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Games and complexes I:
Transformation via ideals

SARA FARIDI, SVENJA HUNTEMANN
AND RICHARD J. NOWAKOWSKI

Placement games are a subclass of combinatorial games which are played
on graphs. We will demonstrate that one can construct simplicial complexes
corresponding to a placement game, and this game could be considered as a
game played on these simplicial complexes. These complexes are constructed
using square-free monomials.

1. Introduction

We will demonstrate a relationship between a subclass of combinatorial games,
such as DOMINEERING and COL, and algebraic structures defined on simplicial
complexes. There are two relationships, one via the maximal legal positions
and the other through the minimal illegal positions. We will begin by giving
the necessary background, first from combinatorial game theory, then from
combinatorial commutative algebra.

For a game, perfect information means that both players know which game
they are playing, on which board, and the current position. No chance means
that no dice can be rolled or cards can be dealt, or any other item involving
probability can be used.

Definition 1.1. A combinatorial game is a 2-player game with perfect informa-
tion and no chance, where the two players are Left and Right (denoted by L
and R respectively) and they do not move simultaneously. Then a game is a set
P of positions with a specified starting position. Rules determine from which
position to which position the players are allowed to move. A legal position is
a position that can be reached by playing the game from the starting position
(which is legal) according to the rules. Moving from position P to position Q is
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called a legal move if both P and Q are legal positions and the move is allowed
according to the rules. Q is usually called an option of P.

In this paper, a combinatorial game will be denoted by its name in SMALL
CAPS. Well-known examples of combinatorial games are CHESS, CHECKERS,
Tic-TAC-TOE, GO, and CONNECT FOUR. Examples of games that are not
combinatorial games include bridge, backgammon, poker, and snakes and ladders.

Although games usually have a “winning condition” associated to them, i.e.,
rules as to which player wins, for the purposes of this paper games do not need
to have a notion of winning identified.

We will assume that the board on which games are played is a graph (or can
be represented as a graph). A space on a board is then equivalent to a vertex and
we use the two terms interchangeably.

Definition 1.2. A strong placement game is a combinatorial game which satisfies
the following:

(i) The starting position is the empty board.
(i1) Players place pieces on empty spaces of the board according to the rules.
(iii) Pieces are not moved or removed once placed.

(iv) The rules are such that if it is possible to reach a position through a sequence
of legal moves, then any sequence of moves leading to this position consists
only of legal moves.

The TRIVIAL placement game on a board is the strong placement game that has
no additional rules.

A basic position is a board with only one piece placed. Any position, whether
legal or illegal, in a strong placement game can be decomposed into basic
positions.

The concept of a placement game originates in Brown et al [2] where condition
(iv) is replaced by the condition that if it is legal to place a piece at one point, it
must have been legal at any point before. We call this type of game a “medium
placement game”. A “weak placement game” is a combinatorial game that
satisfies the above conditions (i) through (iii).

Note that (iv) implies that every subposition of a legal position is also legal.

Placement games were only recently defined formally by Brown et al. in [2],
even though several placement games, for example T1iC-TAC-TOE or DOMI-
NEERING, have been known and studied for a long time. In this work, we will
consider strong placement games exclusively.

Throughout this paper, “placement game” refers to a strong placement game.

Here are three more we will use as examples.
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Figure 1. A COL position that is the disjunctive sum of two COL positions.

Definition 1.3. In SNORT, players may not place pieces on a vertex adjacent to
a vertex containing a piece from their opponent.

Definition 1.4. In COL, players may not place pieces on a vertex adjacent to a
vertex containing one of their own pieces.

Definition 1.5. In NOGO, at every point in the game, for each maximal group
of connected vertices of the board that contain pieces placed by the same player,
one of these needs to be adjacent to an empty vertex.

In these games, the pieces only occupy one vertex each, which is in fact not
necessary. For example in CROSSCRAM [8] and DOMINEERING [1] the players’
pieces occupy two adjacent vertices.

Definition 1.6. The disjunctive sum between two positions of combinatorial
games G and H is the position in which a player can play in one of G and H
but not both simultaneously.

Assuming implicitly that placement games are part of a disjunctive sum implies
that a board might be filled with more pieces of one player than of the other.
Making this assumption is very useful since in many placement games the board
might “break up” into the disjunctive sum of smaller boards.

