
 a . b = c, with c = 24

a2 + b2 = c2, with c = 5

a2 + b2 = c2, with c = 5

Where is y 2 = 4x in
ax + ary = ar 2
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The Greek root of the word “mathematics” means “the learnable thing.” But the 
experience of many students is quite the opposite — that mathematics is quite 
difficult to learn and, in particular, that it doesn’t make sense. That shows a  
total breakdown of learning, because mathematics is entirely about making 
sense. Reasoning is the very foundation of mathematics. How is it that students 
so often miss this entirely, and how can the educational system help students  
to become facile reasoners who are able to make sense of mathematics for  
themselves?

That was the focus of the 2010 Critical Issues in Mathematics Education con-
ference at the Mathematical Sciences Research Institute. The Critical Issues in 
Mathematics Education series of conferences are an effort to spread innovative 
ideas and form a community by offering those involved in all facets of math-
ematics education an opportunity to gather, share ideas, and work together to 
find new solutions in mathematics teaching.

The backdrop to the conference was that the National Council of Teachers of 
Mathematics (NTCM) had just released a new document, Focus in High School 
Mathematics: Reasoning and Sense-Making. Furthermore, the Council of Chief 
State School Officers and the National Governors Association had initiated a 
state-led effort to produce Common Core State Standards (CCSS), in order to 
move states toward national curricular coherence. The national scene was being 
transformed through stimulus money aimed at having states adopt common 
standards. It therefore was a significant time for mathematicians to weigh in for 
coherence and a focus on thinking, understanding, and sense-making.

The conference focused on three questions in particular: How can curricula 
support reasoning and sense-making? How do we assess students’ reasoning 
and sense-making skills? And how do we promote reasoning and sense-making 
by how we use technology?

InTROdUCTIOn
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the advent of the Common Core State Standards (CCSS) offers an unprecedented opportunity to promote 
reasoning and sense-making across the United States. 

Many of the arguments for common standards are practical. Kids move around a lot, and when standards vary, 
such moves can lead to gaps in their knowledge. Curricula based on a common standard will allow teacher  
education to focus specifically on what students should know and be able to do in each grade. And research can 
refine common standards over time, focusing resources to produce better standards than a single state could  
likely do on its own. 

But in addition to that, the Common Core State Standards have given math education a fresh start, allowing  
educators to build standards designed to get students reasoning and making arguments from the very  
beginning.

A key aspect of that is that the CCSS are coherent: they build the mathematical concepts in a logical, orderly way, 
introducing new ideas only when students have had a chance to master the concepts they are built on. William 
Schmidt of Michigan State University showed how this structure becomes apparent when you look at the way 
in which the highest-scoring countries on the Trends in International Mathematics and Science Study (TIMSS) 
distribute topics across grade levels. The chart below shows the structure of the curriculum of mathematically 
high-achieving countries.

Reasoning and Sense-Making in the Math Curriculum

the CoMMon CoRe state standaRds

 Topics are introduced only once the foundational topics are sufficiently developed, they are studied for a few 
years, and then the curriculum moves on. This generates the clear upper-triangular structure of the above graph.

•  Mathematics topics intended 
at each grade by at least two 
thirds of A+ countries.

•  A+ countries determined by 
looking at statistically signifi-
cant differences in 8th grade 
scores on 1995 TIMMS.

•  On average an A+ country 
would have1-6 more topics 
per grade level in its complete 
curriculum. 

Topics are listed on the left, and 
grade levels are listed along the 
top. “d” entries indicate topics 
that are intended by 4 out of the  
6 top-scoring countries; “f” by 
all but one of the top-scoring 
countries (5 out of 6); and “j” by 
all of the countries.

Composite	of	high-achieving	countries
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“A	curriculum	should	be	so		 	

	 well	set	up	that	it	makes	it	

	 transparent	that	there’s		

	 a	logic	that	underlies		

	 mathematics.	I	think	that’s		

	 why	a	lot	of	countries		

	 succeed	better	than	we	do.		

	 They	make	sure	that’s	the		

	 case	through	their	national		

	 standards.”	

– William Schmidt
Michigan State University

By contrast, consider the comparable 
graph for U.S. states, at right.

Many more boxes are filled, and the  
logical upper-triangular structure is 
gone. The graph illustrates the “mile-
wide, inch-deep” phenomenon that 
afflicts U.S. curricula. Introducing topics 
too soon is damaging because students 
aren’t equipped to understand them. 
Both introducing topics too soon and 
holding them too long distract students 
from focusing on the essential ones

Mathematics topics intended at each 
grade by at least two-thirds of U.S. states. 
On average, a state would have 6-8 more  
topics per grade level in its complete  
curriculum (Schmidt, Houang, and  
Cogan, American  Educator, 2005).

Below is the comparison graph for the 
Common Core State Standards. The 
shaded parts of the graph are the topics 
covered by the highest-scoring countries. 
Though the correspondence is not exact, 
the CCSS does have the basic upper-
triangular structure, offering a far more 
coherent curriculum.

		Composite	of	U.S.	State	Curricula	  
	  

Topic	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Grade	   1	   2	   3	   4	   5	   6	   7	   8	  

Whole	  Number:	  Meaning	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   j	   j	   j	   j	   f	   d	   	  	   	  
Whole	  Number:	  Operations	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   j	   j	   j	   j	   f	   d	   	  	   	  
Measurement	  Units	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   f	   j	   j	   f	   j	   j	   j	   f	  
Common	  Fractions	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   d	   f	   f	   f	   j	   f	   d	   d	  
Equations	  &	  Formulas	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   d	   d	   f	   f	   f	   j	   j	   j	  
Data	  Representation	  &	  Analysis	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   j	   j	   j	   j	   j	   j	   j	   f	  
2-‐D	  Geometry:	  Basics	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   f	   f	   f	   f	   f	   f	   f	   f	  
2-‐D	  Geometry:	  Polygons	  &	  Circles	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   j	   j	   j	   j	   j	   j	   j	   f	  
Measurement:	  Perimeter,	  Area	  &	  Volume	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	   d	   d	   d	   f	   j	   j	   f	  
Rounding	  &	  Significant	  Figures	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	   	   	  	   	   	  	   	   	  	   	  
Estimating	  Computations	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   d	   d	   f	   f	   f	   f	   f	   f	  
Properties	  of	  Whole	  Number	  Operations	  	  	  	  	  	  	  	  	  	  	  	  	   d	   d	   d	   d	   	  	   	  	   	  	   	  	  
Estimating	  Quantity	  &	  Size	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	   	   d	   	   	  	   	   	  	   	  
Decimal	  Fractions	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	   	   d	   f	   f	   f	   d	   d	  
Relation	  of	  Common	  &	  Decimal	  Fractions	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	   	   	  	   d	   d	   d	   	  	   	  
Properties	  of	  Common	  &	  Decimal	  Fractions	  	  	  	  	  	  	  	  	  	  	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	  
Percentages	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	   	   	  	   	   d	   f	   f	   d	  
Proportionality	  Concepts	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	   	   	  	   	   	  	   f	   d	   	  
Proportionality	  Problems	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	   	   	  	   	   	  	   f	   f	   f	  
2-‐D	  Geometry:	  Coordinate	  Geometry	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	   	  	   d	   f	   d	   d	   d	   f	  
Geometry:	  Transformations	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   f	   f	   f	   f	   f	   f	   f	   f	  
Negative	  Numbers,	  Integers,	  &	  Their	  Properties	  	  	  	  	  	   	  	   	   	  	   	   	  	   d	   f	   d	  
Number	  Theory	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	   	   	  	   	   f	   d	   d	   d	  
Exponents,	  Roots	  &	  Radicals	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	   	  	   	  	   	  	   	  	   d	   d	   j	  
Exponents	  &	  Orders	  of	  Magnitude	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	   	   	  	   	   	  	   	   d	   d	  
Measurement:	  Estimation	  &	  Errors	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   d	   d	   f	   d	   f	   f	   f	   d	  
Constructions	  using	  Straightedge	  &	  Compass	  	  	  	  	  	  	  	  	  	   	  	   	   	  	   	   	  	   	   	  	   	  
3-‐D	  Geometry	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   j	   j	   j	   f	   j	   f	   j	   f	  
Geometry:	  Congruence	  &	  Similarity	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	   	   	  	   	   d	   f	   f	   d	  
Rational	  Numbers	  &	  Their	  Properties	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	   	   	  	   	   	  	   f	   f	   d	  
Patterns,	  Relations	  &	  Functions	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   f	   j	   j	   j	   f	   j	   j	   j	  
Slope	  &	  Trigonometry	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	  
Number	  of	  topics	  intended	  by	  at	  least	  2/3	  of	  21	  states	   14	   15	   18	   18	   20	   25	   23	   22	  

Number	  of	  additional	  topics	  intended	  by	  states	  to	  complete	  a	  
typical	  curriculum	  at	  each	  grade	  level.	   8	   8	   7	   8	   8	   5	   6	   6	  

	  

Topics are listed on the left, and grade levels are listed along the top. “d” entries indicate topics 
that are intended by 4 out of the 6 top-scoring countries; “f ” by all but one of the top-scoring 
countries (5 out of 6); and “j” by all of the countries.

		Comparison	of	CCSS	with	A+	composite

• This number of  
 extra topics per  
 grade level in  
 CCSS is com- 
 patible with  
 A+ countries.



	 Reasoning	and	Sense-Making	in	the	Math	Curriculum	 |	 7

	“During	the	last	years	I’ve	been	

visiting	lots	of	states’	departments	

of	education	and	hearing	their	

incredible	enthusiasm	for	getting	

involved	with	the	CCSS.	There	are	

moments	when	I’ve	scratched	my	

head	and	said,	‘Why?’	 They	all	have	

their	own	standards	and	they	think	

they’ve	done	good	work.	So	why	

are	they	involved	in	this?	

When	you	look	at	the	Composite	of	

U.S.	State	Curricula	diagram	(top 

of page 6), you	can	see	their	mo-

tivation	to	come	together.		They	

recognize	the	value	in	having	some	

kind	of	common	standards	where	

you	don’t	have	everything	at	every	

grade	level.”

– William McCallum of the University  
of Arizona, a designer of the Common  

Core State Standards

To accomplish this, the designers focused largely on number and  
operations in the early grades. They did not include strands for data  
or patterns in those grades, though some work on those topics is  
incorporated into the primary focus on number and operations.

By comparison, the previous curricula of most states were far less  
structured and coherent. Texas, for example, has lots of holes: 

California, which has a well-regarded curriculum, is nevertheless  
cluttered by dots on the left, showing topics that are introduced too 
soon, and some noticeable holes:

Schmidt has done a regression analysis show-
ing that the more a state’s curriculum has the 
“ideal” structure exhibited by the highest-scoring 
countries, the higher the students’ achievement 
scores.

William McCallum pointed out at the confer-
ence that although the development of the CCSS 
was a remarkable and unexpected achievement, 
what has been done represents only perhaps 10 
percent of what needs to be done. The standards 
need to be transformed into curricula; assess-
ments need to be developed; teachers need to be 
trained. All of these are enormous tasks.

Resource: The Common Core State Standards can 
be downloaded from www.corestandards.org.

California	2007	Mathematics	Standards

Top achieving 
countries' profile

	Texas	2005	Mathematics	Standards

Top	achieving	
countries'	profile
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although many talks at the conference focused on ways that the standard U.S. curriculum 
 could be improved, some illustrated how even within its constraints, good teaching 

could lead to students with a strong ability to reason and make sense of mathematics.  

