A User’s Guide to the Mapping Class Group:

Once Punctured Surfaces

LEE MOSHER

September, 1994

An automatic structure for the mapping class group of a surface of finite type was de-
scribed in [M]. This document is intended as a practical guide to computations using a
variant of this automatic structure, in the special case of a once-punctured, oriented surface
S. As such, we shall try to be more descriptive and less theoretical than in [M], leaving the
reader to consult [M] for detailed proofs. Our primary goal is that the reader may learn,
as quickly as possible, how to compute in the mapping class group of a once-punctured
surface: we describe a quadratic time algorithm for the word problem, henceforth called
the algorithm, which can be implemented with pencil and paper. A Mathematica version
of the algorithm is (or will soon be) available; check the software library at the Mathe-
matical Sciences Research Institute (e-mail address: msri.org), or the Geometry Center
(geom.umn.edu).

As with any computational method, it is necessary to learn some of the theory in order
to learn the algorithm. We spend some time developing various combinatorial tools, with
enough justification supplied to aid understanding and lessen the steepness of the learning
curve. There is a trade-off involved here: time invested understanding theory may be time
wasted gaining proficiency; I do not know if I have found the right balance. Also, despite
my stated purpose, in a few places I have put in perhaps too much detail about items
of combinatorica that interest me, but which are not really to the point, so the reader is
forewarned.

The algorithm described herein can be adapted to arbitrary punctured surfaces, with
or without boundary and orientation. The data structures needed do not lend themselves
quite so nicely to pencil and paper calculation, so we do not pursue the issue here; details
can be found in [M]. And while an automatic structure for the mapping class group of
a closed surface is described in [M], in this case the results are not suited for practical
calculation, because of the non-constructive nature of the proof; hopefully a practical
automatic structure will emerge from a deeper understanding of closed surfaces.

For the rest of the paper, let S be an oriented, once-punctured surface which is not the
2-sphere. We regard S as a closed surface with a distinguished point p, the puncture. The
mapping class group is MCG(S) = Homeo(S)/ Homeog(.S), where Homeo(.S) is the group
of all orientation preserving homeomorphisms of S fixing p, and Homeog(.9) is the normal
subgroup of all homeomorphisms isotopic to the identity leaving p stationary throughout
the isotopy.

The author was partially supported by NSF grant # DMS-9204331
Research at MSRI partially supported by NSF grant # DMS-9022140

Typeset by ApS-TEX



2 LEE MOSHER

We shall describe an explicit 2-complex X = X(S5) whose fundamental group is the
mapping class group MCG(S). The set of homotopy classes of edge paths in any complex
form a groupoid under the operation of concatenation, called the edge path groupoid of that
complex; a more descriptive but longer name would be “edge path homotopy groupoid”,
but we stick with the shorter name. In the particular case of X (5), the edge path groupoid
will be called the mapping class groupoid, denoted MCGD(S).

Recall that a combing (with uniqueness) for the edge path groupoid of X consists of
a base vertex in X, and a choice of a unique representative called the normal form for
each homotopy class of edge paths in X starting at the base vertex. When these normal
forms satisfy certain computational properties we say that the set of normal forms is an
automatic structure. First, there is a finite automaton which checks whether a given path
is a normal form, so the set of normal forms is a regular language. Second, for each edge
in X there is a finite automaton called a multiplier automaton, which checks whether
two normal forms differ by that edge, up to homotopy. The second condition can be
replaced by the equivalent fellow traveller property: if two normal forms v, w differ up to
homotopy by a generator, then (letting v(¢) be the prefix of length ¢ of v, or v(t) = v is
t is greater than the length of v) we have that v(¢)~1w(¢) is homotopic to a path whose
length is bounded, by a constant independent of v, w,t. Another important notion is that
of an asynchronous automatic structure, where the fellow traveller property is replaced
by the weaker asynchronous fellow traveller property: if two normal forms v, w differ up
to homotopy by a generator, then there are sequences 0 = s < s7 < .-+ < sy and
0=ty <t <--- <ty with bounded differences s;11 — s;, ti41 —t;, such that v(s;) " tw(t;)
is homotopic to a path of bounded length. By contrast, an ordinary automatic structure is
sometimes called a synchronous automatic structure. The reader is referred to [ECHLPT]
for formal definitions.

In [M], asynchronous and synchronous automatic structures on the groupoid MCGD(S5)
are described. Associated to the edge path groupoid on a complex is the group of homotopy
classes of closed edge paths, the fundamental group. By a general result of [ECHLPT],
given an automatic structure on a groupoid one may obtain an automatic structure on
the associated group. By another general result, given an automatic structure on a group
(or groupoid) one may obtain a quadratic time algorithm for computing normal forms.
Combining these results, we obtain a quadratic time algorithm for the word problem in
MCGD(S) or MCG(S).

Instead of appealing to these general results, we directly construct a quadratic time
algorithm for computing normal forms in the groupoid MCGD, and by restricting the
input to closed edge paths one obtains an algorithm for the group MCG. Our normal forms
will come from the asynchronous automatic structured described in [M]. The algorithm we
describe for computing these normal forms will run in quadratic time; this will be proved
by comparing the asynchronous automatic structure to another, synchronous automatic
structure. Our proof will use a special property of the normal forms for MCGD, the “suffix
uniqueness property”, discussed in section IV. Because of the suffix uniqueness property,
our quadratic time algorithm is more efficient than the one described in [ECHLPT].

The automatic structure we describe is very large. As a function of the genus g, the
number of states in the word acceptor grows at least as fast as g9; see figure 19. As such,
our algorithm does not require explicitly computing and storing the word acceptor and
multiplier automata. In a sense, our algorithm constructs local portions of the automata
as they are needed for calculation.



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 3

Thus, despite the size of the automatic structures the computations are quite efficient.
With practice, the algorithm can be implemented quite efficiently with pencil and paper
by drawing lots of funny pictures called “chord diagrams”; we give profuse illustrations of
such calculations. The author is able to compute the normal forms for a once-punctured
surface of genus 2, starting from an edge path of length n, in at most 25172 minutes, given
a sufficient quantity of paper, pencils, and coffee. In actual practice, the computations are
much faster (although errors, and the correction thereof using an eraser, may slow down
computation time).

Another issue arises from the fact that the complex X is so large, so one would not want
to write down a presentation for MCG using X. This raises the question of what form the
algorithm uses for input. The direct form of input is an edge path in X. However, there
are well-known “small” presentations for MCG(S) described in the literature whose size
grows linearly with the genus. The Mathematica implementation of the algorithm allows
the user to input a word in standard generators. This word is converted into an edge path
in X in linear time, and then the algorithm works on the edge path. We shall not describe
this conversion process here.

I. THE COMPLEX X

In this section we construct a finite complex X whose fundamental group is MCG.
First we construct a contractible complex Y on which MCG acts with finite cell stabilizers
and finitely many orbits; the complex Y was first described by Harer [Har]. We are only
interested in the 2-skeleton Y(2). Then we resolve finite cell stabilizers of Y(?) to obtain a

2-complex X on which MCG acts freely with finitely many cell orbits. The quotient of X
by MCG yields X.

Ideal arc systems and the complex Y.
Let I be the closed unit interval. An ideal arc is the image h of a map

(I,01,int I) — (S,p,S —p)

which is injective in int I, such that & does not bound a disc; this map is called a charac-
teristic map of h. The image of int [ is called the interior of h, denoted int(h). Two ideal
arcs h,h' are isotopic if there exists ¢ € Homeog(.S) such that ¢(h) = h'. In general, for
any set of objects on which Homeo(S) acts, two objects are #sotopic if they differ by an
element of Homeog(5).

Given two ideal arcs hy, hs, it is easy to decide whether they are isotopic. In the first
case where the interior are disjoint, then hy, hy are isotopic if and only if they bound a
disc. In the second case where the interiors intersect, perturb hy, ho so that the interiors
have a finite number of transverse intersection points, and then successively isotop them
to remove any complementary components which are discs, descreasing the number of
intersection points. If this process stops with a positive number of intersection points then
h1,hy are not isotopic; otherwise we have reduced to the first case.