Example 1.7. For an example, consider COL played on the path P;. Then the
position on the left of Figure 1 is equivalent to the one in which the middle space
is “deleted” (on the right), i.e., it is equivalent to the disjunctive sum of the two
CoL positions on the right, one of which has two Right pieces but no Left pieces.

For a placement game G and a board B, let

fi(G, B)

denote the number of positions with i pieces played, regardless of which player
the pieces belong to. If the game and board are clear from context, we shorten
the notation to f;.

Definition 1.8 (Brown et al. [2]). For a game G played on a board B, the game
polynomial is defined to be

k
Pop(x) =) fi(G, B)x'.

i=0

P p(1) is then the total number of legal positions of the game.
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The motivation for game polynomials came from Farr [6] in 2003 where the
number of end positions and some polynomials of the game GO were considered,
and work in this area was continued by Tromp and Farnebick [10] in 2007 and
by Farr and Schmidt [7] in 2008. Even though GO is not a placement game since
pieces are removed, it shares many properties with this class of games. Thus it
was natural for the authors of [2] to consider the concept of game polynomials
for placement games.

We will now introduce concepts from combinatorial commutative algebra that
we will need to construct simplicial complexes equivalent to placement games.

Definition 1.9. A simplicial complex A on a finite vertex set V is a set of subsets
(called faces) of V with the conditions that if A € A and B C A, then B € A.
The facets of a simplicial complex A are the maximal faces of A with respect to
inclusion. A nonface of a simplicial complex A is a subset of its vertices that is
not a face. The f-vector (fy, fi, ..., fr) of a simplicial complex A enumerates
the number of faces f; with i vertices. Note that if A # &, then fy = 1.

In the algebraic literature, the f-vector of a complex is usually indexed from
—1to k—1 as this is the “dimension” of the face (the number of vertices minus 1).
Due to the connection between placement games and simplicial complexes, we
have chosen the combinatorial indexing.

Recall that an ideal I of aring R = R(+, -) is a subset of R such that (/, +)
is a subgroup of R and r/ C [ for all » € R.

Let k be a field and R = k[x, ..., x,] a polynomial ring. Given a simplicial
complex A on n vertices, we can label each vertex with an integer from 1 to n.
Each face F (resp. nonface N) of A can then be represented by a square-free
monomial of R by including x; in the monomial representing the face F (resp. the
nonface N) if and only if the vertex i belongs to F (resp. N). We then have the
following (see [3] and [4] for more information).

Definition 1.10. The facet ideal of a simplicial complex A, denoted by F(A), is
the ideal generated by the monomials representing the facets of A. The Stanley—
Reisner ideal of a simplicial complex A, denoted by NV'(A), is the ideal generated
by the monomials representing the minimal nonfaces of A.

Definition 1.11. The facet complex of a square-free monomial ideal /, denoted
by F(I), is the simplicial complex whose facets are represented by the square-
free monomials generating /. The Stanley—Reisner complex of a square-free
monomial ideal 7, denoted by A/ (]), is the simplicial complex whose faces are
represented by the square-free monomials not in /.

To clarify these concepts, we will give two examples.
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Figure 2. An example of a simplicial complex.
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Figure 3. Facet complex of I = (x1x3, XpXx3X4).

1 2 3
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Figure 4. Stanley—Reisner complex of I = (x1x3, xpx3X4).

Example 1.12. Consider the simplicial complex A in Figure 2 with the labeling
of the vertices as given.
The facet ideal of A then is

F(A) = (x1x2, X1X6, X2X3X4, X3X5, X4X5X6),
and the Stanley—Reisner ideal of A is
N(A) = (x1x3, X1X4, X1X5, X2X5, X2X6, X3X4X5, X3X¢).

Example 1.13. Consider the square-free monomial ideal I = (xx3, xox3x4).
The facet complex F([) is given in Figure 3 and the Stanley—Reisner complex
N(I) is given in Figure 4.

It is clear that the facet operators are inverses of each other, i.e., F(F(A)) = A
and F(F (1)) = I, from their definitions. This is also true of the Stanley—Reisner
operators: A minimal nonface of N'(I) is a minimal monomial generator of I,
thus a generator of I, showing N'(N (1)) = I. Similarly, since N'(A) contains
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Figure 5. Labeling Ps.

Figure 6. Maximum legal positions for COL on Ps.

all monomials representing nonfaces, a square-free monomial not in N'(A) has
to be a face of A, thus V(N (A)) = A.

This shows that both the facet and the Stanley—Reisner operators give a
bijection between the set of all square-free monomial ideals in n variables and
the set of all simplicial complexes on n vertices.

