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Sunmmary

This thesis has  two chapters. The first investigates necessary conditions
for a classical knot to be slice, improving on some results obtained by
Casson and Gordon. The method is to study a Seifert form on an arbitrary
surface in an arbitrary 3-manifold M. By analogy to the Seifert form of

a knot, certain ntmerical signature invariants of the surface are defined.
These signatures turn out to be bounded when a closed surface bounds a
J-manifold in some 4-manifold whose boundary is M; this is the principle
tool. It is used to study surfaces lying in certain cyclic coverings of

a knot. A non-embedding result is given for 3-manifélds in 4-manifolds

in which 8] = 0.

Chapter two is an analysis of the 7 & Z cover of a classical link
of two components studied by means of a generalisation of the Seifert
pairing defined on transverseSeifert surfaces for the link components.
This enables a signature function to be defined on the torus generalising
the knot signature function on the circle. A new proof is given of the
form of the Alexander polynomial for a slice link. A proof of some of
Conway's relations between link polynomials is given. And in 84,
certain polynomials are shown to arise from links, showing in particular
that the Torres conditions are sufficient for linking number two when

the components are unknotted.
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Chapter | Detecting Knots which are not Slice

1. Introduction

Aknot k in S? is slice if it is the boundary of a smooth disc
properly embedded in B* . A Seifert surface V for k defines a Seifert
pairing Sv on HE(V) defined by lifting a representative cycle off V
using the normal orientation to V defined by the orientations of k and
$% , and taking the linking number with another cycle lying on V. That
k 1s slice ensures the exiséence of a subspace of HE(V) of half dimension
on which SV vanishes. Aknot whose Seifert pairing satisfies this
condition is called algebraically slice. Analagous definitions may be
made in higher (odd) dimensions, and in this case the concepts of slice
and algebraically slice coincide (L2). The idea is to convert a Seifert
surface V lying in s2™1 into a dise in B2 by doing embedded surgery,
this works up to the middle dimension where the Seifert palring appears
as the only obstruction. Trying to carry out this program in the classical
case means finding a set of g (=genus V) simple closed curves on V which
bound disjoint smooth discs in B" , and then surgering V along these discs

to produce a slice disc.

This suggests taking a Seifert surface V for a slice knot k having
these surgery curves, and regarding V as a disc with bands around which
these curves rum, tying ome of the bands into a knot K (without adding
any twists) so that a surgery curve is knotted. The resulting knot k'
has the same Seifert pairing as k and will be slice if K is slice, indeed
the surgery curves on the modified V still work. However if K is not
slice one might suspect that k' is not slice, indeed one might conjecture
that if K is not algebraically slice then k' is not slice. This generalises

a well known conjecture that the untwisted double of a knot (= do above



operation to a genus 1 surface for the unknot) is slice if and only if

' i5 shown

the original knot was (algebraically) slice. In sectiomn 3, k
not to be slice when k is a genus | knot with non trivial Alexander
polynomial (thereby excluding the unknot) for certain K. On the way an
obstruction is found to embedding (orientable) 3-manifolds in 4-manifolds
when the map on two dimensional homology is not injective. In particular

given n>0 there is a 3-manifold M which will not embed smoothly in any

closed oriented 4-manifold W with SQ(W)<n and BE(W)zO.

The existence of algebraically slice knots which are not slice was
first proved by Casson and Gordon (CG) using the G-signature theorem. The
present results are obtained using elementary methods in sections 2 and 3,

however a relation to the G-signature theorem is given in section 4.

Notation and Conventions

All work is done in the PL category with local flatness and in
dimensions <4, or alternatively in the smooth category. Manifolds are
compact and oriented, orientations are preserved everywhere. Throughout
. is the intersection pairing on (singular) homology both at the chain
level and on homology groups. * is used for orthogonal{usually with
respect to +) complement of a vector space, and @ is used for orthogonal
direct sum. When complex (C) coefficients are used all pairings
(including *) are sesquilinear. An un-nathed map between topological
spaces, or a map named i, will usually be an inclusion unless otherwise
are complex numbers of unit modulus, V is a surface

stated. W ,&, ,W

1 2

M a 3-mapnifold and W a 4~manifold.

Familiarity with the Seifert pairing in classical knot theory is
assumed together with properties of the infinite cyclic cover of a kmot
complement derived from it,as presented in (G). The numbering scheme used
is s.t where s is a section number within a chapter, t is a 'topic'.

The same scheme is used independantly for diagrams.



§2 calculus of Signatures

In this section numerical invariants are obtained from any oriented
surface in any oriented 3-manifold. The main result is the Signature
theorem (2.10) which places a restriction on the signature of a closed
surface sitting in the boundary of a 4-manifold and bounding a 3~manifold
in that 4~manifold. The other main tools are the Additivity theorems
(2.19, 2.20) which connect the signatures obtained by glueing together

3-manifolde and/or surfaces in them.

2.1 Definition

Suppose V is an oriented surface embedded in an oriented 3-manifold
M such that int(V) lies in int(M) and if S iz a boundary component of V
either § lies in int(M) or else V is properly embedded in M along S, ie.
Sx{0,1)—V—M is a proper embedding. This ensures a normal bundle for
§ in M, let i_:V—M be the (~1) section of this bundle, the orientation
of the normal bundle being induced by those of V and M. Define
Ry~ker{i, :H (V;€)—H, (C)]
and define a sesquilinear Seifert form
SV:KV® KV---+C
by Sv({u}aa,{B}eb)=aﬂ,Lk(i_*a,B)
where a,beC  and {a},{B}EHI(V;BJ
(linking number is uniquely defined between l-boundaries)
Given we€ with |w|=1 define an Hermitian Seifert form
Sw,V,M: KVG Ig]%
by S, g y(@sB)=(1-0) (8, (@, B)-uSy (B,0))
denote the sipnature of this by o(w,V,M) and define
(w,V,M)=} g_igjo@ig,V,M)m(we“ig,v,m}
(little distinction is drawn between cycles and the homology classes

they represent)



2.2 Examples

1) M=S%, V is a Seifert surface for a knot k lying in $% , then the
signature obtained is a well known invariant of k, independent of V.

If A is a Seifert matrix for k obtained from V, the Alexander polynomial
of k is A(t)=det{(tA-A') see (G) p 24. Then o(w,V,M) is the signature
of (1-w) (A-pA') and is thus constant except at roots of A(t ). Taking
the average of the I-sided limits ensures that T{w,V,M)=0 for all w

when k is a slice knot, see (G) p 37, his definition of ¥ We will

K
write g(w,k)=0(w,V,M) in this case., If k is the right hand trefoil knot
3, then G(e18

: Jy = {0 |ol«u/é

{1 |e|=n/6
{2 w/6<p<11n/6

as is seen from a Seifert surface and matrix @

Seifert

a B
surface -1 1

0 ~1

2)  Given a knot k in S8° , perform O-framed surgery (see (R) p 257)

along K to produce a manifold we shall denote by M(k). Then M(k) has the
homology of S$!x5% , and a generator of H, is represented by a Seifert
surface + core of handle ( O-framing ensures their boundaries coincide)

It is clear that KVEH](V) for this surface, and that g(w,V,M)=c{w,k).
Incidentally if -V denotes the surface with the opposite orientation
g(w,-V,M)=c(w,V,M) (the change of orientation transposes the Seifert form)
hence ¢g(w,=,M) is not a homomorphism from HZ(M). In fact 2.26 says that

o (,nV ,M)=0g (w'nl LV, M) for neZ.

3) M=81x§?, v=5!xs?!, dim KV=1 and the Seifert form is zero, thus

singular (see 2.11).



43 V is a closed surface of genus g, M=Vx§? then KV=O.

5) M=Lp’ a Lens space. M may be viewed as a solid torus T to which
a ?- handle is attached along a simple closed curve winding g times
meridionally and p times longitudinally, and a 3~handle added to close

the manifold. V=0T, a torus. If coefficients Z instead of € are used

then H1(V)/Kv ;Z? (=2Z/pZ in this thesis) and the Seifert form has matrix

6) M is obtained by doing O-framed surgery along two unknotted circles
a and b, in 8 shown in (i)

(i) (ii)

Hz(M;Z)EZZ . Let V be the genus | surface shown in (ii) + core of handle a
then Kvgz generated by o and the Seifert form has Ixl matrix (+1), so
a{w,V,M)=+1, This manifold will be referred to later as {i . Now remove
from ( a solid torus neighbourhood of the curve B ( a meridian of b)

shown in (ii), and call this manifold QB.

Frequent use will be made of duality in manifolds, and in particular
the following consequences :

Duality Properties

For a compact 3-manifold M

(n Znullitfti*:ﬁi(BM)—~+H](M)}2BI(BM)

(2) If a,be ket{i*:Hl(BM)~—+ﬂi(M)} then a<b=0 (+ in M)
For a compact 4-manifold W

{(3) Radical (-

HZ(W))=Im{i*:H2(BW)~m+H2(W)}
(&) kef{i*:H](BW)—m&H](W)} is dually paired to

H, (3W)/ker{i,: H, (3W) —H, (N} in oW.



2.3 Definition

Tt will sometimes be more convenient to consider another sesqui-

linear form
IV:HZ(M,V;G)GHZ(M,V;C)——»c

defined by Iv(a,b)=Sv(3a,Bb) where B:HZ(M,V)——+H](V)
is the boundary homomorphism. Another way of thinking of IV is to motice
that in MxI, Iv(a,b)zim*a-b « is the sesquilinear intersection pairing
between 2-chains a,b EZz(MxI,MXO) with disjoint boundaries. 1_ is the
automorphism of MxI, extended from M using the product structure, and
defined on M to éiiidentity outside a neighbourhood of V and taking V to
the (-1) section of its normal bundle. Define a Hermitian form by

(a,b)=8 (3a,9b)

Iw,v,M
and note that O‘(us,v,M)mo(Iw

w,V,M

,V,M) because o is a surjection onto KV'
KV has some additional structure, let X=cl(M-VxI) and consider the
commutative diagram {for V closed)

Hz (M, oM) —""“+H2 (M, X) Wﬂz (vxI,vx3I)

A ed la+m8_
B (V) ® H (V)
B+ma_ is the boundary homomorphism for the pair VxI,Vx3I composed
with the natural isomorphism Hi(Vx31)+H](V) & HE(V)' Define :

Ly=Im A (= Im A)

Vv

J. =L al: L

v LV v with respect to som H](V)
=R adi S

Rw,V,M adical of 0,V M

2.4 Structure of KV—

If V and M are closed then
i
(1) KV—LV SO ngKv
(2) The radical of -|Kv 1s Jv

J

. ’ ’
(3) Rm,V,MhRm',V,Mg'V if w#w,  ww'f!



Proof: 1if a EHQ(M) R eKv then

the intersection in V B-A+(a)=3-a ag an intersection in M
=0 since R is a boundary
i . .
hence KV 5LV . The rows of the commutative diagram below are the exact

sequences of the pairs (X,Vx3I) and (M,VxI) the sequences are connected

by maps induced by inclusion.

9,83
H, (4,X) 3, (V) 8 H (V)
e fig
il (K)——H, (X, V1) —t D (0
g =excision jlonto l
~H, (1) MLHZ(M,VXI) i SH | (VxI) ___3"_.+H! (M)
%
HE(V}
dim ker k = dim (j ker k) + dim (ker jn ker k) trivially
= QJ(V) by duality in X since
x=UxpL
j ker k= Im ji by exactness
= Tm m by commutivity
= ker 1 by exactness
= Ky by definition
ker | n kex k = ker j n Im & by exactness
= g ker m by commutivity
= Im fgh by exactness
= Im £(9,00_)egh by commutivity

now A =0 egh hence L,= Im d9,egh  and because ker 9 = ker (5 e3_)

v
it follows that dim LV= rk(3+98~)egh

= rk f(3+$8“)egh because f is injective
hence B](V)= dim KV + dim LV . Now V is closed so the intersection

pairing on it is non-singular hence dim Lé + dim Ly = BI(V)

. e Ll .
thus dim KV = dim LV’ proving (1).



- L
for (2) we have JV— LVnLV
a L
= KynKy by (1)

KV .

Tor (3) suppose ¢ ERw,V,Mr1Rm',V,M then for B QKV

the last term is the radical of -

[H

-
Sm’v(&,ﬁ) - T“u")'r UJ' ,V(OL;B)

0

]

(IMN)SV(G-’B) + (lmi;)sv(B:{X) - (]'—(}J)Sv(u:B) - —;‘:‘—_g—r(]—‘;—l')sv(s!u)

i

5y (Bsa) (1) (1 = ")

the hypotheses exclude (1-w) (1-win')=0

hence 5,(8,0)=0, and swapping o and g gives S,(q,p)=0.
However Sv(a,B) - Sv(g,u) = g+f intersection on V. Thus g.p=0
for all B gKV, S0 q EJV by (2), proving (3).

2.5 The Radical Lemma

Let p:KV—~+JV be any projection onto the subspace JV of KV .

Then except for finitely many w , p is injective on R .
U):V3M

Proof: choose any K'< K, such that Ky =K' @ Jge We must show that

R n
Ww,v,M

S {K' using some basis. Define f{t)=det(A~tA") then E£(1)#0

K' is zero except for finitely many (. Let A be a matrix for

v,M

because A-A' is the matrix of the intersection pairing on K', which is
g

non—-singular because, by 2.4, Jvaadical {» KV). f(t) is a polynomial
in t and s0 (!wu)(AjﬂA') is singular for finitely many values of yp only.

This is the matrix of %ﬂ v M}K' which accordingly is a non-singular
2> >

Hermitian form except for these u .

2.6 Pieceéwise Constancy of g

g as a function of oy is constant except at finitely many values

so TF g except at these values.



Proof: Let A be a Sefert matrix for the Seifert form Sv M
]

M= (l—t)(A-t—IA') is a matrix over F=Q(t) and Hermitian with respect
to the involution t —rtml of ¥. There is P gGLn(F) such that PMB'

is diagonal with entries ratiomal functions of t. Replacing t by w in
this matrix (u not a zero of a denominator) and taking its signature
gives o(w,V,M) which is accordingly constant away from the zeroes of

the pumerators and denominators of entries of P and PMP', giving the

result.

2.7 Proposition

Suppose V0 and V] are oriented surfaces properly embedded in an
oriented 3-manifold M with BVO2 BV] and {VO} = {VI}E HZ(M,BM). Then
there is another such surface V obtainable from both VO and V1 by a
sequence of (S0) Ambient Isotopy

(51) Adding a disjoint 2~sphere which bounds a 3-ball

(52) Adding a hollow handle

Sketch proof (from (G) p 27.)

Construct maps PyeP :M —8! transverseregular at the point x
of 8t with p;](x) = Vi . The hypotheses ensure & map p : MxI —§ 1
with p!Mxi = P; i=0,1 . Again this may be chosen transverseregular
at ¥ so p—}(x) is a 3-manifold U with 09U = VOXO v BVixI U V]xi. Fow
take a collar level-handle decomposition of U in which the 0~ and 1~
handles are added before the 2- and 3- handles. Then taking a level
section of U above the O- and 1- handles & below the 2- and 3— handles

gives the surface V, completing the proof.

9.8 Remark in oriented compact manifolds codimension one homology is

representable by properly embedded submanifolds (with trivial normal bundle)



2.9 Invariance of O

With the hypotheses of (2.7) U(w,VO,M)=G{w,V],M)

Proof: Clearly 80 and S1 have no effect on ¢ , so suppose that V' is
obtained from V by SZ. KV‘ is larger than KV because a meridian m of the
handle (=attaching circle) bounds a disc in V and so represents a new class
in KV‘ . This leaves any 'longitude' ¥ running round the new handle

(ie. meeting m once transversely) which may or may not be in KV' .

If o EKV then Sv(a,m)=O=SV(m,a) because m bounds a disc disjoint from
v'. 1f ¢ EKV, then without loss SV(Q,m)=! Sv(m,ﬁ)ﬂo and it follows

that irrespective of whether 2 EKV, o(w,v,M)=c(w,V' M) completing

the proof.

1f {v }={v,} eH,(M,8M) but BV #3V, it is not the case that
U(w,VO,M)=U(w,V1,M) necessarily. To illustrate this consider QB
from example 6 of (2.2), the closed surface V given has U(w,V,QB)@I,
however B lies in the normal bundle of V, and so V may be isotoped to

V' meeting 9%, in BxI. Then {V'-BxI}={V} eH (QB,BQB) but because BxI

B 2

cuts o , KV'=0 and so o(w,V'-RxI,2.)=0.This example relies on the fact

g
that @ € JV This would

seem to rule out a natural interpretation of ¢ (section 4) when dM#0.

We are now ready for the Signature theorem which will be our main
tool. It is a generalisation of Levine's statement (and proof) of the
vanishing of signature for slice knots (L2). A different version is
proved in section 4 using the G-gignature approach, which suggests the

effect of Rw is not important.

,V, M



2.10 The Signature Theorem

If U is a compact oriented 3-manifold properly embedded in W

a compact oriented 4-manifold and (M,V)=3(W,U) then,

OW,V,M+0 W) £ rk(|H, ) + dim{K /R }
lo@,vmsom] < , () K/ v
- ZHUIllty{i*:KV/Rw,V:ﬁ___+Hi(U)/lﬁﬁu,V,M}
< rk(s HZ(W)) + BE(V) - dlm{KV/%ﬂ’v,M} . Also
]U(w,V,M)+U(W){:i BZ(W) + B](M) except for finitely many w

Proof: Coefficients € are used throughout this proof. Given w define
a Hermitian form (extending the definition of %ﬂ,V,M)

I, Hy(W,V) 8 Hy(W,V) —>C
by Eﬂ({a},{b})=(lﬂn)(i_*a-b1;i+*a-b) where a,b EZE(W,V). i_is an
automorphism of W fixed outside a neighbourhood of U and with iMIB the
(~1) section ot the normal bundle of U, the sign being determined by the
orientations of U and W, To see that %u is uniquely determined suppose

{3} =0 EHZ(W,V), then {b}=0 EHsz,BW) now i_,a,b EZZ(W,BW) and have

disjoint boundaries so 1

g b = i_dab-{v} intersection in HZ(W,BW)

=0 since {b}=0 eH, (W,3W)

and so T, t{ a} ,{ B} )=0.

The radical of the intersection pairing on Hz(W) is
C#= Tml 1, iH, G W) —H, (W) } so choose a splitting H,(W)=C® A .
The exact sequence of the pair W,V is
B, (V)2 B, (D —— B, (4,) — B (1) —Lort, () —
which splits (non naturally) giving
(1) i, (W, V) = Ad (c o B
where 9: Bi>ker i (the orthogonality B< A" is possible because -]A
is non-singular). There is a natural isomorphism
ker i= ker {j,:H (V)—H (N} olIm H (V) —H () n ker H (D—H (1)}
pull back this decomposition via 9 to B giving B =D @ E , where

D = ém]ker j* and E= 3 V]Cother term). We may suppese that B was



chosen so that D @ C = Im {HZ(M,V)-¢H2(W,V)} because A'HZ(M,V)=0.
From (1) we get 0(I) = O(Im!A) + O(IwIB ® C)

observe that if da=0 or 8b=0 then Iw({a},{b}) = (I-w+i-w){al+{b}

that is to say }w is a multiple of the intersection pairing °*

and s0 U(leA) = g(W) , also :

() Cr C=0 because 3C=0 and CﬂRadical('iHZ(W))
(3 C=D=0 because of the way D was chosen
{(4) rtk(*|C ® E) = dim E because OF é:kar{Hl(Bw)—~+H](W)} is

dually paired to C=Im{H2(8W)h—¢Hz(W)}.
We have the following situation,a Hermitian form Ew is defined on C®@ D @ E
and C < Radical(1w§C 8D and E is non singularly paired by Iw into C

thus O(lec ® DO E) = U(Iw]D) = c(zw]c ® D)

It

Now O(leD) g{w,V,M) by definition of C & D hence

g(W) + o(w,v,M) .

H]

(5) O(Im)

The idea now is to get a bound on O from the vanishing of Im

on a certain subspace. Iw may be singular so the appropriate result is
that if the dimension of the space Iw is defined on is d, the dimension
of it's radical, Rw say, is r and the dimension of a subspace on which
it vanishes is v then

(6) lo@ )l 2d+x-2v.