An udeal arc system ~ is a collection of non-isotopic ideal arcs with disjoint interiors,
such that each component of S — ~ is a disc. Figure 1 gives several examples of ideal
arc systems. Figure 1(a) is the standard method for cutting a surface of genus 2 into an
octagon. By adding arcs to this octagon we obtain figure 1(b), which cuts the surface into



4 LEE MOSHER

FIGURE 1. Some ideal arc systems

six triangles. Figure 1(c) shows another such “ideal triangulation”. Note that (b) and (¢)
are not isotopic, because (b) has a separating ideal arc while (c¢) has none.

The group Homeo(S) acts on the set of ideal arc systems. Given an ideal arc system =
and ¢ € Homeog(S), if ¢(v) =~ then ¢ fixes each arc of v setwise (because distinct arcs
are pairwise non-isotopic), and preserves the orientation (because 71(.5) has no torsion).
Thus, ¢ preserves the ends of arcs in . We refer to this fact as Rigidity of Ends.

A complementary component C' of an ideal arc system ~ is called a polygon of ~. There
is a characteristic map D — S for C', where D is a convex Euclidean polygon, so that each
vertex of D goes to p, each side of D gives a characteristic map of some ideal arc of ~,
and int(D) goes to C. The number of sides of C is defined to be the number of sides of
D. Polygons are referred to as triangles, quadrilaterals, pentagons etc. depending on the
number of sides; in general an n-sided polygon is called an n-gon. Note that there are no
1-gons or 2-gons.

Examples: The polygons of ~ are all triangles if and only if |y| = 69 — 3. At the other
extreme, v has a single polygon if and only if |y| = 2¢, in which case the polygon is a
4g-gon. These facts are easily verified using the Euler characteristic.

Given a polygon, there is a certain well-defined number of ideal arcs that can be added
to triangulate the polygon: for a quadrilateral, add 1 arc; for a pentagon add 2 arcs; for an
n-gon add n — 3 arcs (while there are many different ways to add these arcs, the number
of arcs added is always n — 3; the number of distinct ways to add the arcs, up to isotopy,
is given by the Catalan number ﬁ(i’?) where m = n — 2 [STT]). It follows that for an
ideal arc system ~, by adding over all polygons one obtains a certain well-defined number
of ideal arcs that can be added to triangulate ~; this number is called the defect of ~. Since
a triangulation always has 6g — 3 arcs, the defect is equal to 6g — 3 — |v|.

If one ideal arc system +' is obtained by adding arcs to another ideal arc system ~, then
we say that v’ is a refinement of 4. For example, every ~ can be refined to become an
ideal triangulation.

Now we construct Y. In general Y has one k-cell for each isotopy class of ideal arc
systems of defect k. For example, the O-cells of YV are in 1-1 correspondence with isotopy



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 5

classes of ideal triangulations. To describe the attaching maps of cells, suppose the (k—1)-
skeleton Y (*=1) has been constructed, and let v be an ideal arc system of defect k. The
isotopy classes of all possible refinements of v form a subcomplex of Y*~1 Now check
that this subcomplex is a topological (k — 1)-sphere, and attach a k-cell to this sphere
corresponding to v. We will explicitly study the attaching maps for 1 and 2-cells below.

The complex Y was first described in [Har|, where Y is proved to be contractible using
Strebel differentials. See [Hat] for an elementary proof of contracitbility.

Since the number of arcs in an ideal arc system is always at least 2¢g, it follows that the
defect is always at most 6g — 3 — 29 = 4g — 3, so the dimension of Y is 49 — 3. Harer
proves [Har] that this is the minimum possible, by showing that the virtual cohomological

dimension of MCG is 4g — 3.

0-cells of Y: ideal triangulations.

The 0-cells of Y are in 1-1 correspondence with isotopy classes of ideal triangulations of
S. Figures 1(b,c) show two non-isotopic ideal triangulations. In general there are infinitely
many isotopy classes of ideal triangulations, because MCG 1is infinite, and for each ideal
triangulation 6 there are only finitely many ® € MCG such that ®[6] = [0] (this follows
from Rigidity of Ends). In fact, we will see that the stabilizer of [4] is a finite cyclic
subgroup of MCG whose order can take only finitely many values depending on the genus.

This begs the question: how many orbits of ideal triangulations are there under MCG?
This question is particularly easy to answer on a once-punctured torus. We shall take this
up later.

1-cells of Y: elementary moves.

The 1-cells of YV are in 1-1 correspondence with isotopy classes of ideal arc systems
~ of defect 1. The polygons of ~ consist of one quadrilateral () and the rest triangles.
An example is given in figure 2, with () shaded. A quadrilateral can be triangulated by
inserting an ideal arc, and there are two ways to do this insertion, as shown schematically
in figure 3 (a schematic picture like this can be thought of as the domain of a characteristic
map for the quadrilateral, so all vertices will be identified to the puncture, and there may
be certain pairwise side identifications as well). This gives two ideal triangulations, forming
two 0-cells of Y, to which a 1-cell is attached corresponding to v (see figure 3). Using the
~ given in figure 2, the two ideal triangulations refining v are shown in figures 1(b,c),
producing a particular 1-cell in Y.

X N\

A

FIGURE 2. An ideal arc system of defect 1. The quadrilateral, part of
which wraps around back, is shaded.

Here is a way to think about an oriented 1-cell of Y. Start with an ideal triangulation &
and an arc h of §. Notice that h cannot lie on two sides of a single triangle of ¢, for when



6 LEE MOSHER

O———0

FIGURE 3. The two triangulations of a quadrilateral, giving two 0-cells
at the ends of a 1-cell in Y.

two sides of a triangle are identified then there must be two or more punctures; see figure
4. Therefore, when h is removed from § the two adjacent triangles form a quadrilateral @
in a defect 1 ideal arc system ~. The arc i forms one diagonal of (); let h' be the opposite
diagonal. Inserting h into v yields a new ideal triangulation §’. We shall indicate this
operation by saying that § — ¢’ is an elementary move, and that the elementary move
is performed on h, with opposite diagonal h'. To emphasize the role of h we also write
5 §', and in pictures such as figure 5 we thicken h. Also, we say that the quadrilateral
Q) is the support of the elementary move § — ¢’. To summarize, there is a natural 1-1
correspondence between: oriented 1-cells of Y, isotopy classes of pairs (4, k), and pairs of
the form ([6],[¢']) where § — ¢’ is an elementary move; the corresponding 1-cell in Y is

denoted [§ — ¢'].

FIGURE 4. In an ideal triangulation 4 on an oriented surface, if a
triangle has two sides identified then that surface must have at least two
punctures.

Note that elementary moves are symmetric: if § — ¢’ is an elementary move then so is
4" — 8. Note also that for each ideal triangulation §, there are 6g — 3 outgoing elementary
moves, one performed on each ideal arc of §; by reversing the directions we also see that
there are 6g — 3 incoming elementary moves.

Returning to our only example so far, from figures 1(b,c) we obtain the elementary move
§ %5 5, shown in figure 5(a), with intervening defect 1 ideal arc system ~;. Figure 5(b)
shows another elementary move ¢ LN dy starting from the same 9, with intervening arc
system ~5. Note that v, has a quadrilateral with one pair of opposite sides identified. Also,
note that § and - differ by a mapping class, namely the Dehn twist around the core curve
of the handle on the right side of the surface. Therefore, the 0-cells of ¥ corresponding to
[0] and [d;] are in the same orbit under the action of MCG.

2-cells of Y: commutator and pentagon relators.



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 7

FIGURE 5. Some elementary moves

The 2-cells of Y are in 1-1 correspondence with ideal arc systems ~ of defect 2. This
can happen in two ways: the polygons of v can consist of two quadrilaterals and the rest
triangles; or one pentagon and the rest triangles.

If v has two quadrilaterals, each quadrilateral can be independently triangulated in one
of two ways, yielding four distinct triangulations which refine 4. The four corresponding
O-cells in Y are connected up by four 1-cells as shown in figure 6, forming a closed edge
path in Y of length four. Attached to this edge path is a 2-cell of Y corresponding to ~.
If § is one of the four triangulations, and if hy, he are the two diagonals inserted into ~ to
form ¢4, then the two adjacent sides of the 2-cell are hgiven by elementary moves § BLN On-
There are also elementary moves 4y P20 5 and §; —= &', as shown in figure 6. For this
reason, we can say that the elementary moves performed on hy and on hy commute with
each other, and thus we say that this attached 2-cell is a commutator relator.

