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Preface
This booklet, based upon a May 2009 workshop
at MSRI titled Teaching Undergraduates Mathe-
matics, is written for undergraduate mathemat-
ics instructors who are curious what resources
and research may support the philosophy and
practice of their mathematics teaching.

Ten years ago the AMS report Towards Excel-
lence argued that “to ensure their institution’s
commitment to excellence in mathematics re-
search, doctoral departments must pursue ex-
cellence in their instructional programs.” Math-
ematicians in all collegiate institutions share
the common mission of teaching mathematics
to undergraduate students, and the common
problem that transitions from high school to
college and from 2-year to 4-year college are
challenging for many students. The success of
a mathematics program depends on habits of
learning and quality of instruction.

◦ } ◦
The following questions guided the workshop:

Research. What does research tell us about
how undergraduate students learn mathemat-
ics? Are we listening to and learning from that
research?

Curriculum. How do considerations of de-
sign and assessment of courses and programs
enhance the success of our teaching? What
works at different types of institution (com-
munity colleges, four-year liberal arts colleges,
comprehensive universities, and research in-
tensive universities) and different student au-
diences (mathematics majors, engineers, scien-
tists, elementary teachers, business majors)?

Pedagogy. How does the way we teach influ-
ence our ability to recruit students to mathe-
matically intensive disciplines or to retain the
students we have? Can research experiences
play an important role in exciting students to
learn mathematics? How can technology be
harnessed to help undergraduates learn mathe-
matics and to help departments deliver instruc-
tion efficiently?

Articulation with High Schools. What math-
ematical knowledge, ability, and habits does a
high school graduate need for success in mathe-
matics in college? Do AP and concurrent enroll-
ment courses lead to the same learning as their
traditional on-campus counterparts? Is there
a need for greater articulation of high school
and collegiate mathematics? What mathemat-
ical and cultural problems do students have in
their transition from high school to college, and
what programs should colleges have that ad-
dress these problems?

◦ } ◦
The audience for the workshop included math-
ematicians, mathematics educators, classroom
teachers and education researchers who are
concerned with improving the teaching and
learning of mathematics in our undergraduate
classrooms. The workshop showcased courses,
programs and materials whose goal is to in-
crease students’ knowledge of mathematics,
with an emphasis on those that show promise
of being broadly replicable.
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Structure of this booklet
Chapter 1 discusses demands balanced in math-
ematics teaching, in particular, the articulation
between high school and college mathematics
teaching and learning, and the relationship of
mathematics to partner disciplines. The content
focus of this chapter is calculus, which plays a
central role in many collegiate programs.

Chapter 2 summarizes some findings from the
mathematics education literature: ways to ob-
serve mathematical understanding, phases of
mathematical problem solving, and what is en-
tailed in teaching mathematics in the K-20 set-
ting. This chapter showcases ideas that help
us describe teaching and learning activities, so
that we can better see and hear our students and
ourselves.

Chapter 3 provides snapshots of teaching: us-
ing inquiry to understand algebraic concepts,
teaching calculus concepts well before a for-
mal introduction to calculus, and using inquiry
to structure an ordinary differential equations
class. The purpose of this chapter is to provide
glimpses of teaching in action.

Chapter 4 discusses several assessment projects:
the Force Concept Inventory and related diag-
nostic tests from physics, which inspired the
creation of the Basic Skills Diagnostic Test and
Calculus Concept Inventory, as well as the
Good Questions Project. This chapter highlights
findings from studies using these instruments.

It is often easier to understand ideas through
examples. Throughout this booklet are sam-
ple problems from the projects and assessments
discussed. The following page contains a list of
these mathematics and physics problems.



List of Mathematics (and Physics)
Problems

2.1 Bottle Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Temperature Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 The Ladder Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Paper Folding Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 The Mirror Number Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
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CHAPTER 1
Who we teach & what we teach:

Demands balanced in
mathematics teaching

Teaching entails many demands. Good instruc-
tion, in addition to conveying mathematics with
integrity, also

• responds to students’ mathematical back-
grounds, and

• serves students well for their future, inside and
outside of mathematics.

Integrity, responsiveness, and service are com-
peting principles. For example, what consti-
tutes a good mathematical explanation depends
on a students’ background – the most econom-
ical or elegant explanation is not always the
most accessible. Instructors of prerequisite ser-
vice courses may need to negotiate mathemati-
cal coherence with the skills, habits, and dispo-
sitions needed by their students’ for their future
courses.

Because of its place in the curriculum, calcu-
lus is central to discussions about knowledge of
students and the mathematics they know. Cal-
culus is both an area with rich mathematical
foundations as well as a course prerequisite to
a host of disciplines: a calculus instructor must
balance integrity, responsiveness, and service.

Section 1.1 proposes a possible agenda for
improving calculus instruction. Investigating

what happens in high school calculus class-
rooms, as well as the motivation for taking cal-
culus, will give perspective on the mathemat-
ical background and needs of entering college
students.

Among the students we teach are future rep-
resentatives of various disciplines. Section 1.2
discusses ways that mathematics and mathe-
matics classes interact with partner disciplines
in science, technology, and engineering.

1.1 Articulation between high
school and college teaching
and learning

Workshop presenter David Bressoud, then pres-
ident of the Mathematical Association of Amer-
ica, proposed in [5] that to serve their students
better, the mathematics community must:

• Get more and better information about stu-
dents who study calculus in high school: What
leads high school students to take calculus, and
what are the benefits and risks to future mathe-
matical success of having taken high school cal-
culus classes?

1
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1952!

ETS contracted to administer exams 
for experimental high school program. 

1953!

Birth of “Advanced Placement”: 
285 students take CAAS exams in 
10 subjects including math. 

1956! 1965! 1969! 1982!

College Admission with Advanced Standing (CAAS) Study Committee on 
Mathematics chaired by Professor Heinrich Brinkmann of Swarthmore 
College.   Representatives to committee come from Bowdoin, Brown, 
Carleton, Haverford, MIT, Middlebury, Oberlin, Swarthmore, Wabash, 
Wesleyan, and Williams. 

Gov. Richard Riley (SC) passes 
Education Improvement Act, 
mandating AP access in all schools. 

1984!

Joint statement by 
NCTM and MAA 
concerned for high 
school preparation 
for college calculus 

AP program launches Calculus AB 

1986!

Total number of AP 
Calculus exams taken 
surpasses 50,000. 

Year in Jaime Escalante’s 
calculus class profiled by 
Stand and Deliver. 

Calculus is most commonly a 
sophomore-level college course, 
preceded by precalculus and 
analytic geometry 

NSF announces Calculus 
Curriculum Development 
Program, overseen by 
DUE and DMS. 

MAA CUPM report lays out undergraduate 
curriculum, with calculus as centerpiece of 
introductory mathematics; recommends that 
“Mathematics 0” should be taught in high school. 

1987!

Figure 1.1. Timeline of AP Calculus events, 1950-1987. For more details about
these events, see Bressoud’s articles [2][3][5][4][6][7].

• Play a role in the design, support, and enforce-
ment of guidelines for high-school programs
offering calculus: High school calculus classes
must be designed to give students a solid math-
ematical preparation for college mathematics.

• Re-examine first-year college mathematics:
There must be appropriate next courses that
work with and build upon the skills and knowl-
edge that students carry with them to college,
whether or not each student is ready for college
freshman calculus.

This section is based upon Bressoud’s articles
[2][4][5][6][7], which analyze the history of cal-
culus as a course in this country.

Section 1.1.1 summarizes how accountability,
along with two complementary and at times
conflicting ideals – individual enrichment and
wide access – contributed to the disarticulation
between high school Advanced Placement (AP)
and college calculus classes.

From a demographic perspective, high school
calculus enrollments have risen exponentially
since the first Advanced Placement Calculus
exam more than 50 years ago, while college cal-
culus enrollments have remained steady. Sec-
tion 1.1.2 discusses two NSF-sponsored stud-
ies, one with Bressoud as a Principal Inves-
tigator, which address Bressoud’s above pro-
posed agenda by identifying features of suc-
cessful high school and college mathematics ex-
periences.

Many students take AP Calculus – more than
300,000 as of 2009; and calculus is foundational
in college curricula. Knowing more about AP
Calculus experiences and their impact on col-
lege learning are promising ways to understand
better the mathematical backgrounds and needs
of entering college students.

1.1.1 Disarticulation between high school
and college calculus

Enrollments in high school and college calcu-
lus courses are expressions of three ideals: ac-
countability, enrichment, and access. The ten-
sions across these ideals have contributed to the
disarticulation between high school and college
classes.

History and enrollment of calculus courses.
The Advanced Placement (AP) programs be-
gan more than fifty years ago, when calculus
was typically a college course for sophomores.
At this time, some leading collegiate institu-
tions formed the College Admission with Ad-
vanced Standing (CAAS) committee, which pi-
loted year-long programs aimed to enrich stu-
dents in selected strong high schools. The pro-
gram included end-of-year exams written by
what is now known as the College Board and
administered through the Educational Testing
Service. These programs eventually became
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0% 50% 100% 

1982 

1992 

2004 

Mathematics completed by 
high school graduates 

No math or low academic 
math 
Algebra I/Plane Geometry 

Algebra II 

Algebra II/Trigonometry/
Analytic Geometry 
Precalculus 

Calculus 

Figure 1.2. Percentage of high
school graduates who completed dif-
ferent levels of mathematics courses in
1982, 1992, 2004. Note that in 2004,
more than 75% of graduates had com-
pleted Algebra II or a more advanced
course, and more than 33% of grad-
uates had completed Precalculus or
a more advanced course. Data from
Dalton, Ingels, Downing, and Bozick
[14, p. 13].

what is now known as Advanced Placement
(AP).

Both exam taking and mathematics course
enrollment have increased (see Figure 1.2).
Since its inception, the number of AP Calculus
exams taken has increased by several magni-
tudes of order. Given this dramatic shift, college
mathematics course enrollments are strangely
close to stagnant (see Figures 1.3-1.6) and may
potentially drop (as Section 1.2 discusses).

In 2-year programs, total mathematics en-
rollment during the fall term has remained at
roughly 25% of total enrollment in these col-
leges. But the percentage of mathematics enroll-
ment in precollege mathematics has increased
from 48% in 1980 to 57% in 2005 while the per-
centage of mathematics enrollment in calculus

and above has decreased from 9% to 6%. In 4-
year undergraduate programs, total mathemat-
ics enrollment during the fall term has dropped
from 20% of total undergraduate enrollment in
1980 to 15% in 2005. In 1980, 10% of all students
were taking a mathematics course at the level of
calculus or above in the fall term. By 2005, that
was down to 6%.

Thus, across all students, enrollment increase
in calculus and above has seen a modest in-
crease, but it is close to the increase in total col-
lege enrollments.

Accountability, enrichment, and access.
What might explain the simultaneous sec-
ondary expansion and tertiary stagnation?

The CAAS formed the Advanced Placement
program in the 1950’s to enrich students in high
schools already known for intellectual strength.
But, starting approximately twenty years later,
the public perceived the AP program as a vehi-
cle to find and help talented students regardless
of background. (The 1982 blockbuster Stand and
Deliver profiled Jaime Escalante’s AP Calculus
class.)

In 1986, the National Council of Teachers of
Mathematics (NCTM) and MAA issued a joint
statement warning students against taking cal-
culus in high school with the expectation of re-
taking it in college, entreating them instead to
spend time mastering the prerequisites of calcu-
lus. Whether the NCTM and MAA interpreted
the data accurately in the 1980’s, there seems to
be little effect from AP Calculus exam taking on
college mathematics enrollments.

One possible explanation for this contrast is
that accountability exacerbated the tension be-
tween enrichment and access. It is certainly
desirable to improve access to challenging, in-
teresting mathematics. However, AP Calculus
was not designed for mass expansion. Based on
conversations with students, Bressoud suspects
that many students take AP Calculus and col-
lege calculus not for the mathematics, but as a
step toward future employment. This suggests
that calculus is viewed as a course culminating
in a one-time test, rather than an opportunity
for mathematics to influence lifetime learning.
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Some of Bressoud’s students arrived unpre-
pared for college-level calculus and its applica-
tions. Some remaining students, despite con-
tent mastery, arrived with visceral distaste for
mathematical study. Both cases are problematic.

The AP Calculus program strives to articulate
with college calculus. As part of regular mainte-
nance of the AP curriculum, the College Board
periodically surveys the calculus curricula of
the 300 tertiary institutions receiving the most
AP Calculus scores. However, history suggests
that topic lists alone cannot effect preparedness
in or appreciation of mathematics.

1.1.2 Articulation between high school
and college mathematics

Two studies, currently underway, support Bres-
soud’s proposed agenda (see the beginning of
Section 1.1). The Characteristics of Successful
College Calculus Programs (CSCCP), an NSF-
sponsored project headed by Bressoud, Mari-
lyn Carlson, Michael Pearson, and Chris Ras-
mussen will examine collegiate data via a sur-
vey conducted in Fall 2010; and Factors Influ-
encing College Success in Mathematics (FICS-
Math), a study out of Harvard, will examine
secondary data collected in Fall 2009.

Knowing students better. College mathe-
matics instructors must help students overcome
distaste and mischaracterization of mathemati-
cal study. A dangerous temptation is to treat
students as blank slates. However, personal
dispositions are not easily dislodged, even af-
ter hearing the statement of a better alternative
(e.g., Confrey [10]).

Instructional interventions must be finely tar-
geted, addressing clearly described problems
with well-defined goals. The CSCCP and FICS-
Math studies will give insight into college math-
ematics students as a whole. However, individ-
ual instructors should still engage in conversa-
tion with their own students about their mo-
tivations and background. Knowing their stu-
dents better will help instructors support math-
ematical learning, therefore supporting stu-
dents’ mathematical trajectory through college.

Guidelines for calculus. History suggests
that successful articulation between high school

and college calculus must go beyond lists of
topics. After all, instruction does not consist of
a collection of topics: it also includes interac-
tions between students and the topics, as well
as between the students and the teachers. The
CSCCP and FICS-Math studies will shed light
on these interactions, and how these may in-
form worthwhile guidelines for the design of
calculus in college and high school.

Re-examining first-year college mathemat-
ics. College calculus is where mathematics de-
partments interact with the most number and
variety of students. Moreover, it is most com-
monly a foundation for future study or a cap-
stone. In both cases, calculus should be an op-
portunity to influence the mathematical knowl-
edge and dispositions of undergraduate stu-
dents. To do so, instructors must better know
their students, and the content must also be bet-
ter suited to the mathematical backgrounds and
needs of the students. The CSCCP and FICS-
Math studies can inform the design of courses
to supplement or build upon calculus that will
be mathematically profitable for students.
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Figure 1.3. Data compiled by Bres-
soud from CBMS data.
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Figure 1.4. Slight drop in advanced
course taking. Data compiled by Bres-
soud from CBMS data.
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Figure 1.5. Data compiled by Bres-
soud from CBMS data.

0 

50,000 

100,000 

150,000 

200,000 

250,000 

300,000 

350,000 

1980 1985 1990 1995 2000 2005 2010 
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Figure 1.6. Nearly constant enroll-
ments vs. approximately exponential
exam taking. Data compiled by Bres-
soud from CBMS and ETS data.
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Figure 1.7. Fall enrollment in Calculus II, 1990-2005. Since 1995, there has
been a 22% decrease in the number of students taking Calculus II in the Fall term
in 2-year and 4-year programs.
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Figure 1.8. Fall enrollment in Calculus III and IV, 1990-2005.

1.2 The role of mathematics
courses: relationships with
mathematics and other
disciplines

“Most of our students,” Deborah Hughes-
Hallett opened her presentation, “will not go on
in mathematics. Most of our students are in our
classes because someone sent them there – usu-
ally not themselves.”