Now H,(W,V) = Ad (COD ®E) so

(7 d =dimA+dim C + dim D + dim E

and R <C®D®E because *|A is non-singular. Notice that Iw[D @D

" . » . - 0 . _m_>
is igometric to Sw,V,M on KV 8 KV » let us identify via 9:D KV .

then under this identification R,2CO Rw,V,M ® E (recall Rw,V,M is
the radical of Sm,V,M)' Using (2), (3) (with Rm,V,M=é D}y and (&)

Rw = {C B Rw,V,M) n E* and hence

(8) r =dim C + dim Rw,V,M - dim B



13

As Levine observed,Iw vanishes on F = Im{Hz(U,V)ww—*HZ(W,V)} because
representative cycles are disjoint after translating one of them off U

by i_. However there is a larger subspace on which Iw vanishes :

a A1y j
(C @ Rm’v,M) + ker{F i, (V) Hl o}

{If r eR k eker 19 then Im(r,k)=5 (9r,dk)=0 because Ir

W, V,M w,v,M

is in the radical {identifications !} , and k*C=0 because
C=Radical(*[H,()) and k e Tm{H, (W) —H, (W, V) } }
The dimension of this subspace is

(9) v 2 dim € + dim R + nulllty{l*:Kv/Rw;§:§ww+Hl(U)/1*R 1

»V,M w,V,M

to see this choose F1 < F such that 8:F1—§+B(F) QSHI(V) . Then

3: ker {jB[F]}%—¢kei{inc1*:Kﬁmww4Hl(U)} {recall Kvmker{ﬁi(V}——4H1(M)} )

. . < 44 \ .
s0 dim (C O Rw,V,M)sl ker {JBIFihm dim 3(C ® Rw,V,M) n J(ker JB[FI)
9(C @ Rw,V,M)IW dker JBIF] the term on the right
= aRw,V,M n dker JB]F1 because 0GC=0

ker{lnclﬁ:Kv——~+H1(U)}rw R identifying ng,V,M=Rw,V,M

sV, M

]

ker{lnclszw;G:ﬁ——+HI(U)}

and so  ker jB[F]/@(C ® R )} n ker jBIFi)

w,V,M
> ker{incl:K,—H (1)}

2 i A
ker{lncl*.Rw’V’M BI(U)}

o ker{l*:KV/Rm,§:ﬁ~"~_+Hl(G)/l*Rw,V,M}
establishing (9). Putting (7), (8) and (9) into (6) gives
< 41 . s
lﬁ(iw)l < dim A + dim D dlm'Rw,V,M
HZ(W)) and dim D = dim Kv so dim KV/Rw,V,Mz dim D -

- 2nullity{i, g(v/Rw’m—-rﬂlcu)/i*Rw’v’M}

now dim A =tk (*

dim R , establishing the first part of the theorem.
w,V,M
Let a = dim{Im H (V)-—H, (M) n ker HI(M)WHI(IJ)} then

nullity{K\;"HHl (0)}

v

nullity{H](V)w—-*Hi(B)} - a

= %B](V) - a by duality in U (recall 9U=V)



Therefore

dim z<‘.,/11w’v’M ~ 2nu111ty{xv/3w,€jﬁmw+ﬁi(U)/l*Rm’V’M}

< dim KV - B](V) + 2a + dlanw,V,M

s . s '
BI(V) dim Kvl%u,V,M since a < BI(V) dim Kv (= 2'nd bound)

A

By duality in W B, (W) = rk(- Hz(W)) + nullity{Hi(BW)——~+HI(W)}

2 k(-

+
Hy(W)) + a
this last because azé nullity{H!(BW)—*—+H](W)}.
Finally by the radical lemma (2.5) except for finitely many w
dim R < dim J, <B,M) , giving the third bound, and completing
W,V M= v ="y
the proof.

2.11 Definition

A Seifert form on a closed surface is nom-singular if for all

except a finite number of w , R 0. Most of the examples are

W, VM

non—singular.

2.12 Remark

The hypotheses of the theorem are equivalent to {Vv} =0 EHZ(W;Z)

If KV=H1(V) and the Seifert form is non~singular, then the bound in

the theorem is rk({* HZ(W)) which, as will be seen, is sharp.

2.13 Examples

D) Let k be the right hand trefoil knot, and suppose M(k)=dW and
iﬁ:Hz(M(k))w“—+H2(W) is zero. Then either
() rk([H,(0) > 1
or (ii1) o(Wy=+1
This is an immediate consequence of the Signature theorem. However there
is an embedding of M{k) into ~-cP? such that the closure of one of the
components, W say, of (-CP?)~M(k) has W=-M(k), rk('[Hz(W))al,

gMW)y=-1 and 1i, zero.

*®
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2}  lLet wi=c1(szx 52~ B¥), it is well known that any knot k in S3=BWi
is slice (ie bounds a smooth disc) in W Briefly k may be changed into
the unknot by changing crossovers; instead of changing a crossover do a
band move (chap 2, sec5) round the crossover as in (1)
d) a a, ... a
. ,f?l% 1 2 n
(i) | ~ \ (i) <—Q o) 0 )b

The end result is a link as shown in (ii), the components of which bound

disjoint smooth discs in WE. it follows that k bounds a disk D smoothly

embedded in W]. Then  framing(oD) = 22 Lk(ai,b) . Any even framing can

be obtained by altering the presentation of k and doing extra band moves
thus: o e o

: |

e |
R

'

,f

Tt follows that M(k) embeds in S2x 8® for every k, however i, is not

usually zero.
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2.14 Example

reef knot 4?47222%ZQZ%
722

%%é%f;%?;%k%{j;ftaching circles for 2-handles.
a b _~

~__ b~

Let k be the reef knot (=sum of right hand + left hand trefoil)
and M(k) as described in example 2 of (2.2). The reef kmot is slice in g®
so O(w,k)=0. Let V be the surface in M(k) formed by a Seifert surface
for k + core of handle. From B® remove a neighbourhood of a slice disc
for the reef knot, and call the resulting manifold Wl, then 8W}=M(k)
and the Signature theorem says '0 £ 0'. Now attach two Z-handles to W,
with framing zero using the circles marked a and b in the diagram,
call the resulting manifold W, and M=9W. Then the surface V above
lies in M and O(W,V,M) = O(w,left hand trefoil) = +2 if w=-1,

KV =22, B](V) = 47, rk(‘in(W))xO. It is seen that the theorem holds

with equality and that the bound cannot be replaced by rk(- HZ(W)).
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2.15 Corollary |

Suppose (W“,ME,MZ) is a compact homology cobordism, then
W = Ml U M2 and this determines an isomorphism f:H*(MI)~w+H%(M2).
If v, is a closed surface in M, , for i=1,2 and f{V1}={V2} eH, ()

and if the Seifert forms for VI and V2 are non-singular, then

T(w,VI,M])ﬁ =T (w”VZ’Mz)

Proof: The hypotheses (+ tranmsversality)give a 3-manifeld U properly
embedded in W with 29U n Mi = Vi . Apply the Signature theorem to

(M,¥)=3 (W,U) then O{w,V,M) = O(w,V],Ml) + O(w’VZ’MZ) . The homoclogy

cobordism hypothesis implies rk(* HZ(W)) = (, and that
nullity{K,—H, (1)}

> %BI(V) ~ min {rk Hl(vi)————mi(mi)}
1

= éfﬂl(v) - min {Bi(vi) - dim Kvi}

The bound in the Signature theorem is accordingly
L - l - » — -
z dim KV. 2{32 B(Vi) m%n(Bl(Vi) dim KV.) }
i i i i i
which can only be non-negative if B (V ) - dim K, = B.(V,)) = dim K
171 1 12 V2
It follows that [T(w,Vl,Ml) + ?(m,VZ,MZ)] = 0, except for finitely many

w, and so by the limit definition of T, this holds for all w, completing

the proof.

Example
The manifold M constructed in example (2.14) is not homology
cobordant to M1=M(K)j$ 251%x 82 where K is the reef knot, for it is

easy to show that any surface in M, has zero signature.



2.16 Corollary 2

If Vl and V2 are two surfaces in M, without boundary, and if

{V]} = {V2} gHZ(M) and 1f the Seifert forms are non~singular then

T(w,vlle) = T({U:VZ,MZ)

Proof: apply the preceeding corollary to (M,V]) and —(M,Vz) with

W = MxI, noting that t(w,—vz,'—"ﬂz) = T(w,V —Mz) = —T(w,VZ,M )

2° 2

completing the proof.

2.17 Corollary 3

Given n > 0 there is a eclosed 3-manifold M which does not embed

in any closed oriented 4-manifold W in which BI(W)=O and Bz(W) <n .

Proof: Let k be the knot in §® which is the connected sum of n (right
hand) trefoil knots, and define M to be the connected sum of n copies

of M(k). Then HZ(M) has a basis represented by surfaces Vi each lying

in one of the copies of M{(k) in the connected sum. If V is any surface
inM  {v}=) ni{Vi} EHz(M) then the signature of V (being an invariant
of the homology class) is

o(w,V,M)

Y 0 (w,n, V. ,M(K)) (justified by 2.19)

) o(wlnil,vi,mac)) by 2.26
From (2.2} example 1 we have that U(eie,vi,M(k)) = -2 for
w/6 < 8 < tin/6, so if any ng is non-zero there are w with
lo,v, M| > 2n .

Now suppose M embeds in W, then M separates W into two components
WE and WZ because Bi(W)=O. A Mayer Vietoris arguement implies that
Hz(M)mw—+H2(Wi) can not be injective for both i=1,2. Suppose not
injective for i=1, then aw]= +M (the sign depending on the orientation

induced by W ). There is a surface V in M with {V} # 0 €H, (M) but which

bounds in WE, so the Signature theorem gives :
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[c(w,V,M)!:; |G(W)] + rk<'iﬂ2(wi)) {the other terms are zero because

KV=H](V) and the Seifert form is non-singular) which is less than 2n,

giving a contradiction which establishes the result.

2.18 Remark

The idea exploited in the next two results is that if
a eZZ(M,aM) and B represents a class in KV then a*f = 0. This has
the consequence that if a surface V is contained in oM then o(w,V,M)=0.
Another consequence is that if IxD? is attached along 1Ix3D?> to oM

creating M.  such that 3D is a component, C say, of 9V then

]
glw,V,M) = O(m,V,M]). Furthermore, 1f D is attached to V aleng C to

create a surface V} then G(m,Vl,M]) = gw,V,M).

2,19 First Additivity Theorem

Suppose V, is a surface properly embedded in cl(M!” IxBMi) and

]

V., is properly embedded in M,. Suppose also that T is a surface (possibly

2 2°
with boundary) lying in BMI and ¢ is an orientation reversing

embedding of T into E}Mz . Let (M,V) = (MI,VI) U (MZ,VZ)
joined by ¢, then

lo(w,V,M) ~ oW,V M) = O’(w,Vz,Mz)]
< ric{i";:Hl(M-v,aM)——-»H](T)} - r‘ic{i;:Hl(M-l}V,éM) —su' (1)}

% &k
where i and 1, are rastrictions.

Proof: V] and V2 are disjoint, so the Mayer Vietoris sequence for

(M},V]) and (MZ’VZ) is

k ) A
H, (1) ——H, (1,,V) © Hy(4,,V,) ——H, (4,V) —H (T)>

1) by exactness & induces an isometry

Tov. m @ lyv m Iw,V,MlIm YO0y
1> 2272
where O igs the zeroc form on the space Im k.

im k



2) Let j:Hz(M,QV)~—ﬂ*H2(M,V) be induced by inclusion, then
Eu,V,M vanishes on Im j ® Im & . For if a EZZ(M,BV) bi EZ2(Mi’vi)
then IV,M(a’bi+b2) = Ba‘(b1+b2) « in M

now da = 0o, +o

1 2 where ui EZ}(BVi) and 83°(b]+b2) =q0.*b, + 0 -b2

Pl 2

but by (2.18) ai-bi = 0 using the hypothesis on V].

Define A =TIm § + Im j then | and 2 show there is an isometry
be tween Iw’V,M[A ®0, , and I“”Vl’Ml ® I“”Vz’Mz 9 Or A
Observe that if h is an Hermitian form defined on a space W = W] @ W2
then |o(h) - G(h[w])[:i dim W,. Our situarion is h=T . W = ) (L)

and W] = A, 50
lo(w,v,M) ~ 0w,V M) ~ o(w,vz,mz)i < dim H,(M,V) - dim A
by exactness dim HZ(M,V) =1k ¢ + rk A

and dim A =tk £ + vk Aj
By Alexander duality, HZ(M’V) = Hl(va,BM)

ce.® 1 ]

and rk A = rk{ll:H M-V, M) —H (T)}
Similarly —H,(M,3V) = #' -3y, oM)

and rk Aj = rk{i;:Hz(M~BV,BM)———¢H3(T)} completing the proof.

2.20 Second Additivity Theorem

Suppose given the hypotheses of the preceding theorem, except

that now V. is properly embedded in M

] R

Suppose also that

any component of 9V, which meets T lies entirely in T and that

1
${T n BV]) = ¢(T) N B(MVZ)n Let (M,V) = (ME,VI) v (MZ’VZ) joined along
(T,T n V]) by ¢ . Then

| T(w,v,M) - T,V M) - T(m,VZ,Mz);

< ric{it:HI(M—V‘ , OM) --——~+HI(T)} - rk{i?:H’(M—av;aM) ——-—-—*HI(T)}

+ ki~ Ky ® Hi(TnV)} - il Ky @ ker{Hl(TnV) —ﬂ+H](_BMI)}}
< BI(T)

where * is the intersection pairing on HI(V) and V' =V - (TnV)
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Proof: Let V; = V1 - (V1 nBM]XI) and V' = V;u V2 then we are in the

situation of the preceeding theorem. Consider :

H, (4,V") i*»Hz(M,V) S ~H, (V1)
where 8 is the composite
Hz(M,V)——a—+H](V) bound ary homomorphism of the pair
H](V)mmw—§i+ﬁo(erT) boundary homomorphism of Mayer
Vietoris sequence of V1 and V2
then it is clear that Im i, = ker §. Consider the map induced by
inclusion k*:HE(BMl,VJwT)*ww+H2(M,V) then Iw,V,M vanishes on

Im k, 8 Im i, because if {a} eIm &, {b} €Im i, then b EZZ(M,V')
may be chosen so that db eBl(int V') by pushing db in along a collar
of V' in V. Then 3b is disjoint from BM] and so from a EZZ(BMI’Vn ).
Notice that Imk, < Im i, » so that Im k, ézRadical(Iw,v’M|Im i)

Choose A < HZ(M,V) such that HZ(M,V) = A ® Im i* and define B < A

by B =An a“i(axm k:,c)‘L where + is with respect to * on HI(V).

Choose C < A such that A =B 6 C , we will prove that

1) U(Iw,V,MIIm i, 8 C) = O(zw,V,M[Im i) except for finitely many W

Choose a basis {k],...,ks} of Imk, and a basis {c],...,ct} of C

&
(t < s) such that ci-kj = Sij * on HI(V).
Define a txt matrix B by Bij = SV,M(ki’Cj) then Bij = Bji + éij
Choose a basis of (Im i, 6 C) {v],...,vn} with

v, = k, for 1 <4 < ¢t

i i =" =
=c, for t+1 <1 £ 2¢
and let A be the nym matrix of SV M using this basis. The matrix A-tA'
-

18 -

0 B{l1-t)+tI 0

BT (1-t)+T *
L 0 [ Bl(t),

define f(t)=det(B(i~t) + tI) , then £(1) = %1, hence for all but finitely

many w , £{W) # 0 and
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g{ (1-w) (A~ EA')) = 0((1*&)31(5)) proving (1). It follows that
_ . < %
[o‘(l’w,v’M) G(Iw’v’Mllm i)] < dim B
1 = e {F ' N
now U(Iw’V’MIIm i,) U(Iw,v',M) (w,v',M)

The hypothesis that every component of Bvi which meets T lies entirely
in T ensures that under * on H](V), B + C is non-sinpularly paired into
HI(erT). Hence

dim B+C

]

ko (-va @ H (ThV))

and dim C rk (- KV @ oIm K,)

0w 0Im k, = ker{H](erT)——ﬂ+Hi(BM})}

which together with the previous theorem gives the result for all but

finitely many @, and as in (2.15) this implies the result for all W.
Using the definition of A,j from the previous proof,

(2)  Imbj 2 Im{H, (Tn V) —H (D]

{if « EZi(Ter) then IxQ EHZ(M,QV")} hence

%

rk iz

= rk A}

2 rklH (Tn V) —4, (M} by (2)
2> rR{HI(TrIV)“——ﬁﬂl(EH])} = a say

clearly rk{-lKv 8 H (Tnv)} - rk{- K, ® ker{HI(TnV)—"}ﬁl(BMI)}}

< a

&

so the bound does not exceed 7tk il’; BI(T)’ completing the proof.

~

Z2.21 Remark

The careful reader may now verify the remarks in (2.18).

2.22 ZExamples

1) If M is the connected sum of M] and M2 and Vi is a surface in
Mi which misses the ball removed from Mi for the connected sum, then

(M}“ ball) is joined to (MZ* ball) along a Z-sphere, so all the terms

in the bounds vanish giving
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O’(!L),V Uvst) = O(m’VI’MI) + G(m:vzsmz)

i
whether or not BVI is joined to 3V2.
2) Let ki be a knot in §° for i=1,2 and Mizcl(s3 - kisz), and set
M=M]L1M2 joined so that logitudes of k. in M, are identified. Then

HZCM) 27 and if V is a surface in M formed by joining along avi Seifert

surfaces Vi for ki properly embedded in Mi , then using the Second

% ®
theorem, rk i] = 1k 12 = 1, and the rk(*| ) terms are both zero, so
J(w,v,M) = U(w,V},Ml) + U(w,vz,Mz)

il

)

glw,k 1) + U({U,kz

2.23 Proposition

1 V2 are closed oriented surfaces in M , and

v} = u{Vl} + {VZ} €H,, (M; Z) n €% then :

Suppose V, V
IT((D,V,M) - Y(M,VZ,M)i é BBE(V])

This is a rather technical result which will be used to produce a bound

on signatures of closed surfaces in manifelds, it is a crude bound which

may be compared with the parallel surfaces theorem (2.26).

Proof: If two oriented surfaces V; and V2 meet transversely, they

intersect in a l-manifold and a neighbourhood of a point in the intersection

is T x fig(i). The surfaces may be cut along the intersection and cross

joined, preserving orientation, as shown in I x fig(ii)

V§i+ L\
(1) + X {(ii)

— ‘JZ
N

For closed surfaces, ¢ depends only on the homology class, so we

can choose V to be obtained by cutting and cross joining V2 with n
paraliel copies of Vl' Let N=le1 be a neighbourhood of Vi in which

Vzn N = (V2r1V]) x I. Define X=cl(M-N), then by additivity :
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1 Fe(w,V,M) = T(w,VaN,N) = t(w,VaX,X)[ < 2B, (V)

2) IT(w,Van,M) - T(w,V, aN,N) = T(w,V aX,X) | < 28,(V)

2 2
now T(w,Van,N) =0 by (2.18) because Hl(szwaN)—ﬂwﬁﬂl(VzﬁN) is

surjective, Note that Vzn X =VnX,

Write vaan then 9N Vixo u Vixl and A:w(Vixo) is a

H]

number of disjoint circles C ...,Cr say. If any circle Ci does not

}’
bound in V,x0, attach Ixni alond IxBDE to V,x0 such that aDicci,

and IxBDi misses the other circles. Then attach Di to A along Ci’
the resulting surface has the same signature as A by (2.18). This process
has reduced the genus of 9N and after repeating at most genus(V!) times
the remaining circles all bound in the boundary of the new manifold.
Choose a circle innermost on this boundary, and cap off the circle

using that part of the boundary it bounds which does not contain any
other circles. This process does not change T . Repeat until there are
not any circles left. This has created a new surface AE gay, in a

manifold Nl with (A,N) C.(A],Nl) and T(W,A,N} = T(w’AE’NE)'

Define BONi = BN} - V.,x1, choose any compact manifold Y with 9Y = 9 N

i 01

and set N2=YL)N] identifying 9Y with BONI by any homeomorphism.

Then by additivity:
- <
| T(w,A,,8,) = T(@,ALND| < B (BN < B (V)
the point of this is that {Vz} = 0 el .(N,) and so
{a} = fa}+ nlv,} eH, (N,,3N,).
Let B be obtained by cutting and cross joining A] and n coples of Vz,

so (B} = {Ai} EHZ(NZ’BN ) and OB = BA}, hence

2

T(w,B,NZ) = T(w,AI,Nz).

Now ]T(w,B,Nz) - T(m,BrxN,N)I=§ B](Vl) because the process of

constructing A, and NI from A also produces B and N, from BnN

] ]

because d(Bn N) = 3(AnN).
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But BnN =VaN and so :
3) [TCw,V AN, = T,V n NN | < 26, (V)
and T(m,VzraN,N) = 0 as noted earlier. Putting 1,2 and 3 together

completes the proof.

The Finiteness conjecture

We can now prove a finiteness result which will be needed in the
analysis of slice kncts in section 3. The hypothesis in the theorem on
M ought to be unnecessary (I conjecture), using additivity this is
equivalent to requiring finiteness for handlebodies, which is in turn
equivalent to asking for a bound (depending only on g) on the signatures
of any link in 83 which lies on the surface of the standard handlebody

of genus g in S3 , and bounds a surface inside that handlebody.

2.24 TFiniteness Theorem

If M is a compact oriented manifold and 83(BM)=i 2, then there
is a positive integer K such that for all surfaces V properly embedded

inM |T(w,v,M) | <X  for all w .

Proof : Suppose first that M is closed, then HZ(M;Z) ig finitely generated
because M is compact, Choose closed surfaces Vi""’vn representing a
basis, then repeated application of the preceeding proposition gives

a bound of 6) Bl(Vi).