& O — D O
b —Pé

FIGURE 6. A commutator relator

Now suppose v has one pentagon. This pentagon can be triangulated in one of five
ways as shown in figure 7, forming a closed edge path in Y of length five, to which a 2-cell
is attached. This 2-cell is called a pentagon relator. Note that if § is one of the five ideal



8 LEE MOSHER

triangulations, if hy, hs are the arcs inserted into v to form ¢, and if § —> o1 and 0 —> 09
are the two sides of the relator incident to d, then the next two sides are d; —> 41 and
o oy 04, and there is a fifth side §; — 45.

d AN

5, 01

FIGURE 7. A pentagon relator

One computation which arises over and over is the following. Given an 1deal triangu-
lation ¢ and ideal arcs hy # hy € ¢, consider the two elementary moves ¢ —> 61 and
FREN d2. Do these two elementary moves lie on a unique relator? If so, is it a commutator
relator or a pentagon relator?

These questions can be answered by examining the adjacencies of ends of hy, hy. Each
ideal arc has two ends. Given an end of h; and an end of hs, these ends are adjacent in
d is they are incident to some corner of some polygon of 4. It cannot happen that hy has
two ends adjacent to a single end of ks, for then we obtain a folded triangle as in figure
4. Thus, hy and hs can have zero, one, or two pairs of adjacent ends, and if two then the
pairs are disjoint.

If iy, he have no pairs of adjacent ends, then removal of hy, ho yields an ideal arc system
with two quadrilaterals, and we obtain a commutator relator. If hy, hy have one pair of
adjacent ends, their removal produces an ideal arc system with a pentagon, and we get a
pentagon relator. If Ay, hy have two pairs of adjacent ends, then removal of hy, hy creates
a collection of ideal arcs with an annulus complementary component (see figure 8 for
an example). This violates the definition of ideal arc system, so there is no 2-cell in Y
corresponding to this collection of ideal arcs.

The action of MCG on Y.

In general, whenever there is a set of objects on which Homeo(S) acts, then MCG
acts on the isotopy classes. Now Homeo(S) acts in the obvious way on the set of ideal
arc systems, so MCG acts on their isotopy classes. Also, the action of MCG preserves the
relation of refinement, hence MCG(S) acts on the complex Y by cellular homeomorphisms.

We need some notation for this action. In general, given an ideal arc system ~ the
isotopy class of v is denoted [y]. Thus, given ® € MCG represented by ¢ € Homeo(S),

then ®[y] = [¢(7)].



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 9

hl - - h2 -

FiGURE 8. If each end of hy is adjacent to an end of ho, removal of hy
and hs creates an annulus, and no relator is obtained.

Combinatorial equivalence and chord diagrams.

The main goal of this section is to present a calculus which allows us to understand
cell stabilizers and cell orbits of the action of MCG on Y. This calculus will enable us to
understand why cell stabilizers are finite, why the number of cell orbits is finite, and it
will guide us in “resolving” finite order cell stabilizers, leading up to the definition of the
complex X.

Two ideal arc systems ~,~’ are said to be combinatorially equivalent, or to have the
same combinatorial type, if they are in the same orbit under the action of Homeo(S5), i.e.
o(v) = 4 for some ¢ € Homeo(S). Equivalently, their isotopy classes [y],[v'] are in the
same orbit under the action of MCG. The combinatorial equivalence class of + is denoted
{~}. We now associate to each ~ a finitistic object called its combinatorial diagram, which
will encode the combinatorial type of . Then we show how to represent the combinatorial
diagram pictorially with the chord diagram.

Let v be an ideal arc system. Let £(v) be the set of ends of ideal arcs of 4. If h is an
ideal arc, then an end of & is just an end, in the usual sense, of the topological space h — p,
so each ideal arc has two ends. An end of h can be represented by a half-arc of h, which
is the closure of a component of h — {p, x} for some = € int(h). Now we put some extra
structure on £().

Recall that a circular ordering on a finite set is just a permutation with one cycle. There
is a natural way to use the orientation on S to put a circular ordering on £(). Choose a
disc D containing p so that D N~ is a union of radii of D. These radii form half-arcs of ~,
and they are in 1-1 correspondence with £(+). The orientation on S determines a boundary
orientation on D, which determines in turn the circular ordering on £(v). Denote this
circular ordering by £(v) Sucg E(7), the successor map. The inverse permutation is called
the predecessor map, denoted E(~) Pred E(v). Next recall that a transposition on a finite
set 1s a permutation where every cycle has length 2. The correspondence between opposite
ends of the same arc determines a transposition on £(v) denoted E(7) orp E(7), the
opposite end map. The combinatorial diagram of ~ is defined to be the ordered triple
(£(+), Opp, Suce).

Given ordered triples (€;,0i,0;), ¢ = 1,2, where &, is a finite set and o;, g; are permuta-
tions of &;, we say these triples are isomorphic if there is a bijection £ — &3 such that
ooy =030¢ and ¢ 001 = 030 ¢.

The fact we need is that two ideal arc systems are combinatorially equivalent if and only
if their combinatorial diagrams are isomorphic. For if 71, v, are combinatorially equivalent
then the homeomorphism between them induces an isomorphism of their combinatorial di-



10 LEE MOSHER

agrams. Conversely, if their combinatorial diagrams are isomorphic then one can construct
the desired homeomorphism up through the skeleta by induction: since the opposite end
maps correspond the homeomorphism can be extended over the 1-skeleta, and since the
successor maps correspond it can be extended over the polygons preserving orientation.

We can immediately see why there are finitely many combinatorial equivalence classes
of ideal arc systems on S: the size of £(v) is bounded by 12¢g —6, and for a set £ of bounded
size there are only finitely many equivalence classes of triples (£, 0,0). Also, using Rigidity
of Ends we can see why cell stabilizers are finite, because the subgroup of MCG stabilizing
[v] is isomorphic to the set of automorphisms of the combinatorial diagram of ~, which
is cyclic of order bounded by 12¢g — 6, because an automorphism must commute with the
successor map. The optimal order bound is somewhat smaller than 12¢g — 6, because an
automorphism also commutes with the opposite end map; on a surface of genus 2 the
optimal order bound is 3.

The combinatorial diagram of ~ can be represented pictorially by the chord diagram.
Draw a circle on a piece of paper, oriented counterclockwise, and draw 12g — 6 points
on the circle corresponding to £(), so that the counterclockwise ordering corresponds to
Succ. Now draw chords connecting up the points in pairs, using the transposition Opp;
in diagrams we use chords which are hyperbolic geodesics in the Poincaré disc model, i.e.
arcs of circles orthogonal to the boundary. Figure 9 shows three examples, two ideal trian-
gulations and a defect 1 ideal arc system, taken from the first elementary move pictured
in figure 5. In order for the reader to get used to the chord diagrams, in these figures we
have indexed the arc ends with integers, but we will not use any indexing in future chord
diagrams.

In the second elementary move § — d2 of figure 5, one can check that § and 4, have
the same chord diagram, verifying the earlier statement that they are combinatorially
equivalent.

It is easy to distinguish combinatorial types by viewing the chord diagram. If the
points representing ends are spaced regularly around the circle, and if the chords are
drawn with hyperbolic geodesics, then the chord diagram itself is a complete invariant of
the combinatorial type, regarding two chord diagrams as being isomorphic if they differ
by a Euclidean similarity. It is also easy to recognize the automorphism group of a chord
diagram, by just looking for circular symmetries of the diagram. These tasks are easily
accomplished even with slightly sloppy hand drawings of chord diagrams.