Ginger Warfield of the University of Washington described their work with teachers from 
rural districts of Washington in the Rural Mathematics Teaching Project. The curriculum 
in these high schools consists of the traditional sequence of algebra 1, geometry, algebra 
2, precalculus, and then calculus. Nevertheless, their students, on average, get 26.5 on the 
math ACTs, when the national average is 20.1. And about half of their graduating seniors 
complete calculus before leaving high school.

One key to their success is that teachers in different grade levels communicate well, so that 
an algebra 1 teacher understands what the students will need when they get to geometry. 
Teachers act as facilitators, and the students collaborate with one another extensively, de-
veloping their own ideas about how to attack the problems. This means that students spend 
much more time in class reasoning about math for themselves and discussing their ideas 
with their peers. 

They don’t use textbooks. Instead, teacher teams develop all their own teaching materials. 
Time is built into the schedule for collaborations, and teachers additionally meet outside of 
school hours. 

However, there are challenges. The mathematical knowledge of the teachers isn’t always as 
deep and broad as is needed for these open-ended tasks, and this can prevent them from 
seeing the interconnections between different aspects of the curriculum. Furthermore, 
parents and students often don’t properly understand what it means to do mathematics. 
Teachers also struggle to assess reasoning and sense-making: it’s far easier to assess  
algorithmic competence. 

Reasoning and Sense-Making in the Math Curriculum

CuRRiCula in the united states
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 the inteRaCtive MatheMatiCs PRogRaM (iMP)

	“In	order	to	present	correct	mathematics,	two	minimum	requirements	

must	be	met:	Textbooks	have	to	be	correct,	and	the	teacher	has	to	

teach	correct	mathematics.	Both	of	these	requirements	are	very	far	

from	being	met	on	a	consistent	basis.”	

	 	 	 							— Hung-Hsi Wu, University of California, Berkeley

Brian Lawler of the California State University, San 
Marcos, described an unusual curriculum developed 
between 1989 and 1999 by mathematics educators 
from the Lawrence Hall of Science and UC Berkeley, 
mathematicians from San Francisco State University, 
and teachers from Berkeley High School, Tracy High 
School, and San Francisco’s Mission High School.

The curriculum is built on the underlying belief that 
students learn important things, including math, 
when interacting with peers over ideas they find 
important. So the curriculum is organized around 
big, rich mathematical problems, and courses are 
organized by age rather than being tracked accord-
ing to ability. The varied strengths and weaknesses of 
mathematical ability in the heterogeneous classroom 
is viewed as an asset, rather than a challenge to be 
overcome.

IMP has been quite successful: it is one of three high 
school math curricula identified as “exemplary” by 

the U.S. Department of Education for providing 
convincing evidence of its effectiveness in multiple 
schools with diverse populations, and it was among 
the highest-ranked algebra textbooks in a review  
undertaken by the American Association for the  
Advancement of Science (AAAS).

Using the curriculum requires changes in how a class-
room is run. The teacher has to renegotiate authority 
in the classroom, making student ideas the center of 
the work. Teachers are challenged to think differently 
about what mathematics is, what it means to be smart 
at math, and what constitutes effective teaching. It is 
harder work for the teacher to listen to, interpret, and 
act upon student ideas, than to merely explain their 
own mathematical understandings. Students also have 
to change their expectations about what math is and 
how math class works, as do parents. So educating the 
school community as a whole — including adminis-
trators, parents, the school boards, the superintendent 
and students — is essential to success.
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A national project of the IAS/Park City Mathematics 
Institute was aimed at support for the improvement 
of school districts in three sites. One of these was 
Seattle, where the task was to improve three urban 
Seattle high schools. Many students at these schools 
were coming into ninth grade with a very low level 
of mathematical competence. The project helped 
teachers decide to focus on what teachers can control, 
mainly how they teach. But it was tough to convince 
teachers that different results are possible with the 
same students given so many challenges: attitude, 
poor attendance, unsupportive parents, and poverty. 
One of the schools was never able to get past this, but 
the others made significant change over time.

The team started with extensive professional devel-
opment using an approach called Complex Instruc-
tion. This emphasizes the impact that status in a 
classroom — that is, whether students are considered 
smart or dumb or cool or inconsequential — has on 
students’ learning. It works to reduce the problems 
caused by negative status through using tasks that 
are rich enough to justify students working in groups 

“When	we	tell	students	that	x²-6x=-2,	we	know	it	is	nonsense	to	say	that	a	bunch	of	
symbols	is	equal	to	a	number.	But	we	still	want	to	maintain	the	façade	of	reasoning,	so		
we	invent	a	balance	to	explain	everything.	This	is	a	very	insidious	move,	because	it	seems	
so	persuasive	that	it	is	very	hard	for	a	student	to	disagree.	But	you	have	to	be	aware	that	
by	doing	this,	you’re	subverting	mathematics.	You	should	have	said	instead:	 ‘Suppose	
there’s	a	solution.	Call	it	x.’	Then	we	can	proceed, because	x	is	now	a	number. 

The	way	we	teach	solving	an	equation	by	regarding	x	as	a	symbol	is	the	reason why 	so	
many	students	get	mixed	up	about	what	the	equals	sign	means.	Once	you	realize	this,	
you	would	know	that	you	really don’t	need	to	do	research	on	students’	misunderstanding	
of	the equal	sign	because	you	recognize	that the	equal	sign has	been	so abused	through-
out	school mathematics	that students	cannot	help	but	be	confused.”

— Hung-Hsi Wu, University of California, Berkeley

the Pd3 Math-sCienCe PaRtneRshiP of 
the ias/PaRk City MatheMatiCs institute

and that genuinely require the participation of all 
students. And it emphasizes that practice is key to 
learning: if students aren’t participating, the tasks and 
textbook won’t matter.

The teachers on their own chose to use a different set 
of textbooks, the Interactive Mathematics Program 
(described above). To support the change in teach-
ing materials, teachers were provided with addi-
tional professional development. This was especially 
important since IMP pushed the boundaries of the 
teachers’ mathematical knowledge, so the teachers 
themselves wrestled with some of the same issues that 
would trouble their students. In addition, the team of 
teachers teaching ninth-grade math had an hour a day 
to meet, which crucially supported the teachers in the 
changes they were making. There was also a monthly 
video club, where the teachers would analyze evi-
dence of student learning in a short snippet of video 
from one of their classrooms. Though the focus was 
on student learning rather than teaching moves, it 
had a significant effect on how teachers thought about 
their own work.



	 Reasoning	and	Sense-Making	in	the	Math	Curriculum	 |	 11

using the singaPoRe Math CuRRiCuluM in the u.s. 

The City of Baker School System in Louisiana used to  
typically be in the bottom three of all Louisiana school  
districts in math test scores. Classroom management 
problems were pervasive, and the administration changed 
frequently. 

So the district decided to change to using the Singapore  
primary math curriculum and to invest in intensive profes-
sional development to make it work.

The program has been remarkably successful. Second- 
graders increased their scores between pre- and post-tests  
by 27 points over the course of one semester, whereas  
students who weren’t in the program increased their score  
by only 12 points over the entire year. Some of the reasons the 
curriculum works well were described by Kimberly Basley, a 
teacher in the district, and Ben McCarty of Louisiana State 
University, which supported the project. 

In addition, Robin Ramos, a math coach at Ramona  
Elementary in Los Angeles, reported on the successful use  
of the curriculum at her school, and Thomas Parker of  
Michigan State University described his observations of it  
as a mathematician.

One powerful aspect of the curriculum is that it extends old 
ideas into new ones, often back to back. For example, second 
graders learn fractions using halves and quarters of circles 
just before learning about telling time on a clock. Third grad-
ers learn about weight, a more challenging type of magnitude 
because it must be felt rather than just seen. Students start by 
comparing weights with a balance scale and then move to a 
spring scale, with an arm that swings through an arc to point 
at the right weight. This comes shortly before the students 
study measuring angles on a protractor. Each step prepares 
the students for the next thing in the curriculum.

Ramona Elementary 
had so much success 
during the first year 
of using the Singa-
pore Mathematics 
Curriculum that 
they were the sub-
ject of a front-page 
LA Times story.

Here’s a little math problem: In 2005, just 45% of the 
fifth-graders at Ramona Elementary School in Hol-
lywood scored at grade level on a standardized state 
test. In 2006, that figure rose to 76%. What was the 
difference?
If you answered 31 percentage points, you are correct. 
You could also express it as a 69% increase. 
But there is another, more intriguing answer: The 
difference between the two years may have been 
Singapore math. 

At the start of the 2005-06 school year, Ramona  
began using textbooks developed for use in Singapore, 
a Southeast Asian City-state whose pupils consistently 
rank No. 1 in international math comparisons.  
Ramona’s math scores soared. 
“It’s wonderful,” said Principal Susan Arcaris. “Seven 
out of 10 of the students in our school are proficient 
or better in math, and that’s pretty startling when you 
consider that this is an inner-city, Title 1 school.”

Front page of the Los Angeles Times: March 9, 2008

Six	highly	effective	multi-purpose	models
Woven into the curriculum and developed 

as curriculum advances
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The curriculum also uses just a few models that it  
develops through the curriculum. It focuses on just six  
models — simple diagrams that students can use to 
visualize concepts — and develops them very thoroughly 
over the years.  For example, bar diagrams, rectangular 
arrays and area models are used over and over in differ-
ent contexts. The pictures come to feel like old friends 
to the students. This judicious use of models allows the 
curriculum designers to show how the same reasoning 
applies in varied contexts.

Parker pointed out that the curriculum pays very close 
attention to precise language. Words like “also,” “each,” 
“than,” “equal groups,” “groups of,” and “altogether” all  
operate somewhat differently in a mathematical context 
than in regular language, and each one needs to be  
explicitly discussed in the early grades. 
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PRobability and statistiCs in aMeRiCan sChools

Probability and statistics have become an integral part of  
the U.S. mathematics curriculum. They are part of the  
current standards, and more people are studying the 
subject. For example, in 1997, the AP stats exam was taken 
by 7,500 people, whereas in 2008, the number jumped to 
116,500.

Research indicates that a curriculum in probability and 
statistics is most effective if it:

1.	 Uses real data.

2.	 Clearly distinguishes concepts in statistics from 
concepts in mathematics.

3.	 Makes students active participants through tech-
nology (graphing calculators, apps, and software 
programs).

Anna Bargagliotti of Loyola Marymount University 
reviewed the statistics content in three elementary-level 
NSF-funded curricula: Trailblazers, Everyday Math, and 
Investigations. She found that there was variation among 
them both in content and in the level of sophistication of 
that content. But they were united in lacking a statistics 
perspective in their presentation. Probability, for example, 
was typically discussed in relation to the frequency of a 
particular outcome rather than in the context of sampling. 

She pointed out that it’s not difficult to shift from a more 
mathematical perspective to a statistical perspective. 

EXEMPLARY	PROBLEM	

A student added 357 to a number. She  
added correctly and got 625. But the  
problem actually asked her to add 375. 

What is the correct answer? 

This is a third-grade problem from Korea. It is 
not algorithmic; it requires students to form a 
logical argument. It’s a challenging problem, 
but the curriculum has given the students the 
tools they need to solve it.

EXEMPLARY	PROBLEM	

This is a problem for first graders from an east  
Asian curriculum. It can be solved in two min-
utes, suiting the attention span of a six-year-old.