Return now to the general case, OM consists of a number of spheres
and at most one torus T. A properly embedded surface in M meets each
2-sphere in a number of circles. Join a 3-ball to each sphere, and join
discs in the 3~ball onto the components of 9V in each sphere. By additivity
this doesnt change T . We are left with ®M = T, 9V is a number of circles
in T. If any circle bounds a disc in T, an innermost ofie bounds a disc

in T disjoint from V, and so these circles may be capped off by discs
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in M without changing T . Thus every component of 3V is non-zero in HI(T)
therefore they must all be parallel (after an isotopy). By duality

ker{Hi(T)wwmﬁﬁlﬂﬁ)} 2#, so join a solid torus 8 to M along T such that

li

ket{H](T)———+H1(S)} ker{H](T)———+H](M)} Then there is a surface V'

in 8 with oV' = 3V. If we can show finitemess in 8, that for M will

follow by additivity. oV' is a number of parallel circles in 38,

either each circle = 0 EH](S), in which case V' may be chosen as a

number of parallel dises ( so T = 0), or else vil=0 EH](S), so0 that

V' = no + n{~0) where ® is a component of &V', n a positive integer

and -0 is the parallel circle oppositely oriented. In this case, V' may
be chosen to be a number of annuli, each annulus having boundary O + (-0).

It is clear that T = 0 in this case also, thus proving finiteness for §

and hence for M.

2.25 Remark

The condition that V be properly embedded in M is necessary

because there are knots in §° having arbitrarily large signature.

The parallel surfaces theorem below is best proved by using the connection

with G-sipgnatures (see 4.4), however an elementary proof is given here.

2.26 Parallel Surfdaces Theorem

Let V be a surface in M, n an integer, and let nV denote
n parallel copies of V (if n < O then V has the opposite orientation).

Then T{w,nV,M) = T(wlnl

,V, M)

This is a well known result for knot signatures, eg see (Li).

Proof: Since T(W,~V,M) = T(W,V,M), it suffices to prove the result
when n 2 0. Let V!,...,Vn‘ be the n parallel copies of V and ir
the map induced by identification on H](V])—“ﬁﬂl(vr). Then

ker{HI(nV)———+H!(M)} = kef{H;(V})———+H](M)} ] :g: Im(ir+1"ir)
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Choose a basis of ket{H!(VE)"m—»Hi(M)} and extend to a basis of

Hi(V;). Choose the basis of Im(1r+]“1r) obtained by applying (1r+]~1r)

to the basis of H}(Vi). Let A be the matrix of the Seifert form.SV M
}’
and D the matrix of SV,M!Im(1r+]*1r) R Im(1r+]—1r). Then D is the

matrix of the intersection pairing on HI(VE) using the chosen basis

(2-chains bounding cycles are annuli between Vr+1 and Vr) gso D' = -D,
Also, writing D, =4~ A', then

D -D!

b= |1 2

D D

The matrix of § ugsing the above basis is:
nV,M
A 0
-

i
...Dz
l D . D n—-1 rows of D
?

“D D

wd

Consider the bottom right hand square of (I~E)(tMﬁﬂ’), it is:

T (=D (t-1)D
(1-£)D (t~£)D (E-=1)D

n~1 | rows (1-£)D (t"E)D

. . . (E“I)D
2 L (1-t)D '(,t“E)DMJ
r+l _ -
Define A_ = (=D -1) so A = -A  and AI =t -t
g5 1) r *
1 (1-t) /A (t-t)  (e=1) A o]
if P = "l then P ?+2 r+l
0 1 (1-t) A 0 A
r ¥

therefore the above matrix is congruent to :
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A_D
T 0
Ao
0
i AD
and so (I—E)(tM—M'} is congruent to
(t=1)A+(t-1DA" —(E—])D¥ —(E“E)Dé
— 1
(1-t)D, i, A 105 0
(176D, Aa-1P2 Aa-1P3
A, 5D ,
O -
AD
Using the indentity A = D; + A', and D'I = -Dl, the top right corner is
(t-fE)D1 (E-E)D} —(E*i)Dé (t=1)A+(t=1)A"
- '
(1-t)D, D\nminl AP + .
(-0, AP A-1P3
and this is congruent to:
AD (t-1)A+(t-1)A"
n i
- 1
An—lD] >\n-'IDZ *
A D A D
B -1 2 n—1 3_ B B
Now Anba + (t~DA + (t-1)A'
= li_t.rll_. (1-t%) (£"A-A")
|1-£7]?
Thus (1-£)(tM~M') is congruent to :
(1-t%) (£"A-A")
AP
e
L AP

put t = © in. the above, with w # 1 for any r < n, then }\nwl is imaginary

and finite, and- G(?\rD) = 0 because D = -D', which gives the result.
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§3 Slice Knots

As a first application, the process of producing algebraically
siice knots outlined in the introduction is applied to the (slice) knot
820 in the table of Alexander and Briggs , see (R). This knot has an
algebraic feature which enables a proof that certain related knots are
not ribbon, based only on the Signature theorem (finiteness is not used).
An additional reason for studying this knot is that the geometry is

particularly simple. An improved finiteness theorem is needed in order

to prove these same knots are not slice.

3.1 Définition

Aknot k in S is ribbon if k bounds a disc immersed in §° the

self intersections of which are ribbon, ie have a neighbourhood like:

et
e

R—
p———

I

)
i

clearly a ribbon knot is slice {see (R) p 225 }

Notation

In this section :

k is a slice knot in S3

v is a Seifert surface for k

M is obtained by O-surgery along k in g2

D is a slice disc for k im B"

W is ¢1(B*~ regular neighbourheood of D)

ﬁn for n €¢Z or n=w is the n-fold ecyclic cover of M

ﬁzr for n €Z is the n-fold cover of §° branched over k.
o for n €Z or n== is the n~fold cyclic cover of W
Wzr for n €Z is the n-fold cover of B branched over D
A = Q[t,t“E] where t generates the group of covering

automorphisms of ﬁm
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then W =M , oW =™ Pt - wPT
Eil 1t Tk T

For a ribbon knot, i*:W](M)——~+ﬁ](W) is surjective {(6G) lemma 1, (T)}

it follows that i*:W?(M)/ﬂ;(M)————+ﬂ?(W)/w;(W) is surjective, hence

3.2 Proposition

If k is ribbon, and W is constructed using a ribbon disc B, then

i*’H;@&J ———+H](ﬁm) is surjective.

According to Milnor (Mil) ﬁm has the rational cohomolegy properties of

a 3-manifold x R, in fact

3.3 Proposition

If k is a slice knot, F a field, then H*(ﬁw;F) and H*(ﬁm;F)
are fipnite dimensional, and:
2nulliey{i 0 (M sF)——H (H5E)} = 8 (1 5F)

from the same paper, we extract the feollowing result:

3.4 Proposition

If p:X——X 1is an infinite cyclic covering of a finite complex,
t a generator of the group of covering automorphisms, then there is an

exact sequence, with coefficients in any ring ,
-1 ]

- t'a’c LIT - P V17 Ty
—>Hn(x) fun(x) un(X) >H 1(x)>~

n-

3.5 Definitionm

For a knot k, a Slice Submodule is a submodule of H}(ﬁw;Q)

as a A-module of half dimension as a Q-vector space. If k is a glice
knot then kei{i*:H](ﬁm)~——~+ﬂl(ﬁ¥)} is a slice submodule by (3.3).

In general there may be many slice submodules, (though the choice can be
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reduced by adding to the definition the requirement that the Blanchfield

pairing (Bla) vanish on a slice submodule ).

3.6 The Knot 820*

The knot 820 is shown in fig(B.]),HE(ﬁ&) is a ecyclic Ap-module
of order {f(t)}? where f(t) is the cyclotomic polynomial (£2-t+1). Thus

there is a unique slice submodule, f(t)HI(ﬂ&). According to Sumners {(Sum)

. ~ _n . ~br . u
or (G p 16}, if H](Mw,Q) = iQI[\/<fi> then dlm{E Hl(Mk 3 C) _ig] n.

where n; is the number of distinct k'th roots of unity which are zeroes

of fi' Thus Hl(ﬁgz;m) ~ 20 (for 8,. this fact is easily established

20

from a presentation of Hi(ﬁm) using a Seifert matrix ). By Universal

coefficients, Hi(ﬁzigﬁ) ~ 20, and it must follow that:

ket (p,, 1, (5 Q) —H, (3@} = £()H, (H,;0)

. ~ PYOJx o o incly .. ,~ gmbry incls ~br
{p ' H} (Mw) Hi (Mﬁn) e H 1 (I‘I6nﬂ MGH)—“—-————*’?‘H I (Mf)rl)

Y} Consider now any knot with the above

module structure, and suppose D is a ribbon disc for k. Then constructing

W from D, there is a commutative diagram (coefficients Q)

- ix »
B () —— ot ()

i
p>’c l .1 lpa;c
1

~br 3 by
Hy Mg ) (W )

by (3.2) i, 1is surjective, and by {(3.3) Hi(ﬁ&) =4 f(t)Hl(ﬁw). Hence

ker i, = ker p,. Now
“br, . = 6n_
Hi(w6n) > H}(wm)/< t 1> eg by (3.4)

nj< £(8), 001 >

2

IR

H](ﬁm) because f(tj{t6n~l

Thus pi is an isomorphism, and by commutivity, il is an isomorphism.
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3.7 Remark
There is a slice disc for 820 such that i; is identically zero.
This is why the technique wont prove not slice, only not ribbon. In other

words, (3.2) is essential here.

. . Thr . . . ~br ~br

. . R .
Duality in W6n now implies that 1*'H2(M6n’Q) HZ(Wén’Q)
is identically zero. By Universal coefficients,

“br

T ~br, .
Tml i, : 0, (g5 2) —H, (W s2)}

is finite, thus given a (closed oriented) surface P say, in Mzi there

m-b.r )

exists an integer m > O such that mi, {P} =20 eH, (W, ;7). The Signature

theorem now implies that :

“br ~br br “br
IT(w’mP’MGH) * G(W6n)1=é BZ(WGn) ¥ BI(M6n)
hence !T(w]m|,P,ﬂ2;)! §:282(ﬁ2§) * B](ﬁgi) by parallel surfaces

3.8 Remark
The actual bound here is not very important, and a weakened form

of the Signature theorem can be proved with far less care.

The following standard arguement shows that there is a positive

integer N say, such that Bz(ﬁgi) <N for all n. By (3.4) there is

an exact sequence (coefficients Q)
6n .
N ty -1 N P ~ ~
‘—"“*HZ(WW)'””i—“*ﬂﬁﬁz(wm)‘“— *‘*HZ(WGH)"—“‘Qﬂi(Ww)+

and by (3.3}, Hz(ﬁw) and H](ﬁm) are finite dimensional, hence
~by ~ ~ -
<
B, (YY) < B, (i, ) < B, (W) + B (W)
Now B, (7)< B (M), and so
~br

IT(w:P:Mﬁn)| N for all w,P,n

this is the fundamental result used in the proof that certain knots are

not ribbon.
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Geome LYy

Generators of Hz(ﬁzi) arise in a particularly nice way. Pig (3.2)
shows an immersed ribbom disc with two surgery curves a,b on it.
Fig (3.3) shows the boundary of a regular neighbourhood of the ribbon disc,
a genus 2 closed surface, which has been cut open along 2 curves parallel
to a, and 2 curves parallel to b. The result is 3 surfaces A,B,C.
A Seifert surface for 820 is obtained by cutting and cross joining the
self intersections in the ribbon disc, resulting in a genus 2 Seifert
surface V, (a and b may be isotoped onto V) shown in fig (3.4). Let
X = c1(S%= UXI) then fig (3.5) shows the 3 lifts of X to ﬁg" . A,B,C
may be moved slightly in X so that each meets V (along their boundaries

only) on the curves a and b. Choosing appropriate lifts of A,B8,C to

Mgr and identifyving along their boundaries, yields a non-orientable closed
surface P3 in ﬁgr . This is also indicated in fig (3.5), where the

numbers adjacent to the boundary components of the chosen 1ifts of A,B,C
indicate the glueing up recipe. The pre-image in ﬁzz under the covering
projection ﬁg;wmm—+ﬁgr is an orientable surface P6n of genus 2n+l.
(There is a l-cycle in ﬁ?i crossing ?6n once, hence {?6n} # 0 EHz(ﬁg;),
in fact P6n and t(P6n) represent a basis of Hz(ﬁgi), since a l-cycle
can be found intersecting one, but not the other. However we dont need
to know any of this) Thus:

IY(N,P6n9ﬁ2§)| <N for all w,n
The process of producing algebraically slice knots from a slice knot
described in the introduction is now applied to 820 as shown in Fig (3.6).
The band containing the surgery curve b on V is tied into a knot K
(with zero twisting) producing a surface V'. This operation clearly
preserves the Seifert form, and so the new knot, k' = V', is
algebraically slice. We suppose k' to be a ribbon knot, D' a ribbon

disc for k'. Then the analysis resulting in the signature bound,

depending as it did only on the fA-module structure of H](ﬁ&) {which
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3.1 The Rnot 8,, 3.2 A ribbon disc

3.3 3 surface pieces

3.5 a non-orientable surface in ﬁgﬁﬂ

X tlx t?X

3.6 algebraically slice knot k' 3.7 The arc o

3.8 surface pieces for k'

translates of V(K)
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3.9 (i) a knotted hole Y'

3.9 (ii) the solid torus Y

/-

arc o

3,10 A slice knot without surgery curves ?

2
knot K <

P

band
move

A

IR

band
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itself is determined by the Seifert form because H}(Mm) is presented

by tA-A', A a Seifert matrix for the knot) applies to k' also.

It remains to construct some surfaces in ﬁézr , Fig (3.7) shows
an arc & in 8°-V' which, together with the centre linme of the band of V'
which was knotted into K, forms a circle embedded in S% as the knot K.
Let V(K) be a Seifert surface for K, and comstruct 3 surfaces A',B',C'
as shown in Fig (3.8) by attaching copies of V(X) to A,B,C. Then A',B',C'
o in T

It will be shown that :

may be used to construct a surface P for k' in the same way

that A,B,C were used for 820.

~,br ~br
! ¥ =
T(Ww,P n,M 6n) T(W,P MGn) + 4nT{w,K)

6n’
and the signature bound implies (letting n* ®) that:

t{w,K) = 0 for all w , if k' is ribbon.
Fig (3.9 1) shows a 3-ball with a knotted hole Y', lying in X' (= analog

of ¥ for k'). The knot is K, and Y' contains V(K), and is a neighbourhood

in X' of the band K lies on. The arc o lies on 9Y' . Y' 1lifts to ﬁézr
br

6n

Fig (3.9 ii) shows the corresponding costruction for 820, Y is a solid

and is joined to €(Y') in H' by a disc lying in (a 1ift of) V'.

torus. Thus ﬁbr 1T
6n on

Y by the 1ifts of Y'. It should now be clear that :

may be converted into M by replacing the 1ifts of
T(w,Pén,ﬁ'gi) - Zn{?(m,A',X') + T(w,B',X") + t(w,c',x')}
= T(w,PGR,ﬁgi) - 2n{7T(w,A,X) + T(W,B,X) + T(w,C,X)}
although the Second Additivity theorem may be used to prove this. The
only point to watch for is that some orientation change in the cover
does not result im everything cancelling out eg.
br

T{w,11ft of A',ﬁ'g;) # ~T(w,any other 1lift of A',ﬁ'6n)

this cant happen because coverings preserve orientation.
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It is clear that:

1

T(m,A',X') ?(M:Asx) + T(M,K)

T(m:BsX) + T(w:K)

H

T{w,B",X")

1]

and T(w,C',X') T(m:cax)
this last result arises because C' has two parallel copies of V(K)

oppositely oriented, so that {eg by parallel surfaces) there is no

contribution to 1. This establishes the formula and completes the proof of:

3.9 Theorem

1f the knot k' is obtained by tying a knot K in the particular

band shown in Fig(3.6) of the Seifert surface for the knot then

820’
if &' is ribbon, then t(w,Ky =0 for all y.

3.10 Remark

The Casson Gordon method gives this result when 3= 1.

3.11 Remark on Surgery curves

Suppose a knot K* is tied in the surgery curve a, and a knot K?
is tied in the surgery curve b, as shown in Fig{(3.10). Then by doing
the band move (chap 2,5.7) shown, a link of {wo components, with linking
number zero, is obtained. The two components are parallel (ie each lies
inside a tubular neighbouthood of the other) and each is K'+ K?. If this
latter is a slice knot, then two parallel copies of a slice disc for it
plus the band, constitute a slice disc for the modified 820 {nb slice
can be replaced by ribbon in the foregoingl. Therefore the best non-slice
result on the above lines is 71(w,K') + t(w,kK?) =0 for all @y . This
is an easy peneralisation of our result. If K'= (r.h. trefoil), and
K* = (l.h.trefoil), then K!'+ K ?is slice, but there does not appear to
be any pair of surgery curves in this case. (The problem of proving there

are not any seems related to the finiteness conjecture). I do not know

of another example of this in the literature.



37

Genus | Slice Knots

Let k be a genus 1 slice knot, then it has a Seifert matrix

A = m,n gZ

so the Alexander polynomial, A(t) = {(m+1)}t = m}{mt - (m+1)}.

We will assume m # 0, so0 A # 1. BSince A is not zero for any root of

~br

unity, it follows that (eg by Sumner's result) H (M ;0)Y = 0 for all ¢

thus all surfaces in ﬁzr bound there, so the method used on 820 does not

6 ° Pco of ?6

is a surface running off to infinity apd invariant under translation by

-1

apply. For 820, the pre-~image under the covering ﬁﬁ—-w»ﬁ

A" (=roots of A(t) ) are not roots of

q

6 .
t . When the eigenvalues of A
unity, such non-trivial surfaces invariant under tramslation by t* don't

exist. However there are clasges

b} ¢ Tim B, (.M -X;Q)

X compact

which play a similar role. Choose a lift V of V to ﬁw and consider the
compact component x;:cl{ﬁm - (thlJV)xI}u The part of a 2-cycle b, lying
in Xn can be multiplied by an integer and then represented by a surface
Pn properly embedded in Xn' Now suppose that k is slice, D a slice disc,
then DuycW bounds a 3-manifold Z properly embedded in W. Let z
be the lift of Z to W with Ve Z and let Yn be the compact component
of ci{ﬁw— CKBELJE)XI} 50 BYH = Xnu £, 2. If :

{b} & fEQ'{ker i*:Hz(ﬁg,ﬁmﬂ Xn)-——~+ﬂz(ﬁm,ﬁw“ Yn)}
then {Pn} = 0 gHz(Yn,tHELJE;Q) so there is a 3-manifold U, properly
embedded in Yn with

aYn = (multiple of Pn) 4+ (unknown surfaces in tnEtJE)
these surfaces being joined along their common boundary in BCtREU E)
We will construct suitable Pn and show that r(Pn) - o @8 n+ oo under
certain conditions. Because the unknown surfaces lie in Z and tni,

finiteness and additivity imply their contribution to T is bounded.



38

A supply of homology classes to produces Pn from follows from {(3.3)
if, of course, H](En) #0 ie A(t) # 1. Now for the details, first we

collect together some standard bits and pleces.

3.12 Lemma
with Coefficients Q:
(1 oridifig G —r @)Y = 8y (L)
(2) If Pn is a surface in Xn such that {Pn} EHZ(Xn’BXn) is dual
L% I~ e
to i ¢ then {Pn} =0 gHZ(Yn,t Zu )
(3) 1f a Seifert matrix for V is non-singular, then
iRCIﬁ:HI(V)_~:—+H](XH>__:_+H;(Mn)
(4 If jR:H](ﬁm)mm_m+H!(ﬁ) is restriction, and « gHI(V) is dual
to j*$p  then Sv(u,a) = 0 where SV is the Seifert pairing on V.

(5) If @ is a surgery curve on V, then Sv(a,u) = Q.

Proof: For (3) ecf {FMil} by (3.3), H](ﬁ;) is finite dimensional, so
there is a compact subset C containing cycles representing a basis.
Let TO be a component of (ﬁm~ Vx1), without loss Cc:TO so
Hl(Mm)_”__+Hl(M$’T0) is zero. By excision Hi(ﬂm,T0)£&+H](Mgw TO,V)
and so from the exact sequence of the pair ﬁw— TO and V
- N S ) - o . -

+H2(Mw TO,V)—————a-HE(V)-——-—a-Hl(Mm TO)—-W——a-Hl(M TO,V)+
we see that g is surjective. A Seifert matrix can be interpreted as
the matrix of i_#:Hl(V)~———+H1(Sa— V) wusing dual bases {(R) p 210}

If 41 , is injective, it must be sujective, so HZ(S3" V,i V) =0

%
thus Hz(ﬁn“ To,ﬁ) = 0 {ﬁmw T0 is copies of 5%~V identified along
iV and i+V, a Mayer Vietoris arguement now gives the implication}

From the sbove exact Sequence wWe see that { is injective also, and using

the Mayer Vietoris sequence for (ﬁm— TD) and TO’ we see that
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Hf(ﬁ)wmmw+ﬂl(ﬁm} is an isomorphism, and without the hypothesis on the
Seifert matrix it is a surjection. Now Xn = copies of cl(s8%—- vxI)
identified along V%0, and VX1, and if i_, is an isomorphism, then the
Mayer Vietoris sequence applied to this gives H](%)-———+HE(XH) is an
isomorphism, proving 3.