Since the combinatorial diagram or the chord diagram completely determines the com-
binatorial type, one can derive from either of them any combinatorial properties of ideal
arc systems. In general, for any set of objects on which Homeo(S) acts, a combinatorial
property defined on those objects is a property invariant under the action of Homeo(S). For
example, the polygon type of an ideal arc system ~ is a combinatorial property: this is the
sequence (is,i4,...) where i, is the number of n-gons in 4. To determine the polytgon type
from the combinatorial diagram (€(7), Opp, Succ), define a permutation £(~) Next E() as
Next = Succo Opp). Then the n-cycles of Next are in 1—1 correspondence with the n-gons
of ~, for each n > 3. For example, in the defect 1 chord diagram of figure 10, the per-
mutation Next has cycle structure {(1,5,9,13),(2,7,4),(3,8,6),(10,15,12),(11,16,14)},
showing one 4-gon and four 3-gons. Tracing out the boundary of the 4-gon starting with
end 1, and then successively applying Opp and Suce, we obtain:

1 PR 4 Sucg 5 DR g Sucg g IR 19 Bucg 13 OPR 46 3ucs g



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 11

(@)

(b)

()

FIGURE 10. A 4-gon in a defect 1 chord diagram

as shown in figure 10(a).

An important concept which plays a central role later on is that of a prong of an ideal
arc system ~. Informally, a prong of ~ is a corner of a polygon of ~v. Formally, a prong
is an ordered pair (e,€’) in £(7) such that ¢’ = Succ(e). In a chord diagram, a prong is



12 LEE MOSHER

represented as the circular arc between adjacent ends; we shall call this an end gap. Thus,
when we represent a polygon in a chord diagram as in figure 10, what is actually drawn are
the chords representing the sides of the polygon and the end gaps representing the prongs
of the polygon. If we index each prong (e, e’) using the index of the second end ¢’ in the
pair, then each cycle of Next lists the prong indices of the corresponding polygon. Figure
10(b) shows prong indices, making clear the correspondence between the 4-gon and the
cycle (1,5,9,13).

Here is an exercise: prove that given a set £ of size 12g—6, if Succ is a cyclic permutation
and Opp is a transposition, then the triple (€, Opp, Succ) is isomorphic to the combinatorial
type of an ideal triangulation on a surface of genus ¢ if and only if the permutation
Next = Succo Opp has a cycle structure consisting solely of 3-cycles. This idea is used
in appendix 2 of [P] to obtain an asymptotic formula, given in the next section, for the
number of combinatorial types of ideal triangulations on a surface of genus g.

Chord diagrams of ideal triangulations.

In this section we shall make several observations about chord diagrams of ideal tri-
angulations. These observations serve two purposes: they help in learning to recognize
features of chord diagrams; and they can be used to enumerate the chord diagrams on a
surface of genus 2. This enumeration was first obtained by [Jorgensen, Martineen]. We
shall also report on enumerations for higher genus, and an asymptotic formula.

Suppose § is an ideal triangulation. Let T be a triangle of §, and let (e, ez2,e3) be
the corresponding 3-cycle of Next. Every distinct ordered triple in £(d) is either positive
or negative. We say that (eq, ez, e3) is positive if there is a circular enumeration £(d) =
{fi,..., fx}, l.e. an enumeration with Succ(fi) = fr+1 for k € Z/K, so that if e; = f,
then & < kg < kj.

Figure 11 shows how the two types of triangles appear in a chord diagram: a positive
3-cycle of Next yields an untwisted triangle, and a negative 3-cycle yields a twisted triangle.
Note that T' is untwisted if and only if its regular neighborhood is homeomorphic to a three
holed sphere, and T is twisted if and only if the regular neighborhood is homeomorphic to
a one holed torus.

FiGURE 11. The untwisted triangle corresponds to the positive or
“increasing” 3-cycle (4,10, 16), while the twisted triangle corresponds to
the negative or “decreasing” 3-cycle (16,10,4)

Fact. If S is a once-punctured surface of genus g, then in any ideal triangulation & the
number of twisted triangles i1s 2g and the number of untwisted triangles 1s 2g — 2.



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 13

Proof #1. Construct a single “base” example of an ideal triangulation with 2¢ twisted
and 2g — 2 untwisted triangles, observe that the count of twisted and untwisted triangles
is unchanged when doing an elementary move, and then apply connectivity of the complx

Y. o

This proof has the disadvantage that it is not intrinsic to 4: one must find a path of
elementary moves from d to the base example. Here is an intrinsic proof:

Proof #2. Let d be a disc neighborhood of p chosen so that §Nd is a union of radii of d. Let
S=5— int(d). We shall use ¢ to put a piecewise Euclidean metric on S. This metric will
have concentrated negative curvature corresponding to the twisted triangles. By applying
the Gauss-Bonnet theorem we obtain a count of the number of twisted triangles. To set
up the metric requires some alterations on 9.

Let &1 be obtained from 4 by replacing each ideal arc h of § with two copies of h bounding
a bigon, still intersecting d in radii. Now consider a triangle T of . If T is twisted, then
alter T' near each prong by taking two half-arcs incident to that prong extending slightly
beyond d, and pinching their ends together, as shown in figure Al; make sure that the
half-arcs are left unchanged in d, still intersecting d in radii. The triangle T is divided
into four regions: a pinched triangle, and three pinched prongs. Making this alteration for
each twisted triangle of 41, the resulting collection of ideal arcs is denoted d3. Now let 5
be obtained by intersecting 8, with S. This has the effect of truncating each untwisted
triangle, each bigon, and each pinched prong; pinched triangles are left intact.

pinch prongs

>
>

FiGURE A1l. Pinch the prongs of each twisted triangle

Counsider the chord diagram D of §. Let D be obtained from D by doubling each chord,
replacing it with two parallel chords, then straightening all chords to become Euclidean
segments instead of hyperbolic lines (see figure A2).

double straighten

> |
7z 7

D D

FIGURE A2. To obtain D, double each chord of D then straighten



14 LEE MOSHER

We regard D as lying in the Euclidean plane E?, and we construct a map f: S — E2
whose picture is given by lA), as follows. The boundary of S goes to the boundary circle
of D. Each truncated arc of § goes to the corresponding chord of D. Each component of
S — § is either a truncated untwisted triangle, truncated bigon, truncated pinched prong,
or pinched triangle; for each of these regions the boundary is already mapped to a simple
closed curve in E?, and there is an extension of f to an embedding of the region, as shown
in figure A3.

Notice that for each pinch point x, the map f creates a “pleat” at x; see figure A4.
Another way to say this is that each twisted triangle is “twisted” by the map f, at each
pinch point of the triangle.

N N

FIGURE A3. Embedding a truncated untwisted triangle, truncated
bigon, truncated pinched prong, and pinched triangle into D

By pulling back the Euclidean metric from E? to lA), we obtain a piecewise Euclidean
metric on S. The boundary has total geodesic curvature 2x. Consider a pinch point x.
We must compute the Euclidean cone angle 6,. The pinched triangle incident to = has a
certain interior angle «,, and as figure A4 shows we have 6, = 27 + 2«a,. Therefore at «
there is an angle defect of 27 — 6, = —2¢,.

dD=f(dS)

A
()" % Ny

FIGURE A4. At a pinch point z, if the pinched triangle has an interior
angle a,, then the cone angle at x is 27 4 2a,.

A pinched triangle with vertices z,y, z therefore contributes an angle defect of —2(ar, +
ay + o). But this equals —4r, since a,,a,,a. are the interior angles of a Euclidean
triangle. Therefore, if K is the number of twisted triangles, then by the Gauss-Bonnet
theorem we have

2r —4n K = 277)((3) = 27(1 — 2¢)

so K = 2g. o



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 15

The twisted and untwisted triangles in an ideal triangulation arrange themselves into
several larger structures, whose visualization helps in recognizing a chord diagram.

If two untwisted triangles share a side, then they cannot share any other side, and their
union forms an “untwisted 4-gon”; the chord diagrams of ideal triangulations in figures
9(a,c) each have an untwisted 4-gon. Continuing inductively, if an untwisted n-gon shares a
side with an untwisted triangle, then they cannot share another side, and their union forms
an untwisted n + 1-gon. Maximal untwisted polygons are called untwisted islands. Figure
12(a) shows a genus 2 chord diagram whose two untwisted islands are both triangles. As
an exercise, check that this chord diagram is obtained from figure 9(c) by an elementary
move on the arc with ends labelled 1 and 4 (hint: see figure 24(a) ). Figure 12(b) shows a
genus 3 chord diagram with one untwisted island, a hexagon.