The classic urn problem, for example, would go like this:
I have a bag with X red marbles and Y green marbles. 
What is the probability of randomly selecting a green 
marble?

To shift to a statistical perspective, the problem could be 
changed to this:

I have a bag with X red marbles and Y green marbles. A 
random sampling of Z marbles are drawn from the bag. 
(Here the students can either draw the samples them-
selves, or a table can be provided with samples.) Use 
the information about the random samples in order to 
draw conclusions about the relative values of X and Y.

Bargagliotti argued that the elementary curricula should 
include data gathering (mostly in the form of classroom 
censuses), discussion of the factors that can cause variabil-
ity, and the introduction of distributions using bar graphs 
and plots. In the middle grades, she argued that they 
should include the introduction of random assignment, the 
comparison of distributions, the introduction of sampling 
error, and an acknowledgement that results may differ if 
data were collected a second time. At the high school level, 
students should formulate their own questions, collect the 
data needed in order to answer the questions (or have the 
data provided to them), analyze the data using appropri-
ate statistical techniques, and draw conclusions from their 
analyses.

  ___ − ___  = 4
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She also discussed what teachers need to know to be  
prepared to teach a statistics course. At the most basic level, 
they should be able to articulate what statistics is, which 
teachers have more difficulty with than one might expect.  
For example, secondary teachers in a graduate course at 
the University of Memphis, all of whom had a master’s in 
education and some of whom had taught AP statistics, gave 
answers like “It’s a way to describe a data set.” They couldn’t 
explain how sampling and inference were related, and none 
of them had explored or manipulated data using technology. 

EXEMPLARY	PROBLEM	 Study of one topic builds skill at others — leverage.

This looks like a geometry problem, though 
the geometric knowledge required is mini-
mal (just the equality of vertical angles). It’s 
really a hidden algebra problem. Algebra is 
introduced through little puzzles like these, 
providing a motivation to find an efficient 
way to do it.

Statistics courses for teachers, Bargagliotti argued, should 
include both statistical content and statistical peda-
gogy. They should use relevant data (educational data is 
especially effective with teachers, though other data sets 
would be more compelling to students). And they should 
use technology: for example, visual aids or applets to 
teach sampling concepts, or software that can perform 
statistical tests and estimate statistical models. By the 
end of the course, teachers should be able to formulate 
research questions and answer them using real data.

EXEMPLARY	PROBLEM		 A tank contains 24 liters of water. It’s two-thirds full. What is the 
 capacity of the tank? 

This can be done as an algebra problem,  
or as division of fractions. But perhaps the 
easiest way is to think in terms of units.  
If you choose units that are one-third of  
the tank, then two units are 24 liters, so  
one unit is 12, and three units are 36.  
So the tank holds 36 liters.

The Singapore curriculum does an especially good job of teaching students to choose units.  
It is the idea underlying the Singapore bar diagram, and it’s taught every single day.

2  units:     24 L

1  unit:     12 L

3  units:     36 L

The tank holds 36 liters

24
?

3x	+	15	=	75	 vert.					s.

										3x	=	60

              x	=	20.	.	.	.

75 3xo

15

o

o
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Thomas Judson of the Stephen F. Austin State University 
in Nacogdoches, Texas, described the Japanese approach 
to teaching mathematics.

The Japanese curriculum is structured very much like 
ours, with students in elementary, middle school, high 
school and university at the same ages as American 
students. However, Japan has a national curriculum that 
sets the number of class periods for the year, the length 
of the classes, the subjects that must be taught, and the 
content of each subject for every grade. The result is that 
throughout the country, most schools are teaching the 
same topics in the same week. This curriculum is revised 
every ten years, with a major revision every 50 years.

In elementary school, children learn the four operations 
with whole numbers in grades 1-4. In grades 5 and 6, 
they learn to multiply and divide decimals and fractions. 
They learn about measurement and the metric system; 
about statistical data by using percentages and circle 
graphs; about the concepts of area and volume and how 
to measure these quantities for simple geometric figures; 
about plane and solid geometric figures; about sym-
metry; and about congruence. The abacus is introduced 
in grade three. Most classrooms have computers but 
handheld calculators are relatively rare.

In middle school, students begin to prepare to compete 
to get into the best high schools and universities. They 
learn about positive and negative numbers, the meaning 
of equations, letters as symbols, and algebraic expres-
sions. Algebra begins in grade 7 and continues in grades 
8 and 9. Schools are supposed to teach students to use 
handheld calculators, but it doesn’t always happen.

Reasoning and Sense-Making in the Math Curriculum

CuRRiCula in otheR CountRies

In high school, all students take the same math class in 
grade 10, learning about quadratic functions, trigono-
metric functions, sequences, permutations and combina-
tions, geometry and probability. After that, students dif-
ferentiate into a humanities or science track. Humanities 
students study no more mathematics. Science students 
learn about exponential functions, trigonometry, geom-
etry, analytic geometry, and some calculus in grade 11, 
and calculus in grade 12. 

It’s a more integrated curriculum than in U.S. schools, 
without the division into algebra 1, geometry, and alge-
bra 2. One of the major tasks is to prepare students for 
the university entrance exams. After-school education is 
an integral part of the educational system, and there is 
an expectation that students will devote significant time 
to their studies outside of class. The after-school juko, or 
cram schools, can be a social time for students, because 
that’s where they often meet their friends. 

An enormous difference with the U.S. is that teachers 
in Japan are highly trained and the profession is very 
competitive. In 1999, there was one opening for a high 
school math teacher in all of Tokyo. Teachers are nearly 
as respected as doctors, and they are well paid. There is 
also an extensive mentoring system for new teachers last-
ing five years. A premium is placed on carefully crafted 
lessons, and lesson study is common.

Still, many university professors feel that basic math 
knowledge has declined. Nishimura’s book, University 
Students Can’t Do Fractions, received widespread atten-
tion in 1999. Japan is concerned about whether it is able 
to keep pace with countries like Korea and Singapore.

JaPan
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There is only one place for teacher training, the National 
Institute of Education. All middle and high school teach-
ers are university graduates and, increasingly, elementary 
teachers are also university graduates. Teacher training 
at NIE is level and subject specific. Before future teachers 
enter NIE, they’ve already been selected to teach two spe-
cific subjects. To teach grades 11 and 12, teachers must 
have an honors degree in the teaching subject. 

Throughout the career of a teacher in Singapore, pro-
visions are made for pursuing masters and doctoral 
degrees. One hundred hours of training are required per 
year.  Professional development workshops happen in 
June and December, during the holidays. Many Ameri-
cans come to do professional development during this 
time.

singaPoRe

Carmen Hoo, Sandi Kum, and Pang Soh Lian from the 
Raffles Girls School spoke about the mathematics curricu-
lum used in Singapore itself. They remarked that the rela-
tionship between “Singapore math” as used in the U.S. and 
the way that math is taught in Singapore itself isn’t so clear.

They began by describing Singapore. It is an extraordi-
narily small country, smaller than the city of Los Angeles, 
but with more people: 5 million, whereas LA has 4 mil-
lion. Singapore was founded by the English and became an 
independent republic in 1965. It’s a young nation whose 
only natural resource is its people. It has to import all its 
materials. 

Education is the second largest chunk of the national bud-
get, only trailing defense. It’s a passionate and emotional 
topic. There’s a constant pressure to evolve to respond to 
the needs of students, which is easier because the country 
is small. Diverse educational options are required to maxi-
mize individual potential. 

The country has a lot of immigrants. Chinese are the  
largest immigrant group, but there are also many Malay-
sians, Indians, Americans, Australians, Vietnamese,  
Burmese, South Asians, Europeans, and Canadians.  
Two-thirds of children come from English-speaking 
homes. Because of the large migrant population, language 
can be an issue. Children from other countries pick up 
English very quickly. 

Primary education, the first six years, is compulsory by 
law. Secondary education is four to five years. 

More than 90% of 7-year-olds have had a year of pre-
school education. Many come in able to read and write. 
Some can’t write their names, others have read all of 
Harry Potter. At the end of third grade, they have a test 
for gifted children. If they are assessed as the top 1%, they 
are considered gifted and can choose to go into the gifted 
education program. Others do the regular curriculum un-
til the end of fourth grade, when they have subject-based 
banding. So if children find math very challenging, for 
instance, they will take foundation math. The same child 
who finds English very comfortable will take standard 
English. Kids will often take some foundation subjects 
and some standard subjects. Regardless, you have to take 
the high-stakes primary school national leaving exam at 
the end of sixth grade. After that, the secondary and post-
secondary education has many different pathways.

6	Facets	of	Understanding	

(Application	&	Interpretation)

Sample Task 2: 
Topic: Mensuration

Introduction

Suppose you are a chocolate manu-
facturer and you need to study the 
packaging of the existing chocolate 
brands in the current market. The  
following types of chocolates have 
been selected for study.

•  Kit Kat     •  Toblerone     •  Ferrero Rocher

The	task

1.   Find the total volume and total surface area of each 
brand of chocolate.

 Hence, or otherwise, determine which of them will melt 
in the shortest time at room temperature. Justify your 
answer, stating any assumptions that you may have made.

Sample Assessment Task from Singapore

Note that students get to eat the chocolate at the end of the class!
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The Raffles Girls’ School was started in 1879 with 77 girls 
and now has 1800. It’s an independent school for the top 
3%. The curriculum and pedagogy are driven by the bright 
kids. Their students got the 98% distinction on the O-level 
exams. Still, their teachers wonder, do they really under-
stand, or can they just parrot? Can they use their knowl-
edge in a real life context? What does understanding really 
look like? 

The school's curriculum is driven by the philosophy that 
math is the endeavor of man to understand, represent and 
process the world with precision and rigor; that math seeks 
truth and beauty in the elegance of patterns and logic; and 
that mathematics’ ability to generalize and its vast appli-
cations for solving real-life problems provide a constant 
challenge to the inquiring mind. 

The design of the curriculum begins with identifying the 
desired results, beginning with the end in mind. The next 
step is to determine acceptable evidence of learning, and 
the final one is to plan learning experiences and instruction.

A key principle of stage one is that less is more, that is, 
students have to think for themselves and uncover under-
standing. Essential questions need to be foremost to guide 
teachers in class. And central to the process is the under-
standing that math is a language consisting of carefully 
defined terms and symbols, that it involves formulation of 
hypotheses, conjectures, verifications, and proofs, that it is 
the study of patterns and relationships, and that it is a tool 
used to solve problems in real life.

Stage two, assessment, is guided by the belief that as-
sessment is the heart of learning and that assessing for 
knowing and understanding are different. Assessment is 
designed around authentic tasks, and it focuses on six dif-
ferent facets of understanding: 

	Explanation. Students must justify how they arrive 
at their answers and why they’re right. How can they 
prove it? How does this work? Why is it so?

	Interpretation. Students investigate the importance 
of particular concepts, formulas, or theories. What 
does it mean? Why is this formula important? Why 
should it be applied here?

	Application. Students should ask, how or when can I 
use the knowledge and skills that are taught in class?

	Perspective. The ability to take multiple points of 
view. What has been assumed? Is this solution rea-
sonable? Is it feasible in this situation? Do we accept 
the solution at face value, or do we need to explore 
further?

	Empathy. Seeing from someone else’s point of view. 
What do other people see and I don’t? What do I 
need to experience if I am to understand?