Calculus is a pre-requisite for the STEM fields
of Engineering, Physics, Chemistry, and Mathe-
matics. It is sometimes a pre-requisite for for
Computer Science, and occasionally for Eco-
nomics and Biology. The data strongly sug-
gest that the number of prospective engineering
majors predicts fall calculus enrollments (see
Figures 1.9 and 1.10), and this population is
percentage-wise on the decline. If this trend

continues, the mathematics community should
expect dropping calculus enrollment.

At the same time, over the past twenty years,
prospective biological sciences majors are on
the rise (see Figure 1.11). Biology undergradu-
ate programs do not consistently require math-
ematics classes beyond calculus I for their ma-
jors, even though biological work uses mathe-
matics found in Calculus I, Calculus II, and Or-
dinary Differential Equations.

In serving the needs of other disciplines,
mathematics instructors face a disadvantage.
The majority of our students are in their first
two years of college, before they have taken
the courses that apply the mathematics found
in our courses, leaving our mathematics con-
textless. The students in our classes may not
be able to provide feedback on how to accom-
plish this mission. However, by conversing
with professors of their future courses, we may
be able to find out more. We highlight two
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Figure 1.9. Data compiled by Bressoud for the workshop from The American
Freshman and NCES data.

150000 

175000 

200000 

225000 

250000 

80,000 90,000 100,000 110,000 120,000 

Number of prospective engineers vs. total fall calculus enrollments in research 
universities 

prospective engineers 

1995 2000 

1990 2005 

1985 

to
ta

l f
a

ll 
c

a
lc

u
lu

s 
e

n
ro

llm
e

n
t 

R2 = 0.98146 

Figure 1.10. Data compiled by Bressoud for the workshop from CBMS and CIRP
data.

talks, one by Deborah Hughes-Hallett on the
MAA-CRAFTY (Curriculum Renewal Across
the First Two Years) project, discussed by Deb-
orah Hughes-Hallett; and one on curriculum
reform efforts, by John Jungck, one of the
founders of the BioQUEST Curriculum Consor-
tium (Quality Undergraduate Education Simu-
lations and Tools).

1.2.1 CRAFTY: Reports of conversations
with partner disciplines

An “asymmetry” lies between mathematics and
other disciplines. Math majors may have

taken a chemistry or physics course or two in
high school, but students in these fields may
well have been required to take two or more
semesters of mathematics courses – in college.
In general, math majors are not required to take
more courses in any other particular scientific
field than members of that field are required to
take of mathematics courses. Thus, whether or
not other disciplines have an understanding of
mathematics in a way that we would character-
ize as accurate, it remains that they know our
courses in a way that we do not know theirs.

Reflecting upon conversations with col-
leagues, Hughes-Hallett recommends, “The
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Figure 1.11. Data compiled by Bressoud for the workshop from The American
Freshman and NCES data.

thing I have found most helpful is not whether
they need to know this topic or that topic,
because that shifts over time. Instead, what
is more helpful as a common thread is to ask
them what is useful about how they think about
mathematics.” The MAA CRAFTY project,
“Voices from the Partner Disciplines” [17], com-
piled reports from faculty in other disciplines
on what they would like to see in mathematics

courses their students take during the first two
years of college.

A few salient themes from the MAA-
CRAFTY project are stances on graphing calcu-
lators and conceptual understanding.

Our partner disciplines would like to see
our courses place more emphasis on approxi-
mation and estimation, and advocate spread-
sheet modeling – rather than graphing calcu-
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Excerpt from the CRAFTY Summary Rec-
ommendations for Understanding, Skills,
and Problem Solving [17]:

Emphasize conceptual understanding:

• Focus on understanding broad concepts and ideas
in all mathematics courses during the first two
years.

• Emphasize development of precise, logical think-
ing. Require students to reason deductively from
a set of assumptions to a valid conclusion.

• Present formal proofs only when they enhance
understanding. Use informal arguments and
well-chosen examples to illustrate mathematical
structure.

There is a common belief among mathematicians that
the users of mathematics (engineers, economists, etc.)
care primarily about computational and manipulative
skills, forcing mathematicians to cram courses full of
algorithms and calculations to keep “them” happy.

Perhaps the most encouraging discovery from the
Curriculum Foundations Project is that this stereo-
type is largely false. Though there are certainly in-
dividuals from the partner disciplines who hold the
more strict algorithmic view of mathematics, the dis-
ciplinary representatives at the Curriculum Founda-
tions workshops were unanimous in their emphasis on
the overriding need to develop in students a conceptual
understanding of the basic mathematical tools.

lators, which are rarely used in, for example,
physics, chemistry, biology, business, engineer-
ing, or information technology. In her conversa-
tions, Hughes-Hallett has heard repeatedly that
spreadsheets are consistently the “second best”
technology for working on a problem, and in
this way are fundamental to the toolkit of many
disciplines.

As far as conceptual understanding, the skills
regarded as essential by most partner disci-
plines include the concept of function, graphi-
cal reasoning, approximation and estimation of
scale and size, basic algebraic skills, and numer-
ical methods. For example, partner disciplines
would like students to:

• “become very comfortable with the use of sym-
bols and naming of quantities and variables”
(physics),

• have an “understanding that many quantitative
problems are ambiguous and uncertain” and be
“comfortable taking a problem and casting it
in mathematical terms” (business and manage-
ment),

• “summarize data, describe it in logical terms, to
draw inferences, and to make predictions” (bi-
ology),

• “formulate the model and identify variables,
knowns and unknowns”, “select an appropri-
ate solution technique and develop appropriate
equations; apply the solution technique (solve
the problem); and validate the solution” (civil
engineering).

Thus our mathematics courses should nurture
conceptual understanding, mathematical mod-
eling, facility with applications, and fluency
with symbols and graphs as a language tool.

On solution methods, almost all disciplines
broached the importance of fluency in numer-
ical solutions rather than analytical solutions.
However, more intricate problems in engineer-
ing may require understanding analytical solu-
tions so as to be able to validate numerical solu-
tions.

Partner disciplines value computational
skills. But, without a strong conceptual under-
standing, the computational skills become im-
potent. To understand this assertion, Hughes-
Hallett offered a quote from her colleague
Nolan Miller, a microeconomist at the Kennedy
School:

“While much of the time in calculus courses is spent
learning rules of differentiation and integration, what is
more important for us is not that the students can take
complicated derivatives, but rather that they are able to
work with the abstract concept of ‘the derivative’ and un-
derstand that it represents the slope, that if u : R2 → R,
then −u1/u2 is the slope of a level surface of the function
in space.”

It may at first seem striking to separate the abil-
ity to do difficult derivatives from the ability to
capture a definition as a geometric object. How-
ever, these abilities are in fact distinct. One can
be quite skillful at “complicated derivatives”
while lacking the ability to verbalize concep-
tual understanding in a precise way – and vice
versa.
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Table 1.12. Some biological phenomena and their associated curves. Prepared
by John Jungck for this workshop.

Curve Biological phenomena
linear fat intake vs. cancer

log-linear log survival vs. dose radiation
log-log allometry

positively exponential exercise curve vs. O2
negatively exponential Newton’s law of cooling

gaussian variation
sinusoidal heart rhythm

logistic r, K
chaotic tribolium

rectangular hyperbolic Michaelis-Menten
elliptical phase predator-prey, PV loop

hysteresis DNA melting

Table 1.13. Biological phenomena associated to graphs. Prepared by John
Jungck for this workshop.

food webs brain circuits metabolic pathways
pedigrees phylogenies fate maps

interactomes microarray clusters linkage maps
restriction maps complementation maps nucleotide sequences

protein sequences 3-D protein backbones (or HP lattices)

1.2.2 Mathematics curricula and the
biological sciences

Biological research and mathematics. As
Jungck argued in his presentation, the num-
ber of biological science majors is on the rise,
and mathematics and biology faculty stand to
benefit from each others’ expertise. Biologi-
cal research depends on mathematical know-
how, and mathematicians can engage students
through mathematical modeling content.

Classically, understanding the dynamics of
biological phenomena required understanding
functions – for example, linear, exponential,
chaotic, logistic functions. (See Table 1.12 for
examples.) “Part of the literacy for my biol-
ogy students,” Jungck observed, “is that when
they see their graphs of their data coming out in
these kind of forms, that they can begin to de-
velop a simple kind of intuition. We’re not ask-
ing them to remember the equation. But these
are familiar objects, an alphabet for thinking
about modeling. For many mathematical biolo-

gists, having this kind of repertoire of biological
examples that fit these kinds of things is kind of
like a beginning kind of language.”

More recently, the mathematics relevant to bi-
ological research has had more to do with rela-
tions than functions, and more to do with topol-
ogy than dynamics. Drawing a comparison with
families of functions, Jungck proposed, “We can
have a similar set of topologies of simple graphs
that almost every biologist would immediately
recognize, whether it’s a food web or a pedigree
or a phylogenetic tree or a metabolic pathway,
that these kinds of things are there. You have,
again, an advantage. You already know our
language, you already understand the topol-
ogy of these kinds of systems.” (See Table 1.13
for examples.) These systems deal with rela-
tions because they often feature many-to-one
and one-to-many maps, simultaneously. It is
in part due to mathematics that biologists can
work with this data; behind meaningful inter-
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pretations of biological phenomena such as ro-
bustness or fragility are mathematics.

As early as 1996, Lou Gross proposed the
option of teaching the relevant mathematics
through biology departments:

It is unrealistic to expect many math faculty to have
any strong desire to really learn significant applications
of math that students will readily connect to their other
course work, though there is a core group who might do
this.

So what do we do to enhance quantitative understand-
ing across disciplines? Below is what I say to life science
faculty: Who can foster change in the quantitative skill of
life science students? Only you, the biologists can do this!
Two routes:

1. Convince the math faculty that they’re letting you
down

2. Teach the courses yourself.
Gross [19], as quoted in Jungck [26]

The disappointment launched at mathematics
faculty resulted from lack of immediate rele-
vance of mathematics coursework to biological
applications. Even if a student could in the-
ory derive the mathematics from starting prin-
ciples, it is not the ability to use basic principles
that is the most critical – it is the ability to apply
the mathematics after the derivations have fin-
ished. Application and derivation are distinct
areas of mathematical fluency, and teaching one
does not ensure expertise in the other.

BioQUEST and lessons learned. The relation-
ship between mathematics, computer science,
and biological research motivated the found-
ing of BioQUEST (Quality Undergraduate Ed-
ucation Simulations and Tools), which sought
deep reform of the undergraduate biology pro-
gram. The BioQUEST curriculum consortium
began as a collection of mathematicians, com-
puter scientists, philosophers of science, science
and math educators, biology educators, and
biology researchers. In 2005, BioQUEST con-
vened kindred programs who sought to effect
change in undergraduate education, includ-
ing the Harvard Calculus Consortium, Work-
shop Mathematics Project, Project CALC, and
C*ODE*E (Consortium of ODE Experiments).
At the workshop Investigating Interdisciplinary

Interactions: Collaboration, Community, & Con-
nections, these programs met with others from
biological sciences, computer science, statistics,
and physics, among other disciplines.

John Jungck, one of the initial founders of
BioQUEST, has found that discussions about an
individual course or an individual department
tend to be ineffective for the reform-oriented.
“Frankly, if you want to change the culture to
a more learner-centered student achievement,
you may find your best ally in someone in a cog-
nate discipline, and they may already be con-
nected to a national curricular initiative. I urge
you to expand your community to beyond the
peers in the next-door office.” He pointed out
that as partner disciplines, we write and read
one another’s grants, retentions, promotions,
and awards. In our academic environment, we
rely on each other; our curricula and teaching
should reflect this.

To borrow an idea from anthropology, pop-
ularized by Silicon Valley, we need to “cross
the chasm.” Jungck advocates looking for al-
lies in other disciplines and other schools, and
to maintain a broad view. Enthusiasts must
be able to work with, convince, and talk to
many departments in schools of a variety of per-
suasions – community colleges, Research-I, lib-
eral arts, small state schools, historically black
schools, predominantly undergraduate institu-
tions. To go beyond the “early adopters” of nu-
clear, local projects, and reach a national or in-
ternational perspective, the earlier enthusiasts
must demonstrate success in a variety of con-
texts.

Principles for Biology classes. Biology depart-
ments require mathematics courses, yet their
coursework may not use mathematics. The Na-
tional Research Council [12] supports the inclu-
sion of more mathematics in biology courses:

Given the profound changes in the nature of biology
and how biological research is performed and communi-
cated, each institution of higher education should reexam-
ine its current courses and teaching approaches to see if
they meet the needs of today’s undergraduate biology stu-
dents. Those selecting the new approaches should consider
the importance of building a strong foundation in mathe-
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Quantitative concepts for undergraduate
biology students (Lou Gross)

Rate of change
• specific (e.g. per capita) and total

• discrete - as in difference equations

• continuous - calculus-based

Stability
• Notion of a perturbation and system re-

sponse to this.

• Alternative definitions exist including not
just whether a a system returns to equilib-
rium but how it does so.

• Multiple stable states can exist - initial con-
ditions and the nature of perturbations (his-
tory) can affect long-term dynamics

Visualizing
• there are diverse methods to display data

• Simple line and bar graphs are often not suf-
ficient.

• Non-linear transformations can yield new
insights.

Figure 1.14. Quantitative concepts
used in biology (adapted from Gross
[18]).

matics, physical, and information sciences to prepare stu-
dents for research that is increasingly interdisciplinary in
character. The implementation of new approaches should
be accompanied by a parallel process of assessment, to ver-
ify that progress is being made toward the institutional
goal of student learning.” (p. 44)

“Concepts, examples, and techniques from mathemat-
ics, and the physical and information sciences should be
included in biology courses, and biological concepts and
examples should be included in other science courses. Fac-
ulty in biology, mathematics, and physical sciences must
work collaboratively to find ways of integrating mathe-
matics and physical sciences into life science courses as
well as providing avenues for incorporating life science
examples that reflect the emerging nature of the discipline
into courses taught in mathematics and physical sciences.”
(pp. 47-48)

Some quantitative concepts, compiled by Lou
Gross, are shown in Figure 1.14.

If the average grade of a pre-med student in
a calculus class is an A, then biology classes –
from lower-division to upper-division courses –
should use calculus. Jungck has written that the
“exclusion of equations in [biological] textbooks
has three unfortunate consequences; namely, a
lack of respect for, consistency with, and em-
powerment of students” [26, p. 13]. Without
more mathematics, biology classes are guilty
of the same. Using the mathematics shows
respect for the discipline of mathematics as
well as students’ intellectual capabilities. Cur-
rently, only upper-division courses use calculus.
The lack of consistency between lower-division
courses and upper-division courses causes de-
skilling and frustration in students. One form
of empowerment is economic access, and lack
of mathematics “has differential career conse-
quences” [26, p. 13]. There is a strong, positive
correlation between the amount of mathematics
and computer sciences that biologists have had
and their professional career opportunities and
advancement (e.g., Gross [19]).

We end with a quote from Jungck.

◦ } ◦
Go to your library and open a variety of biological

journals; the diversity and richness of mathematics therein
may surprise you. Why shouldn’t this literature be acces-
sible to far more of our students?

– John Jungck , in [26].
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Summary and further reading
Mathematics plays a variety of roles in the pur-
suit of disciplinary knowledge: it gives ways to
express quantities and concepts, to approximate
and estimate, to model and predict real-life phe-
nomena, to prove, to derive, and to problem
solve. Each of these domains is distinct from the
rest, and expertise in one area does not guaran-
tee expertise in the rest. Mathematics and our
partner disciplines would like service courses to
nurture fluency in all these domains.