() %(m@

FiGURE 12. Untwisted polygons

On the other hand, two twisted triangles can share either one, two, or all three sides.
If they share all three sides, then they close up to form a torus, with the chord diagram
shown in figure 13. Thus, on a higher genus surface a pair of twisted triangles can share at
most two sides. If two twisted triangles share two sides, then they form a 1-handle piece.
The triangulations in figures 9(a) and (c¢) each have two 1-handle pieces, figure 12(a) has
one, and figure 12(b) has three.

—\

FIGURE 13. Two twisted triangles sharing three sides form a torus.

If two twisted triangles share only one side, then they form a twisted 4-gon, see, for
example, figure 14(a) which shows the same triangulation as 12(a). Continuing inductively,
if n > 4 and a twisted n-gon shares a side with a twisted triangle, then they cannot share
another side, and their union forms a twisted (n + 1)-gon. A maximal twisted polygon



16 LEE MOSHER

is called a twisted island. Figure 14(b) shows a genus 2 chord diagram with a twisted
hexagon; this triangulation comes from figure 9(c) by doing two elementary moves one
after another, first on the arc with ends 1,4 and then on the arc with ends 10, 13.

LIS D &P

FIGURE 14. Twisted polygons

Thus, any ideal triangulation can be decomposed into untwisted islands, twisted islands,
and 1-handle pieces. We may therefore enumerate chord diagrams by the “island” method,
as follows. First choose a partition of the 2g — 2 untwisted triangles into islands. Then
choose how the prongs of these islands interleave in the circular ordering. This choice de-
termines the twisted islands and the number of 1-handle pieces. Now choose triangulations
of the twisted and untwisted islands, using the enumeration by Catalan numbers.

Now we use the island method to enumerate chord diagrams for low genus surfaces. A
“connectivity” proof is given later, using connectivity of Y.

Suppose first that S has genus 1. Then there are no untwisted triangles and two twisted
triangles 77, T5. The sides of T} and T must be glued in 1-1 correspondence, and the prongs
must interleave on the chord diagram. Thus, the chord diagram is forced to be the one
shown in figure 13. This shows that all ideal triangulations of a once-punctured torus are
combinatorially equivalent, and the automorphism group of each one is cyclic of order 6.

Now suppose S has genus 2. An ideal triangulation has two untwisted and four twisted
triangles. The untwisted triangles can form either a 4-gon island or two triangle islands.

Suppose first that there is a 4-gon island, which contains a diagonal arc separating it
into two triangles. The four sides of this island must bound two 1-handle pieces, which
can arrange themselves in one of three ways as shown in figure 15. The 1-handle pieces
may be parallel to the diagonal arc as in T; they may cross the diagonal arc but not cross
each other as in T5; or they may cross the diagonal arc and each other as in T3. The
orders of the automorphism groups are also shown in figure 15. Note that the unoriented
automorphism groups are dihedral groups of twice the size.

T,: order 2 T: order 2 T: order 2

FIGURE 15. Genus 2 chord diagrams with two 1-handle pieces



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 17

Now suppose there are two triangle islands. The prongs of these islands may interleave
in one of two ways, as shown in figure 16.

(@) (b)
FIGURE 16. Untwisted triangle islands in genus 2

In figure 16(a), there must be one 1-handle piece and one twisted 4-gon island. There
are two ways to insert a diagonal in the twisted 4-gon, yielding the two chord diagrams T}
and T5 shown in figure 17; these are the only chord diagrams in genus 2 with one 1-handle
piece. Their automorphism groups have order 1; their unoriented automorphism groups

sl

T, order 1 T: order 1

have order 2.

FIGURE 17. Two genus 2 chord diagrams with one 1-handle piece

In figure 16(b), there is a single twisted island, a hexagon. Up to rotation there are four
ways to triangulate this hexagon, yielding the four chord diagrams in figure 18, the only
chord diagrams in genus 2 with no 1-handle pieces. Both Ty and 77, which are orientation
reversals of each other, have oriented and unoriented automorphism groups cyclic of order
2. The diagram Ty has trivial automorphism group, and the unoriented automorphism
group 1s dihedral of order two. The diagram Ty has automorphism group cyclic of order
3, and unoriented automorphism group dihedral of order 6.

To summarize, figures 15,17 and 18 show the nine combinatorial types of ideal triangu-
lations on a once-punctured surface of genus 2.

The island method used to obtain this enumeration is rather inefficient, although it
is good for learning to recognize chord diagrams. Despite this inefficiency, when I was
young and energetic I used the island method to enumerate the chord diagrams on a
once-punctured surface of genus 3. I then wrote a computer program implementing the
connectivity method (explained later), obtaining 1726 combinatorial types. This did not
accord exactly with the island method, so I went through and found some errors, correcting
the result of the island method, still not obtaining the same answer. After iterating this
process a few time, I obtained a count of 1726 chord diagrams, and quit.



18 LEE MOSHER

5 & 9B K6

Te: order 2 T: order 2 T order 1 T: order 3

FIGURE 18. Four genus 2 chord diagrams with no 1-handle pieces

An asymptotic formula for n,, the number of distinct chord diagrams in genus g, is

(29)! e\
ng ~ —
! 6g-3\yg

where x(g) ~ y(g) means that z(g)/y(g) — 1 = O(1/g).
Figure 19 summarizes what [ know about the numbers of combinatorial types of ideal

triangulations, compared to the above asymptotic formula. The purpose of this table is
to drive home the point that one would not want to enumerate chord diagrams, or any
objects derived from them such as the states of the automatic structure, and store them
all in one place, if it were not absolutely necessary for computation. On the other hand,
methods for generating the objects as needed are very useful; this is how our algorithm for
the word problem works.

given in appendix B of [P]:

FIGURE 19. A table of chord diagrams

Genus ny

6g—3
1 1 3
2 9 63
3 1726 5551
4 ? 1,081,820

Labelling ideal triangulations: the zero skeleton of X.

In this section we introduce the machinery needed to define the zero-skeleton of X and
of X itself. The point is this: we already have an action of MCG on the zero-skeleton of Y,
but that action has some non-trivial point stabilizers. In order to obtain the zero-skeleton
of X we need an action of MCG with trivial point stabilizers. Thus, we must somehow
break the symmetries of an ideal triangulation, by labelling it with extra data.

A labelled ideal triangulation consists formally of an ordered pair (4, ¢e) where § is an
ideal triangulation and e is an arc end of §. The mapping class group acts on isotopy
classes of labelled ideal triangulations, with trivial stabilizers. In later sections, we will
often suppress the labelling ¢, and speak of “a labelled ideal triangulation ¢”. For now, we
stick with the formal notation (4, e).

We now define the zero skeleton of X to be the set of isotopy classes of labelled ideal
triangulations on S. The zero skeleton of X is therefore the set of combinatorial types



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 19

of labelled ideal triangulations. The combinatorial type of a labelled ideal triangulation
(6,€) is described by a labelled chord diagram, obtained from the chord diagram for ¢ by
drawing a solid dot at the chord end corresponding to e. An example is shown in figure
20, where the labelled end is represented by a shaded half-arc.

FIGURE 20. A labelled ideal triangulation and the corresponding la-
belled chord diagram

Now we enumerate the 0-cells of X in low dimensions, using the fact that a chord
diagram, with 12g — 6 ends and automorphism group cyclic of order k, yields (129 — 6)/k
labelled chord diagrams.

If S has genus 1, the unique chord diagram has six chord ends and the automorphism
group permutes them transitively, so there is a unique chord diagram of a labelled ideal
triangulation. Therefore, X has one 0-cell.

If S has genus 2, each chord diagram has 18 chord ends, so using the orders of the
automorphism groups given in figures 15,17,18 the number of labelled chord diagrams is

18 18
3-184+5-—+1-— =105
+ 2+ 3

so there are 105 0-cells in X.

If S has genus 3, since 12g — 6 = 30 then an upper bound on the number of 0-cells
1s 30 - 1726 = 51780, but this number will be strictly smaller after taking automorphism
groups into account. A computer calculation has yielded 50050 0-cells in X.

The construction of X, X, and the mapping class groupoid.