	Self-knowledge. Students must develop awareness of 
what they don’t understand, or why understanding 
is so hard. What are the limits of my understand-
ing? Where are my blind spots? Why am I prone to 
misunderstanding? Is it habit, prejudice, or style?

Assessment is done in many forms, many of which are rare 
in U.S. classrooms. For example, students may be sent to a 
mathematically interesting place and, for example, asked 
to figure out the slope of a ramp. At least once a year, 
students are given an in-depth performance task. They 
may be assessed through journal writing, or oral exams, or 
expository writing.

Stage three, designing classroom activities, is guided by 
the belief that learning is messy and iterative, that un-
derstanding is earned not given, and that each brain is 
unique. Learning activities are sequenced to help students 
connect ideas, make meaning of them and transfer them 
from one context to another. The curriculum is differenti-
ated for students with different skill levels. And the cur-
riculum is designed to appeal to multiple intelligences.
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Student	Work	on	Journal	Writing

Journals can take many different forms, but here’s one example. Students are given this task:

   Alyssa says that (a + b) ² 
   is the same as a ² + b ².
   Belinda says it’s more.
   Claire says it’s less.

You need to settle their argument. 
Explain for each whether their position is always true, never true, often true or seldom true.  
Provide examples where appropriate.

Sample Assessment Tasks from Singapore

Sample	Task	3
Topic: Mensuration

A new cinema opertor, Silver Village, is looking for an operator to 
man its refreshment outlet to sell popcorn and drinks to cinema-
goers.

After conducting a survey, it is revealed that as mch as 70% of 
movie-goers feel that popcorn is a must-have while watching a 
movie. In order to maximize its revenue, they decided to award 
the operation license to the vendor who was able to design a 
popcorn holder with the smallest volume but uses the largest 
area equivalent to an A3-size vanguard sheet. In addition, the 
selling price and profit margin of each container of popcorn will 
also be taken into consideration.

This problem throws students into a new role, as a popcorn vendor and not  
just a moviegoer. 

Popcorn! Popcorn!

This problem would be used in an oral exam in grade 10, designed to get students  
talking about their reasoning process:

Viva	Voce	–	Sample	Question
Grade 10 Unit: Differentiation

Explain how you would find and verify a turning point.  
Hence, find the minimum gradient of y − f (x)

  Prompts:

   Does the curve have a stationary point?

   If yes, where and what is the nature? 

   If not, why not?

   What is the connection between the three 

   functions, y, y 1 and y 2 ?

6 Facets of Understanding	(Application)

Sample Task 1: 
Topic: Similarity & Congruency

Standing by the side of Block J, you should be able to see 
Block K as shown in the picture on the left.

Devise an indirect method to estimate the area of the 
shaded section as indicated on the picture.  
Describe your method.

Note: You do not need to compute the actual measurement.

Students have to figure out the area of the shaded region without directly measuring it. (Students have to use the similarity between the photo and the real object.)

Note the shaded section
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india

Sridhar Rajagopalan is the managing director of Educational 
Initiatives (EI), an organization working in India to im-
prove the assessment of student learning in order to give 
insights into the learning process and to provide concrete  
ways to improve learning. He began his presentation  
on the Indian educational system by describing how it  
currently works. 

India effectively has two parallel educational systems. 
One consists of elite private schools with teaching usually 
conducted in English, and the top students at these schools 
can compete with the best in the world. But this system 
teaches only five to ten percent of the students. The rest go 
to public schools, and this system is currently in shambles, 
though an effort is being made to change that. In govern-
ment schools, only a quarter of fourth grade students can 
do subtraction with regrouping and only half of fifth grad-
ers can read a paragraph. Half drop out by fifth grade.

Except for students opting for the International Baccalau-
reate program, all students take school-leaving “Board” 
exams in class 12, though only 20-25% of all students get 
to that point. These exams are extremely rote and memory-
based. Few Indians are aware of how poor the levels of 
learning are. A lot of Indians don’t get it, partly because of 
the divisions in society. India focused more on higher edu-
cation than on primary education until the 1990s. Since In-
dia has been growing, government spending on education 
has increased significantly in the last three to five years, 
and private spending is also significant. But no one is sure 
of the best way to make use of the funds.

However, India places an extremely high social value to 
education, much higher than in most parts of the world. 
Indeed, there is almost a single-minded focus on education 
and getting ahead. Even poor families spend a major por-
tion of their income on education. Students who do well 
academically are looked up to. Students tend to be self-
driven, and parents push their children. Among the middle 
class, engineering, management, education and medicine 
are in great demand, so there is lots of emphasis on math 
and science education. There is a very strong competi-
tive spirit, though that also has negative implications, like 
a focus on grades instead of learning and high stress on 
students. It’s the opposite of the U.S., because the drive is 
so high but the management of education is very poor. 

An enormous problem is the emphasis on rote learning. 
This real-life example sums it up: The daughter of a scien-
tist, a fifth grader, told her father that she learned in her 
geography class that the difference between the equatorial 
and polar circumference of the Earth is 72 km. Impressed, 

he asked her what she understood by “equatorial circumfer-
ence.” She wasn’t sure. He asked what she understood by 
“polar circumference.” She had no idea. So he retreated and 
asked simply about circumference. “I don’t know,” she said.
“What do you know then?” he asked, a little desperate. 

“I know that the difference between the equatorial and 
polar circumference of the Earth is 72 km, that is all they 
are going to ask in the exam,” she replied promptly.

This is absolutely typical of the Indian system, Rajagopalan 
says.

Paradoxically, he says, this seems to work for the really 
bright students. A student who is intrinsically motivated, 
or from a strong family background, gets a kind of benefit 
from this kind of mindless rigor, though probably these 
students would be more creative if the system focused on 
understanding. A lot of the success of the Indian educa-
tional system comes from these students: It has so many 
students that the top two percent still turns out to be many 
people. 

Like the U.S., India has a lot of internal differences and 
debates on education, and both countries have pluralistic 
societies with great cultural diversity. Also, both countries 
are large democracies and hence are difficult to reform 
quickly. While that can be frustrating, it is likely to be bet-
ter in the long run. And, change does happen. For example, 
people no longer question whether learning can be mea-
sured, which they certainly did eight to ten years ago. Now 
there is a consensus in India that low-stakes assessment 
at least doesn’t do harm, though there’s great resistance to 
high-stakes testing. 

There are also substantial differences between the two coun- 
tries. State differences vary much less in India, both in 
reality and in perception. India has no government high-
stakes testing requirements. India places a very strong social 
value on education, especially math and science, and has no 
student discipline or motivation issues. And the culture of 
research in education is almost absent in India.

Rajagopalan said that it seems that in the U.S., a reasonably 
good education system is let down by societal, parental and 
student attitudes, while in India, student and parent aspira-
tions are thwarted by an indifferent system.

Rajagopalan’s organization is based on the idea that if you 
can provide data showing very clearly what the current 
state of education is, what exactly students understand 
and don’t, and if you follow it up with support to teachers, 
this could lead to change. To that end, they’ve developed a 
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low-stakes test called Asset that is taken by over 400,000 
students in private schools in 2010-2011. 

Based on this test, EI created a study highlighting how 
much learning is rote even in the best schools. Using 
questions drawn from the TIMSS exam, the study showed 
that in the top schools of the country, if you measure for 
understanding, the students do pretty badly compared to 
international benchmarks. On the other hand, if you check 
for procedure, they do pretty well. The study was featured 
on the cover of India Today.

Rajagopalan	recounted	this	story	that		
Richard	Feynman	told	about	his	observations	
of	education	in	Brazil:

In regard to education in 
Brazil, I had a very interesting 
experience. I once attended a 
lecture which went like this: 
‘Two bodies... are considered 
equivalent... if equal torques... 
will produce... equal accelera-
tion. Two bodies are con-
sidered equivalent if equal 
torques will produce equal acceleration.’ The  
students were all sitting there taking dictation, 
and when the professor repeated it, they checked 
it to make sure they wrote it down all right. 

After the lecture I talked to a student: ‘You take all 
these notes - what do you do with them?’ 

‘Oh, we study them,’ he says. ‘We’ll have an exam.’ 

‘What will the exam be like?’ 

‘Very easy. I can tell you now one of the questions: 
When are two bodies equivalent? And the answer 
is, Two bodies are considered equivalent if equal 
torques will produce equal acceleration.’ So, you 
see, they could pass the examinations, and ‘learn’ 
all this stuff, and not know anything at all, except 
what they had memorized. 

After a lot of investigation, I finally figured out 
that the students had memorized everything, but 
they didn’t know what anything meant. When 
they heard ‘when light passes through a medium’, 
they didn’t know that it meant a material such 
as water. Everything was entirely memorized, 
yet nothing had been translated into meaning-
ful words. So if I asked, ‘When are two bodies 
equivalent?’ I’m going into the computer with the 
right keywords. But if I say, ‘Look at the water,’ 
nothing happens - they don’t have anything under 
‘Look at the water!’

Rajagopalan said that the situation in India is, unfor-
tunately, quite similar to this, especially in the public 
schools but also in the private ones.

EI’s approach seems to have had a significant impact on 
private schools over the last eight to ten years. Certain state 
governments are now trying this at a much larger scale to 
improve public schools.

Even apparently straightforward questions, designed to 
check if a basic concept has been understood, can show 
gaps even among advanced students. For example, some-
times students believe that angles with larger arms are 
themselves larger. Because there is so much emphasis on 
rote learning, with students reciting memorized defini-
tions, teachers don’t always see that these gaps in under-
standing exist, making these kinds of problems especially 
valuable, even though they are basic. 

Indian children do great on questions that are completely 
rote, but even on a rote question that's just a little out of the 
way, children will slip up.

After the test, EI explains the results to teachers, who are 
often shocked at what their students can’t do. EI analyzes 
the data in many different ways to increase what teachers 
learn from the test.

For examples, these graphs (below) show the percentage of 
students in grades 4, 6, and 8 who get a particular question 
correct at different performance levels. The x-axis shows 
the total number of questions a student has gotten cor-
rect, and the y-axis shows the percentage of those students 
who got this particular question right. These graphs show 
that the weaker students (who are lower on the x-axis) 

Challenging	Perceptions	about	Learning	in	‘top’	
Indian	Schools	–	Nov,	2006

TOP SCHOOLS
IN INDIA SHOW 
AN ALARMING 
GAP IN STUDENT 
LEARNING
INDIAN STUDENTS
FARE POORLY IN 
COMPARISON TO 
COUNTERPARTS
LEARNING IS
ROTE-BASED 
AND DOES NOT 
FOCUS ON REAL 
KNOWLEDGE

Richard Feynman



	 20	 |	 Reasoning	and	Sense-Making	in	the	Math	Curriculum

are typically drawn in by answer A (drawn in pink), and 
that doesn’t change over the years. A student who doesn’t 
get this in grade 4 probably never will. EI uses graphs like 
these as a basis for discussions with teachers and educa-
tion planners, and it tremendously increases the teachers’ 
understanding of their students and motivation for their 
work. This discussion is key to the power of EI’s work.

Almost 90% of schools that try the Asset test continue to 
use it, even though they have to pay for it, and they have to 
convince parents that it’s worth the cost. They have to see 
value in it, because there is no requirement to use it.