Those who have been heavily invested in
teaching mathematics in service courses have
found that relevance and respect can help over-
come mathematical fears and dislikes. Rel-
evant material can interest students; relevant
skills align with applications to the majors we
serve. Respecting students must include build-
ing upon students’ prior knowledge and ex-
periences rather than ignoring or denying that
students come in with ideas about content and
what it means to do mathematics; respect also
includes supporting a variety of future course-
work in as direct a manner as possible. To re-
spect students and teach relevant material, indi-
viduals of the mathematics community need to
find out more about their students’ experiences
in high school, and to interact with partner dis-
ciplines at local institutions.

References and readings by presenters or rec-
ommended by presenters include the following.

◦ } ◦
Experiences in engaging students

• The Algebra Project. A national, nonprofit orga-
nization that uses mathematics as an organizing
tool to ensure quality public education for every
child in America.

• The Young People’s Project. Uses math and me-
dia literacy to build a network of young peo-
ple who are better equipped to navigate lifes
circumstances, are active in their communities,
and advocate for education reform in America.

• Mathematics and Theoretical Biology Institute. The
efforts of this institute has significantly in-
creased the national rate of production of U.S.
Ph.D.’s since the inception of the institute, and
recognizes the need for programmatic change

and scholarly environments which support and
enhance underrepresented minority success in
the mathematical sciences.

• BioQUEST. This project supports undergradu-
ate biology education through collaborative de-
velopment of open curricula in which students
pose problems, solve problems, and engage in
peer review.

• MathForLife. An innovative one semester ter-
minal mathematics course intended to replace
existing core or terminal courses ranging from
”math-for-poets” to Finite Math whose primary
audience is the undergraduate majoring in the
humanities or social sciences.

Articles
• Ten Equations that Changed Biology: Mathematics

in Problem-Solving Biology Curricula. (Article by
John Jungck.)
http://papa.indstate.edu/amcbt/volume_
23/

• Meeting the Challenge of High School Calculus.
(Series by David Bressoud, as part of his online
column, Launchings from the CUPM Curricu-
lum Guide)
http://www.macalester.edu/˜bressoud/pub/
launchings/

Reports
• BIO2010: Transforming Undergraduate Educa-

tion for Future Research Biologists. (Report by
the National Research Council Committee on
Undergraduate Biology Education to Prepare
Research Scientists for the 21st Century.)
http://www.nap.edu/catalog.php?record_
id=10497

• Curriculum Foundations Project: Voices of the Part-
ner Disciplines. (CRAFTY report.)
http://www.maa.org/cupm/crafty/

• Math & Bio 2010: Linking Undergraduate Disci-
plines. (MAA publication, edited by Lynn Steen)

• Quantitative Biology for the 21st Century. (Gives
concrete examples, with references, of biological
research strongly influenced by mathematical
and statistical sciences. Report by Alan Hast-
ings, Peter Arzberger, Ben Bolker, Tony Ives,
Norman Johnson, Margaret Palmer.)
http://www.maa.org/mtc/Quant-Bio-report.
pdf

http://papa.indstate.edu/amcbt/volume_23/
http://papa.indstate.edu/amcbt/volume_23/
http://www.macalester.edu/~bressoud/pub/launchings/
http://www.macalester.edu/~bressoud/pub/launchings/
http://www.nap.edu/catalog.php?record_id=10497
http://www.nap.edu/catalog.php?record_id=10497
http://www.maa.org/cupm/crafty/
http://www.maa.org/mtc/Quant-Bio-report.pdf
http://www.maa.org/mtc/Quant-Bio-report.pdf




CHAPTER 2
Teaching problem solving and
understanding: What does the

literature suggest?

“Procedural knowledge” versus “conceptual
learning”, “teacher-directed instruction” versus
“student-centered discovery”: these debates
distract the community with false dichotomies
and vague premises.

With this opening, Marilyn Carlson called at-
tention back to foundational questions:

• What does it mean for students to understand a
mathematical idea?

• What are problem solving abilities and processes for
mathematics learners?

• What is the nature of the knowledge that teachers
need to have?

This chapter summarizes and elaborates upon
Carlson’s presentation.

A challenge to common ground on “under-
standing” is that many topics in mathemat-
ics have no widely accepted specification on
what it means “to understand”. Promisingly,
there are key topics of secondary and tertiary
mathematics whose learning has been exam-
ined in detail. One such topic is (real) functions.
This chapter discusses two alternative charac-
terizations of understanding functions, Action-
Process-Object-Schema (APOS) Theory and Co-

variation. In its treatment of APOS Theory, this
chapter focuses on Action and Process.

With respect to the second question, vari-
ous researchers and mathematicians have stud-
ied the teaching and learning of problem solv-
ing. To support problem solving in mathemat-
ics classes, this chapter describes stages of prob-
lem solving as examined by Carlson and her
colleagues. This work builds upon literature by
Pólya and Schoenfeld among others.

Finally, there is currently no broad consen-
sus on the nature of the knowledge needed for
teaching, which is problematic for TA training
programs as well as K-12 teacher preparation
programs. We discuss research on the mathe-
matical knowledge entailed in teaching, includ-
ing research on tertiary instruction presented by
Natasha Speer and Joe Wagner.

2.1 Describing mathematical
understanding: Functions

Algebra is a gateway class: completing mathe-
matics beyond the level of Algebra II correlates
significantly with enrollment in a four-year col-

15
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lege and graduation from college (e.g., National
Mathematics Advisory Panel, [29, p. 4]).

At the heart of school algebra are func-
tions, especially linear, quadratic, and expo-
nential functions. Two characterizations of un-
derstanding functions prevalent in the litera-
ture on undergraduate mathematics are Action-
Process-Object-Schema (APOS) Theory and Co-
variation. Mathematicians may be interested in
these ideas as ways to help observe and assess
their students’ thinking.

2.1.1 Action and process understandings
“Action” and “process” are part of Dubinsky’s
APOS Theory (Action-Process-Object-Schema;
see Dubinsky and McDonald [15] for an intro-
duction). There are four stages to Dubinsky’s
theory, inspired by Piaget’s developmental the-
ories on children’s learning; this section concen-
trates on the first two stages, Action and Pro-
cess.

Although this chapter as a whole focuses on
algebraic concepts, Section 2.1.1 provides exam-
ples from exponential expressions and group
theory as well, intending that a greater vari-
ety of examples will provide more leverage for
readers to apply APOS Theory to their own
teaching.

Examples regarding functions in the text and
the tables are from Oehrtman, Carlson, and
Thompson [28] and Connally, Hughes-Hallett,
Gleason, et al. [11]. Examples regarding expo-
nential expressions are from Weber [39]. Ex-
amples regarding group theory and the descrip-
tions of action and process stages are from Du-
binsky and McDonald [15].

f(x) = y

x
f   (y) = x-1

process for f 
process for f   -1

Figure 2.2. A geometric representa-
tion of inverse as process.

Action. An action on a set of mathematical
objects is a step-by-step transformation of the
objects to make another mathematical object or
objects. A student in the action stage of un-
derstanding an object can likely, for instance,
perform algorithmic computations on those ob-
jects. The student also likely needs prompting
to take the action.

For example, in the action stage of under-
standing a particular function f or g expressed
in terms of x, students can likely evaluate f (x)
or even g( f (x)) for given x. However, students
may not be able compose functions whose data
is given to them only through tables and graphs
(e.g., see Table 2.1). As well, the understanding
of functions as primarily step-by-step manipu-
lations comes with implications for understand-
ing of graphs, inverses, and domain and range.

In the case of exponential expressions, stu-
dents can view 23 as repeated multiplication of
2, but may not be able to make sense of non-
integral exponents or logarithms.

In the case of group theory, students can com-
pute the left cosets of {0, 4, 8, 12, 16} in Z/20Z

by adding elements of the whole group to el-
ements of subgroup. However, such students
may encounter difficulty with more intricate
structures, such as for cosets of D4, the sym-
metry group of a square within a permutation
group such as S4. Students may be able to
compute through brute force, but would not be
likely to find efficient, holistic techniques.

Process. When a student repeats an action
and reflects upon it, they internalize the ac-
tion into a process, which may no longer need
external prompting to perform. “An individ-
ual can think of performing a process with-
out actually doing it, and therefore can think
about reversing it and composing it with other
processes”[15, p. 276].

In the process stage of understanding func-
tions, students can likely find simple composi-
tions from tables and graphs; as well, the con-
cepts of injectivity, inverse function, and do-
main and range are more accessible. Examples
are provided in Tables 2.1, and a geometric rep-
resentation of inverse as process is provided in
Figure 2.2.
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Table 2.1. Action and process understandings of function (adapted from Oehrt-
man, Carlson, and Thompson [28]). Each understanding is followed by examples of
the types of problems (adapted from [28] and Connally, Hughes-Hallett, Gleason,
et al. [11]) that a student in that stage could likely complete.

Action understanding Process understanding
Working with functions requires the comple-
tion of specific rules and computations.

Inverse is about algebraic manipulation,
for example, solving for y after switching
y and x; or it is about reflecting across a
diagonal line.

Finding the domain and range is at most
an algebraic manipulation problem, for ex-
ample, solving for when the denominator is
zero, or when radicands are negative.

◦ } ◦

Examples of problems solvable with an action
understanding:

Find h(y), where h(y) = y2, and y = 5.

Find f (g(x)) for f (x) = 4x3, g(x) = x + 1,
and x = 2.

Given f (x) = 2x+1
7−x , find f−1(x).

Given the graph of f (x), sketch a graph of
f−1(x).

Find the domain and range of f (x) =
√

1+x
x+3 .

If the graph of an invertible function is con-
tained in the fourth quadrant, what quadrant
is the graph of its inverse function contained
in?

Working with functions involves mapping a
set of input values to a set of output values;
it is possible to work with a space of inputs
rather than just specific values.

Inverse is the reversal of a process that de-
fines a mapping from a set of output values
to a set of input values.

Domain and range are produced by op-
erating and thinking about the set of all
possible inputs and outputs.

◦ } ◦

Examples of problems solvable with process
understanding:

Express ( f ◦ g)−1 as a composition of the
functions f−1 and g−1.

Simplify cos(arcsin t) using the notion that
an inverse “undoes”.

A sunflower plant is measured every day t,
for t ≥ 0. The height, h(t) centimeters, of the
plant can be modeled with

h(t) =
260

1 + 24(0.9)t .

What is the domain of this function? What
is the range? What does this tell you about
the sunflower’s growth? Explain your
reasoning.∗

Use the figures below to graph the func-
tions f (g(x)), g( f (x)), f ( f (x)), g(g(x)).∗

-2

0

f(x)

x

-2

2-1 10

-1

1

2

-2

0

g(x)

x

-2

2-1 10

-1

1

2

∗These problems are adapted from Connally, Hughes-Hallett, Gleason, et al., Functions Modeling Change:
A Preparation for Calculus, §2.2: Example 3, and §8.1: Problems 27-30, c©2006, John Wiley & Sons, Inc.

This material is reproduced with permission of John Wiley & Sons, Inc.
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In the case of exponential expressions, a stu-
dent can likely interpret bx as “the number that
is the product of x factors of b” and logb m as
“the number of factors of b that are in the num-
ber m” [39].

In the case of left cosets, the student can likely
find at least two elements g, h ∈ S4 not in the
subgroup D4 and so that g and h represent dis-
tinct left cosets.

Applying the notions of action and process
understandings to teaching. APOS Theory
can guide in-class activities, exam problems, or
homework. Below are several recommenda-
tions to help students advance from action un-
derstanding to process understanding. Sugges-
tions on teaching functions are taken from [28]
unless otherwise noted.

• Ask students to explain basic function facts in
terms of input and output.
Examples. (a) Ask students to explain their rea-
soning for whether ( f ◦ g)−1 equals f−1 ◦ g−1 or
g−1 ◦ f−1.
(b) In addition to questions such as “Solve for
x where f (x) = 6”, ask students to “find the
input value(s) for which the output of f is 6”,
both algebraically and from a labelled graph of
the function, and to explain their reasoning.

• Ask about the behavior of functions on entire in-
tervals in addition to single points.
Examples. (a) Ask students to find the image
of a function applied to an infinite-cardinality
set (such as an interval), e.g., find the length of
f (g([1, 2]), where f (x) = 2x + 1 and g(x) =
4x− 3.
(b) Ask students to find the preimage of an in-
terval in the context of the definition of limit or
continuity.

• Ask students to make and compare judgements
about functions across multiple representations,
that is, how a function is introduced or what in-
formation students are given about the function.

• Ask students to describe symbols as mathemat-
ical objects.
Examples from [39], with desired student re-
sponses given in bold. (a) Describe each of the
exponential expressions in terms of a product

and in terms of words:

43 = 4 × 4 × 4

= the number that is the product of
3 factors of 4

bx = b × b × b × . . .× b (x times)

= the number that is the product of
x factors of b

(b) Simplify each of the expressions below by
writing each exponential term as a product.
Summarize each simplification in words.

b2b4 = b × b × b × b × b × b = b6

The product of 2 factors of b and
4 factors of b is 6 factors of b.

bbx = b× ( b × b × b × . . .× b︸ ︷︷ ︸
x times

) = bx+1

The product of b and x factors of b
is (x+1) factors of b.

• Incorporate computer software packages that
help students visualize or experiment with
mathematical concepts, and use computer pro-
gramming to help students reflect upon actions.
A description of a number of studies in which
computer software and programming aided
student learning can be found in Dubinsky and
Tall [16]; in fact, the examples on exponen-
tial expressions, from [39], are part of a study
which included MAPLE programming activities
for the students.

2.1.2 Covariational reasoning
The Oxford English Dictionary defines covari-
ant as, “Changing in such a way that interre-
lations with another simultaneously changing
quantity or set of quantities remain unchanged;
correlated.” In studying students’ learning of
functions, Carlson has focused on helping stu-
dents relate dependent quantities. This section
presents some of her findings, especially from
Carlson, Jacobs, Coe, Larsen, and Hsu [9] and
Oerhtman, Carlson, and Thompson [28].

In [9], covariational reasoning is described as
the “cognitive activities involved in coordinat-
ing two varying quantities while attending to
the ways in which they change in relation to
each other”(p. 354), for example, viewing
(x, y) = (t, t3 − 1) as expressing a relationship
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where x and y can both change over time, and
changes in x may come with changes in y.

Covariational reasoning means attending to
co-varying quantities in contexts such as para-
metric equations, physical phenomena, graphs,
and rates of change. Precalculus, calculus, mul-
tivariable calculus and differential equations all
feature simultaneously varying quantities.

The following are three examples of prob-
lems, from [9] and [28], whose solutions entail
covariational reasoning.

Problem 2.1: Bottle Problem.
Imagine this bottle filling with water. Sketch a graph
of the height as a function of the amount of water that
is in the bottle.

In this case, quantities to attend to are height
and volume of water. Covariation appears
through applying concepts related to rate of
change and convexity.

Problem 2.2: Temperature Problem.
Given the graph of the rate of change of the temper-
ature over an 8-hour time period, construct a rough
sketch of the graph of the temperature over the 8-hour
time period. Assume the temperature at time t = 0
is zero degrees Celsius.
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Here, quantities to attend to are the rate of
change and the original function. Covariation

appears through the interpretation of critical
points, positive slopes, and negative slopes.

Problem 2.3: The Ladder Problem.
From a vertical position against a wall, a ladder is
pulled away at the bottom at a constant rate. De-
scribe the speed of the top of the ladder as it slides
down the wall. Justify your claim.

Here, quantities to attend to are the speed of
the top of the ladder and the placement of the
bottom of the ladder.

One way that studies in math education can
serve mathematics instructors is elaborating
what it means to “understand”, and how stu-
dents arrive at understanding. Observations of
students working on problems similar to the
above suggest that covariational reasoning de-
composes into five kinds of mental action; this
led Carlson, Jacobs, Coe, Larsen, and Hsu to de-
velop interventions that improved calculus stu-
dents’ covariational reasoning abilities [9]. The
mental actions are summarized in Tables 2.3-
2.4.