Consider the diagram induced by inclusions:

L
HY (W) ———8 (X )

S

HY (M) ————sH (V)
. -
by (3.3) and Universal coefficients, 2rk k = BI(M@)’ and by the above

* # *
j  is always injective, hence rtk i =71k k , proving (1).

(2) follows from the commutative diagram below

o e H()

iinclﬂ
%
H1 (Y ) iRCl —‘Hl (X )
n ’ n
duality l o = l duality
Hy (Y _,8Y ) (X ,8% ) {?n}
o L ] j} excision
incly n., oz
Hz(ayn) ,Hz(BYn,t Zu Z)
inc1* l incl* L
0 € HZ(Yn) inclyx }HZ(Y ,tni u%) 0

%*
For (4) if V is dual to i ¢ , then under the map

0
o = BO{V}

a szz(z) with da =00 .

and BO{V} =0 EHI(Z),

Then Sv(a,a) = Lksg(iw*ol,a) = i_“*a-&

9 tH, (X, £y V) ——H, (Vv ) _ergL+HE )

"o in B* there is a 2-chain

. L
*in B

which is seen to be zero because the 2~chains are disjoint, proving (4).

For (5), a surgery curve O on V bounds a smooth disc D in B", and a

parallel copy of D in B® has boundary a parallel copy of ¢t on V, s0

Lk{(i.x®, % = 0, proving 5.



40

Let V be a genus one surface for k, X = c1(8%~ VxI), then by duality
nullity i*:H}(BX;Z)_———*H](X;Z) = gl(V). We have ©0OX = v, u (kx1) y V_

so 1

o @B (V) @ H (V)-—H (). If M) # 1, then A is

non~singular, and
ker i, = <{(m+1)i+*-mi_*}a R {mi+*—(m+i)i"ﬁ}8 >
for some O, EH}(V). {This is because t*:HI(ﬁm)ww——%Hi(ﬁ«) has
eigen values (m+1)/m and m/(m+1), and H;(G)_""—ﬂﬁi(ﬁa) is an isomorphism
by 3.12(3), so t*:HI(G)—_WWHﬁE(tG) has the same eigen values} Thus
there is a surface Py properly embedded in X, disjoint from kXIc X,
with P = {(m+Di_, - wi_,}o , let P| be a parallel surface to P,
then Lk(BPa,BP&) = 0, therefore Lk(o,parallel copy of @ on 3X) = 0.
This means that O is a candidate for a surgery curve on V {(by 3.12(5)
any surgery curve must satisfy this condition). If o is a slice knot,
then k 1s a slice knot.
Let tnﬁa be the 1ift of ?a to Xn meeting tnﬁ, and define a
surface Pn(u) , properly embedded in Xn by:
n c e s .
Pn(a) 2.2 (m+1)n"JmJtJ(Pa) using parallel copies of the lifts
=1
all the boundary components of tj(ﬁm) match up except at BXn. Now
aPn(“) = (m+1)n& - mptn(&), and so BPn(u) £ 0 EHl(Xn)' Define

PB ’PB similarly and:

3

P_(8) ﬂjzl m““j(m+1>jt5c56)

SO BPHCB) = mp - (m+I)ntn(é).

By 3.12(3), H, (V) = H (X)), so by duality in X {Pn(&),Pn(B)}

represents a basis of HZ(Xn’aXn)' If k is a slice knot them by 3.12(1)
bl P .

there is a class ¢ EHI(W«) with i ¢ # 0, and if ?n is dual to ¢, then

. n: oz . _
Pn bounds in HZ(Yn’t ZuZ;Q). By 3.12(4) SVCBOPR,BOPH) = 0, but ,
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o, is a basis of HI(V) and Sv(aa + bR,ax + bR) = 0 implies that
a=0o0rb=0. Therefore BOPn is(a multiple of)a or f, so i*¢
is dual to (a multiple of) Pn(a) or Pn(B), furthermore bhecause BOPn
depends only on ¢ , the use of o or B is independant of n. So we have
proved that if k is slice then for n > 1 either Pn(a) bounds, or for
all n > |1 ?H(B) bounds. Thus there is a 3-manifold Un properly embedded
in Yn with Bﬁdyxn = rPn for some integer r, and by the Signature theorem
;T(w,aﬁn,BYn)! éﬁBZ(Yﬁ) + B](Yn) using second additivity

]T(w,BUn,BYn) - TW,rP X)) - T(w,'r}Unn "z u7),t 2 v )] s BE(E’XH)
Now 92 = {Seifert surface V for k} + {slice disc D} and V has genus
I so 92 is a torus and the finiteness theorem gives a bound on the
signatures of all surfaces properly embedded in t"7 and also in 2.
Thus T(M,BUn{I(KDELJE),EHElJE) is bounded. Now B](an) = ZSE(V), and
Br(Yn) is seen to be bounded by applying the Mayer Vietoris sequence to
Yn and cl(ﬁm—Yn) giving Br(Yn) < Br(§@) + ZBr(E) . Thus there is a
positive integer N such that

|?(w,rPn,Xn)|:§ N for all w,n
and by using parallel surfaces, r may be taken to be 1.

We proceed to calculate T(w,Pn(&),Xn) by means of a trick. First
suppose that O is a slice kpot with slice disc D', then let ST be a
collar in B" of 9B , and yxT e §3x1 a thickened Seifert surface. Push
D' in along the collar and choose I¥D' contained in a product
neighbourhood of D', with {Ixp'} n {VXIl}= Ixex1 = A say, an annulus
neighbourhood of O in VX1. Define Z = (VXI) y (IXD')  joined along A
then we have attached a 3-ball to a genus 2 solid handlebody along A
producing a solid torus Z. 9Z ={Seifert surface v} + {a slice disc for

k obtained by surgering V along ®}  Having done this we find that

{a} Eker{i*:ﬂ](V)'““—+H](Z)} , and so in the particular Yn arising
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from this particular choice of Z and D, lemma 3.12(4) implies that Pn<8)

cant bound, and so0 Pn(a) must bound. In this case there is a bound N, say

1

with |T(w,?_(@),X )] <N ()

1
Suppose now that o is not slice, then abstractly the Seifert surface V

for k is a disc with ? bands attached and, because V is a punctured torus,
this abstract identification may be made so that o runs once geometrically
round one of the bands. If the embedding of V is changed by tying a knot

K in this band, and if K is the cobordism inverse of O then the resulting
surface V' has boundary a slice knot k'. So (*) is true for Pé = ?n(k')

however using the technique of swapping 3-balls with knotted holes in

them used for 820, we will obtain

(1) T(w,P_,X ) = T(w,P',X') - ) T(w,P'nB,,B.)
non non knotted R 13
balls Bj

so for k to be slice we must have

| % T(w,P!n Bj,Bj)[ SN, 4N

J

where N is the bound for k, N1 the bound for k'.

To prove (1) it is necessary to lock at P; inside a knotted ball.
In some Bjc;tj(ﬁ}, P; is (m-ﬂ)nmjm‘i parallel copies of a Seifert
gsurface for K. The Second additivity theorem applies, noting that since
each component of P;n Bj has one boundary component only (in BBj) the

R *

) terms are zero, and as for 820 rk i} = rk iz = }, Thus the bound

rlk (s

in the theorem is 0, proving (1). By the parallel surfaces theorem in Bj

(mﬁi)n_Jm}

T(m,P;ln Bj’Bj) = T(Ww LK)

which completes the proof of:
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3.13 Theorem

If k is a genus one slice knot with non-trivial Alexander
polynomial, there is a simple closed curve O on every genus one Seifert
surface for k which is non-zero in H](surface), and with the properties:

(i) sy (a0 =0

(ii) There exists a positive number N such that for all n,
(m+1)nmjmj

n
(" 0 | <w

j=0

(iii) The Alexander polynomial of k is {(m+I)t - m}{mt - (m+1)}

{ SV is the Seifert pairing on V }

3.14 Corollary

The conclusions of the above theorem imply that if p is coprime
tom and m+l and G is the subgroup of the units of 25 generated by

m/(m+t1), and if n EZﬁ and WP = 1 then

} Twt,a) =0

T EnG

Proof: define x = m/{m+l) in 2?

and aj a'(m+1)n_JmJ

then a, = wa,

iR hi

. g . . , .
if W= ez iafp then w®  for g EZp is uniquely defined, and 1f n €2
then

m |Gl

YT ™,0) = m%\ VT,
j= ’ r EnC

for m sufficiently large the theorem implies the result.

3.15 GBSpeclal cases

1) If p=2mtl, x°=1 so G=11,x} hence T(1,0) +T(®,a) = 0

and since T{l,any knot) = 0 we recover the result obtained by Gilmer

(Gil) by {his extension ofltechniques of Casson and Gordon.
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2) If p is coprime to m and m+] then
pll 2mir/p
(e "7 ,0) =0 & f T{w,x) = 0
r=1 w £5°
. t t t .
3) if p=(m+l) - m then (m/m+1)" =1 in ZP

and so G has order t. Since p increases rapidly with t, there are a lot

of disjoint sets nG, and so many relations between the signatures of o

3.16 Question

does 3.15(2) imply T(w,n) =0 for all w ?
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§4 Connection with G-~signatures

This section gives a relation between o(w,V,M) and G signatures
of a certain 4~manifold when V and M are closed. This enables an easy
proof of the parallel surfaces theorem, and (a version of) the Signature
theorem is proved. An account of the use of G signatures as used in knot

theory can be found in (G) p 34.

4.1 Definition

Given a closed oriented manifold pair (M®,Vv?) with V not necessarily
connected, there is for each integer m > 0 an n—~fold cover of M determined
by V p:ﬁﬁwm-+M. Choose fiM——8§1 (S? oriented) transverse regular
at a point x of $! with ful(x) = V. The orientations of M and V determine
an orientation for the normal bundle of V, f is chosen so that it maps
this bundle to that of x 'oriented-bundlewise'. Then ﬁh is defined by the
pull back:

~ 1

M ——5
It

[n*fold cyclic cover

M -8

£
If the order of {v} QHZ(M;Z;) ig n then ﬂn is connected. The group of
covering automorphisms of Mn , G, has a canonical generator ,t,

determined by the preferred generator of the 8 cover specified by the

orientation of §°.

4.2 Theorem

Suppose Wn is an oriented 4-manifold with BWﬁ = ﬁn and with
G action extending the action on ﬁn on it's boundary. Suppose also
that all compenents of the fixed point set are surfaces with zero self-
intersection. If w" = 1, then ©(w,V,M) is a linear combination of the

g-signatures of wn, g G,
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Proof: {cf (G) p 34, and (V)}

Choose W' bounding M such that 0 = i*:HZ(V)———w+H2(W) [ this
can be done by choosing any W with 8W = M, and "surgering' the components
of V, ie 1if V;,...,Vr are disjoint replace ViXD2 by Hixsl in the
interior of a collar, Hi = solid handlebody with E)Hi = Vi }

s

p:wn +W  is the n—fold cyelic cover of W branched over V pushed into

int(W). ﬁn can be constructed by taking n copies of W and identifying
Vbe,I] in the i'th copy with VX["],O] in the (i+1)'th copy, where
Vx{}l,i] is a neighbourhood of V in 3W. The Mayer Vietoris sequence for

e

W ives:
n &

S, (V) & A2, () @ A iy +H2ci&n)_i—>nl(v> @ N—H, (V) ® 1

A= @[?n]. Defining B = Im{HZ(BW)———~+H2(W)} we have as usual
H,(W) =B' 84" with «|A" non-singular. Define B =3B’ @ fyA = A’ & L.
Then Im A = kef{j*:H](V)ﬁmww»H](W)} @ A and there is a natural

isomorphism:

1

ker j, = kef{H](V)—~+H](M)} o {Im HI(V)_—+HE(M) n kex H](M)~«+H](W)}

i

KV g c’ say
we will choose K,C é:Hz(ﬁn) such that A':Kn—i—+Kv ® A
A€ g e op

as follows. Given a i—cycle o € ZI(V) with {g} = 0 EHI(W) choose
a ECZ(W) with 8a = q. Fix a particular copy of W, say W used in the
construction of ﬁn and write a,q for the 'lifts' of these chains to W°.
Then {ta-a}azz(ﬁn) where t i1s the canonical generator of Gz Zﬁ,
so {ta}gzz(iwu). Then A{ta-a) = g gZ](ﬁn). Because QIA' is
non-singular, a may be chosen so that [a}eA' =0 (+ in W).

Now choose a basis Oyseeesl, of KV and choose

a crd gCZ(M) i:cz(W) with A(tai— ai) =0, this being possible

'
because KV =0 e H](M). Define K = A-module generated by {taimai}

for 1 <i <.
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Next choose Upgpne ol such that {[uij} r<i<s 1is a basis of

c' , choose a RN with A(tai"ai) =0y and define C = fi-module

r+]?
generated by {tai~ai} T <i <s.

Observe that K.i*(Hz(WS @A) = 0 because a class in K can be
represented by a cycle in pm!(M), and a class in i*(HZ(W) an)

represented by a cycle in pdl(int WY.

Now Hz(ﬁﬁ) =Af (BOCO®EK) which decomposes into eigenspaces

2nim/n 0

liA

E" under the G action corresponding to the eigen values e m<n

of t. A,B,C,K also decompose into Am,Bm,Cm;Km and

Tl = A4 8" e e ™

% %*
By duality in W there are br+i""’bs eB' (Kromecker) dual to

[a_,]s---s[a) # 0en,(u,0W), it follows that rk(-|B™ 8 C™) = dim c™

. . 2ri
for 0 « m < n. To see this define for y = e min/n

n—1] — u
¥ = z w £ (ta.-a.)
i I i1
u=0

then {a?} 1 i < r represents a basis of K"

A

and {a?} r < j < s represents a basis of c™,
Define n-l

i L5 i

#
(b, identified with '1ift’ to W' ) then b? e3™, and

n . _
. =}y % . YW Vi¥(ta,~a,)
, & i & i
u={ =0
v Voo u, * u, 0 .
now t'a, gZz(t We) and t bj gZz(t int(W%)), therefore if v # u then

v T . . .
t ai-t bj = 0, and so {(remembering that . is Hermitian)

B d = n? @t b, o t¥ - %t )
. S 3T %
u=0
nil _
= §. (w—1)
Jku=0

proving the assertion.
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Furthermore B'sB' = O therefore B *B" = 0, and so (ef proof of 2.10)

™ 0<m<n

Br e ¢ e K™ = o(

(e
Now C° =0 (it is generated by the cycles étu(tajwaj)mo for r < j £ 8)
and so the preceeding result holds when m=0 also,

K

™

Claim: (vy o( o {w,V,M) D <m<n

aA™

(2)  o(-

afW) 0<m<n

to prove these claims, using the basis of X" chosen above, the intersection
s m .
pairing on K 1is:
B nZl o u e
L va, = w .ma,) ¢ w 't (ta -a
aj " Z t (ta} 3) z ( e
u=o0 - v=0)

To compute this, the sections i+,i_ of the normal bundle of V in M

extend to automorphisms of W fixed outside a neighbourhood of V. Define

+ . - .
aj = 1+aj , and aj = Lmaj then taj~aj represents the same class

in Hz(ﬁn) as ta;—az (again identifying with 'lifts' to W'). The point

o
of this is that ay and ag have disjoint boundaries in W , so:

- V. o+, ] _
(taj aj) t a = aj a if  v=0
ag'ak if w=1
0 otherwise

now aj'ak = SV,M(Baj,Bak) {cf definition of IV,M}

+
and aj a, = SV’M(Bak,aaj) and so

- - — - — " —— .-—} = —-
_n{m(tajmaj) t(tak ak} + (taj aj) (tak ak) + uxtaj aj) t (Lak ak)}

n{~wAjk + Ajk + Akj - wAkj}

n{(inuDAjk + (l-w)Akj}

W, W
aj '

i}

B - 8 . 8 » - - .
{ where Ajk SV,M( aJ, ak) 15 a Seifert matrix for the Seifert form omn

V } This is the matrix of § using the basis ¢,,...,0_  and so (1)
w,V,M 1 T

is proved. When m=0, w=1, and the above shows a?'ag = 0, so that in this

case also o(+ k%) = o(1,v,M) = 0.
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For (2} , let Cloversly be a basis of A', then

n-1

M= Y w e,
J u=0 ]
is a basis of A" and C@'CE = no,+c hence (- Am) = g(+1A) = oc(W),
N 1k
proving (2). The fellowing is now established:
c(-[Em) = U(wm,V,M) + o(W) 0<m<n w=e2ﬁl/n

g signatures are defined as follows, Hz(ﬁn;C) decomposes into
noewu ® H° where the intersection form is +ve definite, -ve definite
and zero respectively. For g €G the g signature is
olg) = trace(g|ﬁ$) - trace(g[Hm)
By similarly decomposing each eigen space it is seen that

n-1

a(th) = Y wrmc('IEm) 0 <1 <n w= ezm/n
m=0
= § WMo+ |E™ - o(+[ED))
m=1
inverting gives:
n—1
o(+[E™ - o(+]E%) = -:;2 WMy oced)
r=1
now  o(+[E™) - o(+|g%) = o™V, - o(w’,V,m)

and O(1,V,M) = 0, proving the theorem.
4.3 Remark
In general T(1,V,M) # 0 (£ in 2.2 example 6) so the identification

in terms of G-signatures does not apply to T.

4.4 Corollary (Parallel Surfaces)

If a surface V is properly embedded in M, and m,n are coprime
integers and W = 1, then

o(w,mV,M) = c(cﬁ“ﬂ,v,M)
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Proof: as in (2.26) we may assume m > 0. 3V is a number of disjoint
circles in @M, attach 2-handles to M as described in (2.18) so that
a new surface without boundary is obtained in a new 3-manifold, having
the same signatures as thg original. Now double this manifold, which
again does not change ¢. The foregoing construction works for mV,
using the same 2-handles, only this time attaching m cores of each
handle to the surface mV. Thus if the new surface is V', and the new
manifold M', we have o(w,V,M) =0(w,V',M") and c(w,mV,M) = O(w,mV',M").
Therefore it suffices to consider the case of M,V closed.

Since m,n are coprime {V} and m{V}Eﬂz(M;Zﬁ) have the same
order, and so determine the same n-fold cover M ——M topologically.
However the canonical automorphism th for mV 1is (tv)m where tV

is the one for V. Thus the eigen space signatures are related by

Emr )

r _— L]
o (B = o,(
and the result follows by using the connection with o(w,V,M) given in

the proof of the theorem.

4.5 Remark

The above proof provides an interpretation ot the signature of
a surface properly embedded in a 3-manifold with boundary, however the
method is not very natural. It does not seem that additivity can be

proved this way, and in particular any finiteness result,

4.6 Another Signature Theorem

If the compact oriented manifold pair (W“,UB) has boundary (M,V)
then if p is a prime, 0 < r < p, and Er/p is the eigen space for

eigen value e2ﬂ1r/p

of Hz(wp;ﬂ) then dim Er/p =z Bz(W) for all except
finitely many p. Hence
| (w, V,})} + oW | < B, (W) for all w .

{ ﬁp is the p-fold cyclic cover of W determined by ©)
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Proof: Let T be a field, A = F[Z] , then by (3.4) there is an exact

gequence with coefficients F :

J t-1

B () ol (W)

nF
(H

® f\/gimi

o, (F) —E o, ()P m, ()

Ii

hence coker {t-]:Hz(wm)-——m+H2(wm}}

&

ker {t=1:H, (W) —H (7))

where n +m = BZ(W;F). A is a PID and so

. o .
H, () = @ A/," i, ()

1 e

4

where fi,gi gA are irreducible ( or zero). By (1), and because ideals

are principal, we may sequence fi and g; S0 that

£. = t-1 or 0 for 1 i <n
g; = t-1 or O for 1 <i <m
and all the remaining £iog; # t-1 or 0.