Percentage	of	students	at	different		
performance	levels	in	grades	4,	6	and	8

What is seven hundreds, plus thirteen tens?
	 A. 713 C.    830

 B. 7130 D.    731

Post-assessment	
teacher	support	sheets	
show	the	depth	of		
information	given	
about	problems	such		
as	Basic	Shapes,		
Measurement,		
Perimeter,	and		
Respiration		
(shown	at	left).

This	teacher	support	is	
essential	to	the	value		
of	the	testing.

Teacher	Sheets

Age in Years
Which of the following are examples of respiration? 
1. Humans use oxygen and release carbon dioxide. 
2. Plants use carbon dioxide and release oxygen. 
3. Burning dry leaves uses oxygen and releases carbon dioxide.
      A. only 1           C. only 1 and 2 
      B. only 2           D. 1, 2 and 3

The Diagnosis

This	shows	one	of	the	graphs	that	Educational	
Initiatives	shows	to	teachers	from	its	Asset	test.	More		
than	half	of	students	get	this	question	wrong	initial-
ly,	which	isn’t	surprising.	Disturbingly,	though,	the	
lines	are	nearly	flat,	showing	that	the	educational	
system	isn’t	correcting	the	misconception.

How	misconceptions	change	with	age
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austRalia
Helen Chick, a mathematics educator at the University of 
Melbourne, and Elizabeth Burns, the deputy principal and 
director of studies at Loreto, a girls’ school in Melbourne, 
described how reasoning and sense-making are incorporated 
into the mathematics curriculum in Australia. 

The structure of Australia’s educational system is similar to 
the U.S., with primary school for kindergarten through grade 
6 and secondary school for grades 7 through 12. Schooling 
is compulsory to age 16. Australia has seven states which 
developed their school systems and curricula independently, 
though a national curriculum was being developed at the 
time of the conference. There are large Catholic and inde-
pendent school systems alongside the public one. In Victoria, 
one of the more populous Australian states, about a third of 
schools are Catholic or independent; such schools comprise 
at least 20 percent of schools in other states. These private 
schools receive a bit of federal funding, including money 
for new buildings through a stimulus effort after the global 
financial problems.

After many previous efforts, a national curriculum was de-
veloped in math, English, history, and science, in 2009 and  
2010. At the time of the conference, the math curriculum was 
in draft form, and the feedback period had just closed. Part 
of the impetus for this curriculum was the move to testing. 

States began testing around the turn of the millennium. 
Teachers have used testing for diagnostic purposes. How-
ever, there was a move to change that to national testing in 
around 2006. National testing began even prior to a national 
curriculum. Initially, the results were distributed to schools 
as an internal diagnostic document, but in 2010, results were 
published more widely. The analysis compares a school to 
the state as a whole, and also to schools of similar socio- 
economic standing. This testing has caused a huge amount  
of fuss, with arguments that it encourages teaching to the  
test or even cheating. 

The Australian mathematics curriculum documents in 2010 
identified reasoning and understanding (or, equivalently, 
sense-making) as two of four key proficiencies. The growth 
and nature of reasoning is described this way: “Students de-
velop increasingly sophisticated capacity for logical thought 
and actions, such as analysing, proving, evaluating, explain-
ing, inferring, justifying, and generalizing.”

Similarly, understanding (or, equivalently, sense-making) 
is discussed this way: “Students build robust knowledge of 
adaptable and transferable mathematical concepts, make 
connections between related concepts and develop the 
confidence to use the familiar to develop new ideas, and the 
‘why’ as well as the ‘how’ of mathematics.” [Note from time 
of publication: By 2014, the curriculum documents had been 
revised, and these statements mention proof more explicitly.]

By comparison, the National Council of Teachers of 
Mathematics (NCTM) standards define them this way: 
“Instructional programs from prekindergarten through 
grade 12 should enable all students to:

	recognize reasoning and proof as fundamental  
aspects of mathematics;

	make and investigate mathematical conjectures;

	develop and evaluate mathematical arguments  
and proofs;

	select and use various types of reasoning and  
methods of proof.”

The Australian definitions in 2010 did not emphasize proof 
as much as the NCTM standards do. Chick and Burns 
reported that proof tends not to be emphasized in the 
classroom, which has been a widespread criticism. Various 
curricula have been used in Victoria, the state that Chick 
and Burns are from, and while the merits of the different 
curricula are debated, the reality is that changes and develop-
ment of curricula may have fairly little impact on classroom 
practice as some teachers will continue to do whatever they 
were already comfortable doing.

Different states have taken very different approaches to the 
use of technology. Victoria has mandated the use of calcula-
tors for a long time, including calculators with Computer 
Algebra Systems, but New South Wales, the most populous 
state, has only limited use of non-graphing scientific calcula-
tors in state exams.

There is similar variation in textbooks. About half of primary 
school classrooms have a prescribed textbook, with the 
others using worksheets in class. Secondary schools nearly 
all use textbooks. Most Australian textbooks do attempt to 
explain mathematical rules in a logical, mathematical sense, 
modeling mathematical reasoning, but they’re often not 
ideal mathematical proofs. Sometimes these limitations are 
acknowledged, for example, when something is explained by 
analogy.1 However, it’s not clear whether teachers even pres-
ent the arguments that are presented in the textbooks.

This is a big issue in general. Elementary teacher education 
generally exposes future teachers to little in the way of rea-
soning and sense-making activities. Secondary teachers are 
required to have a degree in math or science, but still, their 
mathematical exposure and competence vary. There are a lot 
of mathematical and pedagogical skills required to choose 
good tasks, to ask good questions, to interpret students’ 
responses, to ensure that good math is being done, and to 
know models and explanations that are mathematically 
valid and pedagogically appropriate. 
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¹ Stacey, K., & Vincent, J. (2009). Modes of reasoning in explanations in Australian eighth-grade mathematics textbooks. Educational Studies 
in Mathematics, 72, 271-288.
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assessMent

the Common Core State Standards are just the beginning of the effort to coordinate education across 
the country. A key part of making them effective is to develop smart assessment tools. After all, if 

we don’t assess reasoning and sense-making, we aren’t really requiring it. But doing so is a challenge; it’s 
far more straightforward to assess procedural knowledge. Several speakers described efforts to develop 
more sophisticated assessment tools.

RaCe to the toP assessMent ConsoRtia

Jason Zimba, a mathematics and physics professor at 
Bennington College in Vermont, was part of the writ-
ing team for the Common Core State Standards. He has 
now founded Student Achievement Partners, which helps 
teachers implement the CCSS in a way that will help their 
students achieve. He advises some of the consortia that are 
applying for money under the Race to the Top program, 
which will be described below. 

The CCSS have these overarching mathematical practice 
standards:

1.	 Make sense of problems and persevere in solving 
them.

2.	 Reason abstractly and quantitatively.
3.	 Construct viable arguments and critique the  

reasoning of others.
4.	 Model with mathematics.
5.	 Use appropriate tools strategically.
6.	 Attend to precision.
7.	 Look for and make use of structure.
8.	 Look for and express regularity in repeated  

reasoning.

But connecting these practices to the mathematical con-
tent is not so obvious, and assessment lies in that intersec-
tion.

Some aspects of the practices seem easier to assess than 
others. For example, justifying conclusions, explaining 
reasoning to other students, and being precise seem some-
what less difficult. 

Modeling with mathematics seems to be at a medium 
level of difficulty. You need sophisticated tasks, a tradition 
of content development that we don’t really have in this 
country, and subtle rubrics, because models can be wrong. 
That would take some doing at scale. 

Harder would be deviating from a known procedure to  
find a shortcut, because that’s both sophisticated and  
opportunistic. Considering analogous problems is a  
difficult skill that arises only in the context of very difficult 
tasks. Persevering requires tests that stimulate failure. So 
those are harder to assess, particularly at scale. 

They don’t all need to be assessed separately. Some can be 
assessed within the content: reasoning abstractly and quan-
titatively, and making use of structure. Zimba argues that 
those can be embedded well in the content, and hopes that 
someday perhaps all these will be. 

Considering the practices tends to pull assessment down 
to the classroom level and to bring teaching closer to as-
sessing. They loosen you up and make you think about 
assessment in more abstract ways, such as questions in the 
classroom. For example, “Did you mean the Pythagorean 
Theorem or its converse?” “Martin, what did you think 
of Kendra’s explanation?” “How many solutions were you 
expecting to find?” This kind of thing — asking questions, 
listening to answers, following up on them — is what 
Socrates would simply call teaching. 

Assessing the practices only makes sense when you’re 
evaluating growth. We need to compare each individual 
student to his own “past mathematician.” Socrates didn’t 
know anything about complex numbers, but he recognized 
the virtues of precision, reason, argument, and persever-
ance, which are the deepest values of education. In a 
conversation with Socrates, the standard against which 
you are judged is who you were when we first began to 
speak. Similarly, comparing one student to another, or one 
student to an abstract standard, becomes less feasible and 
less relevant as the goals become more profound. Zimba 
argues  that individual growth may be best measured over 
multi-year time scales. Portfolios might hence be good for 
some. The practices might be easier to observe if students 
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are faced with less routine, more complex tasks with long 
chains of reasoning including skills mastered in previous 
years. That’s difficult and daunting. 

Note that it is better to assess the practices imperfectly  
than not to assess them at all.

Leaving the practices, consider the standards that call 
for procedural fluency. “Fluent” means fast and accurate. 
A standard that involves fluency involves time. It means 
more or less the same as fluency in language — you’re not 
halting, or having to stop to correct yourself. When you’re 
fluent, you flow. Assessing that would involve classroom 
observation or classwork like quizzes, or technology that 
involves time or rhythm. So it’s not only the conceptual 
standards, the reasoning, or the practices that raise issues 
of assessment. Assessing any set of standards is challenging.

Zimba speculated that at the time of the conference, some 
long-overdue innovations in assessment might be about to 
occur, thanks to some investment from the federal govern-
ment. The Race to the Top Fund Assessment program is 
awarding $350 million to consortia of states to develop new 
assessment tools. In particular, it will award: 
—	 One to two awards of $160M each for development 

of a shared comprehensive assessment system in 
grades 3-8. A consortium of 15 or more states may 
apply.

—	 One award of $30M for development of a high school 
assessment system. A consortium of 5 or more states 
may apply.

—	 Applications are due June 23, 2010.
—	 To be implemented across the consortium states by 

the 2014-2015 school year.

A middle school comprehensive assessment system must:
	Measure student knowledge and skills against a  

common set of college and career-ready standards in 
math and English language arts.

	Cover the full range of those standards, including  
standards against which student achievement has  
traditionally been difficult to measure.

	As appropriate, elicit complex student demonstrations 
or applications of knowledge and skills.

	Provide an accurate measure of student achievement 
across the full performance continuum, including for 
high and low achieving students.

	Provide an accurate measure of student growth over  
a full academic year or course.

	Include one or more summative assessment  
components.

	Be administered at least once during the academic year 
in grades 3 through 8 and at least once in high school.

	Produce student achievement data and student  
growth data that can be used to determine whether 
individual students are college- and career-ready or  
on track to being college- and career-ready.

	Assess everyone, including English learners and  
students with disabilities.

	Produce data, including student achievement  
data and student growth data, that can be used  
to inform.
o	Determinations of school effectiveness for 

purposes of accountability under title 1 of the 
Elementary and Secondary Education Act;

o	Determination of individual principal and 
teacher effectiveness for purposes of evaluation;

o	Determinations of principal and teacher profes-
sional development and support needs; and

o	Teaching, learning and program improvement.