Ways suggested in [9] to enhance students’
covariational reasoning may include:

• Ask for clarification of rate of change informa-
tion in various contexts and representations.
For example, ask students to provide interpre-
tations about rates in real-world contexts, given
algebraic or graphical information. Probe fur-
ther if students do not incorporate all variables
in their explanation, and the relationship be-
tween the variables. If students use phrases
such as “increases at a decreasing rate”, ask
them to explain what this means in more detail.

• Ask questions associated with each of the men-
tal actions. Questioning strategies are found
in Table 2.4 for discussing rates of changes, a
concept foundational to calculus and differen-
tial equations.

2.2 Describing problem solving
Mathematics instructors often would like their
students to be problem solvers: to celebrate
mathematical tasks that are not immediately
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Table 2.3. Mental actions during covariational reasoning (adapted from [28, p.
163]). Behaviors are those observed in students working on the Bottle Problem.

mental
action

description of mental action behaviors

Mental
Action 1
(MA1)

Coordinating the dependence of one
variable on another variable

Labeling axes, verbally indicating the
dependence of variables on each other
(e.g., y changes with changes in x)

Mental
Action 2
(MA2)

Coordinating the direction of change of
one variable with changes in the other
variable.

Constructing a monotonic graph
Verbalizing an awareness of the direc-
tion of change of the output while con-
sidering changes in the input.

Mental
Action 3
(MA3)

Coordinating the amount of change in
one variable with changes in the other
variable.

Marking particular coordinates on the
graph and/or constructing secant lines.
Verbalizing an awareness of the rate of
change of the output while considering
changes in the input.

Mental
Action 4
(MA4)

Coordinating the average rate-of-
change of the function with uniform
increments of change in the input
variable.

Marking particular coordinates on the
graph and/or constructing secant lines.
Verbalizing an awareness of the rate of
change of the output (with respect to the
input) while considering uniform incre-
ments of the input.

Mental
Action 5
(MA5)

Coordinating the instantaneous rate-of-
change of the function with continuous
changes in the independent variable for
the entire domain of the function.

Constructing a smooth curve with clear
indications of concavity changes
Verbalizing an awareness of the instan-
taneous changes in the rate-of-change
for the entire domain of the function
(direction of concavities and inflection
points are correct).

Table 2.4. Questioning strategies for the mental actions composing the covari-
ational framework (adapted from [28, p. 164]).

mental action questioning strategy
MA1 What values are changing? What variables influence the quantity of interest?
MA2 Does the function increase or decrease if the independent variable is increased

(or decreased)?
MA3 What do you think happens when the independent variable changes in con-

stant increments? Can you draw a picture of what happens (at intervals) near
this input? Can you represent that algebraically? Can you interpret this in
terms of the rate of change in this problem?

MA4 Can you compute several example average rates of change, possibly using the
picture to help you? What units are you working with? What is the meaning
of those units?

MA5 Can you describe the rate of change of a function event as the independent
variable continuously varies through the domain? Where are the inflection
points? What events do they correspond to in real-world situations? How
could these points be interpreted in terms of changing rate of change?
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Table 2.5. Two approaches to the Paper Folding Problem.

Approach 1 Approach 2
Let x be the interior altitude of the
black triangle. Then its area is 1

2 x2,
and the area of the lower white
region is 3 − x2. The areas of the
white and black regions are equal, so
3− x2 = 1

2 x2. It follows that x =
√

2.

The three regions in the figure below
have equal area; since the square has
total area 3, the black triangle and
white triangle form a square of area
2. Hence the diagonal of this square
has length 2

√
2. The length sought is

half the diagonal, or
√

2.

solvable, to confront these tasks with a clear
head, and to think carefully and completely.

The mathematician Pólya, in his famous How
to Solve It [30], characterized four stages:

• understanding the problem – “we have to see
clearly what is required”

• developing a plan – “we have to see how the
various items are connected, how the unknown
is linked to the data, in order to obtain an idea
of the solution, to make a plan.”

• carrying out the plan

• looking back – “we look back at the completed
solution, we review it and discuss it.”

Almost all research on mathematical problem
solving traces back to Pólya’s insight.

Though Pólya’s stages have much face va-
lidity to mathematically-savvy problem solvers,
carrying them out in practice has remained
mathematically and affectively difficult for stu-
dents in general. One of the key players in
mathematical problem solving research is Alan
Schoenfeld, who developed a course that im-
proved undergraduates’ problem solving abil-
ities by focusing on metacognitive processes,
especially the relationship between students’
beliefs and their practices. The emphasis on
metacognitive processes was inspired by emer-
gent artificial intelligence research of the time,
and has continued to shape research since.

The previous section in this chapter, Sec-
tion 2.1, addressed conceptual knowledge; the
present section discusses the relationship be-
tween conceptual knowledge, affect, and prob-
lem solving, as suggested by Carlson and
Bloom [8]. The purpose of this section, as with
Section 2.1, is to provide description that can

help instructors sharpen observations of stu-
dent thinking, and to provide language that fa-
cilitates conversation among colleagues around
teaching and learning.

2.2.1 Conceptual knowledge and emotion
Carlson and Bloom observed a dozen mathe-
maticians and PhD candidates solving a collec-
tion of elementary mathematics problems de-
signed to evoke problem solving processes. The
collection included the bottle problem (from
Section 2.1.2), and the Paper Folding Problem.

Problem 2.4: Paper Folding Problem.
A square piece of paper ABCD is white on the
frontside and black on the backside and has an area of
3 in2. Corner A is folded over to point A′ which lies
on the diagonal AC such that the total visible area is
half white and half black. How far is A′ from the fold
line?

Two approaches to the problem are summa-
rized in Table 2.5.

Carlson and Bloom found that Pólya’s stages
could delineate stages of behavior observed in
their participants. So, within each stage, Carl-
son and Bloom examined how problem solvers
used conceptual knowledge, applied heuris-
tics, exhibited motivation and emotion, and re-
flected upon their own work.

Conceptual knowledge and problem solv-
ing. Mathematicians do powerful planning
when problem solving. Carlson noted in her
presentation that the mathematicians studied in
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[8] often exhibited rapid 20-minute cycles, stop-
ping to ask themselves about a particular line of
reasoning: “Hmm ... should I do that? Maybe
I should plug in some numbers. If I do that,
then I will get this relationship between the tri-
angle and the square . . . ” This sort of construc-
tion and evaluation expertly applies conceptual
knowledge of area and triangles. When the
problem solver who used Approach 2 initially
went off track, his knowledge of area allowed
him to get unstuck.

The detail and organization in planning re-
minded Carlson of mathematicians discussing
precalculus material. Carlson observed in her
presentation, “It’s one thing to say ‘distance’.
It’s another thing to say, ‘d is the number of
miles that it takes that it takes to drive from
Phoenix and Tucson.’” Whatever the mathe-
matical level, problem solving entails thought-
ful, non-linear processes that draw upon careful
connections to conceptual knowledge.

Conceptual knowledge was also used to ver-
ify answers. The successful problem solvers in
[8] used their understanding of areas and geom-
etry to check results and computations, for ex-
ample, by making certain that the areas of the
regions totaled to 3.

Emotion and problem solving. Carlson and
Bloom were struck by the intimacy of the solv-
ing process. In their participants, they ob-
served frustration, joy, and the pursuit of ele-
gance. Successful problem solving entails effec-
tive management of emotion, especially to per-
sist through many false attempts.

2.2.2 Sample problems
For readers’ interest, the following were other
tasks used in the study reported in [8].

Problem 2.5: The Mirror Number Problem.
Two numbers are “mirrors” if one can be obtained by
reversing the order of the digits (i.e., 123 and 321 are
mirrors). Can you find: (a) Two mirrors whose prod-
uct is 9256? (b) Two mirrors whose sum is 8768?

Problem 2.6: Pólya Problem.
Each side of the figure below is of equal length. One
can cut this figure along a straight line into two
pieces, then cut one of the pieces along a straight line
into two pieces. The resulting three pieces can be fit
together to make two identical side-by-side squares,
that is a rectangle whose length is twice its width.
Find the two necessary cuts.

Problem 2.7: Car Problem.
If 42% of all the vehicles on the road last year were
sports-utility vehicles, and 73% of all single car
rollover accidents involved sports-utility vehicles,
how much more likely was it for a sports-utility ve-
hicle to have such an accident than another vehicle?

2.2.3 Intellectual need as motivation
We end the section on problem solving with an
argument for “intellectual need” and a nod to
Pólya’s teaching.

In his presentation on problem solving,
David Bressoud commented on materials by
Pólya and Guershon Harel introducing induc-
tion. A classic problem used by Pólya in Let us
teach guessing (now a DVD, originally on film in
1966) is the following.

Problem 2.8: Slicing with Planes.
How many regions that one plane can slice R3 into?
2 planes? 3 planes? n planes?

In this situation,
• 1 plane creates 2 regions

• 2 planes can create 4 regions

• 3 planes can create 8 regions.
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Many students guess that 4 planes could cre-
ate 16 regions – rather than the maximum of 15.
Expectations are overthrown. At this moment,
Pólya argues, learning can happen.

The “intellectual need” motivating genuine
mathematical reasoning has also been dis-
cussed by Guershon Harel. In a recent
MAA workshop, Harel characterized back-
wards teaching, which begins by generic out-
lines of techniques rather than a situation to mo-
tivate utility. For example, backwards teach-
ing of induction might begin by discussing row
of dominoes, and how knocking the first cas-
cades the rest down. However, this theoreti-
cal description will be meaningless to someone
who has never needed proof by induction. Only
providing examples where the induction state-
ment is explicitly in the problem statement, e.g.,
showing ∑n

k=1 n2 = n(n+1)(2n+1)
6 , exacerbates

the situation. When taught this way, students
tend to look for an “n” in the problem, and miss
opportunities to use proof by induction when
there is no apparent “n”, even in contexts where
induction provides a productive approach.

Harel proposes opening with problems with
implicit inductive statements, for example:

Problem 2.9: Motivating Induction.
Find an upper bound for the following sequence.

√
2,

√
2 +
√

2,

√
2 +

√
2 +
√

2, . . .

The idea of building upon a previous case is
something that students understand intuitively;
the domino analogy only tells them something
they feel they already know, without anchors
to any mathematics. But providing a problem
where the students must focus on how to build
– rather than merely the fact that something is
being built – serves students’ needs. This prob-
lem provides intellectual need to articulate pat-
terns in terms of previous patterns, motivating
the use of an index variable as well as recursive
forms.

2.3 Knowledge for teaching
Mathematics teachers teach mathematics; and
teaching entails skills beyond the content aimed
to students. For example, consider this ques-
tion, about subtraction in Thames [37]:

Problem 2.10: Mathematical Knowledge for
Teaching Subtraction.
Order these subtraction problems from easiest to
hardest for students learning the standard subtrac-
tion algorithm, and explain the reasons for your or-
dering: (a) 322− 115 (b) 302− 115 (c) 329− 115.

Engaging in this sort of reasoning un-
prompted is an instance of mathematical think-
ing that skillful teaching requires, and which we
do not require of students.

As an example from college algebra, from
[37]: what difficulties might solving the follow-
ing linear system present to a student?

y = 3x− 1
y = −5x + 2.

Students often struggle with working with frac-
tional expressions. If, as in this case, the two
distances are integral and relatively prime, frac-
tions will arise. Here, the y-intercepts have dis-
tance 3 from each other, and the slopes differ by
8. The intersection point is(

3
8

,
1
8

)
.

Because the difference between y-intercepts is
relatively prime to the difference between the
slopes, the x-coordinate will not simplify, and
so a student will need to combine fractions to
solve for the y-coordinate.

On the other hand, suppose the difference be-
tween slopes is a factor of the distance between
intercepts, as in

y = 3x− 7
y = −5x + 9,

whose intersection is

(2,−1).
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Solving for the y-coordinate will only involve
integral computation, which students gener-
ally have less difficulty with. Knowing how
the relationship between distances between y-
intercepts and differences slopes affects the al-
gebraic manipulations is another instance of the
mathematical knowledge entailed in teaching.

Further examples of knowledge entailed in
college algebra teaching are suggested by the
following questions:

1. What kinds of of functions do students have dif-
ficulty finding the inverse of?

2. What are the typical difficulties that students
stumble into when trying to describe the mean-
ings of expressions such as f−1(5), given the
verbal description of f (e.g., f is the height of
a football in feet, t seconds after it was tossed)?

3. Given that students may have difficulty in ex-
pressing the meaning of expressions such as
f−1(5), what are ways of scaffolding the con-
struction of such descriptions?

4. What ideas about inverse functions do each of
the following notions of inverse function ob-
scure or highlight: “undoing”, “swapped inputs
and outputs”, “graph reflected across the line
y = x”?

5. What counterexamples should be chosen to
demonstrate non-invertible functions?

Considerations for these questions may involve
knowledge about symbolic manipulation – for
instance, finding the inverse of f when f (x) =

2x
x−1 poses algebraic difficulties for some stu-
dents; using variables other than x and y, as
students sometimes have difficulty conceiving
of input and output in terms of non-standard
variables; and situations that call for expressing
f−1 in terms of y if students have already solved
for f−1 in terms of another variable such as x.
As well, college algebra teaching entails decid-
ing on representations: whether to use tables,
verbal description, or graphs to communicate
the function; whether or not to use a continuous
function; and being careful about trigonometric
functions, which have defined inverse functions
only after taking a restriction.

Skillfulness around potential minefields is
part of purposeful teaching: the more sensitive
teachers are to differences in the solution steps,
the more effectively they can minimize distrac-

tions, choose examples to illustrate a point, or
decide when to initiate discussion over proce-
dures that are difficult for students but inciden-
tal to the main results.

2.3.1 Knowing a discipline for teaching:
several perspectives

The notion that there is a distinction between
the ways that teachers must know their disci-
pline and the ways that other practitioners must
know the discipline can be traced back to Lee
Shulman.

Although he does not directly address math-
ematics, his writings have influenced the work
on mathematics teacher education, and his
ideas have analogues within mathematics. For
example, Shulman [33] discusses three views on
biology: as a science of molecules, as a science
of ecological systems, and as a science of bio-
logical organisms. He argues that the “well-
prepared biology teacher will recognize these
and alternative forms of organization and the
pedagogical grounds for selecting one under
some circumstances and others under differ-
ent circumstances”(p. 9). Examples from col-
lege algebra of specialized knowledge for teach-
ing might include knowing how to demonstrate
that a inverse function “undoes” an original
function in algebraic, tabular, and graphical ex-
amples; or identifying the functions implicit in
a verbal description of a physical phenomenon.

Shulman’s work was one inspiration for the
work of Deborah Ball on Mathematical Knowl-
edge for Teaching (MKT). In the past three
decades, Ball and her colleagues have con-
ducted research on Mathematical Knowledge
for Teaching (MKT), the mathematics entailed
in the work of teaching (for a more detailed de-
scription of MKT, see, e.g., Ball, Hill, and Bass
[1]). Ball has focused her work on the elemen-
tary level, and proficiency with MKT has been
demonstrated to be measurable and correlated
with student achievement gains for first and
third graders (see Hill, Rowan, and Ball [25]).
One focus of MKT is distinctively mathematical
work of teaching – for example, knowing a va-
riety of ways a concept could be depicted math-
ematically, analyzing student errors and non-
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standard methods, or selecting and sequencing
problems to teach a particular idea.