2. Constructing monomials and simplicial complexes from
placement games

We will now introduce a construction that associates a set of monomials and a
simplicial complex to each placement game.

Given a placement game G on a board B, we can construct a set of square-free
monomials in the following way: First, label the basic positions by 1,2, ..., n.
For each legal position we then create a square-free monomial by including x; if
Left has played in position i and y; if Right has placed in position j. The empty
position (before anyone has started playing) is represented by 1.

Example 2.1. Consider COL played on the path P;. We label the basic positions,
in this case the spaces of the board, as given in Figure 5.

The maximum legal positions and their corresponding monomials are given
in Figure 6.

Using these monomials, we can build a simplicial complex Ag, p on the vertex
set V.={x1,...,x,, y1,..., Yo} by letting a subset F of V be a face if and only
if there exists a square-free monomial m representing a legal position such that
each element of F divides m.

Definition 2.2. A simplicial complex that can be constructed from a placement
game G on a board B in this way is called a legal complex and is denoted by Ag p.

Example 2.3. Consider COL played on the path P;. Using the notation from
Example 2.1, we get the legal complex Acor, p, as given in Figure 7.
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X1 Y3
Y2 X2

X3 Y1

Figure 7. The legal complex Acor,p,.

Al
3 2
Figure 8. Labeling Cs.

Observe that the maximum legal positions of a game, i.e., the positions
in which no piece can be placed by either Left or Right (so the game ends),
correspond to the facets of Ag p and thus uniquely determine Ag_ p.

In game theoretic terms, the f-vector of a legal complex Ag p indicates that
there are f; legal positions with i pieces in the game G, regardless if pieces
belong to Left or to Right. Thus for placement games the entries of the f-vector
of the legal complex Ag, p are the coefficients of the game polynomial Pg p.
Therefore we have the following.

Proposition 2.4.
fi(G, B) = number of legal positions in G with i pieces played on B,
= number of degree i monomials representing legal positions in G,
= number of faces with i vertices in Ag p,
and we can use any of these concepts to find f;.

This also justifies using the same notation for the coefficients of a game
polynomial as for entries of a f-vector.

We now give three more examples for the construction of monomials and
simplicial complexes.

Example 2.5. The cycle Cj3 is labeled as in Figure 8.
Now consider COL on C3. The monomials corresponding to the maximum
legal positions are

{x1y2, x1y3, X2y3, y1X2, y1X3, y2X3}.
Also consider SNORT played on P3 and C3. The maximum monomials then are

{x1x2x3, Y1Y2¥3, X1¥3, X3)1}
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P; C3
X1 )3 X1 N
SNORT | *2 Y2 mq Dyz
X3 Y1 X3 Y3
X1 X1 X2 X3
X3 1 1 Y2 Y3

Figure 9. The legal complexes Agnorr, Py>» Asnorr,C3» Acor, Py» and Acor,c;-

and
{x1x2x3, y1y2)3},

respectively.
The legal complexes of all three games are given in Figure 9.

Note that the legal complexes of COL and SNORT on P; are isomorphic. This
is true whenever COL and SNORT are played on a bipartite graph; see [9].

3. The ideals of a placement game

Through the monomials that represent legal or illegal positions of a game, we
can also associate square-free monomial ideals with a placement game.

Definition 3.1. The legal ideal, L g, of a placement game G played on the
board B is the ideal generated by the monomials representing maximal legal
positions of G.

Definition 3.2. The illegal ideal, TLLg, p, of a placement game G played on
the board B is the ideal generated by the monomials representing minimal illegal
positions of G.

Definition 3.3. The illegal complex, sometimes called the auxiliary board [2],
of a placement game G played on the board B, is the simplicial complex whose
facets are represented by the monomials of the minimal illegal positions of G. It
is denoted by I' 5.

The authors in [2] introduce the auxiliary board for “independence placement
games”, which is the class of placement games for which the illegal complex is
a graph. The term “independence game” was chosen since the independence sets
of I'g.p (considered as a graph) correspond to the legal positions of G played
on B, i.e., the faces of Ag p.
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X1 X2 X3

J1 y2 V3

Figure 10. The illegal complex 'cor p;.

Proposition 3.4. For a placement game G played on a board B we have the
Jfollowing:

(1) Lo, =F(Ag,B),

(2) ILLg g = F(T'G.B) = N(Ag.p).

