(note that if G is a game and & a set of games, A+ ={G+ H : H € ¥}).

The proper class of combinatorial games (short and long) with the disjunctive
sum is an abelian group. In fact, with a suited order relation (motivated by the
game practice), it is an abelian group with a partial order.

Definition 2 (short Conway group). The short Conway group is the subgroup of
the proper class of combinatorial games containing the short Normal-play games.

A classical example of a combinatorial ruleset is NIM, first studied by C. Bou-
ton [3]. NIM is played with piles of stones. On his turn, each player can remove
any number of stones from any pile. The winner is the player who takes the last
stone. NIM is an example of an impartial ruleset: Left options and Right options
are the same for the game and all its followers. The values involved in NIM are
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called nimbers (stars):
¥k =1{0,%,...,x(k—1)]0, *,...,x(k—1)}.

It is a surprising fact that all impartial rulesets take only nimbers as values
(Sprague—Grundy theorem; see [8; 16]).

2. NIM dimension and the concept of habitat

The Sprague—Grundy theorem states that for every impartial G there is a nonneg-
ative integer n such that G = xn. It is also well known that in partizan rulesets
we still can construct nimbers (see [1; 2; 5; 15]). This motivates some very
natural questions.

Definition 3. Let & be a set of combinatorial game values. A ruleset A is a
habitat of ¥ if for every G € & there is a position of A with game value equal to G.

Berlekamp asked the question “What is the habitat of %27 [9]. It was possible
to generalize the question: “For a given ruleset, what is the largest n such that
x2" is the game value of a legal position?” [10; 11; 12; 13]. This led to the
definition of nim dimension and to the proposal of some processes to analyze
the problem.

Definition 4. A combinatorial ruleset has nim dimension n if it contains a position
with game value *2" but not %2"+1. A ruleset has infinite nim dimension if all
the nimbers can be constructed. It has null, or &, nim dimension if * cannot be
constructed.

Observation 5. A combinatorial ruleset A has nim dimension » if it is a habitat
of {0, %, %2, %4, ..., 2"} and it is not habitat of {0, %, %2, 4, ..., *2", x2"*1},

The rulesets KONANE and AMAZONS are “case studies” related to nim dimen-
sion. KONANE is a classical Hawaiian ruleset, considered very interesting by
CGT researchers [4; 6]. In the starting position, the checkered board is filled in
such a way that no two stones of the same color occupy adjacent squares. In
the opening, two adjacent pieces of the board are removed. After this, a player
moves by taking one of his stones and jumping orthogonally over an opposing
stone into an empty square. The jumped stone is removed. A player can make
multiple jumps on his turn but cannot change direction mid-turn. Multiple jumps
are not mandatory. The winner is the player who makes the last move. KONANE
is implemented in Siegel’s CGSuite, a fundamental computational tool for CGT
research [14]. CGSuite, as well as the main result of this paper, regards the
generalized version of KONANE.

Convention. In the generalized version of KONANE two stones of the same
color can occupy adjacent cells.



274 ALDA CARVALHO AND CARLOS PEREIRA DOS SANTOS

. O ; 5---
2 O 2 O
3 — 3
4 O Iteration 4 NN 777@77
s @ @0 5 o O
6 |@ 6 o O
! 1 2 3 4 5 6 8 O
10 [ ] O
M e e e |eO
2] @
13 O
14 O

1 2 3 4 5 6 7 8 9 10
3

Figure 1. Nimbers in KONANE.

AMAZONS is a combinatorial ruleset invented in 1988 by Walter Zamkauskas.
It is played on a checkered board and each move consists of two parts: moving
one of one’s own amazons one or more empty cells in a straight line (orthogonally
or diagonally), exactly as a queen moves in CHESS; it may not cross or enter a
cell occupied by an amazon of either color or a stone. After moving, the amazon
shoots a stone from its landing cell to another cell, using another queen-like
move. This stone may travel in any orthogonal or diagonal direction and, like
an amazon, cannot cross or enter a cell where another stone has landed or an
amazon of either color stands. The winner is the player who makes the last move.
As usual in CGT, Left plays with the black stones and Right with the white ones
in both rulesets.