Patrick Thompson, whose work has primar-
ily examined secondary and collegiate teach-
ing, has proposed a complementary line of re-
search, focusing on mathematical understand-
ings that carry through a sequence of mathe-
matics courses. Thompson motivated this view-
point with three observations: that improving
and sustaining students’ high-quality mathe-
matical learning is the reason that mathematics
educators exist; that most students rarely expe-
rience “significant” mathematics – “ideas that
carry through an instructional sequence, that
are foundational for learning other ideas, and
that play into a network of ideas”; and that
mathematics teachers tend to spend too little
time attending to meaning, wanting to rush to
“condense rich reasoning into translucent sym-
bolism” and get to the methods an main results
of the day (see Silverman and Thompson [34],
or Thompson [38]).

As an example of significant mathematical
ideas, Thompson used base ten numeration. A
student who is fluent with the meaning behind
base ten and place value should be able to, with-
out prior practice on similar problems, reason
through a question such as “How many hun-
dreds are there in 35821?” and – whether they
arrive at 358 or 358.21 – explain their answer.

Thompson [38] argued, “The issue of coher-
ence is always present in any discussion of
ideas. Ideas entail meanings, meanings overlap,
and incoherence in meanings quickly reveals it-
self”(p. 46). The meaning of a mathematical
idea is not simply the definition – for example,
explaining average speed as “distance divided by
time” to someone who does not already under-
stand the concept may not help them recognize
average speed in context. The meaning of aver-
age speed must include the following:

• It involves a complete trip or the anticipation of
a complete trip (i.e., having a start and an end).

• The trip takes or will take a path which involves
moving a definite distance in a definite amount
of time.

• The average speed for that trip is the constant
speed at which someone must travel to cover
the same distance in the same amount of time.

Understanding why this definition translates to
distance “divided by time” requires powerful
understanding of constant rate. “When stu-
dents understand the ideas of average rate of
change and constant rate of change with the
meanings described here they see immediately
the relationships among average rate of change,
constant rate of change, slope, secant to a graph,
tangent to a graph, and the derivative of a func-
tion. They are related by virtue of their common
reliance on meanings of average rate of change
and constant rate of change.”[38, p. 52].

2.3.2 Mathematical knowledge for
leading collegiate mathematical
discussions

On the college level, Natasha Speer has devoted
her research to the professional development
of mathematics instructors and teaching assis-
tants. Speer and Joseph Wagner presented re-
cent research on the mathematical knowledge
entailed in leading discussion-oriented class-
rooms, reported in their work [35]. Two types
of scaffolding that occur in these settings are
are social scaffolding to keep a discussion mov-
ing, and analytic scaffolding, which keeps a dis-
cussion moving toward a mathematically pro-
ductive direction. Ineffective instruction arises
from an inappropriate balance of the two types.
A overemphasis on the social scaffolding can
leave students buzzing with ideas, but not
knowing where they have gone. On the other
hand, blind pursuit of a particular mathemat-
ical direction can lead students to a correct
answer that they do not appreciate or under-
stand. Speer and Wagner focused on the ways
of knowing mathematics to carry out analytic
scaffolding.

Speer and Wagner studied the question,
“What does a teacher need to do and know to be able
to recognize a student’s contribution as productive?”
The setting for their research was a university
class of 21 students. The professor, who is a
mathematician, used the inquiry-oriented cur-
riculum developed by Chris Rasmussen, which
emphasizes conceptual understanding through
group activities, problem solving, and extensive
discussion to formalize the methods and the-



26 CHAPTER 2. WHAT DOES THE LITERATURE SUGGEST?

ory in the class. The mathematician who taught
the class has seen all the data and participated
in the analysis. The data collected includes
video recordings of almost all classes and audio
recordings of de-briefing sessions held after al-
most every class with the mathematician, Speer,
and Wagner.

As an example of the sort of knowledge
needed in practice, consider the following
episode from the professor’s class. The class is
discussing the equation

dP
dt

= 2− P
10 + t

,

which the professor has rewritten as

(10 + t)
dP
dt

+ P = 2(10 + t). (2.1)

By this time, the class had solved problems by
separation of variables, but had not yet seen in-
tegrating factors.1 The goal of the discussion
around the problem was to recognize that the
left hand side of Equation 2.1 was equivalent to
d
dt ((10 + t)P). The following exchange occurs:

Tony: I was thinking initially, like, to
me it looked like a chain rule
kind of thing.

Professor: Chain rule? . . .
Tony: But I couldn’t get anywhere

with that, though.
Ron: Yeah. . . .
Dan: Differentiation by parts?

In any class, and especially in discussion-
oriented classroom, a teacher must in real-time
make sense of what students say. Then, a
teacher must decide whether or not to open a
class conversation around the student’s contri-
bution. There are many judgement calls to be
made.

In the first episode, a professor must decide
whether to pursue the idea of chain rule, differ-
entiation by parts, both, or neither. In this case,
the student Dan who brought up differentiation

1 M(t) is an integrating factor for a differential equation
dP
dt + Q(t)P = N(t) if it satisfies MQ = dM

dt . This is useful
for solving the equation, as multiplying both sides by M
yields M dP

dt + MQP = d
dt (MP) = MN. Then we can solve

for P by integrating both sides.

by parts was recorded by the his table micro-
phone as explaining to his group, “like u dv and
v du and that whole deal.” Indeed the point of
rewriting the equation is that the left hand side
of the equation at hand has a form that can be
derived from the form u dv + v du. Ultimately,
it turned out that the student who brought up
chain rule had the product rule in mind, but
misremembered the name.

The knowing of differential equations and
calculus entailed in interpreting this situation
involves the subject matter knowledge of relat-
ing u dv + v du to the differential equation at
hand; and the pedagogical content knowledge
that students might conflate the chain rule and
product rule as situations involving the differ-
entiation of multiple functions.

In general, analytic scaffolding requires that
the instructor:

• Recognize and make sense of students’ mathe-
matical (correct and incorrect) reasoning.

• Recognize or figure out how students’ ideas
have the potential to contribute to the mathe-
matical goals of the discussion.

• Recognize or figure out how students’ ideas are
relevant to the development of students’ under-
standing of mathematics; and finding a way for
the reasoning to propel their own understand-
ing or their peers’ understanding.

• Prudently select which contributions to pursue
from among all those available.

While discussing this class featuring the
above episode, the professor observed:

“I just don’t understand and haven’t thought enough
about differential equations as a subject to be taught so that
I feel any flexibility at all. ”

Being able to recognize or figure out the po-
tential utility of students’ contributions requires
course-specific pedagogical content knowledge
and subject matter knowledge. Understanding
something “as a subject to be taught” takes ef-
fort and experience.
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Summary and further reading
The professor’s experiences in Speer and Wag-
ner’s study corroborate previous analyses of el-
ementary and secondary content that common
content knowledge is not enough. Mathemat-
ics instructors need to know their discipline “as
a subject to be taught.” The message from the
work on mathematical knowledge for teaching
is that we need greater understanding about the
knowledge needed to support various instruc-
tional practices, and to design professional de-
velopment opportunities to help teachers learn
all the types of knowledge needed for teaching.
At the same time, we need to refine our notion
of what it means for students to comprehend a
mathematical idea.

We have laid out several strands of research
on undergraduate teaching and learning. These
lines of work draw inspiration from various
sources and methods of observation. The
Action-Process framework was influenced by
developmental psychology, especially the work
of Piaget. The covariation framework was con-
structed through careful analysis of cognitive
interviews. Work on problem solving largely
traces back to Pólya’s writings. Mathematical
knowledge for teaching has its predecessors in
the thinking of Shulman, among others.

Below we have listed references for further
reading on these topics. The thinking in these
works can guide us as we grapple with how to
balance the demands of teaching.

◦ } ◦
Articles

• Knowing mathematics for teaching: Who knows
mathematics well enough to teach third grade, and
how can we decide? (Expository article by Deb-
orah Ball, Heather Hill, and Hyman Bass on
MKT).

• Conceptual analysis of mathematical ideas: Some
spadework at the foundations of mathematics edu-
cation. (Paper by Patrick Thompson analyzing
several foundational ideas in the undergraduate
curriculum, including angle, trigonometry, and
rate of change.)

• Beyond mathematical content knowledge: A mathe-
maticians knowledge needed for teaching an inquiry-
oriented differential equations course. (Paper
by Joseph Wagner, Natasha Speer, and Bernd
Rossa, Journal of Mathematical Behavior 26 (2007)
247-266. See especially Section 3 (pp. 253-263),
which describe Rossa’s personal struggles and
goals in teaching this differential equations cur-
riculum.)

• Critical variables in mathematics education: Find-
ings from a survey of the empirical literature. (Ar-
ticle by E. G. Begle from 1979 on the statis-
tical impact of various characteristics on stu-
dent achievement. Published by the Mathemat-
ical Association of American and the National
Council of Teachers of Mathematics.)

• Applying the Science of Learning to the Univer-
sity and Beyond: Teaching for Long-Term Reten-
tion and Transfer. (By Diane Halpern and Mil-
ton Hakel in Change 35(4): 36-41, Jul-Aug 2003.
ERIC abstract: Discusses why experts from
different areas of the learning sciences con-
clude that higher education’s primary goals–
enhancing long-term retention and the transfer
of knowledge–may result from applying known
principles of human learning.)

Books
• How to Solve It: A New Aspect of Mathematical

Method. (A classic, by George Pólya.)

• Making the Connection: Research and Teaching
in Undergraduate Mathematics Education. (An
MAA publication, edited by Marilyn Carlson
and Chris Rasmussen, which brings together
practical pedagogical examples from precalcu-
lus to group theory.)

Media
• Let us teaching guessing. (DVD of materials for

problem solving, by George Pólya.)





CHAPTER 3
Portraits of teaching and mathematics

Suppose an instructor decides to change teach-
ing style from primarily lecture to one driven
by student dialogue. During a lesson follow-
ing this decision, this instructor may grapple
with determining when to tell students a piece
of mathematics– as well as how, what and why.
It is often helpful to see concrete examples of
what others’ pedagogical techniques.

In this section, we sketch portraits of teach-
ing: inquiry questions with “action”, “conse-
quence”, and “reflection”; “advanced mathe-
matics from an elementary standpoint” as used
by the Algebra Project; and leading discus-
sions in an inquiry-oriented differential equa-
tions course.

3.1 Teaching with inquiry, action,
and consequence – Wade Ellis

3.1.1 Overview
Wade Ellis began by presenting four tenets of
instruction: (1) Students learn by doing; (2) Fo-
cused time on task is important; (3) Students
remember what they think about; (4) Context
and relevance help student learn. These three
tenets fit well with the “Action-Consequence-
Reflection Principle”: students should act on
mathematical objects, transparently observe the
consequences of their actions, and then reflect
on the mathematical meaning of those conse-

quences. By using technology or physical ma-
nipulatives to examine mathematical objects,
students are doing; the observations focus the
task; reflecting on the mathematical meaning
helps students remember; and context and rele-
vance is created by the action and observation,
when they are doing something with the math-
ematics. As Ellis observed, “Students find rele-
vant what they do. One of the things that comes
to my mind is the handshake problem.1 Once
they begin working on it, it becomes relevant to
them, because they are very interested in the an-
swer, even though it is not directly influential to
their long-term life goals.”

To carry out the Action-Consequence-
Reflection Principle, Ellis has used “inquiry
questions” that extend mathematical environ-
ments so that students can understand under-
lying mathematics through their own reasoning
and reflection. The inquiry questions help to
create a classroom setting where students are
confident in answering the questions and ul-
timately posing their own. Before class, he
brainstorms questions, and then selects and
sequences them. The questions ask students to

• compare and contrast phenomena;

• predict forward and backward: What is an ac-
tion that can result in . . . / Given this action, . . . ;

1There are 20 people in a room. If everyone shakes
hands with everyone else, how many handshakes will take
place?
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• analyze a relationship: This happens when . . . ;

• make a conjecture;

• provide mathematical reasoning, justify a con-
jecture, or prove a conjecture.

3.1.2 Snapshot
Ellis has developed several pieces of calculator
software. He demonstrated two interactive sys-
tems, one for lines and another for angles.

The system for lines featured two movable
points, p1 and p2, and the line through them. In
his experience, students naturally begin mov-
ing around the points, observing that the line
moves with the points. Inquiry questions for

Figure 3.1. Set-up for inquiry ques-
tions on slope.

this software might include:
• How do you move p2 to get a negative slope?

(prediction)
This is a good question because it involves
something that students can do; and false starts
can generate interesting conversation.

• How do you move p2 to get “no slope”? (pre-
diction)
This question, which was phrased by a math-
ematician at a previous workshop Ellis ran,
is interesting because it piques students with
provocative language while simultaneously
raising a need to improve vague but compelling
language. This question can provide an oppor-
tunity for the students to prompt for precision,
by asking what “no” slope means.

• When does p1 below p2 make the slope nega-
tive? (relationship)

This question could be scaffolded, “Move p1 be-
low p2 make the slope negative”, then asking
if moving p1 below p2 always makes the slope
negative.

• What happens when you move p1 to p2? (pre-
diction and compare/contrast)
Though this is a prediction question, it could
lead to a host of compare and contrast questions
that could be used to set up reasoning about in-
finitesmal quantities.

• Given a point q [a point such that p1 p2q is a
right triangle with legs parallel to the axes], try
to move p2 so that the length of p2q is 10. . . . so
that the length of p2q is 0.75. Is this possible?
(prediction)
If p1 and p2 are constrained to a grid, the possi-
ble lengths of p2q that the students can create
depend on the grid’s specifications. Students
can reason about the grid properties.

• Move below the x-axis in a rigid transformation.
What happens to the coordinates? Why? (rela-
tionship, make a conjecture, provide reasoning)
This question could be a setting for discussing
the invariance of length under rigid transforma-
tions, or the relationship between coordinates
and the axes.

• What is a slope? Why doesn’t it change with the
aspect ratio of the screen? (provide reasoning)

Ellis’s second demonstration featured a cir-
cle with a highlighted arc and the correspond-
ing length of the arc on a number line. As he
prompted the audience for questions, a silence
fell across the room. Ellis quipped, “That’s the
problem. Boy, we think, it’s so much fun, we
can move it around! But if there’s no math, it’s
not going to go anywhere.”

Inquiry questions for this demonstration
might include:

• Does the angle measure change when you
change r? Explain. (compare and contrast)

• What are all the angles that have a sin of 1? (pre-
diction)

• What are all the angles that have a sin of 2? (pre-
diction)

• What angles have the same sin? cos? (conjec-
ture)

• How many r’s are there in the arc? (relationship)
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Figure 3.2. Set-up for inquiry ques-
tions about angle.

Ellis closed his presentation with a graph-
ing calculator of “What’s my rule?” Typically,
teachers use “What’s my rule?” to introduce
functions: students are given a list of pairs of
numbers, where the first number is related to
the second by a function that the students are
asked to figure out and describe. Ellis translated
this to an activity on transformations: as a stu-
dent moves around a point p, a second point,
which is always related to p via a rigid trans-
formation, moves correspondingly. Students at-
tempt to figure out and describe the transforma-
tion.

3.2 Advanced mathematics from
an elementary standpoint –
Bill Crombie and Bob Moses

3.2.1 Overview
Bob Moses comes at math literacy from the
point of view of the black civil rights move-
ment from the 1960’s, and trying to work the
“demand side” of the problem. The Algebra
Project, founded by Moses, is focused on the
bottom quartile of the nation’s students, asking
whether or not these students can be accelerated
rather than remediated.

The Algebra Project began its work at Lanier
High School in Jackson, MS, in 2002. By
state standards, Lanier was near the bottom of
schools in Mississippi; and by national stan-
dards, Mississippi is at the bottom of the coun-

try. They asked students there to do math with
us for 90 minutes a day, for all four years,
and to set several expectations: to graduate
high school, to conquer the state standards and
the ACT, and to enter college ready to do col-
lege math. This cohort of students graduated
in 2006. During this time period, the Alge-
bra Project began working with research mathe-
maticians to spend time in the classroom as well
as on curricular materials.