It is now possible to give a purely abstract definition of the mapping class groupoid
MCGD, as was done in [M]. Recall that an abstract groupoid is a category with invertible
morphisms. Let D be the set of isotopy classes of labelled ideal triangulations on S. Then
MCG acts freely on D, and the diagonal action on D x D is also free. The objects of
MCGD are the orbits of the action of MCG on D, i.e. the combinatorial types of labelled
ideal triangulations. The morphisms of MCGD are the orbits of the diagonal action of
MCG on D x D. If §, & are labelled ideal triangulations (suppressing the labellings),
then the orbit of the pair ([d],[0']), denoted {4, '}, has as its initial object {4} and as its
terminal object {§'}. The composition rule is as follows. Given morphisms my = {61,097}
and my = {02, 65} such that the terminal object {d]} of m; equals the initial object {42}
of mg, then §] and é2 are combinatorially equivalent. Therefore there exists ® € MCG
such that ®[d]] = [d2]. Note that ma = {®(d3), ®(65)}, abusing notation. Then my omg is
defined to be {41, ®(d5)}.



20 LEE MOSHER

One easily checks that if D is the 0-skeleton of a simply connected complex X on which
MCG acts freely, then the abstract groupoid constructed above is naturally isomorphic to
the edge path groupoid of the quotient complex X = X/ MCG. We now proceed to the
construction of X.

We have already constructed X(© = D, the set of isotopy classes of labelled ideal
triangulations. Now we construct X, together with a cellular map ¢:X — Y which is
useful in proving simple connectivity of X. The construction is by “abstract nonsense”.
Each k-cell will come equipped with a “boundary certificate”, which is a total ordering of
the cells of all dimensions on its boundary, and the boundary certificate determines the
k-cell. This convention will allow us to define the action of MCG up through the skeleta
of X by induction; we will similarly prove that the action has trivial cell stabilizers.

Any unordered pair of 0-cells in X(© to which an edge is attached will be called a
boundary 0-cycle. Given any boundary 0-cycle, each of the two possible ordering will be
the boundary certificate of some 1-cell. With this convention, to specify the 1-cells of X
we need only specify which vertex pairs are boundary 0-cycles.

Similarly, any edge cycle v in X1 to which a 2-cell is attached will be called a boundary
I-cycle. Given any boundary 1-cycle ~, if you choose a vertex and an orientation, then
you obtain a boundary certificate by starting with that vertex and reading off the cells
encountered by going around in that order. If v has k vertices then there are 2k possible
choices, each of which is the boundary certificate of some 2-cell, and these are the only
2-cells attached to v. Again, with this convention we need only specify what the boundary
1-cycles are, in order to specify the 2-cells of X.

Consider a vertex [§] of Y; we begin by constructing the part of X lying over [§], also
known as ¢~ 1[0]. We already know that the O-cells lying over [§] are the isotopy classes
[0, ¢] of labellings of 4.

Every unordered pair of vertices in ¢~ '[§] will be a boundary 0-cycle. Thus, for every
ordered pair of ends ey, ez of § there is a 1-cell with boundary certificate ([d, e1], [J, e2]). We
denote this 1-cell as [d, €1, e2]. The image of this cell downstairs in X is called a relabelling
generator of X.

Every edge cycle of length 2 or 3 in the 1-skeleton of ¢~1[d] will be a boundary 1-cycle.
To determine a boundary 1-cycle v of length 2, choose a set of two labels {e1,¢s}, so the
edges of v are [0, e1,e3] and [0, e2,¢1]. To determine a boundary 1-cycle v of length 3,
choose a set of three labels {e1, €2, €3}, and choose an ordering for each of the sets {e1, ez},
{e2,e3}, {e3,e1} to obtain the edges of 4. The images downstairs in X of these 2-cells will
be called relabelling relators.

Now consider an elementary move § — ¢, yielding a 1-cell [§ — §'] of Y. We already
know that the 0-skeleton of ¢71[§ — &'] is ¢~ 1[§] U ¢~ ![§']. Each pair of a vertex in ¢~ '[d]
and a vertex in ¢~'[§’] is a boundary 0O-cell. The images downstairs in X of the attached
1-cells will be called elementary move generators.

To determine the 2-cells in ¢~[§ — §'], note that in the 1-skeleton of ¢~ 1[§ — §’], each
edge cycle contains an even number of edges mapping to [6 — ¢'] under ¢; between two
such edges the cycle may wander around for a while in ¢~'[§] or ¢7![6']. The boundary
l-cycles in ¢[§ — §'] are the ones which have exactly two edges mapping to [§ — §],
and which contain at most one edge each in ¢71[§] and ¢~ ![§’]. The images downstairs in
X of the attached 2-cells will be called elementary move relabellings.

This finishes the description of ¢7' (Y1),



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 21

Finally, given a 2-cell ¢ of Y, each edge cycle in X projecting homeomorphically to dc¢
is a boundary 1-cycle, and the attached 2-cell maps homeomorphically to ¢. Depending on
the nature of the 2-cell ¢, the images of these 2-cells in X will be called labelled commutator
relators or labelled pentagon relators.

This completes the description of X.

The action of MCG on X(@ is already defined, and each 0-cell has trivial stabilizer. A
1-cell is determined by its boundary certificate, which is an ordered pair of 0-cells, and
clearly the set of such ordered pairs is invariant under the action of MCG, so the action
of MCG extends over XV with trivial 1-cell stabilizers. Again, a 2-cell is determined
by its boundary certificate, which is a sequence of 0-cells and 1-cells, and the set of such
sequences is invariant under the action of MCG, so the action of MCG extends over 2-cells
with trivial cell stabilizers.

The quotient complex X = X/ MCG is now defined. It is evident that the map ¢: X —
Y has the path lifting property as well as the homotopy lifting property for paths, so X is
simply connected. It follows that 7 (X) &~ MCG. Also, for any cell of ¥ the inverse image
in X is a finite cell complex, and since ¥ has finitely many cell orbits it follows that X is
a finite complex. We can now define the mapping class groupoid MCGD as the edge path
groupoid of X. Given an edge path w in X, the corresponding homotopy class is denoted
w e MCGD.

We now have a finite presentation for MCGD, with the edges of X as generators and the
2-cells of X as relators. There are two types of edges: relabelling generators and elementary
move generators. There are several types of relators: relabelling relators, elementary move
relabellings, and labelled commutator and pentagon relators.

In the next two sections we whittle down the elementary move generators to a smaller
subset called the “labelled elementary move generators”, which together with the rela-
belling generators will still generate MCGD (this is the generating set used in [M]). In
order to understand labelled elementary move generators, we first initiate a study of chord
diagrams of elementary moves.

Chord diagrams of elementary moves.

Consider an elementary move § — ¢’ performed on the ideal arc h of §, with opposite
diagonal A’ in ¢, and with support Q). Let D be the chord diagram of d; by abuse of
notation we use h to stand for the chord representing the ideal arc h, and this chord will
be shaded in the diagrams. Now we show how, using D and h as input, we may compute
the chord diagram D’ of ¢'.

Look at the two triangles adjacent to h. There are several possibilities for these two
triangles: both untwisted; one untwisted and one twisted, also known as miuzed; or both
twisted, with either one, two, or three side pair idenfications. For each of these five cases,
figure 21 shows how the elementary move appears “locally” in a chord diagram, i.e. the
figure shows the support of the elementary move, with missing chord ends indicated by a
twiddle "~”. The five cases can also be enumerated according to the chord diagram of the
quadrilateral ). We now go through the cases one by one.

First we dispose of the case where both triangles are twisted and there are three side pair
identifications. This occurs only on the punctured torus, and is given in figure 21(e). The
quadrilateral ) has two side pair identifications. Any elementary move on the punctured
torus has this chord diagram. Thus, in genus 1 there is only one orbit of edges of Y under

the action of MCG.



22 LEE MOSHER

@@%@@
®®?®©
SDSRS

FiGURE 21. Chord diagrams of the support of an elementary move.
Missing chord ends are indicated with a ~.