In addition:
	Points are awarded based on the extent of collabora-

tion and alignment between the states’ elementary and 
secondary systems and public institutions of higher 
education.

	Consortia should work with the Department of Educa-
tion to develop a strategy to make student-level data 
available on an ongoing basis for research, including for 
prospective linking, validity and program improvement 
studies (consistent with student privacy).

	Consortia should use technology to the maximum 
extent appropriate to develop, administer and score  
assessments and report assessment results.

The idea is to deepen assessment, to make it more useful, 
and to reflect a wider range of standards. Assessment needs 
to look more like good teaching, and instead of more as-
sessment, we need better assessment. 

While the practices will be assessed, Zimba isn’t certain 
that the scores need to contribute to an annual growth 
score. Development might take more than a year, and 
accountability might then naturally rest at the school or 
district level. Given that the assessments will be used to 
evaluate individual teacher effectiveness, the consortia will 
have to sort out the issues that arise when those standards 
are better assessed by teachers in the classroom, informally. 
That might be the case for some content standards too, not 
just the practices. The good news is that the request for 
proposals include assessment of the practices.
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Four people presented their varying experiences and expertise with assessment.

henry kranendonk

Panel disCussion

Henry Kranendonk is a retired curriculum specialist in the Milwaukee Public Schools and a 
board member of the National Assessment Governing Board (NAGB), which oversees the bud-
get for the National Assessment of Educational Progress (NAEP) assessments and the writing of 
the national report card. The NAGB is looking at new technologies for assessment.

In particular, the NAGB is experimenting with a science assessment. Students are given a task, 
an investigation in science, and a shelf of resources and objects that they can work with. The first 
wave of data from this shows that the students are highly engaged. NAEP is also looking at new 
subject areas to assess. The newest test is on technology and engineering literacy, which will first 
be assessed in 2014. The test will be computerized. 

Assessments of reasoning must tell us:
1.	 How students approach and think about a complex problem or task.
2.	 How students begin developing a solution to the task. 
3.	 When students become flexible enough in their thinking to be able to do genuine problem 

solving.

An investigation needs to be carefully designed to be useful for assessment. In probability and 
statistics, for example, NAEP came up with these characteristics that are needed in an investiga-
tion of probability and statistics:

1.	 It must be meaningful and authentic.

2.	 The data can either be collected or is provided for analysis.

3.	 There must be variation in data that draws out questioning.

4.	 It must have data that can be organized.

5.	 A focus or research question needs to emerge.

6.	 There need to be opportunities for students to provide reflections.

7.	 By the end, either an answer to the research question emerges or other questions evolve.
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linda gojak

Linda Gojak spent 28 years as an elementary math specialist and mathematics teacher in grades 
5-8.  For the last ten years, she has worked with teachers at the John Carroll University as director 
of the Center for Mathematics and Science Education, Teaching and Technology. She believes 
and shares with teachers with whom she works the mantra, “Everything you do in mathematics 
should make sense.” 

We assess students for many reasons including to enhance student learning, guide instruction, 
inform parents, evaluate student achievement, and evaluate the mathematics program. The 1995 
assessment standards of the National Council of Teachers of Mathematics define assessment as 
“the process of gathering evidence about a student’s knowledge of, ability to use, and disposition 
toward mathematics and making inferences from that evidence for a variety of purposes.”   

The standards of mathematical practice should be woven in throughout the teaching process,  
to drive instruction and to drive assessment. They can’t be separated from the content stand-
ards, because effective teaching should include the standards for mathematical practice. The 
practice standards also must drive assessment, though it’s still a question as to what that should 
look like.

Assessment tasks need to be set in a context. Problems with mere “naked numbers” do not have 
meaning for students. Rich, contextual problems help students to make sense of a situation. 
Problems should also have multiple entry points, so that students who struggle can approach it 
on one level and gifted students can do so on another. Explanation and justification should be an 
expected part of any task, a requirement that eliminates most multiple choice questions.

More appropriate forms of assessment are rich tasks or investigations, journals, projects, student 
folios, interviews, and self and peer assessments. Still, thoughtful implementation is essential for 
these tasks to be worthwhile. For example, students might be asked to include everything in a 
journal, but they (or the teacher) may not be clear why they are doing this or what mathematics 
they are learning from keeping a journal.

In order to construct good assessments, teachers must understand the mathematical content 
deeply, select tasks that reflect this content, anticipate a variety of strategies and responses from 
students, ask appropriate questions in order to obtain information on student understanding, 
and know what to do next based on student responses. 

If we assess what we value, then we must assess student learning for sense-making and  
reasoning.
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Assessment isn’t a tool, it’s a process. It consists of activi-
ties by teachers and students, which provide information 
to be used as feedback to modify the teaching and learning 
activities. It requires all three of the following:
1.	 Tools to gather data about student thinking.
2.	 Analysis of that data.
3.	 Actions that can be taken to improve student  

learning based on the data analysis.

If you don’t do all three, it’s not assessment.

In SERP, the tools are student interviews, problem stems, 
diagnostic classroom lessons, and finally a commitment 
from the district to change their assessments.

At the beginning of the project, teachers didn’t know  
why students couldn’t do word problems. So they inter-
viewed students who seemed to be representative of the 
class and who aren’t getting it about a particular problem, 
like this one:

Here’s a sample interview:

Student: So a five-pound box of sugar costs $1.80  
and contains 12 cups of sugar.
Teacher: What are you thinking?
S: I’m thinking I should divide.
T: OK.
S: I’m thinking I should add.
T: OK.
S: I think that I should add 12 cups of sugar and $1.80.
T: OK, why?

Interview	problem

A five-pound box of sugar costs $1.80 and contains 12 
cups of sugar. Marella and Mark are making a batch of 
cookies. The recipe calls for 
2 cups of sugar. Determine how 
much the sugar for the cookies 
costs.

kimberly seashore

Kimberly Seashore taught in the classroom and then 
for nine years at the Lawrence Hall of Science, and then 
became a graduate student at UC Berkeley with Alan 
Schoenfeld. 

Seashore starts with three premises: that students are 
smart; that teachers are smart; and that people get smarter 
by doing things that make them think. Following those 
principles, it is essential not to steer away from things that 
teachers find challenging.

Seashore is currently involved in three projects. The first 
is the Algebra Teaching Study (ATS), which looks at how 
to capture all the rich stuff that happens in algebra classes 
with a classroom observation tool. The second is on 
diagnostic lesson development. The Shell Center develops 
excellent lessons, which Seashore is helping them adapt 
for American students. Third is the Strategic Education 
Research Project (SERP), which will be described further 
below.

Assessment figures into all of these projects, in improv-
ing student learning outcomes (SERP, ATS), developing 
teachers’ understanding of core mathematics concepts 
and reasoning (SERP, Diagnostic Lesson Development),  
increasing teachers’ capacity to use classroom data  
(SERP, Diagnostic Lesson Development), and identi- 
fying teaching practices that lead to robust student  
understanding (ATS).

SERP is a multiyear university-school district partnership, 
where the school district gets to direct the program. The 
district wants to improve middle school math, especially 
word problems. The teachers are very dedicated, in the 
middle of their careers, although some have not pursued 
every imaginable professional development opportunity.  
The teachers and researchers collaborate to understand  
student thinking and reasoning and to develop rich  
tasks and lessons. They then create tools that can be  
used by teachers across the district to improve student 
performance on word problems.

Rather than asking,  “How do we teach students to solve  
word problems?,” they asked, “What are they already  
doing when they try to solve word problems? What can  
we build on that is productive? How can we help students 
be more productive?”
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S: Because the recipe calls for sugar. I’m thinking  
I should add $1.80 plus 12 cups. I don’t really get the  
question, though.
T: You don’t understand what you’re supposed to be  
looking for?
S: No.

Nevertheless, the student calculates that 1.80+12=1.92

T: But you’re adding the cups of sugar to the dollar eighty?

S: I think you should add 12 to 2. Or maybe you should 
multiply it. That would give me 24.

T: What do you know?

S: I know that a five-pound box of sugar costs $1.80 and 
contains 12 cups of sugar. So 12 divided by 2 and then I’ll 
get… But I don’t know why I would do divide 12 by 2.

T: Is there a picture you could draw that would help?

S: No, because I’ve already got one.

T: You mean the one they drew for you?

S: Yeah.

T: Is there a different picture you could draw that would 
help?

S: No. Maybe. OK, I guess I’ll go for it. 

Pictures

The student was able to represent that there was a box, that 
there were twelve cups, and that she needed two of them. 
So that was pretty productive — much more than the pic-
ture she was given.

This student is not an outlier, though she’s not doing well. 
With prompting, the student was able to get pretty close to 
a final answer.

The teachers observed that students were jumping into 
solving the problems before even understanding what the 
problem was asking them. They were focusing on getting 
an answer, independent of the question. They knew they 
had a bunch of numbers, and a bunch of operations, and 
so they tried them at random, looking to the teachers for 
cues when they got close to the answer. The teachers real-
ized that in class, they were nodding when the students 
got to the right answer. They also realized that interesting 
pictures and useful diagrams are not the same, and the 
teachers were sometimes rewarding beautiful pictures that 
didn’t contain mathematically useful information.

They developed two ideas from these observations. One is 
that they gave the students “problem stems.” For example, 
they’d tell the students, “The dragonfly, the fastest insect in 
the world, can fly 50 feet in 2 seconds. Make up a mean-
ingful mathematics problem that uses this information.” 
That got the students thinking about the questions rather 
than the answers. The teachers also realized that they 
needed to focus on student diagrams.

The teachers asked for more “diagnostic problems” that 
will help teachers evaluate the gaps in student understand-
ing, so that is what the project is focusing on now, creating 
diagnostic problem packets tied to the curriculum at each 
grade level. The district has then committed to including 
the packets in the course guide and to mirroring these 
problems on district benchmark tests.
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dan teague 

Dan Teague is a teacher at the North Carolina School of 
Science and Mathematics. He pointed out that the tradi-
tional rules of the game of teaching math are simple: we, 
the teachers, show students what to do and how to do it, 
we let them practice for a while, and then we give them a 
test to see how closely they can match what we did. The 
game is either won or lost on test day.

But this doesn’t involve thinking. After all, thinking takes 
time. Thinking comes into play precisely when you cannot 
do something “without thinking.” You can do something 
without thinking if you really know how to do it well. If 
your students can do something really well, then they have 
been very well prepared. Therefore, if both you and your 
students have done your jobs perfectly, they will proceed 
through your test without thinking. If you want your stu-
dents to think on your test, then you will have to give them 
a question for which they have not been fully prepared. If 
they succeed, fine; in the more likely case that they do not, 
then they will rightfully complain about not being fully 
prepared. You and your student will have both failed to 
uphold your respective ends of the contract. Given how we 
mathematicians value thinking, it’s a wonder we’ve gotten 
ourselves into this mess at all!

Therefore, to assess thinking — that is, reasoning and 
sense-making — we need totally different forms of  
assessment.

Here’s a problem that Teague uses in a number of  
different classes to assess reasoning:

In 1981, two new varieties of a tiny biting insect called 
a midge were discovered by biologists W. L. Grogan 
and W.W. Wirth in the jungles of Brazil. They named 
one the Apf midge and the other the Af midge. 

The biologists discovered that the Apf midge is a 
carrier of a debilitating disease, while the Af midge is 
quite harmless and a valuable pollinator. In an effort 
to distinguish the two varieties, the biologists took 
measurements on the midges they caught. The two 
measurements taken were of wing length and anten-
nae length, both measured in centimeters. They only 
measured 15 midges, and this was their data:

This is a rich problem in which sense-making can happen. 