Bob Moses observed, “You know, you can’t
make the kids do all this math. It’s a coali-
tion of the willing. So if I look at the Algebra
Project and working the demand side, I think
our biggest success has been developing young
people who take on this idea of math literacy.
We have to understand that we have no choice.
We are faced with this transition of technology
from industrial age to technology age. This
brings with it this new literacy: quantitative lit-
eracy. My interest in all of this is that I would
like the standard for all this to be for these kids
to leave high school, and not be fodder for the
criminal justice system.”

Bill Crombie, an Algebra Project developer,
has been looking at the transition from alge-
bra to calculus. Casting his inspiration in
the philosopher Søren Kierkegaard, who wrote
“Life is to be understood backwards, but it is
lived forwards”2, Crombie is interested in what
he calls “backwards curriculum design”.

The learning trajectory, for students prepar-
ing for college in the US, must proceed from
Algebra, Geometry, and Trigonometry to Cal-
culus. Many times, designers consider the skills
necessary from previous classes to be successful
in a capstone class, usually calculus. Yet algebra
is not enough for the understanding of calculus.
The Algebra Project interprets “backward cur-
riculum design” as not just asking about skills
and related concepts, but also asking how much
of that actual content – from the destination of
calculus – can be brought back in a coherent,
true, adequate fashion?

The Algebra Project is interested in a learn-
ing trajectory from high school to college, with
the goal that students – including those in the

2“Livet skal forstås baglaens, men leves forlaens.”
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bottom quartile – are able to make their own ca-
reer choices. There are many reasons for an in-
dividual to pursue or choose another career, but
mathematical under-preparation should not be
one of those reasons.

3.2.2 Snapshot
As an example, Crombie presented the follow-
ing problem, which he has used in teaching
high school students in Geometry and in Alge-
bra II.

Problem 3.1: Area Problem.
Given a parabola y = x2 and a displacement on the
x-axis, determine the rectangle with area equal to the
area between the parabola and the x-axis across the
given displacement.

x

y

Figure 3.3. Diagram for the Area
Problem.

Behind this problem is a characterization of
a discipline – in this case, the study of calculus
– via the questions that it asks, rather than by
the techniques it uses. Crombie characterized
the problems intrinsic to the study of calculus
using the diagram in Figure 3.4.

To tackle the Area Problem, a teacher asks
students to find relationships between a se-
quence of various regions derived from the pic-
ture of the parabola, on their graphing calcula-
tors (see Figure 3.5).

As the students talk through the similarities
they find between the regions, they might notice
that some areas, such as in pictures D and B, are
complementary (relative to the area bounded by
the axes and lines parallel to the axes and going
through the marked point of the parabola).

tangent problem

distance
problem

speed
problem

area problem

Figure 3.4. Defining problems of el-
ementary calculus.

A. B. C.

D. E. F.

G. H. I.

J. K.

.
Figure 3.5. Sequence of regions used
to solve the Area Problem.

How is one picture related to the next? How
are the shaded regions and its area related to the
next? Some of the pictures, such as D and B, are
complementary. The area in picture 6 is equal
to the area in picture 5; sometimes students ar-
gue this by saying that pencil-thin slices of E can
“fall down” to the x-axis to create region F. Not-
ing the equivalence of the areas in 5 and 6 is the
keystone of this activity. As the students move
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through the rest of the pictures, they eventually
piece together that the area under the parabola
is one third the cube of the displacement.

Formally, an argument could be written: Let d
be the displacement, and let A be the area of the
first region, B be the area of the second region,
etc. Note that A = B = C, so D = d3 − C =
d3 − A and E = d3 − 2A. From the equation for
the boundary of the picture in 6, namely y =

−2(x− d)2, we may deduce that 1
2 D = d3− 2A.

The sequence of pictures G through J show that
d3 − E = A, whence A = d3

3 .
The goal is not for the students to commu-

nicate the argument in this formal way; the
above argument was provided simply as a ref-
erence for mathematicians. The point is to bring
an area problem into a context where students
could use Algebra II skills to reason about the
notion of areas under a curve, and therefore to
set up foundations for calculus.

3.3 Inquiry-Oriented Differential
Equations – Chris Rasmussen

3.3.1 Overview
Much of the literature on undergraduate math-
ematics education has focused on the construc-
tion of reasoning or proofs rather than theo-
rem usage. The inquiry-oriented differential
equations curriculum developed and studied
by Chris Rasmussen provides a context for stu-
dents to use classical theorems, such as the ex-
istence and uniqueness of solutions, in a mean-
ingful way.

3.3.2 Snapshot
Rasmussen and Ruan [32] describe the interac-
tions between class members as they grapple
with the solutions of the equations

dP
dt

= 0.3P(1− P
12.5

) (3.1)

which had arisen as a model for a deer popula-
tion, and the equations

dh
dt

= −h (3.2)

and

dh
dt

= −h
1
3 , (3.3)

which had arisen as models for airplane de-
scent.

One goal of this unit was for students to un-
derstand how and why the following existence
and uniqueness theorem was significant:

If f (t, y) is continuous on t ∈ (a, b), y ∈ (c, d), and
there exists a constant L such that | f (t, y) − f (t, z)| ≤
L|y− z| for all y, z ∈ (c, d), then the initial value problem
dy
dt = f (t, y) with y(t0) = y0 where t0 ∈ (a, b) and
y0 ∈ (c, d) has at most one solution for all t ∈ (a, b) and
y(t) ∈ (c, d).

To motivate this theorem, the students needed
to have some intellectual need for finding so-
lution curves, and to debate different proposals
for solution curves. To generalize their ideas,
students needed to have a sense of how their
reasoning could apply to other situations. To
harness physical intuition from the model con-
text, students needed to be comfortable with the
distinction between a model and precise predic-
tion of reality. Finally, students needed to ex-
amine situations both with and without unique
solutions.

A key tool for exploring these equations was
a computer system that plotted slope fields, but
not solution curves. As Rasmussen emphasizes,
this feature of the program was critical to the
success of the pedagogy. The students could
use the slope fields to bolster or argue against
claims made about limiting behavior, but had
to rely upon the equation to argue about the
uniqueness of solution curves around a given
point. The reader may note that of the three
equations above, only Equation 3.3 does not sat-
isfy the conditions for existence and unique-
ness – its solutions have the form h(t) = 0 or
h(t) = 2

√
2

3
√

3
(C − t)

3
2 , so for any point on the

line h = 0, there are two solution curves going
through it. All three equations have an equilib-
rium solution at 0, though it is unstable in Equa-
tion 3.1 and stable in Equation 3.2.

In Equation 3.1, the following features
prompted discussion from students:
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• the slope field around equilibria: whether the
solution curves around the P = 12.5 seemed to
tend toward 12.5, and in what manner.

• the equilibrium at P = 12.5, a non-integral
value.

Some students initially thought that the deer
population would oscillate around P = 12.5,
because “you can’t have half a deer running
around”. This opened up a conversation in
which students eventually reasoned about the
relationship between the solution curves of a
model for population and the actual popula-
tion behavior. As the conversations progressed,
students turned to the mathematical relation-
ship in Equation 3.1, reasoning directly about
the rate of change to find that P = 12.5 was a
stable equilibrium, and that no other solution
curve would intersect it. The deer population
model was the first of many discussions that
honed students’ ability to reason using a combi-
nation of empirical arguments (using the slope
field or the real world situation) and mathemat-
ical reasons.

Later in the semester, the students discussed
the Equations 3.2 and 3.3. A feature that
prompted discussion from students included:

• differences in how the solution curves moved
toward 0, according to exploring the slope field
software, especially how suddenly the vectors
“snapped” to 0 in the slope field for Equation
3.3.

This observation motivated students to solve
the equation analytically and discuss the “rate
of change of the rate of change.” They talked
about the “snapping” of the curves in terms
of changes in the rate of change of the height
over time. Thus the comparison between Equa-
tions 3.2 and 3.3 opened conceptual conversa-
tion about the quantity d

dt f (t, y) in the condi-
tions of the uniqueness and existence theorem,
giving a concrete context for whether or not the
theorem holds.

A conceptual understanding of the existence
and uniqueness theorem motivated these dis-
cussions. Two pieces of evidence suggest suc-
cess in this goal: a post-class survey of the
students’ work found instances where students
cited the theorem even when the problem did

not specifically ask for the theorem; and a quan-
titative study by Rasmussen, Kwon, Allen, Mar-
rongelle, and Burtch [31] found that students
who were taught differential equations using
the inquiry-oriented curriculum were signifi-
cantly more likely to use the theorem. This
study, which looked at approximately 130 stu-
dents in three sites (the midwest and the north-
west of the U.S., and Korea), where each site
hosted a traditional ODE class and a inquiry-
oriented ODE class, found no significant dif-
ferences in the students’ ability to solve rou-
tine problems and an improvement in the IO-
DE students’ ability to reason conceptually.
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Summary and further reading
It is sometimes easier to implement ideas when
we hear about how others have implemented
theirs. We have sketched out three ideas that
were implemented in a variety of contexts. Each
case depends on the teacher’s preparation on
how to use mathematical features and student
ideas, and what responses were likely to arise
from students. By thinking carefully about how
to listen to students and stoke students’ mathe-
matical reasoning, we can continue to refine our
personal teaching practices.

◦ } ◦

Books
• Radical Equations: Civil Rights from Mississippi

to the Algebra Project. (By Robert Moses and
Charles E. Cobb)

• Making the Connection: Research and Teaching
in Undergraduate Mathematics Education. (An
MAA publication, edited by Marilyn Carlson
and Chris Rasmussen, which brings together
practical pedagogical examples from precalcu-
lus to group theory.)

Articles
• Research Sampler. (An occasional online MAA

column on research on undergraduate math-
ematics education. Includes summaries of re-
search and pedagogical interventions on proof,
ordinary differential equations, and problem
solving.)
http://www.maa.org/t_and_l/sampler/
research_sampler.html

• Capitalizing on advances in mathematics and k-12
mathematics education in undergraduate mathe-
matics: An inquiry-oriented approach to differen-
tial equations. (Comparison study of inquiry-
oriented differential equations course with tra-
ditional differential equations course, by Chris
Rasmussen, Oh Nam Kwon, Karen Allen, Karen
Marrongelle and Mark Burtch, in the Asia Pa-
cific Educational Review 7(1): 85-93. (2006))
http://www.springerlink.com/content/
k444461382116983/

Media
• Let us teaching guessing. (DVD of materials for

problem solving, by George Pólya.)

http://www.maa.org/t_and_l/sampler/research_sampler.html
http://www.maa.org/t_and_l/sampler/research_sampler.html
http://www.springerlink.com/content/k444461382116983/
http://www.springerlink.com/content/k444461382116983/




CHAPTER 4
Assessments

Assessment is a perennial responsibility: how
can we pinpoint our students’ backgrounds
and dispositions, whether or what our students
have learned, or how they compare with other
students?

Broadly speaking, the two most common fla-
vors of assessment are “formative” and “sum-
mative”. Formative assessment is diagnostic,
tends to take place during the term, and gives
information for planning subsequent activities
to help form the students as intellectuals, prob-
lem solvers, or towards a instructors’ learning
goals. Formative assessment is often contrasted
with summative assessment, which takes place
at the end of a unit, and gives information for
summarizing what students have learned. In this
sense, a midterm examination could be seen as
both formative and summative: it may help an
instructor recalibrate goals for the second half
of the term as well as lay out what students
learned in the first half of the term. On the
other hand, questions asked with clickers dur-
ing a particular lesson might be more formative
than summative – the students’ collective an-
swers serve more to structure the ensuing dis-
cussion than as a final report of the students’
mastery of the subject. The point is that whether
assessment is formative or summative depends
on how an instructor uses the information – and
that no matter what form the assessment takes,
it should match the instructor’s ultimate goals.

Whenever using an assessment instrument,
a primary concern is whether or not the re-
sults accurately represent what the instrument
set out to evaluate. An unintentionally mis-
leading phrase may throw students off for rea-
sons other than their mathematical skills. In this
case, the students’ collective answers would not
be very informative as either formative or sum-
mative assessment. In tension to the concern of
validity is the pragmatic issue of scalability: re-
alistically, an assessment instrument should be
easy to use, with minimized time investment
on the part of the instructor. The quickest as-
sessments use multiple choice items; but when
we only know whether students answered (a)
or (b) or (c), we must be sure that these an-
swers accurately represent the misconceptions
we think they capture. Using written exams
ameliorates this to some extent – reading stu-
dent explanations gives more insight into how
students were thinking. However, most instruc-
tors do not have time to read through hundreds
of written answers. The usual way that this
is handled by the developers of assessments is
through pilot testing. In these trial runs, stu-
dents are either interviewed or asked to elab-
orate upon why they chose or eliminated par-
ticular answers. Based on the results of this
in-depth information, developers revise assess-
ment items. Each project discussed in this chap-
ter went through such a vetting process.
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Below, we highlight the assessment endeav-
ors of Maria Terrell, who heads the Good Ques-
tions Project, and of Jerome Epstein, who is
known for his work on the Basic Skills Diag-
nostic Test and the Calculus Concept Inventory
Exam. Before describing their work, we be-
gin outside of mathematics, in physics. The
work associated to the Force Concept Inventory
has had wide influence on the physics reform
movements, and inspired both Terrell and Ep-
stein.

In each section, we give the personal or intel-
lectual context in which the projects were con-
ceived, example assessment questions where
possible, and selected findings.

4.1 The Force Concept Inventory
and related diagnostic tests

4.1.1 Initial development
In the mid 1980’s, Ibrahim Halloun and David
Hestenes were interested to see how students’
common sense theories of physics influenced
their ability to learn physics. These observa-
tions prompted them to create the Mechan-
ics Diagnostic Test, an multiple-choice instru-
ment to assess students’ common sense con-
cepts about motion. Halloun and Hestenes
wrote their instrument to reflect two general
categories: principles of motion, corresponding
to Newton’s Laws of Motion; and influences
on motion, corresponding to specific laws of
force in Newtonian mechanics. In the 1990’s,
Hestenes worked with Wells [23] to create the
Mechanics Baseline Test, and with Wells and
Swackhamer [24] to extend the Mechanics Diag-
nostic Test to the now well-known Force Con-
cept Inventory (FCI). They focused on the no-
tion of force as a foundational concept for learn-
ing physics for which students come in with
many erroneous ways of thinking. A report of
the concepts in the inventory can be found in
[24]. Here, we focus on the findings by Hal-
loun and Hestenes, as they set in motion much
of physics education reform at the college level
today.

Halloun and Hestenes [22][21] found that stu-
dents may believe that the trajectory of a rocket
firing its engine is similar to the parabolic trajec-
tory of a ball, not recognizing that the signature
trajectory of a ball is due to constant force. Stu-
dents may also believe that an object subjected
to constant force will move at constant speed, or
that the time interval needed to travel a partic-
ular distance under a particular constant force
is exactly inversely proportional to the magni-
tude of the force. Each of the above examples
points to concepts that are covered in almost
any standard physics course in mechanics – so
one might optimistically predict that after such
a course, most students would apply the ideas
learned from class to analyze these situations
rather than relying on incorrect common sense
theories.

Here is an example item from Halloun and
Hestenes’ work (emphasis as in the original):

Problem 4.1: Mechanics Diagnostic Problem.
The accompanying figure shows a ball thrown ver-
tically upwards from point A. The ball reaches a
point higher than C. B is a point halfway between
A and C (i.e., AB = BC). Ignoring air resistance:

What is the speed of the ball as it passes point C
compared to its speed as it passes point B?

(a) Half its speed at point B
(b) Smaller than that speed, but not necessarily

half of it
(c) Equal its speed at point B
(d) Twice its speed at point B
(e) Greater than that speed, but not twice as great.