The exact sequence above may also be applied to the covering

W ——sW resulting in
= P

0 ————ﬁﬁoker{tp~1:ﬁz(ﬁm)f3}—m—wﬁHz(ﬁp) >'ker{tp-1:H](im)f3 } e (2)

note that coker tP-1: A/f © = A/<f,tp“1>
ker tP-1: A/F O 2 Af<f,tP-1> if £40
20 if £=20
Now put F = Zp in the above, and observe that tPe = (t—])p over Zp,
then (2) becomes:
n . h T
0 ——r @ AA ———H (W ;2 ) ——r @& AB, —0 (3
i=1 2T p =1 °

where Ai = [ <(t~])P,(t~1)ni> if fi # 0
<(t-1P> if £, =0

B, = { 0 if g =0
<(e-DP, (e=™>  if g #0

all the other summands are zero.
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- n m
. . = : AA. : .
Thus B, (0 52) igl dim (Aa)  + izl dim (A/B)
< .
< pBWZ) (4)
Now W is compact so H,(W;Z) is finitely generated, say = @ Z/miZ

i
for m, £Z. Hence for all but finitely many primes p we have

Bz(w;cq) = Bz(w;zp)
and for such p, (4) implies that
- < .
Bz(wp,Q) 2 R, (W3 @)
o £ e 7 . < T .
(because by Universal Coefficients, BZ(WP,Q) s BZ(WP’Zb) )
Now use (1) and (2) with coefficients F = Q, in this case (]+...+tp—})
is irreducible, hence:
A<g tP=1> = A/a
p-1 P
where A = <1>,<g~-1>,< I+.,.+t >, or <t'-1>
so {2) becomes:

A/A£”””““+H2(WP;Q)—‘—*+.

in
i A/Bi~—~—+0
l'-:

I

where Ai’Bi are selected from the last 3 possibilities for A.
A summand A/<t-1> does not contribute to any eigen space Er/p for r > 0
and the other two possible summands each contribute 1 to dimC E

r/ip’
hence dimm Er/p Sn+ms= Bz(W;Q), as asserted in the theorem. By (4.1)

< s
lo@,v,) + o] < dimg E

and since this is true for all but finitely many primes p, and all
0 < r < p, the piecewise constant nature of ¢ implies that
'?(w,V,M) + O(W)I < BZ(W;Q) for all w .

The theorem is proved.

4.7 Remark
The intersection pairing vanishes on Inﬂﬁz(aﬁp)-~—+ﬁz(ﬁP)}
and so a better estimate for 0 may be available by this means, However

since dim coker{Hz(BW)"WMH*HZ(W)} is not a possible bound, the

improvement does not seem obvious.
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§5 Further Results & Problems

In this section are collected some questions which are currently

unanswered or which space and time prevent a detailed discussion of.

1) Kawauchi has generalised Milnors duality theorem (Mil) thereby
obtaining signatures from elements of H](M;Z). For M,V closed the
resulting signatures appear to be equivalent to o(w,V,M). As noted earlier
however, this cant be the case for M having boundary ( this failure can

in fact be 'explained'). (Kaw2)

23 The finiteness theorem, if peneralised (to genus 2 handlebodies)
seems to imply that the Seifert surface in Fig (3.10) does not contain
any pair of surgery curves. A stronger conjecture than a generalised

V, are properly ewmbedded in M, then

finiteness theorem is 'suppose V], 9

if {Vi} = {VE} EHZ(M,BM), then

|oCw, V510 - olw,v,,20) | < 4B, (o) "
Evidence for all this is supplied by (2.18), also a band move in 9M
on the components of 3V does not change ¢ if one of the components of

3V involved bounds in 8M.

3) Does the condition on a genus 1 knot to be slice, given in (3.13)

imply o(w,a) = 0 for all w?

4) Zp surfaces can be used in place of ordinmary surfaces for
defining signature for p'th roots of unity. The surfaces constructed
. . . ~h .
in Xn for genus | knots project down to Zp surfaces in Mnr s, and 1t

seems likely that this is closely related to the Casson-Gordon technique.
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3) If K = AI in the table of Alexander and Briggs, is used in the
construction on 820 { or a genus | knot), can the resulting knot be
(shown not to be) ribbon ?. That 4] is not slice is detected by the

condition on the polynemial, and not by any signature condition (hard).

6) If genus 2 slice knots are considered, A{t)= f(t)f(t"!). Suppose
£(t) is guadratic, then if the roots of f are real, surfaces arise as in
the genusl case. If the roots are complex, then one constructs surfaces
in Xn by lifting two different surface pieces and glueing up. This is
what happened in 820 {where the surface piece C is equivalent to A+B),
and the surface in Xn is:

P =1 (ajtjﬁ + bjtjﬁ)

For 8 because the roots of f{t) are roots of unity, aj and b§ are

20 *
periodic in j. In general this does not happen, making the signature

behaviour more complex. All this, of course, requires a more comprehensive

finiteness result.
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Chapter 2 The Universal Abelian Cover of a Link

§1 Introduction

Given a Seifert surface for a classical knot, there is associated
a linking form from which the first homology of the infinite cyclic
cover may be obtained. This chapter considers classical links of two
components, and shows how to define a pair of linking forms from the
analogue of a Seifert surface. From these the first homology of the
universal abelian (Z ® Z) cover is obtained, thus giving a pratical
method of calculating the Alexander polynomial. Also a new signature
invariant for links is defined. The method generalises to any number of
components, however this is not done here,

Throughout, unless otherwise stated, a link will mean a link of
two circles in the 3-sphere. The main results are (2.1) which gives a
presentation of the first homology of the cover obtained from the
Hurewicz homomorphism of the link complement, and (2.4) which gives a
signature invariant obtained from the presentation matrix that
vanishes for strongly slice links. This invariant is interpreted in
terms of g-signatures in §6. §3 contains a new derivation of the Torres
conditions on a link polynomial and §4 shows that these conditions are
sufficient for linking number *2 when both components are unknotted
(this is already known for linking number 0, *1). A new proof is given
of the result of Kawauchi, and independantly Nakagawa, on the Alexander
polynomial of a slice link.

The material presented here arose out of a study of the method
Conway used in (C) to calculate potential functioms. A proof of Conway's
identities for the Alexander polynomial in one and two variables is given
in §7 by manipulating Seifert surfaces, proofs are also given of some

of the other results from the same paper.



56

§2 The Algorithm

In this section a pair of linking forms, generalising the Seifert
form, are defined for a link. The matrices of these forms are used to
describe the first homology of the universal abelian cover of the link

complement.

Let Vx and Vy be compact pl embedded oriented surfaces in 7
and suppose BVX is disjoint from BVy, and that VX meats VY
transversely. The components of Vxn Vy are of three types called clasp
{or €), ribben (or R) and circle, see Fig (2.1). The 2-complex
§ = qu Vy is called a C~complex if all intersections are clasps, an
R-complex if all intersections are ribbon, and an RC~complex if ribbon
and clasp intersections are present. An orientation for such a Z2—complex
is an orientation for each of the component surfaces. The boundary of

§, 98 is (BVX,BVy), and the singularity of 8, e(8) = szxvy.

Given a C-complex, define two bilinear forms
u,B:Hl(S) & H}(S)——“m¢ﬁ

as follows. A l-cycle u, is called a loop if whenever an ant walking
along u meets €(8), it does so at an end point of €(8).Another way of
saying this is that a loop behaves 'nmicely' on e(8), by going straight
across it (maybe several times) and not going along part of a component
of £(S) then leaving it before the end, see Fig (2.2). Given two
elements of Hi(S;Z)’ represent them by loops u and v say, (this may

always be done) and define:

i

a({ul,{vhH Lk(uwm,v)

[

B({ul,{vhH Lk ,v)

o e -+, . .
where Lk denotes linking number. uv  is the cycle 1in 5% obtained by

lifting u off S in the negative normal direction from Vo and the positive

normal direction from Vy' That u is a loop ensures this can be done
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continuously along £(S), where the only difficulty might arise. u

is obtained by using the negative directions for both Vx and Vy.

Choose a basis {yl,...,yg} of H](Vx), and a basis {Yg+]""’Yg+h}

of HI(Vy) and, identifying via inclusion, extend to a basis
{Yl""’yg+h+k} of H!(S). Define two integral matrices A,B to be the

matrices of the forms ©,F using this basis.

Suppose now that L is a link of two components called LX and Ly
pl embedded in 8% , this is denoted L = (Lx,Ly). A C-complex for L is
a comnected oriented C-complex §, such that 95 = L. (Lemma (3.2) says
that any pair of Seifert surfaces for L may be deformed into a C-complex
for L) The Hurewicz homomorphism ﬁl(S3*L)ww~+H](83“L) induces a cover
X of 5%~1, the universal abelian cover. Define G to be the group of
covering automorphisms of E, then G ¢ Z ® Z, and is generated by two

translations x and y, obtained by lifting meridians of LX and Ly' Define

A o=2Z[d. Then define a (g+h+k)x(g+h+k) matrix J over
FOF (i) by Jr,s = 0 I <r#s £ gthtk

= (y-l)—1 r<eg

= (x—n“] g+l < r < gth

= i g+h+l < ¢

2.1 Theorem

HI(E;Z) is presented as a A -module by the matrix
J(xyA + A' - xB - yB')

in particular, this matrix has entries in A .

(J.Bailey has obtained a presentation for'H](ﬁ) by different means, see (B))
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2.2 Corollary

The Alexander polynomial of L is
Mx,y) = (y—l)—g(xul)whdet(xyA + A" - xB -~ yB")

where g = denus(Vx), h = 2genus(Vy).

The Alexander polynomial as given in (2.2) may vanish. Following
Kawauchi (Kaw), define B(L) = dim {Hl(i;z) & Q(M} as a Q(A) vector
space, by (2.1) this is also nullity(xyA + A' - xB - yB') as a matrix
over the field Q(A). When R(L) > 0, Kawauchi re-defines the Alexander
polynomial as the hcf of the (n-f(L))-minors of an nXn presentation
matrix for H](i;Z) as a A -module. We will adopt this definition, except

where stated (noteably in §7).

A link is strongly slice if it's components bound disjoint locally

flat discs properly embedded in the 4-ball.

2.3 'Theorem (Kaw), ()

Tf L is strongly slice then B(L) = 1, and A(x,y) = F(x,y)F(x"},ym])

for some F(x,y) €f ,with F(I1,1)=1.

This generalises the result on the polynomial of a slice kmot (G). Let

W, &, be complex numbers of modulus !, and M the Hermitian matrix

1°72

(1+$E&2)(w}w2A + A' - w]B - wZB'), and define:

U(u},wz,L) = signature (M)

H(ME’MZ’L) = nullity (M)

T(w),0,,1) = Lin -]—2 f c(mielel,w 2 1)
S0+ 48

le t< 8

21 <

o is called the polychrome signature of L. These definitions are

motivated by similar ones for kmots (T), (G p 32,37).
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2.4 Theorem

(i} ¢ and n are invariants of L provided (i+51a2) # 0, W W, # 1

(ii) If L is strongly slice then T(m], 2,L) 0 for all Wy W, .

Conway has suggested that it is more natural to comsider:

. ol - 1 — -
51gnature(m1m2A + w]sz w!wzﬁ W, 2B )

in place of the above. This has the advantage of removing the jump in

g at 14w 0, at the 'expense' of replacing the connection with the

Wiy =
Alexander polynomial by his potential function.

In §6 it is shown that if w? =1 = mg with p and g coprime
then G(mt’wZ’L) may be interpreted in terms of the g~signatures of a

certain branched cover of B,

Fig (2.1)

Clasp Ribbon Circle

[

VXZiZégZ;i><?<§vy Yy;?[//// /// Vy
i

Fig (2.2)

loop near a clasp
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§3 Homology of the cover

In this section we establish the presentation for HE(X) given in
(2.1) and then deduce the Torres conditions on a link polynomial. The
section ends with some examples. First however we need a supply of

C~complexes.

3.1 Dbefinition

Given a surface V with boundary, and an arc ﬁ:{G,ﬂ —¥ with

0(0) the only point on 9V, a push along O is an embedding PV

defined by chooging two regular neighbourhoods of @ , N, and NZ’ meeting

i

oV regularly, with Nla Nz. Then PQI(V - Int NZ) = identity, and Py

maps N, homeomorphically onto N, — Int N]. See Fig (3.1). Given a pair

2 2

of SBeifert surfaces for a link, a push along an arc O in Vx is allowed
only if Nznavy = (. That is to say you are not allowed to push one

boundary component through the other. A push in VY is similalry defined.

SO
/-:‘,77 —

3.2 Lemma

Any pair of Seifert surfaces for a link may be isotoped keeping

their boundaries fixed to give a C-complex.

Proof: First make the surfaces transverse, and then remove an outermost
on Vx circle component of er1Vy by pushing in along an arc from Vx to
that circle. This transforms the circle into a ribbon intersection.
Continue in this way until all circles have been removed, note that this
process does not introduce new circles. Next remove the ribbon intersect-

iong, in any order, by pushing along an arc from the boundary of one of

the surfaces to the ribbon intersection replacing it by two clasps. The
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resulting isotopy has moved the link, but only by an ambient isotopy,

completing the proof.

3.3 Definition

Let S he an oriented C-complex, then there is a natural splitting

0

>H]{Vx) @ H](Vy) >H](sl-———»§0(es)w~ﬂm¢6

G
given by specifying ¢(u)-{m](vx) ® H](Vy)} = 0 where * is the

intersection pairing (which is well defined between the cycles specified)

The basis {Yi} of HE(S) given in §2 is called a preferred basis if

{Yg+h+1""’Yg+h+k} is a basis of Im ¢.

Proof of (2.1)

Define Tx and Ty to be solid torus neighbourhoods of LX and Ly
respectively, and let N be a regular neighbourhood in g3 (Txu Ty) of
Sp {83~ (T_uT )} . Define R =03N - 3(T_vT) and X = cL(§% N).

X v X ¥
R may be constructed as follows, let V; = cl(VK— (vx;wvy)xz) and
V' = ¢cl(V_ =~ (V nV_)IXI), Take 2 parallel copies of V' and 2 parallel
¥y y x ¥ X
copies of V; and glue up round the clasps (E(er7Vy)XBI) to form R.
The 2 parallel copies of V; can be labelled +,— as determined by
orientations, similarly for V;. Define V_,_ to be the subset of R

+

V;mu V;+ (see Fig (3.4 ii)) and let 1i_, be defined by the following

commutative diagram:

Fig (3.2) i
Hl(s) H. (X)

Deformation* I% Tinclk
incl‘
S —
HE(V—+) Hi(R)

Similarly define i,_’i+u and i++ ( see Figs (3.4) 1, iii, iv)
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Fig (3.3) Fig {(3.4) 1 Fig (3.4) ii
Vv
ds ¥
Y
- x = =
v
) P
Cross section of a clasp Fig (3.4) iii Fig (3.4) iv
V+_ - + V++
+ +
Fig (3.5)
part of X [y

-*)/{ y l+w8 ({}I)

X. & X. R\\\\ -1
3, kel U H I, R+l p (€9) X, . & g3 _ g
[ . 2"
:hﬁhx\“‘xj+]yk+ti*“8(a)

p (8)
Xj,“/ X:‘H,L\

!
xjyki +8(u)

Write p:i———*+83" 1.  for the universal abelian cover; because § is
connected p—l(S) separates X into components which are lifts of X, and
S0 HE(Q;E) is generated as a A-module by (1lifts of) H](X;Z). By
inspection ome sees that the following relations hold between these

generators :

o EHE(VX) i,,000) = xi_ 8(0)
a eH;(Vy) i, 00 =yi_ 8(w)
o el (eS) i, 8(c) = xi_ B8(c) +yi, B(o) - xyi__6(a)

{6 is the natural isomorpism Hl(S) = HE(Vx) @ HI(Vy) o HG(ES)} . The
third set of relations are suggested by Fig(3.5), the proof that this is

indeed a presentation of HE(X;Z) is deferred.
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It is clear that:

o ef (V) i_ e =1i_ 8w and i, 6(x) =i, 0(x)
o EHI(Vy) i 6@) =1, 68 and 1i_08() = i_ 8(a)
Therefore the relations may be re—written:

o eH (V) (-1 ayi__ v i, - xi_ - yi, 8@ =0
o el (V) ) sy i, —xi -yl Jed) =0
@ eH, (e9) oyl + i, - xi_, - yi, }8(e) =0

The linking forms u,B:HI(S) & Hi(S)_m——¢Z are given by:
a({u},{v}H
B({u},{vhH

and the matrices A,B of o,8 with respect to a basis are also the

]

Lk{i__u,v)

It

Lk(i_  u,v)

+
matrices of i__ and i_+ with respect to a dual basis of HI(X)' Observing
that Lk(i__u,v)} = Lk(u,i v) it follows that the matrix of 1 1is Al
and in a similar fashion, the matrix of i+* is B'. This transforms the

presentation above for Hi(i) into the form given in (2.1).

Derivation of relations

A presentation for H](ﬁgz) is given by:

G0 @) 1% o7 ) e H, (7 ) ——H, () ——0

(this is from the Mayer Vietoris sequence for p_I(X),p—](N) ) We will
show that k is surjective so that chi) = H](p“](X))/j ker k. In order
to compute Hi(p"](N)), retract N down onto a I-dimemsional spine formed
by the spines Px of Vx—Ty and Py of vyme' Initially suppose that Vx
and Vy are discs, then PX ig a wedge of circles, one for each clasp. Cut
open these circles in Px to create a tree P; (see Fig 3.6), and similarly
create P;. Label the clasps of S 1 to (n+1), and label the terminal
vertices of P; E+,Im,2+,2m,...,(n+1)+,(n+1)w, where the * sign is
determined by the direction Ly plerces Vx at the clasp. The vertices of

P; are similarly labelled.
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~

= spine p | (1) 2Ly R X (20 DN

where v identifies vertices labelled - in P; (i+1,31) with their count-—

erparts labelled + in P; (i,3); - vertices in P; (i,j+1) with + vertices
in P; (i,5); and - vertices in P; (i,3) with the corresponding — vertices
in P; (i,3).

Fig (3.6)

+ + .
Choose 2n 1-chains ai ECE(P;) with Bai = {(A+1)7 ~ Ri 1< <m
. + . + + +
and 2n 1-chains Bg eC (P;) with BBQ = (Q+1)" - 4 1<28<n

1
then 3n+l l=-cycles in 21(5) ® L are defined as follows:

Ko =8y = By 1<% <n
- -1 +
= - ] <8<
Ag Oy =¥ O <8<
:uuwx_18’+ P < ¢ Tl
Mo T % g ="=
v = cycle running round 4 lifts of ome vertex

(p xp »xyp =yp ~p)
then it is clear that these cycles freely generate H](ﬁ) =1 ﬂl(p“](ﬁ))

as a N-module.

Pig (3.7) Part of P

341 prit,]

+ +
W}{aﬁmysg
¥y Y- S d - - +

K.’P'i,j
X

P'i,j Pli
) X

N

3
]
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Next ve calculate H (p ' (R)), R lifts to X so H(p (R)) 2B (R) 6 A

and HE(R) o AQO(ES) ® <o> , Where v is represented by a cycle running
round the four glued up segments round some chosen clasp (v = p(V) )

Tha labelling of the clasps determines a labelled basis of ﬁD(ES) namely

{ [vertex(2+1)] - &ertex(ﬂ)]} 1 <% <n, and via @:QO(ES)MW~—+HE(S)

a basis {Yi} of HI(S)' Then a basis of H](R) as a Z-module ( and Hi(pui(R))
as a A-module) is {V ’im_YQ’im+Y£’i++YQ’i+_Yi} (abuse of i_+ and the
other maps comes from factoring through H](R) as shown in Fig (3.2) )

We can now describe the map R:H](p_}(R))"*——éﬂl(pml(N)) using

these bases (refer to Fig (3.7) )

K(V) = v

k(immyg) =0, = 82 =K,

k(i+my2) = X0 BE

)

XUQ
K(i_,Y) = o, - v8, = y(k, = X))
k(i = X0Q

+ +
+-’§-YQ,) ] - YBQ' = XY(UQI - ;\2)

from which it follows that k is surjective and ker{k} is generated by:
(xyi__ + i, X, - y:L_'_)\;2
This completes the derivation of the relations in the case that VX and
Vy are discs. In the general case when VX and Vy have non-zero genus,
HI(R) is enlarged by ZHE(vx) & ZH](Vy). The construction of ﬁ proceeds
much as before, except that P; is not a tree any longer, having a wedge
of circles arising from spine(Vx), gimilarly P;. This means that extra
elements are added to the basis of HT(P) and H!(pw](R)), and kerik} is
enlarged by (xi__ - 1++)HI(Vx) and (yi__ - 1%+)H](Vy) as required,

completing the proof of (2.1).
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3.4 Definition

A tangle 1is a proper embedding of two oriented arcs, and any

number of oriented circles in a 3-ball.

3.5 Lemma

Suppose a knot, or link, L is separated by a 2-sphere S into two
tangles in $°. Then a Seifert surface may be chosen for each component
of L such that the totallity of these surfaces meet S transversely in

two arcs.

This will be used to prove various identities between invariants of
related links in §7.

Proof: WNumber the points of intersection of L with § 1 to 4, and choose

a component B of S§%- S, We suppose the numbering is done so that there
is an arc in B whose endpoints are 1 and 2, and another arc in B whose
endpoints are 3 and 4. Choose two disjoint arcs on §, O with endpoints
1 and 2, and B with endpoints 3 and 4. The components of the link im B
formed by 0,8 and Ln B bound surfaces in B which meet S in O and B(eg
Seifert's algoritm for tracing out Seifert circuits applied to each
component in turn will produce such surfaces). Similarly there is a
surface in c¢1(S®- B) also meeting S in o and B only. These two sets of

surfaces joined along o and £ are the required surfaces.