The natural first step is to graph the data: 

Midge Data
Af Midges

Apf Midges

Wing Length (cm)
Antenna Length (cm)

Wing Length (cm)
Antenna Length (cm)

1.72 1.64 1.74 1.70 1.82 1.82 1.90 1.82 2.08
1.24 1.38 1.36 1.40 1.38 1.48 1.38 1.54 1.56

1.78 1.86 1.96 2.00 2.00 1.96
1.14 1.20 1.30 1.26 1.28 1.18

Figure 1:  Scatterplot of Midge Data  
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The harmless midges are in black, while the dangerous ones 
are in white. Students can easily find a line to divide the two 
groups, but how do you justify the line you picked? Of all 
the lines, why that one? That is the hard part. 

If they’ve studied regression, the first thing they’ll do is to fit  
a line to each type. Often, they’ll take the average of the two 
slopes and average of the two intercepts and choose that as  
the dividing line, because that’s the closest to something 
they’ve been taught to do. But it misclassifies one of the 
midges. They’re good students because they did what they 
were taught to do, so it must be the right answer. So as a 
teacher the first thing you have to do is to break that down, 
to convince the students that there’s more to it than that.

Another approach is to say that no Apf has been found 
above one line and no Af has been found below another, so 
maybe these two lines could form boundaries. 
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Or, since 9 of the 15 are up here and only 6 of the 15 are 
down here, it’s an unequal split.  Maybe that should affect 
where the line should go. Or, you could argue that it’s 
better to be safe than sorry, so perhaps we should use the 
higher line. All these are using mathematical ideas in a 
reasonable, justifiable way to try to answer this question. 

Another approach would be to look at antenna/wing 
ratios. Then you get a nice lean division.

That turns the two-dimensional problem into a one-
dimensional problem. But you still have to find a point 
to draw the division and need to support that with some 
reason. 

Or you could do a normal probability plot and show that 
each of those subsets is consistent with a random sample 
from a normal distribution. 

This is a bit of a surprise: They all go through the point 
(−1, 2). Why?

The standard “solution” is to solve the system of equations:
ax + (a + k)y = a + 2k
bx + (b + n)y = b + 2n

You get the solution x = −1, y = 2. But this isn’t satisfying, 
because although you’ve found the solution, you haven’t 
made sense of the problem. Why does (−1, 2) have to be a 
common point? 

Apf Ratios Ap Ratios

0.55                     0.6                     0.65                     0.7                    0.75                    0.8                     0.85                    0.9

One could then approximate it with a random distribution 
with a mean of .637 and a standard deviation of .020. One 
could then decide to make a division that will allow for an 
error in 1% of the cases, or 5% of the cases. Or one could 
figure out where it’s equally likely to come from either 
distribution. 

There are lots of ways kids can use what they learn to solve 
this problem. Each is using reasoning and sense-making 
to come up with a solution. We usually have them write 
up a solution to submit as a final product. But a lot of the 
important reasoning isn’t going to be in it. It’s in the false 
starts that they decided to jettison. So to evaluate it, you 
have to watch their thought process as they develop it.  

A problem like this draws on almost all the mathematical 
practices and allows one to evaluate them. 

Teague gave a second example of a rich problem kids can 
tackle: Consider the family of linear functions ax + by = c 
in which a, b and c are in arithmetic progression, i.e., 
b = a + k and c = a + 2k. Examples of such functions would 
be 3x + 5y =7 or 6x + 11y = 16. What characteristics does 
this family share? 

Graph a bunch of them, and this is what you see:

ax + (a + k)y = a + 2k

Wing Length (cm)
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y = 0.558x+0.151

y = 0.479x+0.549

Fit	lines	and	find	"average"	line

Look	at	Ant/Wing	Ratios
Look at Ant/Wing Ratios

Af        .721   .841   .782   .824   .758   .813   .726   .846   .750
Apf     .640   .645   .663    .630   .640    .602

Figure  6 shows these ratios on a number line

Apf Ratios Ap Ratios

Figure 6:  Number Line with Antenna to Wing Ratios

0.6               0.65               0.7                0.75               0.8                0.85
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Examining the equation ax + (a + k) y = a + 2k is revealing. 
Notice that there are two k’s on the right hand side. If the 
equation is going to hold for all values of a, then there 
must be two k’s on the left hand side too. The only way to 
get that is if y = 2. Setting y = 2 means that I have two a’s on 
the left hand side. Since there is only one on the right hand 
side, that can only work if x = −1.

That is an explanation that makes sense of it. 

Now, let’s modify the problem. Can we find other interest-
ing, related results?

Kids tend to initially ask, “What about a geometric 
progression?” That’s an interesting question, but there’s 
another way to modify the problem as well: consider a 
non-linear function. So, what characteristics does the fam-
ily of functions ax + by 2 = c, where a, b, c are in arithmetic 
progression?

These functions will all have this form: 
ax + (a + k) y 2 = a + 2k. It turns out that the same reasoning 
holds: There’s a 2k on the right hand side, so there must 
be a 2k on the LHS. So y ² = 2, and y =  ± ef2. And x still has 
to be −1. So all the solutions must go through (−1, ef2) 
and (−1, −ef2). And indeed, if we graph it, we end up with 
pictures like these:

These lines are all tangent to a parabola, which turns out  
to be y2 = − 4x. Why? 
If you use the standard solution and solve the equations 
simultaneously, you get that x = − rk, y = r + k. But that’s not 
very revealing.

The real question is, where is y 2 = −  4x in ax + ary = ar2 ?

We can think of this as a quadratic equation in r, which is
promising, since we’re trying to explain something that’s 
quadratic. If we use the quadratic equation to solve for r,
we find that r = (y + −cd d d / 2. For r to be real, we   (y 2 + 4x )
need to have y 2 +ef4 fx ≥ 0, so y 2 <− 4x is excluded.
That’s where the parabola is coming from.
Teague tells students to produce the most compelling  
image they can that can go with a nice mathematical  
argument telling him why it has to be that way, and the 
students do wonderful, beautiful, great things.
The same kind of arguments can be made about other 
relationships between a, b, and c. Here are other relation-
ships students have found: 

Now, let’s modify it in the other direction, making a, b, c in 
geometric progression. If we graph them, it looks like this:

ax +by 2 = c so ax + ( a + k ) y 2 = a + 2k

       a . b = c, with c = 24         a2 + b2 = c2, with c = 5

 

ax2 + by2 = c 
a . b = c, with c = 24

Where	is y 2 = 4x in
ax + ary = ar 2
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These are the kinds of problems we want to pose to  
students and say, “Show me your thinking.” You have to 
give them a problem that’s rich enough to think about.

Here’s another beautiful problem, one drawn from a  
Putnam exam:

And one final favorite problem:

Calculus students will immediately point out that the  
intermediate value theorem doesn’t apply because this 
situation is discrete, not continuous. But of course, the 
theorem not applying doesn’t mean that the conclusion is 
necessarily false. In fact, it turns out that there’s something 
special about 80%. Eventually, students discover this and 
then ask if there are other special numbers. It’s a beautiful 
problem.

A student asked Teague this. Does it work? 

Teague said that when he tells other teachers about these 
kinds of problems, they typically say, “My kids can’t do 
that!” And he responds by saying, “Of course not! You 
haven’t taught them how.” They always do badly the first 
time they tackle a rich, challenging problem. After all, 
Teague points out, you played badly the first time you 
played tennis. No one can do something hard well from 
the beginning.  

Intermediate	Value	Theorem

Early in the season, Pat was hitting fewer than 80% of her free throws. 

At the end of the season, she was hitting more than 80% of her free throws.

a)  Must there have been a time during the season at which she was  
hitting exactly 80% of her free throws? If so, explain why. If not, give  
a counter-example.

b)  If the answer to a) was yes, find all values of p which have this intermediate 
value property (you can't go from below p to above p without going through 
exactly p). If the answer to a) was no, are there any values of p for which this 
intermediate value property does hold?  If not, explain why there can be no 
such values.
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Classic	definition	of	Derivative
It is traditional to define the derivative as:

  lim f (x + h) − f (x)
 x  0             h
The secant line geometry of this suggests that  
we pick a horizontal distance h, take whatever 
change in y we need to create the secant line 
and compute the slope. We then shrink h to zero 
and consider the limiting slope.

The	Hernandez	Derivative
Why not the other way around? Why not fix a  
vertical distance h, take whatever change in x 
we need to create a secant line and compute  
the slope. Then shrink h to zero and consider 

the limiting slope.

What	happens	if	you	do	it	this	way?

	

The	poet	Marianne	Moore	was	once	asked,		

“What	is	poetry?”	She	said,		

“Poetry	is	about	imaginary	gardens	with	real	toads.”	

Teague argued that this is the perfect description of mathematics.  
We make math up. But it has real toads: We send people to the moon  
and bring them back based on it. This describes the duality of math in  

a very interesting way. We do a lot with the toads,  
and we think we can draw students into the garden 
by following the toads.
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Reasoning and Sense-Making in the Math Curriculum

teChnology

C omputers of various forms can now do essentially all of the calculations that students learn to perform in primary 
and secondary school. They cannot, however, reason or make sense of mathematics for students directly. Used with care, 

however, they can help students do that for themselves — naturally raising questions, inviting free investigations, deepening 
students’ understandings of algorithms, etc. Teachers and researchers discussed ways that technology can aid students’ sense-
making and reasoning.

nicholas Jackiw

offers free demonstration versions of the software. And 
www.dynamicgeometry.com has many resources for 
The Geometer’s Sketchpad users, including classroom 
activities.

The central idea for the software is that you construct 
mathematical objects in a visual environment, and you 
can then manipulate and change them, while the object 
continues to obey all the definitions you gave it. So, for 
example, you can create a triangle by connecting three 
lines together, and then you can drag the vertices to differ-
ent positions while the software preserves its triangularity. 
The object then transcends being a single example and 
becomes something much closer to the general case of all 
such things. 

Jackiw demonstrated some of the ways this can be use-
ful. For example, he drew the three altitudes of a triangle 
and then began transforming the shape of the triangle. It 
quickly became apparent that the altitudes continued to 
intersect one another at a single point no matter how he 
changed the triangle. Sometimes the orthocenter — i.e., 
the point of intersection of the altitudes — was inside 
the triangle and sometimes it was outside. That raised 
a natural question about how the orthocenter behaved 
as it passed from inside to outside. A bit of play rapidly 
suggested that when the orthocenter crossed the triangle, 
the triangle was always right and the orthocenter passed 
through the vertex at the right angle. While examining 
separate examples might convince you the orthocenter 
can exist inside, or outside, its triangle, only being able 

Nicholas Jackiw, a senior scientist at KCP Technologies 
at the time of this presentation, designed The Geometer’s 
Sketchpad and, with it, invented the Dynamic Geometry 
paradigm that has become widespread in educational 
technology. Today, Sketchpad is one of the most widely-
used educational technologies for school mathematics in 
the world. Many textbooks use the software. Academic 
research has found that Sketchpad use has positive impact 
on student achievement,2 conceptual understanding,3 
motivation and engagement.4 A large-scale assessment 
of technology trends in American education reports that 
mathematics teachers across the country find Sketchpad to 
be “the most valuable software for students.”5 

The National Council for Teachers of Mathematics’ 
Standards explicitly recommends the use of Dynamic 
Geometry at several grade levels,6 and the Common Core 
State Standards call for its use particularly in high school 
geometric constructions and transformations (though it 
doesn’t call for it at all in elementary or middle school).