A

B

C

(Reprinted with permission from Halloun, I.A. & Hestenes, D.
American Journal of Physics 53(11), pp. 1043-1055 (November
1985). c©1985, American Association of Physics Teachers.)
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Halloun and Hestenes [22] found that, in-
deed, “(1) Common sense beliefs about motion
are generally incompatible with Newtonian the-
ory. Consequently, there is a tendency for stu-
dents to systematically misinterpret material in
introductory physics courses.” However, con-
trary to the hope that an introductory course
might correct students’ misconceptions about
the physical world, “(2) Common sense beliefs
are very stable, and conventional physics in-
struction does little to change them.” These
findings corroborate the conclusions of prior
work done by physics education researchers;
the work of Halloun and Hestenes is distin-
guished by its large sample size and use of a
massively-scalable instrument.

Halloun and Hestenes collected pre- and
post-test performance from nearly 1500 stu-
dents in introductory level college physics
classes at Arizona State University, and 80
students beginning physics at a nearby high
school. They additionally collected informa-
tion on a mathematics pretest performance. In
analysing correlations between their data, Hal-
loun and Hestenes found that “pretest scores
are consistent across different student popula-
tions”, “mechanics and mathematics pretest as-
sess independent components of a student’s ini-
tial knowledge state”, and “the two pretests
have higher predictive validity for student
course performance than all other documented
variables” including gender, age, academic ma-
jor, and background courses in science and
mathematics. Students come in with strong
misconceptions about physics that are not eas-
ily dislodged.

4.1.2 Interactive Engagement methods
With scalable tests and compelling results by
Hestenes and his colleagues, a natural next
research question was: is there an instruc-
tional method that might help students over-
come erroneous common sense theories about
physics? In the 1990’s, Richard Hake used the
Mechanics Baseline Test, the Mechanics Diag-
nostic Test and the Force Concept Inventory to
study the effectiveness of “interactive engage-
ment” methods.

Hake was interested in methods “designed
at least in part to promote conceptual under-
standing through interactive engagement of
students in heads-on (always) and hands-on
(usually) activities which yield immediate feed-
back through discussion and peers and/or in-
structors, all as judged by their literature de-
scriptions”, in contrast to those “relying primar-
ily on passive-student lectures, recipe labs, and
algorithmic-problem exams”, which he terms
“traditional”. As examples of interactive en-
gagement, Hake considers courses at The Ohio
State University, Harvard University, and In-
diana University. These universities used a
combination of Overview Case Studies, Ac-
tive Learning Problem Sets, ConcepTests, SDI
labs, cooperative group problem solving, and
Minute papers (see Hake [20] for references to
these materials).

To measure the effectiveness of interactive en-
gagement methods against traditional methods,
Hake defines the average normalized gain g for a
course as the ratio of average percentage gain
G to the maximum possible average percentage
gain Gmax:

g =
G

Gmax
=

S f − Si

100− Si
(4.1)

where S f and Si refer to the percentage scored
on the final and initial assessment.

Hake analyzed the average normalized gain
g for 62 schools who replied to his requests
for pre- and post-FCI test data. He classified
courses as using interactive engagement meth-
ods or traditional methods via survey responses
on activities of students and teaching methods.
The resulting graphs of gains versus pretest
scores strongly suggested that interactive en-
gagement methods influence students’ reason-
ing in physics more so than traditional methods
do. This picture is corroborated by the collec-
tive average gains. Of the 62 schools reporting
data to Hake, 14 were classified as traditional
and 48 as using interactive-engagement meth-
ods. The 14 traditional courses exhibited an av-
erage gain of 0.23 ± 0.04, in sharp contrast to
the 48 interactive engagement courses’ average
gain of 0.48± 0.14 – a nearly two-standard de-
viation difference.
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Table 4.1. Average diagnostic test results by course and professor. Maximum
scores: 36 (physics), 33 (mathematics), including five calculus items which were
omitted in College Physics.

(Reprinted with permission from Halloun, I.A. & Hestenes, D. American Journal of Physics 53(11),
pp. 1043-1055 (November 1985). c©1985, American Association of Physics Teachers.)

Table 4.2. Force Concept Inventory pre- and post-test data. (a)%〈Gain〉 vs.
%〈Pre-test〉 score on the conceptual Mechanics Diagnostic (MD) or Force Concept
Inventory (FCI) tests for 14 high-school courses enrolling a total of N = 1113
students. (b) %〈Gain〉 vs. %〈Pre-test〉 score on the conceptual MD or FCI tests
for 16 college courses enrolling a total of N = 597 students. (c) %〈Gain〉 vs.
%〈Pre-test〉 score on the conceptual MD or FCI tests for 32 university courses
enrolling a total N = 4832 students.

(a) (b) (c)

(Reprinted with permission from Hake, R.R. American Journal of Physics 66(1), pp. 66-74
(January 1998). c©1998, American Association of Physics Teachers.)
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4.1.3 Peer instruction methods
In recent years, Eric Mazur’s work has become
recognized as an exemplar in the scholarship of
teaching and learning. His model of “Peer In-
struction” is well-specified, his students show
gains in qualitative and quantitative reason-
ing about physical phenomena, and his instruc-
tional methods evaluate positively.

In his speech “Confessions of a Converted
Lecturer”, Mazur relates the chain of events that
an article on the Force Concept Inventory set
in motion. The article he read had concluded
no matter who the teacher was – even if they
were teaching award winners – there was essen-
tially no gain. The students were not overcom-
ing their initial misconceptions. He reflects,

“At that time, we were doing rotational dynamics, the
students had to do triple integrals to calculate dynamics.
There was no comparison between what we were doing and
the Force Concept Inventory, they were way beyond it. . . .

“I was worried that my students would be offended
by the simplicity of this test once they would start on it.
Oh boy, were my worries quickly dispelled. Hardly had
the first group of students taken their seats in the class-
room when one student raised her hand, she said, ‘Profes-
sor Mazur, how should we answer these questions? Ac-
cording to the way you have taught us, or how we usually
think?’ I had no idea how to answer that question.”

After a damning performance by those students
on the Force Concept Inventory, Mazur began to
develop a method he now calls Peer Instruction,
which partitions a class into a series of short
presentations each centered around a physical
idea and followed by:

• a conceptual question (“ConcepTest” question)
related to the idea

• a one-minute or two-minute period in which
students prepare individual answers to share
with the instructor (via clickers, flashcards, or
other method which is more visible to the in-
structor than to fellow students)

• a two to four minute period in which students
share their answers and reasoning with peers

• a poll of students’ final answers to the question,
followed by an explanation by the instructor of
the answer.

As support for this basic structure, Crouch
and Mazur [13] describe gradual refinements to

their pedagogy that they developed in the first
decade of using Peer Instruction.

Here is an example ConcepTest:

Problem 4.2: ConcepTest (Blood Platelets).
A blood platelet drifts along with the flow of blood
through an artery that is partially blocked by de-
posits.

As the platelet moves from the narrow region to the
wider region, its speed: (a) increases (b) remains the
same (c) decreases.
(Reprinted with permission from Crouch, C.H. & Mazur, E.,
American Journal of Physics 69(9), pp. 970-977 (September
2001). c©2001, American Association of Physics Teachers.)

(The answer is that the speed decreases.)
Mazur found that the average normalized

gain g for the Force Concept Inventory, defined
as in Hake’s study (Equation 4.1), doubled from
1990 to 1991, the transition between traditional
instruction and the Peer Instruction method.

The Force Concept Inventory represents con-
ceptual mastery. Mazur also recorded gains in
his students’ quantitative problem solving abil-
ity, represented by performance on the Mechan-
ics Baseline Test. Mazur’s results are taken from
sections taught by different instructors, and are
consistent with results from Hake’s study [20],
suggesting that the gain can be attributed to the
instructor’s choice of method rather than the in-
structor or the location.

4.2 The Basic Skills Diagnostic
Test and the Calculus Concept
Inventory

4.2.1 Basic Skills Diagnostic Test
Jerome Epstein developed the Basic Skills Di-
agnostic Test (BSDT) out of a laboratory pro-
gram in 1980 with an NSF grant for working
with a group of entering college students “who
tested as having the mathematical and concep-
tual level of a 10 year old”. At the time, he
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Table 4.3. Peer Instruction results using the Force Concept Inventory and Me-
chanics Baseline Test. The FCI pretest was administered on the first day of class;
in 1990 no pre-test was given, so the average of the 1991-1994 pre-test is listed.
In 1995 the 30-question revised version was introduced. In 1999 no pretest was
given so the average data of the 1998 and 2000 pre-test is listed. The FCI post-
test was administered after two months of instruction, except in 1998 and 1999,
when it was administered the first week of the following semester to all students
enrolled in the second-semester course (electricity and magnetism). The MBT was
administered during the last week of the semester after all mechanics instruction
had been completed. For years other than 1990 and 1999, scores are reported for
matched samples for FCI pre- and post-test and MBT. No data are available for
1992 (the second author was on sabbatical) and no MBT data are available for
1999.

(Reprinted with permission from Crouch, C.H. & Mazur, E., American Journal of Physics 69(9),
pp. 970-977 (September 2001). c©2001, American Association of Physics Teachers.)

believed that he was working with an outlier
group. The BSDT, which examines pre-algebra
and algebra concepts, has now been adminis-
tered to thousands of students in high school
and college. What Epstein has concluded over
time, as more institutions generate data on the
BSDT, is that there are many students of compa-
rable level who are hidden from our view – and
that the students he worked with in 1980 may
not be as much of an exception as we might like
to think.

Themes among the BSDT data suggest that
areas of particular difficulty include place
value, proportional reasoning, and the equiva-
lent fractions.

We present example questions, discuss po-
tential interpretations of the students’ errors,
and tabulate performance data on these items.
For reasons of protecting the validity of test re-

sults, we have obscured some features of the
questions. Interested readers can obtain the ac-
tual Basic Skills Diagnostic Test by contacting
Jerome Epstein at jerepst@att.net and agreeing
to test security conditions.

From the perspective of understanding learn-
ers, the data on these questions is interesting for
the information it encodes about the sources of
student ways of thinking. From the perspective
of assessment item writ in, the questions are in-
teresting in how they are crafted to detect error.

Problem 4.3: Place Value.
Put the following numbers in order from smallest to
largest. n1 n2 · · · nk

(In an actual test setting, n1, n2, . . . , nk are re-
placed with a finite set of numbers.)
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The numbers include an assortment of care-
fully chosen fractions, improper fractions, and
decimals designed around common misconcep-
tions and rote strategies.

For example, a common error is concluding
that a/b is less than c/d when as a < c and
b < d. There are two misconceptions that may
contribute to such an error. Students may not
understand the role of the numerator and de-
nominator of a fraction, and students may not
realize that a fraction can represent a number
greater than 1.

Problem 4.4: Proportional Reasoning (Piaget’s
Shadow Problem).
(Piaget) Yesterday an m-foot tall man was walking
home. His shadow on the ground was sm feet long.
At the same time, a tree next to him cast a shadow st
feet long. How tall was the tree?

(In an actual test setting, m, sm, and st are
replaced with numbers.) The most common
wrong answer is st + (m − sm) feet. As Pi-
aget noted, students begin by “thinking addi-
tively” – that is, because the difference between
the man’s height and his shadow was m − sm
feet, students erroneously apply this difference
to the relationship between the tree’s height
and its shadow. This problem, which assesses
whether or not a student is able to think propor-
tionally, has an extraordinarily high correlation
with success in a college algebra course. When
graphing the distributions of students who an-
swer incorrectly and who answer correctly over
their level of success in a college algebra class,
two Gaussians result with very little overlap.
As Epstein remarked, “It is as though the stu-
dents who answer this question correctly are in

a different mathematical world than those who
do not.”

Another common misconception arises with
linear equations with fractional coefficients and
a constant term (cf. the discussion about stu-
dents’ difficulties with fractions and linear sys-
tems in Section 2.3).

The above questions concern pre-algebraic
and algebraic skills where faulty yet common
modes of thinking can cause error. The skills
represented are foundational for success in
mathematics. The results of the Basic Skills Di-
agnostic Test are sobering, and a call to develop
pedagogies that will help students overcome er-
roneous ways of operating with numbers and
algebra, as well as the tendency to fall back
upon rote procedures pursued without under-
standing.

4.2.2 Calculus Concept Inventory
The Calculus Concept Inventory (CCI) is di-
rectly inspired by the Force Concept Inventory.
In Epstein’s words, “There is a basic level of
conceptual understanding that [students] must
have, or anything that they have learned for
the final exam will disappear.” The CCI seeks
to assess this understanding. Epstein received
NSF funding in 2004-2007 for initial develop-
ment and evaluation, and has collected data on
the CCI ever since. The CCI has proved popu-
lar, with roughly one request per week from the
beginning of the project.

Themes among the data for performance sug-
gest that students have difficulty with reason-
ing exponentially as opposed to linearly. As
well, the data from the CCI corroborate the
BSDT’s data that students have difficulty think-
ing proportionally as opposed to additively. We
present examples of each.

Problem 4.5: Exponential Reasoning.
We are growing a population of bacteria in a jar. At
11:00 a.m., there is one bacterium in the jar. The
bacteria divide once every minute so that the popu-
lation doubles every minute. At 12:00 noon, the jar
is full. At what time was the jar half full? (a) 11:01
(b) 11:15 (c) 11:30 (d) 11:45 (e) 11:59.
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Table 4.4. Percentages denote the percentage of students in the course obtaining
the correct answer to the questions concerning place value, proportional reasoning,
and linear equations.

School Course Place Val. Proport. Eqns.
Hofstra CS-005: 63% 51% 26%

CS-015: 84% 69% 50%
CS-132: 85% 85% 77%

Wellesley WRT-125: 65% 72% 87%
NYU GenPhys: 80% 79% 69%

Astron: 80% 71% 54%.

CS-005: Overview of Computer Science
CS-015: Fundamentals of Computer Science I:

Problem Solving and Program Design
CS-132: Computational Modeling
WRT-125: Introductory writing course
GenPhys: General Physics I (for non-physics majors)
Astron: Origins of Astronomy.

The most common wrong answer is (c),
which suggests that instead of reasoning about
an exponential situation, students are falling
back upon familiar linear patterns: 11:30 is
halfway between the start and end times of the
scenario, and the question asks when the popu-
lation is halfway to the end population.

Problem 4.6: Proportional Reasoning (Num-
bers Close to Zero).
(Terrell) A number close to 0 is divided by a number
close to, but not equal to 0. The result (a) is a number
close to 0, (b) is a number close to 1, (c) is a very
big number, (d) could be any number, (e) is not a
number.

In the performance data on this question,
one wrong answer stands out: (b). It is as
though students reason that the numbers are
close to identical because they are “running out
of room” close to 0. This is symptomatic of Pi-
aget’s description of students who think addi-
tively, but who cannot yet think proportionally.
Questions that ask students to think proportion-
ally, and where students exhibit additive think-
ing, show remarkably little gain from a semester
of traditional instruction.

Consistent with the hypothesis tested by
Hake and Mazur, interactive-engagement sec-
tions show dramatically more gain on this ques-
tion than traditional lecture instruction – ap-

proximately two standard deviations. More-
over, as we will see in the next section, this
question was enormously productive as a Peer
Instruction question in the Good Questions
Project data.

Thus additive reasoning in calculus seems to
play a similar role to erroneous common sense
theories in physics (see Section 4.1.1). This anal-
ogy holds in two ways: first, in both cases, there
is a tendency for students to fall back on linear
patterns instead of reasoning about the situa-
tion; and second, in both cases, the only known
way for a course to dislodge the misconception
is through substantive discussion amongst stu-
dents. The discussion must happen after engag-
ing with a question that gives a common intel-
lectual experience.