3.6 Theorem (Torres)

The Alexander polynomial of a link L of two components satisfies:
(1) AGe,y) = MG,y
fii) If B(L) = 0 then A(x,1) = A(x).(]*xg)/(l—x)
where = denotes equality up to multiplication by a unit of A ie ixrys.
£ is the linking number of the two components. A(x) is the Alexander

polynomial of the x~component.
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Proof: (i) is immediate from (2.1). For (ii), using a preferred basis

of H!(S) the linking matrices A,B have the shape:

Hl(vx) H}(Vy) HO(ES)

H (V) C D E C D |

' 'x
A= H](Vy) n! F G B = Dt F' G
HO(ES) E' G K E' G' L

If ALY = 0 then

[ xC-C' (x-1)D (x-1)E
AMx,1) = det | O F-F' 0
0 0 % (K-L)+(K-L) "'
= det (xC-C') det (F-F') det (xM+M') M =X - L

Now C is a Seifert matrix for the x—component, so det{xC-C')=A(x). F is

a Seifert matrix for the y-component so det(F~F') = 1. Finally we show

below that det{xM+M') depends only on the linking number of the two

components, and evaluating for a simple link gives (lwxg)/(l—x) , see (4.7).
It is well known that any knot can be changed into the unknot by

changing crossovers, this is easily extended to: any link may be changed

into any other link of the same linking number by changing crossovers

at which both strings belong to the same component. Let L' be the link

L with a single such crossover changed. Using (3.5) choose a C-complex

S for L such that a C-complex S' for L' is obtained by adding a full

twist to one of the component surfaces of S next to the changed crossover,

Fig (3.8)

Added full twist
Tangle o A

The matrix M is the matrix of (Ur6)|ﬁOCES), and adding a twist to §
changes o and B by adding to each a symmetric form vy. Thus o-f is

unchanged, completing the proof.
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3.7 Lemma (Kaw corol 2.3)

Let L= (Lx’Ly) be a link of two components, then B(L) =0 or 1.

Proof: 1If AL(x,y) # 0 then M is a torsion module, so B(L) = 0. Otherwise

AL(I,]) = Lk(LX,Ly)=O,cﬁoosé a C-complex S for L and let 5, be obtained

is a C-complex for a link L1 with

linking number = AL (1,1 = %1, Thus the module M3 for L] is a torsion
i

module. Putting back the clasp adds a single row and column to a

from § by removing one clasp, so that S1

presentation matrix for M, giving a presentation matrix for M. This

1
latter has nullity (equal to R(L) ) at most 1, completing the proof.

3.8 Proposition

If L is a link of two components with R(L) = 1 then A(x,l)lAL
%
‘and in particular A(1,1) = %1,

Proof: 1In the proof of (3.6), if B(L) = 1, =xM#M' must be singular
and, as in the proof of (3.7), we may assume that removing the last row
and column gives a non-singular matrix, with determinant

A(x). Hence & generator of the (prinmciple) ideal gemerated by the

(n-1) minors divides A(x), completing the proof.

3.9 Definitions

A Boundary link is a link whose compoments bound disjoint Seifert

surfaces, A split link is a link in which the components can be separated

by 2-spheres. A pure link is a link all of whose components are unknotted.

Remark: for a boundary link it is clear that A(x,1) = AL .
®

3.10 Corollary

If VX and Vy form a C-complex for L, and k is the number of clasps
then k> 1+ B(L) + degreaxﬂ(x,y) - 2genuS(Vx)

unless B(L) = 1 and éegreexﬁ(x,y) = denus(vx) | M
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3.11 Examples

N The method of using C-complexes makes it easy to construct links
with a specified Hi(i)' To illustrate this, we produce a link having
the same H](i) as the unlink, by starting with a C-complex for the unlink

and then knotting or geometrically linking the isthmuses used for the

clasps
X y
O ] Tie into a knot k
@ D | without twisting.

The 2~fold cover of §° branched over the (unknotted) x-component containsg
two 1ifts of the y-component each of which is k#k, hence the link is

non—trivial.

2) Below is a strongly slice link with A(x,y) = 1 and AL = (x%-x+1)2
X

so the link canncot be a boundary link.

g

link C~complex

A:Bz

J(xyA + A" - xB - yB") =
A o 4] Y §
0 0 0 0 0 0 0 0 I-y -y
0 0 0 0 -1 0 0 0 1 P-x
0 0 0 1 1 0 0 0 x-1 X
1 -1 1 2 1 x -X x—1 2x-2  x~1
1 -1 0 1 -1 | x T-x -1 x~ 1 1-x

A = hef{x?-x+1, (1-y) (1-2x), (1-y) (-x) }. hef {x%~x+1,%x,x(2-x)} = 1
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3) This is an example of a pure split liank, two different C-complexes

are used for giving a presentation of HE(ﬁ), one using disjoint Seifert

surfaces, the other using a C-complex formed from two discs. Fortunately

both give the same module!

m, £ %

0 0 ! entries of A and
0 1 1/0 B coincide except
] 0 0 where shown.

o/1 0 0]

This C~complex is not connected, this can be achieved by adding a trivial
palr of eclasps which enlarges both A and B by a row & column of zeroes.

The resulting presentation of H!Ci) is:

0 0 0 0 0

0 0 0 -1 x

0 0 0 D

0 X x-1 0 0
K y-1 -1 0 0 |

which gives the module A @ A/(xy-x+1) & A/(xy~y+I)
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O & Y
0 0 1/0
X
A/B = 0 0 ~1/0
] ~1 0

This gives the presentation:

0 0 xy+l-y

0 0 ~(xy+i-y)

xy+l-x ~(xy+i=-x) O
which again gives the module A ® A/(xy-x+1) & A/(xy-y+1)

Incidentally, this link is also strongly slice, and the module structure

is as predicted by (3.3).
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§4 Generating Link polynomials

The Torres conditions on a polynomial are known to characterise
2-component link polynomials for linking numbers 0 and +1, see (B),(L).
On the other hand Hiliman has shown (H) that (for linking number |8 >6)
there is an additional necessary condition when the Alexander polynomial
of one of the components has a cyclotomic factor which divides (xlgiml).
This suggests looking at links in which both components have trivial
Alexander polynomial, and we show that under this extra hypothesis that
the Torres conditions also suffice when ]2[ = 2. It is also shown that
every link polynomial is generated by a link in which each component has
a Seifert surface of minimal genus compatible with A(x,1) and A(1,¥).

In particular for & = 0, all link polynomials are realised by pure links,
and if £ # 0, and A(x,1) = (!*x!gl)/(lwx) and A(l,y) = (l“ylgi)/(]—y)

then A ig the polynomial of a pure link.

4.1 Definition

Given a C-complex V}.{uVY for an oriented link (Lx,Ly), define

an intersection permutation in the permutation group on n elements as

follows. On VX choose a clasp and label it 1, then going round Vx in
the direction given by the orientation of Lx’ label the remaining clasps
2,..;,n. Now do the same on Vy starting from the same clasp 1. There is
thus a correspondence i -U(i) for 1 <1 < n where O(i) is the label
given by Vy to the clasp labelled i on Vx. This is defined up to choice
of clasp labelled 1, ie up to conjugation of O by pr, where p is the

n-cycle (i) £ i+l mod n.
4.2 Lemma
Every link has a C-complex for which the intersection permutation

is the identity.

Proof:
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4,3 Definition

An equivalence relation on the set of C-complexes for links isg
defined by requiring:
(i) All C-complexes for the same link to be equivalent.
(ii) If two C~complexes for different links have the same linking
forms (identified via some homeomorphism of C~complexes)they

are equivalent.

this is called S~equivalence . It is clear that S-equivalent C-complexes

determine isomorphic homology modules for their respective covering spaces.

4.4 Proposition

Every C-complex is S—equivalent to one in which the Seifert pairings

on each individual surface are non-singular.

Proof: Trotte% (T1) proves that given a knot k with Seifert surface V
and Seifert matrix A (using some basis of H}(V) ) there is another knot
k' with Seifert surface V' and Seifert matrix A and a second Seifert
surface V" for k' having non-singular Seifert matrix A",

Given a link (Lx’Ly)’ choose knots L; and L; as above lying in

3

§° and separated from each other by a 2-sphere. Let the surfaces for these
knots (having the same Seifert matrices as the given surfaces Vx,Vy for LX,Ly}
be V; and V;. Regarding V; and V; as discs with bands attached, link the
bands of V; with those of V; in the same manner as those of Vx and Vy

are linked. Next introduce the required number of clasps between V; and

V; ensuring that the intersection permutation is the same as for qu Vy

and link the isthmuses used for the clasps in the same way as those of
VXUVy are linked. The resulting link L' (=boundary of new V;‘ . V; )} has
been constructed to have the same linking matrices A,B as the given
C~complex for L. However L' possesses another C-complex obtained by

deforming minimal Seifert surfaces V', V' for L', L' which gives the
Xy ¥

required C-complex, completing the proof.
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4.5 Corollary

If a link I has Alexander polynomial A with
A1) = 801, = (1= 2y (i)
then there is a pure link having the same Alexander polynomial as the

original.

Proof: If & # 0, the Torres conditions imply that the Alexander polynomial
of each component is trivial, and this implies that non-singular Seifert
matrices for the components are trivial (ie O0x0 ) so that the previous
result provides a link L' whose components bound discs, as required.

For % = 0, the result follows from the proof of (4.10) which shows that

all such polynomials arise from pure links.

4,6 Definition

Following Conway, we define the potential function of a link to be

I3 - x"'yB' hdet J.det J

V(x,y) = det{xyA + x"!yulA' - xy
this is defined up to multiplication by *+1 (but see §7). Clearly
V(x,y) = txrysA(xz,yz) , and the reason for introducing V is
to simplify the symmetry propertyof the Alexander polynomial. The potential

function of a knot we will take to be V(x) = det{xA + X“}A'} {Conway

has an extra factor of (x - x—}) herel .

4.7 The Simple Link

The simple link of linking number % is the (2,2%) torus link k6 (R)
p 53 . Another way of describing this is the boundary of an annulus in
§® whose core is unknotted with & full twists in, the orientation of
components is such that they both represent the same class in Hl(annulus).

It will be convenient to have a standard C~complex for the simple link



75

% > 0 clasps

L2 is the matrix

T D T
xvAtx 'y A'-xy B-x vyB
for the simple link using the

C-complex and basis shown.

L, = ~(xy + 1/xy)

o
L = LQ“I ~Xy
2
o xy -xy-l/xy
define P2 = det LQ = (“1)£+I(xy)ﬁ- (XY)“Q for 8> 0
-1
xy -~ (xy)

For £ < 0, changing the crossovers in the above diagram gives a C-complex
for this case, and it is clear that this multiplies the matrices A,B by
-1
1. Thus P_,= (-D" P, .
A potential satisfies the Torres conditions if and only if it may

be written as:

Lﬂvxvy + Mhix,y) where A = (x-1/x)(y-1/y)
vx’vy are the potentials of the components and :
if % is even then h eAS SR if % is odd then hEAOdd
sym sym

A ym is the subset of A of polynomials with h(x,y) = h(x_i,y_])

and AOd& is the subset of A in which polynomials only have terms of odd

e
A ven

degree in both x and vy, is the subset in which polynomials only

have terms with even degree in both x and y. Then

Aodd = A f Aodd and Aeven _ o n peven
sym sym sym
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Tor some choice of o ]=i i:i N define an NxN matrix AN over Q(\)
by
0 &1
Bi 0 o,
82 0 Oy

BN"?

Vag 0y 1s05;)€ {fx/y,Xy),(x/y,l/xy),(y/x,ilxy),(y/x,xy)}

where .
Bl

and define A;’J = det of minor obtained by deleting i'th row & i'th column

4.8 ‘Lemma
If i <3 and i =1, J =0 mod 2

i,j - (_])(N+i“j—i)/2 J;[] 8

then
Ay I8

s 1 1,1

also A% I/AN"

and in all other cases A;’J = 0,

Proof: By transposing A if necessary, we may suppose that row i £ column j
Suppose that 1 = 0, then expanding A;’J from the top left corner, one
finds there isn't any non-zero term for the (i-1)'th row. By reversing

the row and column numbering, the same thing happens if (1+N-3) = 0

ie j = 1. In the remaining case 1 =1, j = 0 and
. . (i-1)/2 0 _
A§’J = 1 det "2k +det diag(B;,B; 1r-++5B:_y)
k=1 8 0 177+ =
2k~
N/2 0 _
. T det 2k
k=1+7/2 B 0

2k-1
using akBk = 1 gives the stated result. If A was transposed at the start

of the proof, it is clear from the definition of AN that Aé’l = I/AN’3
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i1 T
define x'iy®i = 1 o so x 1y ®l= 7 B

k=1 k=1 K

For some choice of BryaBys e sdy integral multiples of A , define an

(N+1)%(N+1) matrix

N

using the preceeding lemma to expand by the top row gives:

N/2 N/2

det Ay = (=1)""Tay + )
o=

1 2k

By suitably choosing ai’ Bi and a; this determinant can be any

ypeven
sym

h €

4.9 Lemma
Given an AN’ there is a C-complex for the simple link of linking
number | such that, using a suitable basis,

A = (xyA + (1/xy)A" - (x/v)B - (y/x)B")

Proof: The C-complex is built up by starting with the standard C-complex
and itteratively replacing the end clasp in the C-complex by 3 clasps.

Without loss we suppose the end clasps to be:
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Figs - (i) to (iv) show 4 possible substitutions together with the extra
basis elements which produce the necessary matrix enlargements. The clasp

in the box in each case is the new end clasp.

Y
0 _jJ yvix 0
0| gives x/v 0 1/ xy
0 0 Xy 0

1/0 x/y 0 xy

0 ;ij x/y 0
1/0 y/x 0 Xy

0 0 My O

0 _f_! x/y 0

0 y/x O 1/xy
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4.10 Theorem

e
A ven

Given # 20 and h E there is a pure link with potential

V=rpy+ RP[QW]ih

Proof:

Case 1 % > 2

The pure link shown below has a matrix

~(xy + l/xy) + ay

£~1 rows

N

L J

This has det = det L, det AN +  det L|£—I§ det éN which by the

preceeding remarks gives the result,

L full twists (5 shown)

C~complex realising AN

e —

link this according te a,~—a

and twist ao/k times

By doing the linking carefully, the y-component can be left unknotted

(the numbers show part of the ordered basis of Hy(S) )



BO

Case 2 £ =20

By the above technique, éN can be realised by a pure link with

linking number zero,

Case 3 & =1

In this case PO = ), so the result reduces to asking for V = P

1
which is realised by the simple link, completing the proof of the theorem.

4.11 QCorxollary

The Torres conditions are sufficient for a polynomial to be a link

polynomial when % = 0 or 2, and in addition both components are

unknotted.

This follows from the theorem on noting that P, =1,

1

4,12 Proposition

Given £ > 2, and h ,h, € AS o0

, there is a link with potential
1’72 sym

— 2 -
V= pg& + )‘Paml(hﬁhz) + A Pgmz‘n}hz

Proof: The matrix below can be realised using the idea in the proof of 4.10
~ : -
NI
AN . 0
' .
ERu
b, ...1/xy
Y Ly
lxy ..
l‘iz
1/xy
0 ’ AN
2
N N, ]

then h, = det éN. for i = 1,2, Parther details are left to the reader.
i
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4,13 Proposition

odd/even

Given £ > 2 and for % odd/even h e A
sz sym

there is a link

having potential

y = + AT + )\Zng_,,z

P
2
even

for some g e A
sym

Proof: & = 2 is dealt with by (4.10), so we assume & > 3. The matrix

shown below is realised by the C-complex indicated,

ao—(xy+1/xy)

N

twist aO/A times and C-complex realising A

link according to 8y~ ay

We will omit further details beyhond commenting that in the evaluation

of the determinant, the standard matrix for the simple link appears with

the first row and last column ommitted, amd this matrix ig upper

triangular. g consists of terms quadratic in the a, .
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4,14 Remark

Bailey's presentation (B) of H!(X) makes it clear that

odd
PR, + APQ,h h e Asym

is realisable ( in contrast to 4.7 ). In (B) it 1s noted that if

h e ﬂodd there are h, ¢ AOdd h, e AP with
sym ] SYm 2 sym
h = PQhI + szthz when £ is odd

and a similar result when % is even. So it would seem plausible that

the Torres conditions are sufficient for pure links.
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§5 Cobordism Invariance of Polychrome Signature

Tn this section an elementary proof is given of the properties
of ¢ and T given in (2.4). The proof of invariance is based on an
examination of how one C-complex for a link may be transformed into any
other C-complex for the link, and is a generalisation of a proof in the
knot case where Seifert surfaces may be transformed into one another by
adding and removing hollow handles (Chap I, 2.7) . Fundamental to this
proof is the Isotopy lemma which gives a pair of elementary ambient
isotopies of the compoments of a C-complex from which an arbitrary
isotopy can be built up. The proof of cobordism invariance based on
ribbon links does not seem to extend to links in homology spheres
bounding homology 4-balls. However a separate proof of cobordism invariance
based on the G-Signature theorem is given in §6 which does apply in this

more general setting.

5.1 The Isotopy Lemma

Suppose that § =V_y Vy and S§' = V;{,V; are C-complexes for a
link and that Vx is ambient isotopie rel BVX to V; and Vy is ambient
isotopic rel BVy ro V;. Then § may be transformed into S' by a sequence
of the following operations and their inverses:

(I0) Ambient isotopy of S rel ©S.

(11) Add a ribbon intersection between VX and Vy (see Fig 5.1)

(12) ©Push in along an arc to convert a ribbon intersection into

two clasps.
Fig 5.1

adding a ribbon

™~
<~
N
.
\.

intersection

or same thing with x and y interchanged
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First a preliminary:
5.2 Lemmna

With the hypotheses of (5.1) there are other such ambient isotopies
with Vx and Vy transverse throughout the isotopy except at a finite

number of points, each of which occurs at a different 'time'.

Proof: By doing the isotopy of one of the surfaces before that of the
other it suffices to consider the case in which one of the surfaces remains
fixed. The track of the isotopy fX:VXXI,BVXXI——m+83XI,BVxXI is
transverse to VyXI along fx(a(vxxl)), so make fX(VXXI) transverse to

Vny keeping B(VXXI) fixed. Let fi = new embedding VXXI———*SSXI (no
longer level preserving). Take a triangulation of $¥3xI and VXXI with

Vyxl a subcomplex and f; simplicial. Now perturb those vertices of

$3%I not on the O- or 1- level so that no two vertices are on the same
level. This can be done keeping f;(VXX 1) and VyXI transverse, indeed it
suffices to show that perturbing one vertex ,v say, preserves transversality.
This alters star(v) only, and making use of the simplicial homeomorphism

v % link{v) ——v' * link(Vv) where v' is the new position, it is clear
that transversality is maintained inside star(v). Call the resulting

pl homeomorphism fi:VXXI-——+S3XI. By tramsversality E = fi(VXXI)n (Vyxi)
is a 2-manifold (with boundary) and E is transverse to S¥xt except at
vertices of the triangulation. To regain level preservation, define f;

by the following commutative diagram of pl maps

ig xf2 o
v I vax (53x1) —PE2 g3y
., Pl = lproj fi ~.level preserving
vV xI
x
£3(V xI) = £2(V_xI) hence £3(V xt) is transverse to V Xt except at
XX X X X% v

finitely many points, and f; is the required map, completing the proof.
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Proof of (5.1): we assume an isotopy with finitely many critical points
as given by the preceeding lemma. The proof will employ the idea of

pushing in along a wandering arc, that is an embedding:

VX1
P id

+V XTI
o X

such that Py Vxxt is a push along an arc at:I-——ﬁWVX. The effect of this
is to squash the isotopy sideways to get the critical points into the
desired form, and v.n Vy becomes a subset of the original(for all t}.

Consider a critical point ¢ lying in the interior of both Vx and V
choose an arc o from BVX to ¢ and push in along o just before c appears
then remove the push-in just after ¢ would have appeared. In this way c
is removed at the expense of additional boundary critical points (ie
lying omn BVX or va)

Example (movie of er]Vy)

® w//,_interior critical
point ¢
O — B e
y

becomes ( < denotes a boundary critical point)

Uatolobl b

arc {

Here is a list of the possible types of boundary critical points(up to

interchange of x and y, and time reversal which is indicated by a - sign)

P4 X
bt X
(B1) };w_}) (B2) %m I;f (B3) }X_M) Ii
| A ]
X X
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The idea is to convert everything to Bl and B2Z.
Step 1 Convert B4 to (lots of) B3

A circle is born by B4 and dies by —B4. Push im VX along an arc to
the circle just before birth and keep the arc breaking the cirele during
the lifetime of the circle. However if a point of (Dvy)n VX approaches
this arc {(which would cause EVY to pass through QVX) push in along
another arc in VX just before impact, and withdraw the original arc. In

this way the circle can be kept broken until it dies.

Step 2 Convert B3 to B2 + B5 + (-B2)

Push in along an arc in Vy just before the critical point and

remove the push-in just after.

x ® ps
S T X )x
% } x
X arc "
oV
y
becomes: bid X
X * ; I
. B5 lx X
: 2 Ix X
B2 .17 y (-B2)
Yy — Iy ]Y 3
X X %

Step 3 Convert B5 to Bl + B2 + (-B2)
Push in along a wandering arc in Vy which travels along the

component of er1Vy in which the critical point appears, and then make

the arc bulge sideways before the critical point appears.