With both triangles untwisted, then ) is an untwisted 4-gon, and we have an untwisted-
untwisted elementary move (figure 21(a)). With both triangles twisted and one side pair
identification, then () is a twisted 4-gon, and we have a twisted-twisted elementary move
(figure 21(c)). These two cases are the easiest to visualize. An untwisted-untwisted ex-
ample is shown in figure 22(a); this is the chord diagram of the elementary move from
figure 5(a). A twisted-twisted example is given in figure 22(b). In these chord diagrams
the intervening defect 1 chord diagram is shown; after this section we will not usually
show this. One general feature to note is that when one chord is removed and another
inserted in a chord diagram, the chord endpoints should be repositioned so that they are
evenly spaced; space will have to be contracted near the removed chord ends, and it will
be expanded near the inserted chord ends.

With both triangles twisted and two side pair identifications, the triangles form a 1-
handle piece and h is one of the two interior arcs of the 1-handle piece. The support
quadrilateral () has one side identification (figure 21(d)). An example is given in figure 23,
which is the chord diagram of the elementary move from figure 5(b). Notice that after the
elementary move, a 1-handle piece forms again, and outside the 1-handle piece the chord
diagram is unchanged, so ¢ and ¢’ have the same chord diagram. This means that there is
a mapping class ® € MCG such that &[] = [¢']. This mapping class may always be taken
to be a Dehn twist about the core of the 1-handle, as noted earlier for figure 5(b), and we
call this a Dehn twist elementary move (if the chord diagram has symmetries, as in figure
23, we can also post-multiply the Dehn twist ® by any mapping class which stabilizes [§']).
The phenomenon of Dehn twist elementary moves is the tip of a big iceberg; in section V
we make a general study of sequences of elementary moves representing Dehn twists, and
this is used to obtain an automatic structure and prove quadratic computation time of our
algorithm for the word problem in MCG.

In the mixed case, ) is neither a twisted nor untwisted 4-gon and we say that () is
a mized 4-gon (figure 21(b)). A mized elementary move is usually the most difficult to
visualize. Several examples of mixed elementary moves are shown in figure 24 and 25.



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 23

&
-

FIGURE 22. An untwisted-untwisted and two twisted-twisted elemen-

tary moves
%

FIGURE 23. A Dehn twist elementary move

® @ |
&

=

Figure 24 shows examples where h lies on the boundary of a 1-handle piece, and figure 25
shows examples where h lies on the boundary of a twisted island; the opposite diagonal
may be of one or the other type.

Exercise: Figures 24(c) and 25(b) are interesting because they return to the same chord
diagram, hence ¢ and ¢’ differ by a mapping class. What are these mapping classes? To be
more precise, how do they fit into Thurston’s classification scheme of finite order, reducible,
or pseudo-Anosov?

Exercise: Notice that among figures 22-25, we have managed to produce paths of ele-
mentary moves from Ty to Ty, T3, Ty, T, Ty and Ty. For example, follow the path

T, 229 @) 20) o 240 2209y 2500

Construct enough chord diagrams of elementary moves to obtain the remaining chord
diagrams T5, Ts. Getting T5 is slightly tricky, because there is only one other chord
diagram that T5 may be accessed from by a single elementary move.

Exercise: How long is the shortest path from T} to 177

Having described in some detail how elementary moves are represented with chord

diagrams, we remark that the computer representation of elementary moves using combi-
natorial diagrams is easily implemented. There is a simple algorithm which takes as input



24 LEE MOSHER

(@)

l

o G0 O

(b)

o8 &

(€) ——

FiGURE 24. Mixed elementary moves where i bounds an untwisted
island and a 1-handle piece

(@)

(b)

8¢
& &

FIGURE 25. Mixed elementary moves where h bounds an untwisted
island and a twisted island

the combinatorial diagram (€, Opp, Succ) of 4§, together with the cycle of Opp representing
h, and outputs the combinatorial diagram of 6’ where § LN

Once we know how to generate elementary moves on combinatorial diagrams, there
is a simple algorithm for enumerating combinatorial types of ideal triangulations. The
quotient of Y under the action of MCG can be regarded as a finite, connected 1-complex,
with a 0-cell for every combinatorial type of ideal triangulation, and with a 1-cell for every
combinatorial type of defect 1 arc system (more properly, the quotient complex should be
thought of as an “orbi-complex” in the sense of Haefliger; for instance, if an edge in V
has an orientation reversing stabilizing element then its image in the quotient should be
regarded as a half-edge with a “mirrored endpoint”). It is then easy to write an algorithm
for constructing this 1-complex, say using a breadth first search: construct an initial chord
diagram; initialize a queue with one entry for each chord of the initial chord diagram;



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 25

now process the queue inductively, taking the first entry of the queue and performing the
indicated elementary move; check if the new chord diagram has already been found, and
if not add an entry to the end of the queue for each chord of the new chord diagram.

The result of this algorithm for a surface of genus 2 is shown in figure 26. This is what
we call the “Connectivity Proof” for the enumeration of the nine chord diagrams in genus
2. Each chord is labelled, with chords in a diagram having the same label when there is an
automorphism carrying one chord to the other. Elementary moves are also given labels;
for instance, the elementary move between T, and T3 labelled 1-5 means that chord 1
is removed from T and chord 5 is inserted in T5 (or vice versa). There is also a single
mirrored 1-cell, which is drawn unmirrored as the edge labelled 7-7 going from T5 to itself;
note that this edge corresponds to a defect 1 chord diagram with an order 4 symmetry
group that rotates the quadrilateral by 1/4.

FIGURE 26. The chord diagrams of ideal triangulations and elementary
moves on a once-punctured surface of genus 2. The top part of the
diagram overlaps with the bottom part in triangulations T3 and Tj.

The end map of an elementary move.

For any elementary move ¢ My 8 where ' is the opposite diagonal of h, the ideal
arc systems 6 — h and §' — k' are isotopic, hence by the lemma Rigidity of ends we have
a well-defined bijection £(§ — h) — £(6" — k') called the end map. This map may be

implemented in chord diagrams as follows. Suppose that D is the chord diagram for §, and



26 LEE MOSHER

let the chord corresponding to h also be denoted k. Index the chord ends of D except for
h, starting at an arbitrary end with 1 and increasing in counter-clockwise order, skipping
over the ends of h. Now when the chord & is erased and the opposite chord k'’ is inserted,
resulting in the chord diagram D’, we have an indexing of the chord ends of D except for
h. This indexing gives the end map, a bijection between chord ends of D except for i and
chord ends of D’ except for h'. Examples are shown in figures 27 and 28. The end map
plays an important role in what follows.
o &8 7 o
10 5
11

12 4 S

13 3
14

1506 1 2 15 2

FiGURE 27. Chord ends with the same index correspond under the end
map

Labelling elementary moves. Consider a labelled ideal triangulation (4, €), so that e is
an end of an arc g of §. Consider also an elementary move § — ¢’ performed on an arc h
of 6. We adopt the following convention for determining a labelling ¢’ of §'. If g # h then
set ¢/ = e; whereas if ¢ = h, let €’ be the predecessor of e in £(§). In either case, € lies
on an arc of § which is also an arc of §’, hence the labelled ideal triangulation (¢',¢€’) is
defined. The complex X has a 1-cell with boundary certificate ([§, ¢], [6, ¢/]). The image of
this 1-cell downstairs in X is denoted {4, e} N {d', €'}, and is called a labelled elementary
mouve; in this notation, h should be regarded as a chord in the chord diagram for {4, e}.

In order to understand chord diagrams of labelled elementary moves, suppose that
D — D' is the chord diagram of the labelled elementary move § — 4¢’. Let h be the
removed chord of D, and let i’ be the inserted chord of D’. Suppose that e is the labelled
chord end in D. If e is not an end of h, then the labelled chord end e’ of D’ is just the
image of e under the end map. On the other hand, if € is an end of h, then ¢’ is the image
under the end map of the predecessor of e, obtained by rotating e one notch clockwise.
Examples are given in figure 27.

Relabelling moves.