Proof. (1) The facets of Ag, p represent the maximal legal positions of G. Thus

F(Ag.p) is the ideal generated by the monomials representing the maximal legal
positions, which is L p by definition.

(2) The facets of I'g, p are represented by the monomials of the minimal illegal
positions of G, which by definition generate ZLL ¢, g, proving the first equality.

Since the faces of Ag p represent the legal positions of G, the minimal
nonfaces of A¢ p represent the minimal illegal positions, which generate ZL L .
Thus IEﬁG,B = N(AG,B)- Il

Example 3.5. Consider COL played on the path P; with labels as in Example 2.1.
We then have the legal ideal
LcoL,py = (X1Y2X3, Y1X2Y3, X1Y3, Y1X3)

and the illegal ideal

ILLcor, P, = (X1X2, X2X3, Y1Y2, Y2)3)-

The illegal complex I'cor, p, is given in Figure 10.

4. Playing games on simplicial complexes

In this section we show that games can be played on the illegal or legal complex
rather than the board.

Since the facets of the illegal complex represent the minimal illegal positions,
we can play on I'g p, instead of playing G on the board B, according to the
following rules.

Illegal Ruleset. (1) Left may only play on vertices labeled x;, while Right may
only play on vertices labeled y;.

(2) Given a facet, pieces played may not occupy all the vertices of the facet.
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X1 X2 X3 X4 X5

Y1 Y2 y3 Y4 Y5

Figure 11. The illegal complex I'cor, ps.
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Figure 12. A legal position on I'cor, p; and on Ps.

Since the facets of ' p are the minimal illegal positions, any vertex set that
does not contain all the vertices of any facet is a legal position of G. Thus playing
on I'g g according to the above rules results in legal positions.

Example 4.1. Consider COL played on Ps. Since pieces may not be placed on
the same space, or pieces by the same player placed side by side, the facets of
I'cor, p; then consist of the edges between x; and y;, between x; and x; 1, and
between y; and y;4;. It is given in Figure 11.

Playing on the vertices x1, y3, x4, ys is legal since we never have both vertices
of an edge. This position is shown on the top of Figure 12, while the bottom
shows the corresponding position played on Ps.

The next example of an illegal complex has a facet of cardinality 3.
Example 4.2. Consider NOGO played on the path P5. The legal ideal is
LNoGo, Py = (X1X2, X1X3, X1Y3, X2X3, Y1X3, Y1Y2, Y1)3, Y2¥3)s
while the illegal ideal is
TLLNoGo,P; = (X1X2X3, Y123, X1 V1, X1Y2, X2Y2, X2)3, X33, Y1X2, Y2X3).

The illegal complex is given in Figure 13.
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(A) legal position (B) illegal position

Figure 14. A legal and an illegal position when playing on Acor. c;.

Then playing on x; and x; is legal (they form a face, but not a facet), while
playing on x1, x7, and x3 is illegal.

Similarly, playing on the legal complex A, p according to the following rules
is also equivalent to playing G on B.

Legal Ruleset. (1) Left may only play on vertices labeled x;, while Right may
only play on vertices labeled y;.

(2) The set of occupied vertices needs to be a face of Ag .

Example 4.3. Consider COL played on C3. The position on the left in Figure 14
is legal, while the one on the right is illegal when playing on the complex.

Notice that both the legal complex and the illegal complex give a representation
of the game and the board. Thus, we can use the two complexes interchangeably,
which is advantageous since sometimes the illegal complex is simpler than the
legal complex (for example, the legal complex of COL played on Ps has facets
with 5 vertices, while in the illegal complex the facets have 2 vertices).

The next theorem recapitulates these discussions.

Theorem 4.4. Given a placement game G played on a board B, there exist
simplicial complexes A and T" such that G is equivalent to the game with the
lllegal Ruleset played on ', and equivalent to the game with the Legal Ruleset
played on A.
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Proof. As shown above, A = A p the legal complex and I' = I p the illegal
complex satisfy this. O

5. Discussion

From the construction of legal complexes from placement games, there are
several questions that arise naturally.

One question of interest is a possible reverse construction. In other words, we
are looking at what conditions a simplicial complex has to satisfy to be a legal
complex. In [5] we explore this question further.

Another natural direction to pursue is how the algebra of a square-free mono-
mial ideal I (such as Cohen—Macaulayness, localization/deletion-contraction) af-
fects the rulesets of the games played on the simplicial complexes F(I) and N ().
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