In Hake’s and Mazur’s studies, interactive
engagement results in a two standard devi-
ation difference above traditional lecture sec-
tions. The most dramatic result in mathemat-
ics so far has taken place at the University of
Michigan, with roughly 1500 students across
55 sections of Calculus, and with normalized
average gains between 0.27 and 0.40. In con-
trast, the typical gain in CCI data for lecture-
based classes is between 0.05 and 0.25. The
department at the University of Michigan uses
lesson plans and classroom seating that neces-
sitate at least minimal interactive engagement
methods. Though this gain size is promising,
it is still less than the gains seen in recent stud-
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ies of physics courses; on the other hand, the
physics movement toward interactive engage-
ment precedes the mathematics movement by
nearly two decades. The results so far indicate
that substantive interaction amongst students is
critical for growth in their powers of reasoning.

4.3 The Good Questions Project
The Good Questions Project, led by Maria
Terrell, adapts the ideas behind Eric Mazur’s
ConcepTests and Peer Instruction for freshman
physics, to classes in the freshman calculus for
liberal arts majors. About seeing Mazur’s ques-
tions for the first time, Terrell [36, p. 5] writes,

I was excited. I wondered if it would be possible
to craft such questions in calculus; questions that were
non-computational, that were related to students experi-
ences, questions that were memorable, and surprising, that
helped build on students partial understanding. I won-
dered if instructors would take time out from class to use
good questions if they were attractive, if they led to ac-
tive lively discussions, and if they helped students connect
their intuitive understanding of the world to the concepts
of calculus.

A group at Cornell resolved to write such ques-
tions, and the Good Questions Project was born.

4.3.1 Fall 2003 Study
A Good Question is intended to:

• stimulate students’ interest and curiosity in
mathematics

• help students monitor their understanding

• offer students frequent opportunities to make
conjectures and argue about their validity

• draw on students’ prior knowledge, under-
standing, and/or misunderstanding

• provides instructors a tool for frequent for-
mative assessments of what their students are
learning

• support instructors’ efforts to foster an active
learning environment.

Miller, Santana-Vega, and Terrell [27] exam-
ined the effect of peer instruction using a set
of “Good Questions” in Fall 2003, after a pilot

phase the previous spring. In Fall 2003, Ter-
rell invited instructors of a large, multi-section
calculus course to use these questions. There
were 17 sections of 25-30 students each, and
14 instructors. They informed the instructors
through a short series of workshops of Mazur’s
success and how the Good Questions were in-
tended as an analogue of the ConcepTests. As
Terrell remarks of her instructors, “We knew
that we couldn’t tell people how to teach. Ev-
eryone has their own ideas on how students
learn, and give examples, but when they close
the door they will do what they want to do.”

Terrell’s team gathered data on the instruc-
tors use and non-use of the questions. On sur-
vey questions throughout the semester, they
asked which questions the instructors used. The
use of the Good Questions were facilitated by
loading the questions onto a laptop that the in-
structors took to class, and the use of clickers, to
record which questions were used as well as the
distribution of answers from the students. Ad-
ditionally, volunteer students were interviewed
on their reaction to the Peer Instruction method
and incorporation of the Good Questions.

Instructors’ usage of Good Questions fell into
four profiles:

• Deep: Good Questions used 1-4 days per week
with peer discussion, and many Deep/Probing
questions. (These questions are distinguished
by their ability in the pilot trial to elicit discus-
sions about the conditions of theorems, or the
importance of precise language in mathemat-
ics.)

• Heavy plus Peer: Good Questions used 3-4 days
per week with regular use of peer discussion.

• Heavy plus Low Peer: Good Questions used 3-4
days per week, with minimal or no use of peer
discussion.

• Light to Nil and Low Peer: Good Questions
rarely or not at all used, with no use of peer dis-
cussion.

The profiles were determined by a combina-
tion of student surveys, instructor surveys, and
recorded histogram data from the laptops. The
surveys asked for information about the length
and nature of discussions, and to what extent
Mazur’s model for peer instruction was fol-
lowed. Where there was a disparity between



46 CHAPTER 4. ASSESSMENTS

student reports and instructor reports, Terrell’s
team used the student reports.

To relate the instructor’s usage to perfor-
mance, Terrell’s team gathered data on the stu-
dents’ common preliminary and final exams,
which included both conceptual and procedu-
ral questions.

The data suggest that different profiles af-
fected student learning, with the students of in-
structors who fit the Deep profile attaining a
median 10 points higher than the students of in-
structors who fit the Light to Nil profile. Inter-
estingly, the median was lowest from students
of instructors who fit the Heavy plus Low Peer
profile. This suggests that peer discussion is a
critical piece of the intervention, and that when
instructors who want to engage in peer discus-
sion of good questions are given the resources
to do so, their students benefit.

A common concern about interventions fo-
cusing on conceptual problems is low ability in
relatively procedural problems. However, Ter-
rell’s data did not indicate any such risk. In fact,
students in lower SAT math bands gained more
on their performance on procedural problems
than on conceptual problems. An interviewed
student suggested, “If you understand the con-
cepts, it can help you with the numbers.”

Overall, the interviewed students reacted
positively to Peer Instruction. In the words of
one student, “I liked it. First of all I thought
it made the learning more enjoyable than just
watching a lecture and then pulling out a pen
maybe and finding the answer. I thought it was
more valuable to look at it from a more analyt-
ical approach, and to go to take a question, and
think about it for a while, and then respond to
it. It was fun to talk about it, with other people,
it helps you work out your own logic. It helps
you figure out if there were any flaws in your
logic, help you fill in a whole.” Another student
commented, “This method forces you to en-
gage, forces you to think, and forces you to get
into what you are doing. Because even if you
put any answer, you don’t have to think, well
maybe no one else has my answer . . . there’s
safety in your answer.” These students felt they

benefited from the safety, the anonymity, and
the expectation to articulate their conclusions.

4.3.2 Sample Good Questions

Problem 4.7: Height Problem.
True or False: You were once exactly π feet tall.

In Terrell’s Fall 2003 data for sections with Peer
Instruction, a typical distribution of votes was
40% of students selecting True for their first
vote, and then 85% of students selecting True
in the re-vote.

This question can incite students to defend
their thinking by elaborating their assumptions.
Some students will argue that because atoms
are discrete, a person may skip over the height
of π feet tall. Others may argue that human
growth should be thought of as a continuous
process. This discussion sets a context for in-
troducing the Intermediate Value Theorem and
whether or not the hypotheses of the theorem
are satisfied in a particular situation.

Interestingly, when Terrell’s instructors asked
the same question, with π replaced by 3, the
data showed very different vote distributions.
Students voted 80%, then 90% for True.

As mentioned previously, another example of
a Good Question is Problem 4.6 from Section
4.2.2, about division of numbers close to zero.
Students’ votes were initially spread across all
options. At 31%, option (c) held the most
votes. Only 20% opted for the correct answer
of (d). Upon revoting, 98% students chose (d)
and 2% choose (c), with 0% across the other op-
tions. The initial spread advantages Peer In-
struction: the idea that quotient “could be any
number” comes out through group discussion,
when students share different examples. Dis-
cussion around this question can be used to in-
troduce limits with indeterminate forms.

4.3.3 Sample concepts unaffected by
group discussion

While the Good Questions helped dislodge stu-
dent misconceptions, Terrell’s team also found
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Table 4.5. Results of the Good Questions Project.

examples of questions whose votes for incorrect
answers seemed largely unaffected by peer dis-
cussion, such as the following.

Problem 4.8: Repeating 9’s.
True or False: 0.999 · · · = 1.

Here, 50% of students, then 45%, voted for
the correct answer of True. Some problems such
as this one were eliminated. However, a few
problems were kept to help instructors see how
deeply students held some partial understand-
ings of decimals and limits, for example:

Problem 4.9: Adding Irrationals.
If p = .39393939 . . . and q = 0.676677666777 . . . ,
then p + q is (a) not defined because the sum of a ra-
tional and irrational number is not defined, (b) not a
number because not all infinite decimals are number,
(c) is defined using successively better approxima-
tions, (d) is not a number because the pattern may
not be predictable indefinitely.

Initial distributions resembled re-vote distri-
butions: each option received 8%-41% of ini-
tial votes, with approximately 20% selecting the
correct answer of (c). The data from decimal
problems suggest that many students have an
underdeveloped sense of “equals” for limits,
despite demonstrating some intuition. When

prompted, “Suppose I was your boss and I said
you have to have something in 15 minutes,”
students said that they would “go out really
far” and calculate an approximation. They re-
marked that they could “always get it as close
as you want it, as long as you tell me how close
you want it” – thus hinting at the ε-δ notion of
continuity. However, until students understand
that when it comes to real numbers, equals is a
process, it will be difficult for them to connect
the definition of a limit with intuition for partic-
ular limits (cf. Section 2.1.1).

The pilot data on questions addressing num-
ber and decimal concepts suggest that students
have conceptual gaps in their understanding
the real numbers, and that K-20 students would
benefit from a better articulation of concepts
from the arithmetic of real numbers prerequisite
to the study of calculus.
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Summary and further reading
The Force Concept Inventory, Mechanics
Baseline Test, and Mechanics Diagnostic Test
sparked a wave of physics education research
because their questions were created with care,
the initial results provocative, and the imple-
mentation scalable. Mazur’s work, which used
the Force Concept Inventory and Mechanics
Baseline Test as measures, is valuable for its
clear pedagogical methods. Although we do
not yet have published, large-scale results on
the analogues of these physics education find-
ings in mathematics, the work by Terrell and
Epstein is well worth further exploration and
implementation. Below are articles for further
reading in the physics and mathematics edu-
cation literature relevant to the material in this
chapter.

◦ } ◦

Articles related to the Force Concept Inventory
• The initial knowledge state of college physics stu-

dents. Article by Ibrahim Halloun and David
Hestenes introducing the Mechanics Diagnostic
Test. In American Journal of Physics 53(11), 1043-
1048 (1985).

• Peer Instruction: Ten years of experience and re-
sults. Article by Catherine Crouch and Eric
Mazur on pedagogical support for implement-
ing Peer Instruction. In American Journal of
Physics 69(9):970-977 (2001)

• Professors as physics students: What can they teach
us? Article by Sheila Tobias and Eric Mazur,
reporting on a study of 10 non-physical sci-
ence professors who studied Newton’s laws
alongside approximately 300 students in a non-
calculus-based introductory physics course. In
American Journal of Physics 56(9): 786-794 (1988).

• Resource letter on physics education research. Re-
view article by Lillian McDermott and Edward
Redish on learning and teaching of physics.
Contains extensive list of bibliographies on sci-
ence education research regarding instructional
strategies targeting conceptual understanding,
analysis of assessment instruments. In American
Journal of Physics 67(9): 755-767 (1999).

Articles on the Calculus Concept Inventory
• The calculus concept inventory. Article by Jerome

Epstein in Proceedings of STEM Assessment,
Washington, D.C. (2006), edited by Donald
Deed and Bruce Callen.
http://www.openwatermedia.com/downloads/
STEM(for-posting).pdf#page=64

Articles on the Good Questions Project
• Asking good questions in the mathematics classroom.

Prepared by Maria Terrell for the AMS-MER
Workshop “Excellence in Undergraduate Math-
ematics: Mathematics for Teachers and Mathe-
matics for Teaching,” Ithaca College, New York,
March 13-16, 2003.

• Can good questions and peer discussion improve cal-
culus instruction? Article by Robyn Miller, Ev-
erilis Santana-Vega, and Maria Terrell report-
ing on the Good Questions Project, in PRIMUS
XVI(3): 193-200 (2006).

http://www.openwatermedia.com/downloads/STEM(for-posting).pdf#page=64
http://www.openwatermedia.com/downloads/STEM(for-posting).pdf#page=64


CHAPTER 5
End Notes

Two themes that emerge from the preceding
chapters are the work of seeing and listening. To
refine undergraduate mathematics education,
we must, like a person peering through a mi-
croscope, dial into the details within mathemat-
ical concepts and pedagogical methods. To sup-
port the work of seeing, we must be able to hear
students when they reveal pieces of their ways
of thinking or previous experiences. What stu-
dents say gives us a context for observing the
details of our own instruction and the coherence
of our institutions’ mathematical instruction.

This workshop launched with a comparison
of collegiate and secondary course-taking pat-
terns, presenting a stark contrast between the
dramatic trend of mathematical advancement
among high school students and the relatively
flatlined enrollments in collegiate mathematics
classes. More disturbingly, there are anecdotes
of students who excel in their high school’s AP
Calculus class, yet place into precalculus upon
entering college, or who leave with a visceral
dislike of mathematics. David Bressoud pushed
the mathematical community to gather more
and better information about the high school
students who take calculus, what happens in
their classes, and the benefits and dangers to fu-
ture mathematical success of taking calculus in
high school. Moreover, Bressoud advocates a
re-examination of first-year college mathemat-
ics, to build upon the skills and knowledge that

students carry with them to college. Such a call
requires that we identify these skills and knowl-
edge, which in turn entails careful observation
of and listening to our students.

“Voices of the Partner Disciplines”, a Cur-
riculum Foundations project sponsored by
the MAA, synthesizes conversations between
mathematicians and colleagues from STEM
fields on what they would like to see in math-
ematics courses their students take during the
first two years of college. To see the math-
ematical concepts integral to other disciplines
within our curricula, the Curriculum Founda-
tions project encourages mathematics faculty to
meet with faculty of fellow STEM fields at their
institution. To initiate the reforms supported by
the Curriculum Foundations project on a large
scale, mathematical biologist John Jungck ar-
gues that we need to “cross the chasm.” We
must be able to work with, convince, listen
and talk to departments outside our own and
schools outside our own.

The Curriculum Foundations workshops
were unanimous in their emphasis on concep-
tual understanding, in addition to computa-
tional skills. Jerome Epstein, whose work on
the Basic Skills Diagnostic Test and the Calculus
Concept Inventory has revealed an impover-
ished understanding of foundational notions
such as place value and fractions on the part
of some college students, echoed this point.
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He urged us to continue investigations into
pedagogical methods that help our students
reorient their learned ways of thinking about
mathematics from memorized routines to rea-
soned consideration of mathematical concepts.
If we take a cue from the research in physics
education, then such pedagogies might involve
instructors setting up opportunities for students
to listen to each others’ thoughts on mathemat-
ical concepts. As work of Maria Terrell, the
Algebra Project, and Chris Rasmussen suggest,
such opportunities can be extracted from close-
up views of central mathematical ideas such as
variable, area, existence and uniqueness, inde-
terminate limits, proportional reasoning, and
exponential reasoning – combined with atten-
tiveness to students’ existing ways of thinking
about these ideas.

The Action-Consequence documents, the
Inquiry-Oriented Differential Equations cur-
riculum, and the Algebra Project curriculum
each rely intrinsically on listening to students.
The analysis by Natasha Speer and Joe Wag-
ner, along with other work on mathematical
knowledge for teaching, argues that leading
mathematical discussion entails recognizing
and making sense of students’ mathematical
reasoning, how these ideas have the poten-
tial to contribute to the mathematical goals
of the discussion, and how students’ ideas
are relevant to the development of other stu-
dents’ understanding of mathematics. To make
finer-grained observations and assessments of
students’ thinking, Marilyn Carlson advocated
using frameworks from the research literature
as a guide. These frameworks, which are pred-
icated on close observations of students, may
help us see the mathematics from the perspec-
tive of student learning.

With this document, we have tried to put to-
gether a resource for mathematics instructors
who are interested in the ideas of other educa-
tors, within and outside of mathematics. Many
of us pay attention to our teaching; as we know,
there are many things to pay attention to, and
sometimes these things are not precisely articu-
lated in our minds even if we have an intuition
for what they are. We have tried to articulate

these demands here. We hope that this guide
will help sharpen the ways in which we listen
to and observe our students and mathematics.
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