In [12], the fractal process was proposed in order to prove that the nim
dimension of KONANE is infinite. The basic idea was to construct the x» using the
previous *(n — 1). Figure 1 shows an iteration to obtain a *3 from a previous *2.

In [13], the algebraic process was proposed. The idea was the implementation
of an algebraic table where the entries were the “needed stuff” to construct a *n.
The amazons moves “created” the entries of the table splitting the initial position
into two disjoint components. With this process, it was possible to construct the
first known x4 in AMAZONS (Figure 2).

Conjecture 6. The nim dimension of AMAZONS is 2.

Finally, in [10], the embedding process was proposed. Considering an initial
ruleset A, the idea was to find a construction process in some other ruleset B and
embed it in A. Obviously, B should be somehow better understood than A. It
was shown that the nim dimension of TRAFFIC LIGHTS is infinite (embedding in



A NONTRIVIAL SURJECTIVE MAP ONTO THE SHORT CONWAY GROUP 275

)0

[ J
L J
L J
[ J
W

000y
000 W
o0 00
o 000

0000
EACC )0 )

*&

Figure 2. x4 in AMAZONS.

it constructions made in REGIO).
It is possible to generalize Berlekamp’s original question even further.

Definition 7. A ruleset A is universal if it is a habitat of the short Conway group.

Natural is the new question “Is there a natural habitat for the short Conway
group?”. A classical universal ruleset was not known. In the following sections
this state changes. With a constructive idea very similar to the fractal process, a
universal ruleset is revealed.

3. Preliminary results

The main purpose of this text is to answer the general question “Is there a
habitat for the short Conway group?”. In Section 4, we prove that all the short
combinatorial games are game values of KONANE'’s positions, and so, this well-
known ruleset is a habitat of the short Conway group. In this section, some
needed previous lemmas are proved.

KONANE is a very rich combinatorial ruleset with several interesting values;
see Figure 3, left and middle. Figure 3, right, shows an example with value 1 in
the generalized version.

We now recall some important results of combinatorial game theory.
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Figure 3. Left and middle: several game values in KONANE. Right:
the value 1 in generalized KONANE.
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Definition 8. For a game G, suppose G¥, G% € G- with G} > G Then the
Left option G1 is said to be dominated by G% (or that G% dominates G).

Definition 9. For a game G, suppose there is G € GX and GER e (GL)® with
GLR < G. Then the Left option GU is reversible, and sometimes, to be specific,
G' is said to be reversible through its Right option GER. In addition, GE® is
called a reversing option for G and the set of Right options of GLR, (GLR)~,
is a replacement set for G (eventually empty).

Theorem 10 (reductions of combinatorial games; see [2, pp. 60—63]). (a) Let
G be a game and suppose GlL, G% € GL such that GlL is dominated by G% .
Then G = {GL\ {GlL} | GRY in the sense of the equality of games.

(b) Let G be a game and suppose that G* is a Left option of G reversible
through G'R. Then G = {G* \ {GL}, (GERYE | GL} in the sense of the
equality of games.

Analogous versions of (a) and (b) hold for Right.

A reversible move for Left is one which Right can promise to respond to in
such a way that prospects are at least as good as they were before. In any context,
Right promises “if you ever choose option A; of G then I will immediately move
to Af ”. So, Left just chooses the option A; if he intends to follow up Right’s
move to Af with an immediate response to one of Af ’s Left options. If he plans
some other move elsewhere, he might just as well start with that. We say that
A reverses through Af to the Left options of Af . If the Left options of Af are
empty then we say that A; reverses out. G is in canonical form if G and all of
G’s followers have no dominated or reversible options.

The next one is also very well known.

Theorem 11 [1, p. 119]. The largest game born by day n is n.

Because the proof for the main result is constructive, we will need some
patterns to build the construction. The next two lemmas are useful KONANE
patterns.

Lemma 12 (rubber bands). Consider the KONANE pattern shown in Figure 4.

The position P, is a (2n + 3) x S-rectangle. The black pieces occupy the cells
(1,2),(2,2),(1,4),(2,4),...,(,2n), (2,2n).