% x
*®
' arc shown dotted
' ! Pt
/ ¥
Yy
becomes:
X B
x ak
X * I
] f y Y (~B2)
Yy T XY
— y y
yo B P Y o
T %ex B2 e
y

This completes the proof of the Isotopy lemma.

By (2.7) in chapter 1, any two Seifert surfaces for a knot are the same
after adding hollow handles and disjoint 2=-spheres. ITn fact
the 2-spheres can be cancelled with !-handles, leaving just the latter.

Combining this with the isotopy lemma gives:

5.3 Proposition

Given two C-complexes for a link, they may be transformed into
the same C-complex by a sequence of the following .
(I0) Ambient isotopy of entire C-complex
(I1} Add a ribbon intersection
(I2) Convert a ribbon intersection into two clasps by pushing
along an arc
(H) Add a2 hollow handle to Vx disjoint from Vy, or to Vy disjoint

from V .
X
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5.4 Definition

Let F be an RC-complex, and choose a ribbon intersection ¥ in F.
Remove from F a small disc centred on the mid point of ¥, and lying in
the component surface of F in which the endpoints of r are interior
points, see Fig (5.2), Let 8 be a C-complex obtained from F by the above
construction at each ribbon intersection of F, then 5 is said to be

obtained by puncturing F. The linking forms «,B for 3 are uniquely

determined by F.

fet F be an RC-complex,.and ! an RC~complex obtained from F by
pushing in along an arc o in F to convert some ribbon intersection into
two clasps. Let § be a C-complex obtained by puncturing F, and st a
C-complex obtained by puncturing Fl, we may suppose that §! = gn¥rl,
Choose a standard neighbourhood U of @ in S of the form shown in Fig
(5.3). Pick loops €raenese representing a basis of HE(S) such that

e, misses U for i > 4 and e ol is as shown in Fig (5.3) for i £ 4.

Fig 5.2 Fig 5.3

The loops e,,...,e ~ Trepresent a basis of HI(SI). The matrix

(f+ﬁigz)(mlw2A + A" - w,B - sz') for S using this basis is:

o 0 8 ¢ 0. ..
0 0 —w26 —w2¢ 0. . _
_ - B = Wy o+ W,
Q= 5 “[1)28
b -w,d * o = (1-w,)8
0 0
L ) .
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Q1 is the matrix obtained from Q by ommitting the first row and column,
thus Q] is the corresponding matrix for s'. Then it is seen from the
matrix Q that:
signature(Q) = signature(QI)
and nullity{(Q) = nullity(Q}) + ]
We may therefore use an RC-complex for calculating signature and nullity
for a link, and the above shows that converting a ribbon intersection
into two clasps does not change C.
In order to complete the proof of the independance of ¢ and n from
choice of C-complex used, by (5.3) it suffices to consider the effect of:
(I1) Add a ribbon intersection
(Hx) Add a hollow handle to Vx

(Hy) Add a hollow handle to Vy

In each case the result is an enlargement of Q of the form :

Qo v o
ol

o W

L 6 w 0]

. . T, .
where v is a complex columm matrix, Vv it's conjugate transpose and

(1+w

]

for (I1) wor w )} or (mI + 62)

1’2
[+ 0, |2 (1-w,)

1
{

(¥ ) wor
e

- )
(Hy) W or W l1+w]mzl (I*wl)
Thus g and 1 are invariants of the link provided w # 0 in any of the above,

thus proving (2.4)1.
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5.5 Definition

Suppose that Dx and DY are two 2-discs immersed in §° without
triple points, with BDxr18Dy = {}, and such that the only intersections

both self and mutual are of ribbon type. Then (an’BDy) is a ribbon link.

Fig 5.4
= =
%"///7//// — (&“]J 1 loop
’—::Mm = 1 \\
‘ o ~ o~ \5\““—“—pushed in

cut + cross join

The self intersections of each dise can be modified to produce orientable

surfaces by cutting and cross joining at the intersections as shown in

Fig (5.4). Call the surfaces so obtained Vx and Vy’ then F = th;Vy is

an R-complex for L, push in along some arcs to get a C—complex 5. Now

pick loops on S representing an ordered basis of HI(S) as follows:

(1) For each self intersection of Dx pick a loop going round that
intersection~cut-open in Vx as shown in Fig (5.4)

{2) Do the same for Vy'

(3) For each ribbon intersection of F, pick a loop in S going through
the two resulting clasps in S as shown in Fig (5.5)

(4) Complete the basis by picking a further n loops.

The rank of HI(S) is readily verified as 2n+l, and the matrices

A and B of the linking forms om S using this basis have the shape:

n+l n
A "
n+!{ o *
n{ & 4

G
Thus (1+(1/xy)}) (xyA + A" - 3B — yB') =



where G is an (n+1)%n matrix over A and " is the involution of A
sending x to 1/x and y to 1/y. By (3.7) the nullity of this matrix = B(L)= 1.
Let g; € I be the determinant of the matrix obtained from G by deleting
the i'th row of G. Then the Alexander polynomial is

b = heflg; 2.} det 3 (1+(1/xy)) 0

I<i, j<n+l
using the fact that A is a unique factorisation domain to factorise the
gi‘s we see that hcf{gi.éj] = hcf{gi}.hcf{éj} from which it follows
that A = F(x,y).F(x_],ym]) and F(1,1) = 1 (by 3.8) proving (2.3) for
ribbon links.

Choose one of the g, # 0 and call it g, then g(w],mz) # 0 implies
that O(w],wz) = 0 (because of the shape of the matrix) and the

following lemma allows us to conclude that T(ml,wz) =0 for all 0 sty -

5.6 Lemma
If 0#ge A and Z = {(wi,mz) e six g g(mi,wz) = 0}
1

then 632? 52 measure{Z n {(w],w)): [w]—wél + Ju,mwl| < 81} =0

for all w},wz .
) B i, . . .
Proof: Simce g(x,y) € A, £(8,0) = gle” ,e”") is an analytic function

T, . s
of 8,0 € R. Expand f about 83,¢ as I brs(e—el) (¢-¢1) . If bOO # 0

I
then g(elei,e1¢2) # 0 and continuity of g gives the result. Otherwise

set d = min{r+s: b__ # 0} and define £(0,¢) = 5 b (8- )7~ )®
rs ctg=d IS 1 1

This is homogeneous and so the zeroes of f are a finite set of straight
lines through (B}’¢i>' A simple arguement now establishes that the zeroes

of f at 8],¢7

. lying within a distance of § are within an angular

distance of K§ from one of the lines of zeroes of f (K a constant).

This proves the lemma.
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5.7 Definition

Suppose L is a link of n components in s? , a band b is a locally

flat embedding b:TXT—+§%® with B(IX1)a L = b(IX3I). The link
o4

L' = L — b(IX3TI) + b(0IXI) 1is said to be obtained from L by a band move.

Example

“0N — i

A reference for the following is (T).

A band move is allowed if b(I*0) and b(IX1) are contained in the same
component., A link is ribbon if and only if it may be transformed using
allowed band moves into a collection of unknotted circles separated from
each other by disjoint 2-spheres. A band move between components k} and
k. where k, is an unknot separated from all the other components of L by

2 2

a 2-sphere is called bandsumming an unknet. A link is (strongly) slice

if and omnly if after bandsumming some collection of unknots it becomes
a ribbon link. If there are disjoint loeally flat concordances from the
components of a link LO to the components of a link Ll’ then there is a
link L, obtainable from both L. and from L, by bandsumming unknots.

2 1 0

5.8 Theorem

1f there are locally flat disjoint concordances from the two

components of L to those of L', then :

B(rL) = B(")
ALF F 2 &L,F'ﬁ' for some F,F' e A with F(1,1) =1 =F'(1,1)
and r(ml,mz,L) = T(w],wz,L') for all w,,w,

{This theorem for n-component links is due to Kawauchi and Nakagawa,

except for the signature part }
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From the above discussion it suffices to prove the theorem when L' is
obtained from L by bandsumming an unknot onto one of the components of

L., Choose a C-complex S for L and a disjoint disc D spanning the unknot
U, such that (SuD) is transverseto int b(IxXI) and all intersections
between them are of ribbon type. From the RC-complex Sy Dy b(IXI) form
a C-complex 8' for L' by pushing along ares and cutting + cross joining
self intersections as before. If A,B are the linking matrices of S using
some basis of H}(S), this basis may be extended to one for H](S') by
picking one loop running round each pair of clasps arising from the
ribbon intersections, and  further loops from the cross joined self
intersections{as when dealing with ribbon links} making a total of n say,
then a further n loops are required to complete the basis. The linking

matrices A] and BE for S' using this basis are of the shape:

0 C 0 0 E 0
A] o D * & B] = | T Je 3
0 * A 0 % B

where C,D,E,F are n*n matrices (over Z).

Set ¢ = Lk(Lx’Ly) = Lk(L;,L;), then by (3.6 1i) AL,(I,i) = &
thus if & # O then F(x,y) = det{xyC + D' - xE —~ yF') # 0. If however,
g = 0, then remove one of the clasps from § (and from S§') this reduces
A,B (and AI’BI) by a row and column and makes % = *1, which by the
previous arguement shows F{x,y) # 0. It follows that
B(L) = B(L') = nullity(xyA + A" - xB ~ yB"). If B(L) = 0 then:

B (¥ = Fly) F Ly b Gy
and F(m],mz) # 0 implies that o(mpwz,L) = U(waz’L')
which by (5.6) implies that T(w_I ,u}z,L) = T(w],wz,L') for all w0,
thus proving (5.8) when B(L) = 0.

This leaves the case B(L) = 1, define:
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N = (1+{1/xy)){(xyC + D' -xE -yF")

M= (1+(1/xy)) (xyA + A' - xB ~ yB")

My = (1+(1/xy)) (xyA, + A} - xB, - yB))
then 0 N 0

M = N' % % P Tows

define A(y) = A ® Q(y). Then nullity(M) = I, and A(y) is a PID so there

is R € GL(A(y)) having the same size as M such that
RM = "
"_'”0—""‘
therefore _ f
RMR' =| M, O
]
____0_____
and dert M2 # 0. It follows that there is R] £ GL(A(y)) wi.th
0 ﬁ] 0
e e o
) N} 0
'E
RIMIRI 0 % M2
0
The ideal of A(y) generated by the (p-1) minors of ME and that

generated by the

(p~1) minors of R}M R' are the same and are

171

generated by det N,.det ﬁ;.det M, . Thus:

— g | .
AL,(x,y) = det N].det N].det Mz.u for some unit ueE A(y)

A =
also L(x,y) det M,.u,

and so A, (x,y) / B (x,y) = E(x,3) EG,Y) .,

for some unit ug A
7 ()

unit u, = u/uE

where F(x,y) = det N}. A unit inuﬂ<y) is of the form xrf](y)/gl(y)

and by doing the above with A(x) in place of A(y) the same result is

obtained, but with a unit in A{x) of the form ysfz(X)/gz(X)-
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using that A is a unique factorisation domain to decompose all the
factors into irreducibles, and comparing these expressions we get

that: fl(y) - f;(y).f;(y-])
g,y g;(y)-g}(y—i)

1l

£, = £3(0.£1G )
g, (0 gh(x).gh(x )

and so AL,(x,y) = F(x,y).F(x_l,y_]).AL(x,y) up to units in A .

Define £(x,y) = det N].det R} £ A(y) then f(wl,wz) # 0 implies

o(wl,wz,L) = o(ml,mz,L') which by (5.6) implies that

T(ml,mz,L) = T(wl,wz,L‘) for all Wy s, . This completes the proof

of (5.8) and (2.3) and (2.4).

5.9 Remark
There exist links I for which ofw,L) = 0 for all w but for which

d(w],wz,L) # 0 for some Wy W, - Indeed if k is any knot for which o(w,k) # 0

for some w , then a split link L comprising of k¥ and (-k) has

o(w,L) = 0, and o(wi,wz,L) = G(w},k) - G(mz,k).
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§6 Interpretation of Polychrome signatures in terms of G-signatures

The modern view of the knot signature o(w,k) runs as follows (V)
,(G p35). Given a knot k in S°,push the interior of a Seifert surface V
for k into the interior of B" . Form the p-fold cover X of B* branched
over V, Then Hz(i;e) has an automorphism T, of peried p, and so decomposes
into t-invariant eigenspaces E"® E'® ... @ Ep*éorreSPOQding to eigenvalues

-1 2ni/
0,6, ..., &P where g = &° /P

(r is the canonical automorphism in the
sense of §4, chap 1). The Hermitian intersection pairing is an inmer
product with respect to which 1 is an isometry and the decomposition

is orthogonal. One finds that

g+ |E") = o (1-£T) A ~ETA") = o(£F,k)

m

0]

r/p

where A is a Seifert matrix for V, and 0 <r < p.

The automorphism T of X gives rise to a g-signature (AS) as follows.
T is an isometry of HZ(E;R) which decomposes into T-invariant subspaces
H+,HM,HO on which the intersection pairing is +,— definite and zero
respectively. The g-signature arising from T is

U(Tr) = Trace(TrlH+) - Trace(rrlﬂ_).
The g-signature theorem says that for closed manifolds, O(Tr) depends
only on the action of T on the normal bundle of it's fixed point set.
Decomposing each £ into subspaces on which the intersection pairing is
*t definite and zero respectively, we see that

P

_.I
$ ST
¥ = o < <
o(t) rgo £ r/p for 0 <8 < p

sY , . .
£"" is non-singular, and so the equations may be

The matrix A__ =
ST
inverted expressing Gx/p in terms of g-signatures o(t%).
If V] and V2 are two Seifert surfaces for k, then X] and ﬁz have
the same T-action on their boundary (=cyclic cover of 5% branched over k)
and so XI and EZ may be glued equivariantly along their boundary to

produce a closed manifold Y. If r > O then T= acting on Y has fixed
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point set V,u V, , and the self intersection number of this surface in

1 2

Y is zero, which by the g~signature theorem implies that o(T") = 0.
For ¥ = 0 the g-signature is just the ordinary signature of Y, which is
zero, thus all g-signatures are zero. Equivariant Novikov additivity now

~

implies that the g-signatures of E! and XZ are all the same, and =o
the eigenspace signatures (and so 0{(w,k) ) do not depend on the Seifert
surface chosen for k.

Now suppose that k is slice, then there is a smooth disc D properly
embedded in B* with 9D = k, Let X = B"~ D, then X is an homology circle,
and so by a result of Milnor, ip’ the p-fold eyclic cover of B" branched
over D, is a rational homology ball (for prime p), hence Gr/p = 0, thus

U(Er,k) = 0 when £ is a p'th root of unity. Since these points are dense

in the unit circle, T(w,k) = 0 for all o if k iz slice.

Following a suggestion of Casson and Lickorish, this view will
now be applied to polychrome signatures, resulting (eventually) in another
proof of their cobordism invariance, however this method of proof does
not give the result on the Alexander polynomial. An advantage of the
present proof is that it applies to links in Z~homology spheres, showing
that signature vanishes for links slice in any homology 4-ball.

Suppase that § = VXLJVY is a C-complex for a link L in $?, push
int(VX) and int(Vy) into int(B“), this may be dome so that Vx and Vy
are disjoint except at a finite number of points, one for each clasp,
where they intersect transversely. In the rest of this section we will
denote these isotoped versioms by Vx and Vy. If A is a subcomplex of
B" we write N(A) for a regular neighbourhood of A in B*  which meets
3B* regularly. Define N = N(VXL)Vy) and X = cl(B"- N}, by duality

Hy(K) 2 H,(V_y VooLlou L) =27
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Let p:iw———+X be the zr@ ZS cover of X (unbranched), and let %,y
be the generators of G, the group of covering automorphisms, determined
by the meridians of Lx’Ly' There is also a branched covering p:ﬁbf———+B“

with branch index r over Vx’ and branch index s over Vy’ G acts on

ﬁbr also. Hz(i;c) decomposes under the G action into eigenspaces

a,b _ _a

E nEz where Ei is the e2ﬂla/r

E
X
2mib/s ~by

eigen space for y. HZ(X ;€) similarly decomposes, write

eigenspace for x, and E; is
the e

R b(Xbr) for this eigen space.

(6.1) Proposition

If 0<a<r and 0 <b <s, and w, = eZﬁla/r, my = eanb/s

a b(Xbr))

then a (G\)X’wy,L) =

The proof of this is deferred. If now r and s are coprime then G is

by

cyelic, generated by (xy), and the eigen space decomposition of H (X7 :0)

may be re-written @ E™ where E" is the eigen space of (xy) with

2w /rs

eigen value Em (£ =e ). Then, as in the knot case,

1 rs—] "k .
oz = ) &g o<k <rs

and again this may be inverted to express the eigen space signatures

. . . . . i
as linear combinations of g-signatures G((xy)k). Since Ea’b = i for some m

: . . b
this also gives an expression for G(E& ,& LL).

Suppose now that SE and 82 are two C-complexes for L giving rise

to X?r and X2 , then these can be glued equivariantly along their

boundary (= branched cover of Sa, branched over LX,Ly).to produce a
closed manifold §r o To apply the g-signature theorem, we need to
»

look at the fixed point set of (xy)k, and to this end we have a closer

lock at the Zp$ Zq covers involved.



99

Define U =V, yV U =v, oV Y = 8§
X 1x 2x N ly

then the cover op: %rg————+Y factors

? P2 _,_§ Py —Y
s T

where P; is an r—fold cyclic cover of Y branched over Ux’ and P, is an
s—-fold cyclic cover of Qr branched over p;}(Uy). Now pilp?](Uy)-~—+Uy
is a cyclie cover of Uy branched over an UV a finite set of points.

Uy has trivial normal bundle in Y so there is a nearby disjoint copy U;
. e . -1 -1
of U_in Y. Then pI(U') is disjoint from (U hence u') is
g pi( y) ] P, y), p ( y)
disjoint from p_](Uy).

The fixed point set of xayb is:

(n Yxs if a=5b =20

(2x) pml(UX) if a >0, b =20

(2y) p“’cuy> it 30, a=0
._] .

(3) »p (er\uy) if a,b >0

0. This follows from

For case (1), o((x)") = o(¥_) = rso(¥)
(CG1) lemma 2.1, which implies that if N——N 1is an m—fold cyclie cover
of a closed 4-manifold N branched over a closed surface F, and [F]-[F] = 0
then a(N) = mo(N). The factorisation of p into two cyeclic covers, each
branched over surfaces with self intersection number zero proves the
assertion.

For case (2y), the g-signature theorem says that:

U(yb) = [puI(Uy)]2 cosec? (Th/s)
which is zero because the self intersection number of p*](Uy) is zero by
the previous discussion. Similarly for (2x).

For (3) the fixed point set is a finite set of points. The action
on the normal bundle of a fixed point gplits into a product of two actions
each of which is a rotation about the centre of a 2-disc. The contribution
to the g-signatures of each fixed point is —cot(91/2)cot(@2/2) where

8J and 92 are the angles of rotation in the two discs. Now each point
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of Uxﬁ U has a sign determined by orientations, and the contribution
to g-signature from oppositely oriented points cancel out. However
[U ]-[U J = 0, so that all the terms cancel out.
X ¥
This establishes that the g-signatures of §rs all vanish. Equivariant
. C e . . . . ~br ~br
Novikov additivity implies that the g-signatures of Xi and X2 are the
b
same, and so o(ga',g ,1.) does not depend on the C-complex chosen. Such

points are dense in S!x$! and so T(w,,w,,L) is an invariant of L for
1’72

all Wy 3y Now suppose that L is (strongly) slice:

(6.2) Proposition

If Dx and Dy are disjoint smooth discs in B" , and izrq is the
>

Zq & Zq cover of B* branched over D_ and Dy with index q and if q is

a prime, then Hz(ﬁzrq;Q) = 0
¥

The proof of this is deferred. It follows from (6.1) that U(w],wz,L) = 0

when w, and w, are q'th roots of unity other than unity.Since these

1 2

points are demse in S$'xS! it follows that T(w],wz,L) = ( for all Wy s,
if L is slice. With a bit more work one can show that T is an invariant

of the cobordism class of L. We must now prove (6.1) and (6.2).