Jackiw argued that dynamic geometry should be a far 
more central tool to be used throughout the school cur-
riculum, starting in kindergarten and continuing through 
college.

He began by describing what dynamic geometry is and 
demonstrating it, which is far more illuminating. While  
The Geometer’s Sketchpad is commercial software, a video 
showing what it can do is available at https://www.keycur-
riculum.com/products/sketchpad, and that website also

2 
3 
4 
5 
6 

² Battista, Michael T. Shape Makers: A Computer Environment That Engenders Students’ Construction of Geometric Ideas and Reasoning. 
Computers in Schools, 17(1/2), (2002): 105–120, and Hollebrands, Karen. “The Role of a Dynamic Software Program for Geometry in High  
School Students’ Understandings of Geometric Transformations.” Proceedings of the 24th Annual Meeting of the North American Chapter  
of the International Group for the Psychology of Mathematics Education, Columbus, Ohio: ERIC (2007): 695-705.

³ Frekering, B. G. Conjecturing and Proof-Writing in Dynamic Geometry, PhD Thesis, Georgia State University (1994).
⁴ Sinclair, N. Mathematics and Beauty: Aesthetic Approaches to Teaching Children, New York: Teachers College Press (2006).
⁵ Becker, H. J.; Ravitz, J.; and Wong, Y. Teaching, Learning and Computing National Survey, University of California, Irvine: Center for  

Research on Information Technology and Organizations (1999).
⁶ National Council of Teachers of Mathematics. Principles and standards for school mathematics, Reston, VA: National Council of Teachers  

of Mathematics (2000).
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At the other end of the curriculum, dynamic geometry  
allows students to develop transformations not often studied  
in school. Any constructed dependency between two 
points can define a transformation of the plane, which is a 
much more powerful and abstract mathematical idea. One 
can, for example, define circle inversion: To invert through 
a circle with center O, take any point P to a point P1 defined 
by the relationship OP ∙ OP1 = OR2, where OR is the radius 
of the circle. One can then use that construction to define 
a transformation of the whole plane, allowing the user to 
explore the global properties of that definition easily.

The Common Core State Standards say that we should 
turn to dynamic geometry as one of a number of technolo-
gies that we should know how and when to use, which 
seems to be based on the notion that appropriate technol-
ogy is somehow layered on top of or independent of the 
mathematical content of the curriculum. Jackiw think 
that’s a problematic notion,  arguing instead that technolo-
gies always mediate our understanding and even definition 
of “content,” and that changing technologies inevitably 
changes our perception of and relation to specific content. 
While he is pleased that at least they’re admitting it into 
the stable of approved tools, his view is a more evangelical 
one.

First, he’d like to see dynamic geometry used as early as in 
kindergarten. A growing body of research demonstrates 
its usefulness at that level, and it’s also useful at the college 
level. Countries that use Sketchpad system-wide amortize 
the investment of a student’s time in learning the software 
over many years.

to witness and control this movement continuously—to 
push the center outside, or back into, its triangle—allows 
you readily to explore this boundary condition. Prov-
ing your result would be a separate step, but the software 
makes experimentation and questioning natural, and the 
knowledge thereby gained gives insight into the structure 
of a possible proof. 

The first use of dynamic geometry that people tend to 
think of (particularly if they haven’t used dynamic geom-
etry much themselves) is for geometric constructions, and 
it indeed is quite useful for that. Jackiw demonstrated, for 
example, the process of figuring out how to construct a 
line tangent to a given circle through a given point using 
the software. Coming up with the construction requires 
remembering the fact that the angle contained in any 
semicircle is always right. 

But Jackiw argues that there’s not a lot of sense-making and 
reasoning in this process. Instead, one merely looks over a 
trove of known facts to see which will be helpful in the given 
situation, and then applies it.

Other ways of using dynamic geometry support much deeper 
types of reasoning. For example, students can start thinking 
about transformation as early as kindergarten, examining 
lines of symmetry and symmetric properties of shapes. Jackiw 
drew half a face and then used the software to reflect it, form-
ing an object with mirror symmetry built into its definition. 
He could then change the location of the axis of symmetry 
and see the effect it had on the overall shape. He then con-
nected corresponding points on the two sides of the face, 
and this led to a natural hypothesis that the axis of symmetry 
might perpendicularly bisect each of these lines.

Jackiw	created	this	image	of	a	face	by	reflecting	half	a	face.	
Connecting	corresponding	points	suggests	the	idea	that	the	
lines	are	bisected	perpendicularly	by	the	axis	of	symmetry.

Half-Head	Reflection

1.  Draw half a head on one side 
 of the mirror.

2.  Reflect it, then explore.

High	School	Geometry:	Circles	[G-C]

4.  (+) Construct a 
target line from 
a point outside a 
given circle to  
the circle.
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Another mathematical habit of mind that dynamic geom-
etry naturally supports is “attention to extreme configura-
tions, invariance, and generalization (mathematical and 
epistemological).” Extreme configurations pop out in 
dynamic geometry. In even the simplest case of playing 
within a triangle, everyone who does this ends up creat-
ing a collapsed triangle, for example. And invariance pops 
out obviously, as in the intersection of the altitudes of a 
triangle.

Dynamic geometry is also powerful because it draws  
on embodied cognition. The experience of dragging a 
triangle is very different from watching it. When doing it 
yourself, a feedback loop occurs between your hand and 
your eye, and this relationship is the core of all cognitive 
development. 

⁷ Cuoco, A., Goldenberg, E.P., Mark, J. (1996). Habits of mind: An organizing principle for mathematics curriculua. Journal of Mathematical 
Behavior, 15, 375-402.

Second, he argues that dynamic geometry’s usefulness ex-
tends far beyond geometry to any situation in which geo-
metric visualization is relevant. Algebra, calculus, number 
operations all need dynamic visualization. He argues that 
it’s like a word processor’s relationship to handwriting. In 
mathematics, Dynamic Geometry is potentially appropri-
ate wherever a blackboard or piece of paper is appropriate. 

Dynamic geometry supports several mathematical “habits 
of mind.”7 It is ideally suited to helping students “under-
stand the value of example sets,” because it provides more 
examples of the phenomenon in question than you would 
ever otherwise see. Furthermore, those examples are 
ordered as you drag, providing additional insight. You’re 
making a trajectory through the space of all possible 
examples.

Kurt Kreith, a mathematician at the University of California 
at Davis, spoke about “Teachers in the Information Age.”

Norbert Wiener, who founded the field of cybernetics, 
wrote a book called God and Golem, Inc. (a golem is a kind 
of created servant). The question Wiener asked is whether 
these machines will be our servants or our masters. And 
that’s ultimately the challenge for teachers: to make comput-
ers the servants of students’ understanding.

When students use calculators mechanically — for example, 
entering bivariate data sets into a calculator and then push-
ing a button to spit out the correlation, when neither the 
students nor the teacher knows the definition of “correla-
tion” much less the subtleties of the concept — they are 
acting as the calculator’s servants. And, unfortunately, such 
tasks are common.

There are three alternatives to this mechanical approach:

1.	 Emphasize transparent forms of technology. When a 
calculator does arithmetic, for example, the pro-
gramming may be mysterious, but what it’s doing for 
you is not. Avoid having technology do things that 
students don’t understand.

2.	 Give the teachers greater control over the extent to 
which technology serves as a black box. For example, 
Kreith wondered if a dynamic geometry program 
could allow a teacher to set it to do synthetic geom-
etry only, without measuring anything. 

3.	 Create situations in which the student “teaches the 
machine” rather than visa-versa.  Kreith has done 
this in a variety of areas, having students create 
spreadsheets that develop the procedures that under-
lie topics such as positional notation, long division, 
and the Euclidean algorithm.  Many of these make 
use of Excel’s built-in MOD function to make acces-
sible some of the mathematics that is central to the 
modern world of bar codes, parity checks, and  
credit card encryption.

kurt kreith
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Susan Addington of California State University, San 
Bernardino, demonstrated some ways to solve algebra 
word problems without algebra, using spreadsheets. She 
demonstrated the method using this word problem: Mary 
is four years older than Rico. Ten years ago, Mary was 
three times as old as Rico. How old are they now?

To begin, the student simply guesses. Let’s say Mary is 15. 
Then it’s clear that Rico must be 11, since Mary is four 
years older. Instead of doing that calculation, though, you 
create a spreadsheet in Excel and tell the computer how 
to do the calculation by creating a formula. The next cell 
in the row would contain a formula to give Mary’s age ten 
years ago (5), then a cell with Rico’s age ten years ago (1), 
then three times Rico’s age ten years ago (3). Then you 
have a cell subtracting that from Mary’s age ten years ago 
(2). If the guess were correct, the final cell would be 0, but 
in fact it’s 2. 

So the next step is to copy the formulas so that you create 
a range of possible ages. Then you can simply scan down 
the final column to find the 0. That occurs when Mary is 
16 and Rico is 12. 

Solving	an	algebra	word	problem	without	algebra
Mary is 4 years older than Rico.  Ten years ago Mary was 3 times 
as old as Rico was then.  How old are they now?

3 x Rico’s age
10 years ago

Mary’s age
now

Rico’s age
now

Mary’s age
10 years ago

Rico’s age
10 years ago

9
10
11
12
13
14
15
16
17
18
19
20

5
6
7
8
9

10
11
12
13
14
15
16

-1
0
1
2
3
4
5
6
7
8
9

10

-5
-4
-3
-2
-1
0
1
2
3
4
5
6

-15
-12

-9
-6
-3
0
3
6
9

12
15
18

Solving	a	problem	of	two	linear	equations		
with	the	intersection	of	two	lines

	 Cost	for	trail	mix:			3	pounds;	$10															Pounds	of	raisins:	$2.50/lb

	
										

	
	

Pounds	

of	N
uts;	$4/lb

susan addington

The above is another problem in which a table can be  
useful: you want to make 3 pounds of trail mix from nuts 
and raisins. You have $10 to spend. Nuts cost $4 per pound. 
Raisins cost $2.50 per pound. How much should you buy?

You can simply make a table of possible combos of raisins 
and nuts. You color a cell green when the combination 
costs $10 and yellow when it weighs three pounds. The 
colored cells suggest lines; the intersection of the two lines 
is the solution.

While this is a time-consuming method to solve the prob-
lem, it effectively illustrates the idea that solving a system 
of two linear equations is the same as finding the intersec-
tion of two lines.

This method, called a guess-and-check table, is well 
known to some algebra teachers and is included in the 
CPM curriculum. The check is an equation satisfied when 
the guess is correct, and the formula falls right out. This 
trains students to write equations for word problems. 
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programs. These workshops offer a space to make connections and exchange ideas with 
others concerned with the same issues in their fields.

Most workshops are held at MSRI and last for a few intensely secluded days. Each  
workshop attracts approximately 200 participants. Workshop organizers make sure  
to ensure diversity and relevant expertise by reaching out to mathematicians from  
a broad cross-section of colleges and universities.

For more information visit www.msri.org
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 a . b = c, with c = 24

a2 + b2 = c2, with c = 5

a2 + b2 = c2, with c = 5

Where is y 2 = 4x in
ax + ary = ar 2
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