The white pieces occupy the cells (1, 0), (1, 2n+2), the cells (1, 1), (1, 3), ...,
(1,2n+ 1), and the cells (3, 2), (4,2), (3,4), 4,4), ..., (3, 2n), (4, 2n).

Let P,\(1, 2k 4+ 1) be the exposed positions without the white piece in the
position (1, 2k + 1). Call a(k) the number of black stones above the line 2k + 1
and b(k) the number of black stones bellow the line 2k 4+ 1. The game values of
P, and P,\(1, 2k + 1) are the following:

(1) P, has value O (there are no moves).
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Figure 4. KONANE pattern for rubber bands.
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Figure 5. Illustrative case.

(2) P\(1,3) has value —1.
3) P, \(1, 2k + 1) different from P>\(1, 3) and has value — max(a(k), b(k)).

Previous observation: For ease, let us consider a very particular case to
understand the idea behind the general case; see Figure 5.

If Right plays (1, 7) — (1, 5) the value becomes {—8 | — 6} = —7 (simplicity
rule). If Right plays (1, 3) — (1, 5) the value becomes {—4 | —2} = —3 (simplicity
rule).

So, the original position is {| — 7, —3} which, by domination, is equal to
{| —7} = —8. Right’s move must be made in the opposite direction of the largest
number of black stones.
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Figure 6. KONANE pattern for taps.

Proof. The cases Py and P, can be analyzed with pure calculations. Consider P,
with n > 2.

The idea for the general case P, with n > 2 follows as in the previous
observation: Right’s move must be made in the opposite direction of the largest
number of black stones. After removing the piece in the cell (1, 2k+ 1), the game
value is {| — max(a(k), b(k)) + 1} which is equal to — max(a(k), b(k)). [l

Lemma 13 (taps). Consider the KONANE pattern shown in Figure 6.

The position P, is a’l x (2n + 3)-rectangle.

The black pieces occupy the cells 2n + 2,2), 2n + 2, 3) and the cells
2,4),(3,2),4,4),5,2),...,2n,4),2n+1,2).

The white pieces occupy the cells (0,4), (1,2), (1,4), (2,2), (2,3), (2,5),
(2,6), the cells 2n+2,0), 2n+2,1), 2n+2,4), 2n+2,5), and the cells
(3,4),4,2),(5,4),...,2n,2),2n+1,4).

Let P,\(1,2) and P,\(1, 4) be the exposed positions without the white pieces
in the positions (1, 2) and (1, 4), respectively. Let P,\{(1,2), (1,4)} be the
exposed positions without both white pieces in the positions (1,2) and (1, 4).
The game values of P,, P,\(1,2), P,\(1,4) and P,\{(1,2), (1,4)} are the
following:

(1) P, has value O (there are no moves).
2) P,\(1,2) has value n + 1.

3) P,\(1,4) has value —n.

@) P\{(1,2),(1,4)} has value 0.

Proof. In P,\(1,4), Right can take, one by one, all the n black pieces of the
line 4. So, the game value of P,\(1,4) is —n.

In P,\(1, 2), Left can take, one by one, all the n white pieces of the line 2
plus the white piece of the cell (2, 3), leaving the value O in the line 4. The game
value of P,\(1,2)isn+1.

In P,\{(1, 2), (1, 4)}, there are exactly n moves for both players (the capture
of the white stones of the line 2 and the capture of the black stones of the line 4).
So, the first player loses and the game value of P,\{(1, 2), (1,4)} is 0. O
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4. KONANE is a universal ruleset

The proof for the main result is constructive. The games of day n are constructed
with games of the previous days, generating a recursive process I' such that

G =T(G", Gh).

The “design type” of I'(GX, GF) must be the same as the “design types” of the
games in G& and GR. In our proof, the “design type” is basically the shape. All
the games are constructed in rectangular areas. The rectangular areas of the set
of the options generate a new game in a larger rectangular area which will be
useful to build new rectangles.

Theorem 14. All the short combinatorial games are game values of particular
positions of KONANE.