(6.3) Lemma

The map induced by inclusion H2(§;E)————+H2(ibr;m) is an

. . s a,b
isomorphism of eigen spaces E'’ when 0 < a<r and 0 <b < s,

) _ >~ =]
Proof: Define NX = N(VX) N =7p (Nx)
-1
N = N(V) N = (N )
y } v y P
N=rp (N)

the Mayer Vietoris sequence for N,i (coefficients C) is :

——t, () @ 1, () ——, &) ——a, (Bl ——t1 ) 0 7, s
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now N = ﬁxu ﬁy joined along p—i(N(er1Vy)) which is a collection

of 4-balls, thus Hz(ﬁx) ] Hz(ﬁy)mwiﬂ+ﬂz(ﬁ) under inclusion. The
covering p:ﬁﬁ—-F+Nx factors

i Py .o Py
N o= Y

X X X
where Py is an s-fold cover branched over (Vyrle). Using the transversality

v is a
x

of V. and V_, this cover is Bzxpm!(v ) ——BZXY_, and P I
v X ] X X I

branched cover of Vx branched over qu Vy. Py is an r-fold cover of Ni

branched over p;](Vx) with branch index r. It is now clear that

~

Nx 2 Bzxp"](vx) and x acts on ﬁx by rotation of the B% factor through

2%/r. Thus x, = id : H*(ﬁx)-———“+ﬂ*(ﬁx), so the only non-zero eigen

spaces of Hz(ﬁx) are Eo’b. Similar remarks apply to Hz(ﬁy) which has
a,0 .

only E eigen spaces non-zero,

The proof of the lemma will be complete if it can be shown that

Claim: the only non-zero elgen spaces of ker{i*:H](Bﬁ)-——qﬁﬂl(ﬁ)}are

E?*° and Eo’b.
. ~ -
Define QX = an oN Qx = p (QX)
~ ~1
=N _n 9N =
Q =Ty Q= Q)
then N = 6XU Qy joined along 2~torii, one for each point of p"I(Vxn Vy)

Consider the commutative diagram below, whose rows are Mayer~Vietoris

sequences, and the vertical maps are induced by inclusions

N - s . .
Hy(Q) @ B (@) —=——H, () —H @0 §)
HJ(NX) @ HI(Ny) ‘Hi(N) AHO(erlNy)

k, is an isomorphism because each component of (ﬁxn ﬁy)n N  is a single

L Im j*.

2~-torus component of an Qy' Thus ker i,

The same remarks apply to the covering p:ax“””"”Qx as to ﬁim-—*Nx
so that x, = id : H*(§X)~————4H*(§X), which establishes the claim,

*

completing the proof.
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Ea’b(i}) for 0 <a<r, 0<b<sg, which

We proceed to calculate o(-

by the lemma is also o(- Ea’b(ﬁbr)) .{cf (€G1) end of proof of 3.1}

Let Mx (resp M&) be the track of the isotopy used to push VX (resp Vy)

into BY s, We may assume that MX and My are transverse. Then p*}(qu My)

~

separates X into components each of which is C = cl(B" - N(qu My)) BY

42

it

Define J clM ~ N(M vM)I)E M
X X Y X

J 1M - N(M M = M
y= © ( . ( v y)) .

{ here we assume M and My chosen to have the simplest intersection round
+ &
clasps } then 9C contains two copiles J; of JX and two copies J;

of Jy' Label the lifts of € as €1 0O <i<r 0<j<s then

+ T P - . i+1, ] + . 1,1 . .
Jx in ¢*?d is joined to JX in Cc ta3 and JY in ¢*?d is joined

to J in Cl’J+E
y

. Now incl,: HI(Jx)’ Hl(Jy)————+ﬁi(C) are zero, 8o

given a l-cycle o on 8, define 2~chains (by taking a cone from a point

. T

in int{(C) toa ) a ,a ,a ,a € Cz(C) with da = i o etc.
If{al} € H](Vx) define ?X(u) = xa - a-"+

{o} e H](Vy) define ?y(u) = ya - att

fa} e HI(S) define Y(a) = xya + at - xa”+ - ya+m

Then if {ai} is a basis of Hl(vx) and {Bj} is a basis of HI(Vy)
and {Yk} is a basis of ¢HO(ES) then it can be shown that (by a Mayer
Vietoris arguement) the following is a € @p a8 Zq] basis of Hz(ﬁ;m)

{‘Px(oci) ,wy(Bj) ,wyk)‘r

Define wx = eZﬂla/r y = e2%1b/s , and given {y} EHE(S)
s : -3 =V LR
Y = wo.w.xy ¥
a,b(Y) ugo VEO Uy x 3 EY)
(6.4) Leénma

If 0<a<r, 0<b<s, then {Wa’b(ui),Wa’b(Bj),Wa’b(Yk)}

is a basis of Ea’b(i).
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Proof: Let <O denote the C[G] submodule of Hz(ﬁ) generated by 0,

We claim that:

a,b w 5 = N
E"n <]X(c¢) <‘i’a,b(o¢) for {a} e H](VX)
To see this, we have dim& Ea’bn <§;(a)> =1, and 1s generated by
E % ~u -y _u v
w.xy ¥ @)
w=0 v=0 X ¥ *
now Y(&) = y¥ (o) - ¥ (@) (recall i o=i_ o, i o=i ¢ )
and so:
T S -u-v o ouv
y = av. -
a,b(ot) ; ; W Xy (y¥ (o) ‘Px(u))
u=0 v=0
H P oeu v uv
= (-~ 1), w . Lxy ¥ (o
y D u—-z=o VZO wly T

thus provided (wym 1) # 0 the claim is established. A similar result

holds for x and v interchanged. This establishes the lemma.

. . . .. a,b
We can now describe the intersection pairing on E 7 (X).

o
liJ.a,b(‘m) qa,b(B)
T § . _s i o Y S i -9
= ) y m:{.wj.xlyJ‘P(a) Y ¥ wI;.m .xkyg"l’(B)
i=0 j=0 * 7 k=0 g=0 * 7
3 S (ki) (=) ;. i j k&
= ) Low T U "y @) x vy v (@)}
i,k=0 j,0=0

since x and v are isometries of » , it suffices to calculate
i] : .
Y{o) %"y ¥ (B) o<i<r, o< j<s

{refer to Fig (3.5), of proof of (4.2) chap ! for the following}
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?(m)-xiij(ﬂ)

= 0 [i] > 1 or |3} > 1
Le(i__a,B) i=3=1
~Lk{i__a,B) - Lk(iwﬁx,B) i=1,3=20
Lk(i~+q,8) i=1.,3i=~-1
“Lk(i+ma,8) - Lk(i__0,8) i=0,3=1
Lk(i_0,B) + Lk(i_0,B) + Lk(i, 0,8) + Lk(i, 0,B) i=j3=0
-Lk (i, 0,B) - Lk(i_ a,B) i=0,j=-1
Tk(i, a,B) i==1,3=1
“Lk(i, _0,B) - Lk(i, a,B) i=~1,3=0
Lk(i,,a,B) i=j= -

Let A,B be the linking matrices for VXL:Vy with respect to the basis

{mi} of HI(S)’ then

llUa,b(ai).wa,b(uj)
=wwA . ~w(A,. +B,.) +wwB., —w (B!, + A,.) + (A.. + Al. + B..
Xy 1] X 1] 1] xy ij y i} ij ij ij 1]

-5 (Al. +B,.) +@wB!, —& (B'., +Al.) + 0 wAl.
y 1] ij Xy ij x 1] ij Xy ij

it

AW =-w-w+1) +A . (0w -w=-w+ 1)
1] X ¥ X y L} Xy X y

B, (-w+ww+ 1 —@) +B (-] 0w~ w)
1_} x X y y LI X X Y v

set A = (wxm I)(wy - 1), giving:

n

M.. + AA!. = @ AB.. - _AB!
i} vl y

ij j ij
=2 (MDA, + A, - (A/A)B.. - w B!,
¢ (A/X) 13 i3 Y( ) i3 y 13)
now A/A = w w_  so this gives:
Xy
= AMwwA,, + A, ~w3B.. -~ wBl.)
Xy 1] 1] X 1] ¥ 13

from which it is seen that o(- Ea’b) = G(wx’wy’L) proving (6.1).

1
4 Bij)
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{(6.5) Lemma

Suppose that HI(X;Zﬁ) =0 for r > 1, where X is a finite complex

and g is a prime. Then if p:i *¥ is an infinite cyclic covering, and
Rd———~+x is the corresponding q-fold cyclic covering then:

v _ N
Hr(Xq,Zq) 0 for =« 1

Proof: by chl (3.4) there is an exact sequence with Zé coefficients

£, -1
P ~ * ~ &
[ [ — [EER——
——+Hr+1(X) HI(X) Hr(X) Hr(X)—~+

It

Hr(X) 0 for r > 1, hence t,~1 is injective for r=! and an automorphism

for r > 1. The corresponding exact sequence for the infinte cyclic cover

?{—-—+"3'{q is

tg-i P

~ ~ ~ o ~
—'—-'}Hr+} (Xq)‘——"“*Hr (X} 'ur(X) ur(xq)“—>

now (tg -1 o= (r, - DY over Zq (use here that g is prime), and this
is injective for r = 1, and an automorphism for r > 1. Hence Hr(ﬁq) = ()

for r > 1, completing the proof.

(6.6) Corollary

If S and S are disjoint smooth 2-spheres in S* ,and ibr
X Y 1,9

is the Zqﬁ Zﬁ cover of $" branched over Sx and Sy’ then

~br
H (X : = 0
2( q.q D

Proof: Let N be a regular neighbourhood in S" of qu Sy’ X = cl(8%~ W)
then by duality in 8% , B, (5;2) = 27 and Hr(X;ZPq) =0 for r > 1.
The Zq@ Zé cover X. q (unbranched) factors into two q-fold eyeclic covers

qs

and applying the lemma to each of these covers in turn gives

Hr(X ;Zq) = 0 for r > }. By Universal coefficients, this implies

q;Q) =0 forr > 1, Let p:izri~———+su be the branched cover,
-]

b

Hz(Xq

*
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“br - -1 . . b -
X = X N oined alon X to o N
4.4 g, qV P (W) 3 g 4,9 p (W)

The Mayer Vietoris sequence for this (coefficients §) is

i, ®]
= -1 =br - %ok
—H (X @ H N)) —H, (X B (09X B o
2( q,q) 2(13 (N)) 9 q’q) I q’q)
x -1
—H (X ) &H (p (N))
1q,q 1P )
Now me(N) = copies of S?xB% , hence Hz(ap—](N))——EEEE—+H2(p"](N)).
. e e e . . o br
we will now show that i, 1s injective, and so H, (X ., (X
% ) ’ 2%, 2%, ¢

is surjective, which proves the lemma. From the exact sequence of

X and 98X (coefficients §)):
Gy 2q
i, .
—H (X
) ] Ci:q)

s (X ,8X )

. (9X
276,97 T q,9q i( q,q

2

the first term is dual to Hz(iq q) and so is zero, thus i, is injective

y

¥

as asserted, completing the proof.

Proof of (6.2). Form the double of ibr - {(which is a cover of B* branched
,

over two discs) and apply the preceeding result, Mayer Vietoris now

implies that H (ibr 1Q) = 0 as required.
279,49
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87 Applications

The results of §3 and §5 are used in some simple applications
mostly arising from the allocation of a definite sign to the Alexander
polynomial and stated by Conway in (C). In this section the Alexander
polynomial of a link will be used in the classical sense, so that it

vanishes for PR(L) > 0.

7.1 Definition

Suppose a knot k is formed from two oriented tangles a and b, then
the knot k' obtained by rotating the tangle b about a vertical axis
through an angle of T and then connecting to a is called a mutation

of k. The string orientations must match up before and after.

k = a 2 N
o b mutation k'

3

( the L in the tangle shows the orientation )

7.2 Propositicn

Tf a knot k' is a mutant of a knot k, then k and k' have S-—equivalent

Seifert matrices (in the sense of Trotter).

Remark: this answers a question of Conway. Thus the classical invariants

derived from the Seifert matrix cannot distinguish mutants.

Proof: by (3.5) there exists a Seifert surface for k which meets the
2-sphere round the b tangle in two arcs 1-2 and 3~4. Thus the surface

outside the tangles may be assumed to be:

Surface S for k' Surface §8' for k'
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A surface 8' for k' is obtained by cutting along the dotted lime the
surface §, rotating and glueing. Choose a basis of HE(S) such that only

one representative,®,, traverses the dotted line as shown. Let © )

1? 22" T
represent a basis of Hl(surface inside tangle b) and &r+l""’un
represent a basis of H, (surface inside tangle a). Then{a, }. . is

i i" 15150
a basis of HI(S)' Let {R.} be the naturally corresponding basis

i 1£i<n

for H](S'). If A and B are the Seifert matrices for k and k' respectively

then
.. = =B, . if i=1 and 1 <j <~
1] 1] i
or =1 and 1 <1<
A.. = B.. otherwise.
1] 13
perform the change of basis for H}(S')
B. +{—8. 1<ifx
i i =
Bi otherwise

then with respect to the new basis, the Seifert matrices are identical,

completing the proof.

7.3 Normalising the Alexander polynomial

Tf a knot has Seifert surface V, and a Seifert matrix A, then
det(tA-A') is independant of the surface chosen to within multiplication
by +t", This may be proved by using the known relation (algebraic
S~equivalence, ie matrix enlargements of a certian type) between different
Seifert matrices for a knot. Another view is as follows.

The potential function for k is V(t) = det(tAmtu]A‘), where
A is a Seifert matrix for k, then V(t) = v(tmi) and so V(t) is certainly
defined up to multiplicationm by #1. It is known that U = signature(A+A")

is an invariant of k, hence

R ED)

V(1) = 1 mod 2, where n is the number of rows of A, and so

I3

i®9(i) >0 IFF 0 -0 = 0 mod 4, hence V(i) >0 IFF OE 0 mod &
thus V has a well defined sign. {In fact V(i) = 1 , because A-A' has

determinant +! }
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Turning now to a link L (of two components), define the potential

function of L to be

V(ix,y) = ("1)(k+g+2)/z(xmf/x)mg(y-lfy)“hdet(xyA +{(1/xy)A" ~(x/y)B - (y/x)B")
where ¢ = Lk(LX,Ly) g = denus(vx)
k = no. of clasps h = denus(vy}

Then V{x,y) =ixrysﬁ(x2,y2), and V(x,y) = V(xdl,yni), and so V is

certainly defined up to sign. It was proved in 85 that ¢ is an invariant

1 ;= z? s w2 = z% such that

V(z],zz) # 0 (ie A(mi,wz) # 0 ). Let n be the number of rows of A, then:

of L{for suitable w 2o }. Choese W

= * P - r - “_ )
o s:tgnature(z]z2 + zizz)(z]zzA + zizzA ZIZZB ZIZZB )
and:

(—E)“"”L"'z)/z(zlz2 s 22Nz, 28z, Ez)hV(z},zz) > 0

IFF ¢ -~ n = 0 mod 4.

2 mod 2 so this becomes

g and h are even, and n = gth+(k-1) and k

(z.z, + 232"

+1
129 129 V(z],zz) >0 IFF o = §+1 mod 4

thus V has a well defined sign, in fact we show that V(i,1) = L.
Re-phrasing the proof of (3.6 ii) in terms of V instead of A shows that
det(xM + (1/x)M'") depends only on & , not on the particular link, and

)(k+ﬁ+2)/2

evaluating at x=1 for a simple link gives (-] (see &4.7)

7.4 Proposition
(1c+5&+2)/2(

ACx,y) = (1) _x«l)“g(yma)"hdet(,xm + A" - xB ~ yB")

is defined up to multiplication by +xrys, and A(1,1) = R.

In the rest of this section, A(x,y) will be defined by (7.4), and £
will mean equal up to multiplication by x'y°. As Conway points out, there

are non-trivial consequences of a sign for the Alexander polynomial.
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7.5 Definition

The link (or knot) obtained from a link L by reversing the orientation
3 . . . . . . .
of 5 (ie by changing crossovers and reversing string orientations) is
y Z1TLE g g

denoted by -L. If L = -L, then L is called amphicheiral. The link

obtained from L by reversing the orientation of the x string is denoted

L .
-X

7.6 Theorem

AL(x,y) 2 wA“L(x,y) and o(m],wz,L) = WU(w},m2,~L)

so if L is amphiceiral, AL =0 and g =0 for all Wy sty

(The polynomial part is stated in (L) )

Proof: 1f A,B are the linking matrices for L, -A',-B' are linking
matrices for -L, giving the signature result. (xyA + A" -xB8 - yB')
for L becomes ~(xyA + A' -xB -yB')' for ~L. The number of rows of A

is gth+k~1 = 2~1 mod 2, and since g h k are the same for L and -L

but £ is multiplied by ~1, AL = (—E)gui(mi)QAmL , completing the proof.

7.7 Theorenm

AL(x,y) = AL-y(x,I/y) and G(wl ,wz,L) = cr(w} ,ﬁz,Luy).(*])iu}

Proof: 1If A,B are linking matrices for L, then B,A are the corresponding

ones for L"y' The result follows easily.

7.8 Proposition

If VX,Vy are any Seifert surfaces for the components LX,Ly

of L, and 1 is the geometric number of intersections of Ly with Vx then

1 i:’f(w;’wzsL)l - Q{genus(VX) + genus(Vy)} + 1 = B(L) for all W Wy



Proof: Position Ly so that it intersects VX 1 times, and isotope the
Seifert surface Vy for Ly to be transverse to Lx keeping BVY fixed.
The resulting 2-complex VXLJVy has at most 1 clasps,.the remaining
intersections are circles or of ribbon type. Push in along arcs to
convert all circles to ribbon type, of which there are now N say. Then
push in along arcs to convert each ribbon into two clasps. In the proof
of cobordism invariance of ¢ in §5, it was shown how to pick a basis of
HI(S) with one loop going round each ribbon intersection, call these
{ai}i Then the linking forms vanish on the space spanned by these

SEl

and so:
|T(w],w2,L)| < size of A + nullity(xyA + A" - xB - vB') ~ 2N
= 2N +1 ~ 1 + 2genus(Vx) + denus(vy) + R(L) ~ 2N

giving the result.

7.9 Identities between Alexander polynomials

These results have been proved by Conway (although the proofs have
not been published). His method of proof, I understand, is to use the
Wirtinger presentation of the fundamental group, and associate each
generator (arising from an arc) with the crossing to which it points
(using the string orientation). This association is preserved through
the free differential calculus, so that the presentation matrix M for
m™/T' behaves like a quadratic form under change of basis. This approach
has been used by Kearton (Kea) to produce the signature invariants of
Milnor (Mil). The proofs which follow arise by using related Seifert
surfaces for related knots and links. In what follows Seifert surfaces
will be used which are specified on the outside of various tangles, this

is justified by use of (3.5)
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First Identity

////c/’x -y “?Ei/ﬂ
;{i;;?ﬁx k k
0

Suppose ko ( a knot or link) becomes k+ and k_ by replacement using the
tangles shown. Surfaces are chosen which are identical outside the tangle

depicted, and inside are as shown. If A is a Seifert matrix for kO then

n n~l -y —

__.u_..
|
vt A vwh A
: |

are Seifert matrices for k+ and k_, from which it follows (on expanding
determinants):

(x—-(V/x)V = V -V
kO k+ k_

(Kauffman has also given thig proof in (K) ).

Second Tdentity

<é22£2;x :\?3;
SN

7740 - -

Suppose that LGO yields 1L and L__ on replacing the tangle shown

++

as depicted. A C~complex for L may be chosen so that one for L.,

00

and L__  arises by adding one extra clasp as shown. LOO has linking

matrices A,B say, with linking number % and k clasps, then

L++ has:
0 —uz— 0 —uy,— k+1 eclasps, linking number £-1
1 A ] B
Y1 v
L__ has
k+1 clasps, linking number %+1
el
v, A v! B
1 IZ



113

on expanding determinants, and remembering the sign for V , gives:

v + ¥ = {xy ~ (1/xy))V
L, L__ Log

which is the second identity.

7.10 An identity for Polychrome Signature

The following observation is due to Conway. We saw earlier that

2 2 - - Q4]
— < >
Olwj,wy) = &1 mod 4 TFF  (ww, + )" V(w,w,) >0
and in any case ¢ = +1 mod 2, and
2 .2 _ 2 2
IT(w],mz,LOO) T(w},wz,L++)| <1
these two facts enable UL to be computed from a knowledge of UL
+4 00

and the potential functions involved. Polychrome signatures may thus
be calculated in practise by pulling apart clasps one at a time, until
a split link is obtained, for which the signature splits into ordinary
knot signatures ie

G(wl,mz,L) e O(NE’LX) + U(wz,Ly) for a split link.
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88 TFurther Remarks and Problems

2}

3)

4)

5)

6)

It would be nice to have a proof of (2.3) and (2.4) on the polynomial

and signature of a slice link based on Levine's proof of the null
cobordance of a Seifert matrix for a slice knot. T do not know

if it is the case that for any C~complex of a slice link there

is an (n+1) dimensional subspace of Hi(S) {(dimension = 2a+]) on

which ¢ and R vanish. If true this would seem to be stronger than
present results,

It seems that if w? =1 = wg then U(mi,wz,L) is closely related
to o(w,L') where L' is obtained from L by replacing L, and Ly by

cable knots (or links) around them; and wPe = 1.

Are the Torres conditions sufficient when both components are

unknotted ?, yes if ;ﬁ[ <2 where % is linking number.

For links of more than two components, Seifert surfaces may be
chosen so that all intersectioms are clasps (no triple points)
so for n compenents there are 2" possible ways of pushing a

cycle off the C-complex. This makes the approach less manapeable.

By using the Isotopy lemma, it is possible te characterise

'S—equivalence' of matrix pairs algebraically.

C-complexes and their signatures can be handled in the generality

of chapter 1.
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