Proof. First, we present the initial games 0 (day 0) and 1 and * (day 1) in Figure 7.
It is possible to join rubber bands without changing the values. For example,
consider the position for the value 1 shown in Figure 8.

Second, we present the connecting scheme in Figure 9. If, at some point, a
black stone moves to the cell (5, 1) removing the stones in (0, 1), (2, 1) and
(4, 1), the game value becomes 1. Moreover, and this is one of the principal ideas
of the proof, it is possible to choose rubber band sizes such that the incomplete
captures reverse out (Theorem 11 and Lemma 12).

Third, we present the general idea of the recursion in Figure 10. In the initial
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Figure 11. Turning point example.

position, the focal point is the pair of cells occupied by the only pair of stones
that can move.

The construction of each rectangular position is made with rubber bands,
turning points based in taps, one link (itself a rubber band) and rectangular
positions of the previous days. It is important to observe that there are no moves
in these rectangular positions. The focal point is occupied by opposing stones
only after a complete capture through the link; after that, a game value of the
previous days is obtained.

The rubber bands are arbitrarily large. So, when we construct a game of the
day n with options of the previous days, we choose the rubber band sizes in such
a way that for every incomplete Left capture (incomplete Right capture) exists
an integer GIR < —n (GRY > n). Therefore, these options reverse out. This is
possible due to Lemma 12.

The turning points are constructed with the following idea: when Left (Right)
captures to a turning point he makes a threat larger than or equal to n (smaller
than or equal to —n). To defend the threat, Right (Left) has only one good option,
creating again a threat smaller than or equal to —n (larger than or equal to n). After
these two forced moves, the only way for Left (Right) to defend the second threat
is to choose an option of the previous days. The idea is based again in reversibility:
instead of constructing directly an option G* (G®), we construct an option
(T>n,... (G, ... |T'<=n,.. Y {{T =n,... |GR, .. }| ..., T' <—n)).

Fourth, we present the details of the turning points. Consider the picture
showing a turning point in Figure 11. The crosses represent options adjacent to
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rubber bands that reverse out. So, when we have a sequence of captures made
by a dark piece in the column 25, we only need to analyze the moves to the gray
and dark gray cells. The turning point is the cell (25, 6) (dark gray).

(1) If Left captures to the cell (25, 4), Right replies by capturing to the cell
(22, 4) obtaining more than or equal to —n points (Lemma 12). So, the Left
move to (25, 4) reverses out.

(2) If Left captures to the cell (25, 8), Right replies by capturing to the cell
(25, 7) obtaining more than or equal to —n points. This happens due to
Lemma 13 (the tap is arbitrarily large) So, the Left move to (25, 8) reverses
out.

(3) If Left captures to the cell (25, 10), she opens completely the tap, turning it
equal to zero (Lemma 13). Right replies capturing to the cell (22, 10) and,
afterwards, Right’s stone in (22, 10) will capture to (22, 8), obtaining at
least —n points.

After the Left move to (25, 6), a threat in (35, 6) is created (at least n points).

(1) If Right captures to the cell (24, 6), Left replies by capturing to the cell
(24, 7). Afterwards, the move from (24, 7) to (20, 7) will get at least n
points. So, the Right move to (24, 6) reverses out.

(2) If Right captures to the cell (22, 6), Left replies by capturing to the cell
(22, 7), obtaining at least n points. So, the Right move to (22, 6) reverses
out.

The good Right move is to (10, 4), creating a threat in (10, 4) (at least —n
points). Left has to go up to an option that is a game of the previous days. [J

The proof that KONANE is an universal ruleset was constructive. Using the
process illustrated in the proof, as an example, we finish the paper presenting the
impressive construction of the game {0, 1 %, =1 || — 1, {x| — 1}} (game of the
day 3). Figure 12 illustrates a terminal position useful for future constructions (it
is a rectangle). If we remove the white stone of the cell (37, 29) while putting a
black stone in the cell (38, 29), a situation that occurs after a capture of the white
pieces of the row 29, we get the game {0, 1 %, =1|| — 1, {*| — 1}}. Observe that
the colored rectangles are the options of the previous days.
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Figure 12. Terminal position for future constructions.
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