We have already defined relabelling generators: given an ideal triangulation § and two
distinet arc ends ey, ey of &, there is an edge [d,e1,e2] in X with boundary certificate
[0,€1],[d, e2]. The image of this edge downstairs in X is denoted {4, ey, e} and is called a
relabelling generator; it points from the vertex {4, e} to {4, e2}. Since the chord diagram
D for 6 has 12g — 6 chord ends arrayed in circular order, then we can write e; = Suce’(eq)
for a unique r € Z/12g — 6. Then we say that ey is obtained from ey by rotating r notches,
and we denote the relabelling generator as

{57 61} ROta—tG(r)> {57 62}

Figure 29 gives an example of a relabelling generator.



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 27

0 2 8 o 8 7
11 6 10 6
12 5 11 5
13 4 > 12 4
3 13 3
14 14 2
15— 2 155¢ 1
0 2 8 o 2 8
11 6
12 6 11 5
13 5 >12 4
14 4 13 3
3 14
15— 2 15— 2

FIGURE 28. Some labelled elementary moves

Rotate(10)

©

\ 4

FIGURE 29. A relabelling generator (both notations will be used)

Proposition. The groupoid MCGD s generated by labelled elementary moves and rela-
belling generators. In fact, every groupoid element may be represented by a string of labelled
elementary moves followed by a single relabelling generator.

Proof. A few observations about relators make this obvious. First, by using relabelling
relators, any consecutive sequence of relabelling generators may be replaced by a single
relabelling generator. Second, by using elementary move relabellings, any relabelling gen-
erator followed by an elementary move generator may be replaced by an elementary move
generator, followed by at most one relabelling generator. Third, also by using elemen-
tary move relabellings, any elementary move generator ¢g;, may be replaced by a labelled
elementary move g, followed by a relabelling generator. Given an arbitrary word, con-
glomerate all initial relabelling generators into one and push it past the first elementary
move generator, then replace that by a labelled elementary move if necessary; now repeat
the procedure starting with the next block of relabelling generators. o

II. ASYNCHRONOUS NORMAL FORMS

In this section we describe normal forms for elements of MCGD. The normal forms will
be defined over the alphabet Ag consisting of all labelled elementary moves and relabelling



28 LEE MOSHER

generators. We shall construct a finite automaton My defined over Ag, and the normal
forms will be the language Ly accepted by this automaton. First a quick review of finite
automata over groupoid generators.

The automaton Mg will be a directed graph, whose vertices are called states and whose
directed edges are called arrows. Each arrow will be named with an element of Ag. There
will be a cellular map p: My — X; each state s goes to a vertex ps = D, and each arrow
going out of s is named by a generator going out of D which is identified with the image of
that arrow under p. One state of My is specified as the start state, and it will map to the
base vertex of X. Some subset of states are specified as the accept states. An accept path
is a directed path from the start state to an accept state, and by reading off the names
of edges along that path we obtain a word in Ay, called an accepted word. The language
Lo will be the set of all accepted words. Note that each accepted word represents an edge
path in X starting at the base vertex.

The proof that Ly represents each element uniquely is given in section I1.5 of [M], culmi-
nating in the proposition Normal forms are regular (the language Lo is defined differently
in [M], but from the proof of Normal forms are regular the two definitions clearly give the
same language). Section III describes an algorithm for computing the normal form repre-
senting a given word in the generators Agp; from this description it is straightforward to
show that Ly satisfies the asynchronous fellow traveller property, hence is an asynchronous
automatic structure for MCGD.

Remark 1: The words in £y will each have at most one relabelling generator, and it is
always the last letter. This is different from the convention adopted in the original version
of [M], where the relabelling generator comes first. This change makes no difference in
proving the asynchronous fellow traveller property, but it does simplify the description of
an algorithm for computing normal forms.

Remark 2: From now on, we usually suppress the label in our notation for a labelled
ideal triangulation, writing d instead of the more formal (4, €).

The states of M.

Recall that normal forms for an asynchronous automatic structure on a groupoid must
all start at some chosen base vertex. Once and for all, pick some labelled ideal triangulation
65 as a base vertex of X, and the combinatorial type {0p} will be the base vertex of X.
This choice is quite arbitrary, but for the figures to come we choose the base vertex given
in figure 30. This pattern may be generalized to any genus g: take a chord diagram with
g 1-handle pieces, none crossing any other, and then take the “fan triangulation” of the
resulting untwisted 2¢g-gon, putting the labelled end just clockwise of the base of the fan.

FiGURE 30. Our choice for a base vertex, in genus 1,2.3.4 and 10

A finite deterministic automaton can be thought of as a machine with a fixed, finite



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 29

number of states and a memory of a fixed finite size. Usually the memory is incorporated
into the state set, but thinking of the machine in this way allows us to focus on the question:
what information does the machine need to remember? Answering this question tells us
how to define the states.

The machine M, that we construct will read edge paths in X starting at the base
vertex. To motivate our description of Mg, we start with an informal description of the
information that Mg has to remember as it reads along an edge path. Consider an edge
path in X starting at {0p}:

{0} =5 {6, = - =L {61}
This may be lifted uniquely to an edge path in X starting at dp:
op =6 — -+ =01

As Mg reads the edge path in X, it will keep track of several pieces of information. It keeps
track of the combinatorial type of d;, a finite amount of information. It also remembers
some information about how dp is related to §;. In some cases certain arcs of §; will be
isotopic to arcs of §p, and the automaton will remember these arcs, again a finite amount
of information. After a while, one would expect that there are none of these arcs left. But
the automaton will still keep track of a tiny bit of information: where the end of an arc
of dp is situated with respect to d;, again only a finite amount of information. This is
formalized as follow.

In order to define the states of the automaton, pick once and for all an enumeration of
the arcs of dp, {¢1,... ,9x} where k = k(g) = 12¢g — 6, and pick an orientation of each gy,
so we may speak of the tail end and head end of each gi. (Note: we shall not need to list
and orient the arcs of any other ideal triangulation; this choice is made only for §p.)

Consider an arbitrary ideal triangulation §. As described in the Tightness proposition
of [M], we may pull ép and § tight with respect to one another, so that the following
conditions are satisfied:

(1) If some arc gi of dp is isotopic to an arc of §, then g is the same as some arc of
0. In this case we say that ¢ is combed along gy.

(2) If 6 is uncombed along gi then gy is transverse to §, and for each arc h of §, there
are no bigons of gr and h. A bigon is a segment o C g and 3 C h, neither o nor
£ having p in its interior, such that o U 3 is a simple closed curve bounding a disc.

Furthermore, once ¢ is pulled tight with respect to dp, then § is uniquely determined up
to an isotopy preserving each arc of dp.

Having pulled § tight with respect to dp, we may ask: Along which arcs of dp is ¢
combed? Furthermore, if § is not combed along g, then the tail end of gy must emerge
from some prong of § as shown in figure 31. From which prong of ¢ does Tail(gy) emerge?

The automaton Mg will keep track of the answers to these questions, but only up to
the first uncombed arc in the list {g1,... ,9x}. That is, if g is the first uncombed arc,
then the automaton marks the initial ends of ¢y,... ,gr—1 in J, and it marks the prong of
d from which Tail(gy) emerges. Now we formalize the concept of a “marking” of ¢.

Let § be a labelled ideal triangulation. Let £(J) be the set of ends of 4, and let P(4)
be the set of prongs. A marking of § is an injective map p, whose domain is an initial

segment {1,... ,k} of {1,... ,k = 12¢g — 6}, and whose range is £(5) U P(J). Additional



30 LEE MOSHER

FIGURE 31. Tail(gr) emerges from = = (e, ¢’)

conditions will be imposed on a marking below, but first we motivate these conditions by
considering the marking that dp induces on d.

Every ideal triangulation § will have a base marking, which is induced by dp as follows.
First of all, if § = dp, then the initial end of each ¢ is marked with a k, and no prong is
marked. Next, assuming that § # dp, then some arc of dp will be uncombed with respect
to d; let gr be the first uncombed arc. Then § is combed along ¢; for 1 < i < k and the
initial end of ¢; is marked with an ¢ in §. Furthermore, the prong from which g emerges
will be marked with a k. This defines the base marking of an ideal triangulation.

Note that the base marking of § is not a combinatorial invariant of §. Nonetheless, base
markings enjoy certain combinatorial properties, which we impose as defining conditions
on a general marking. For a general marking i of §, we require:

(1) For each arc h of §, at most one end of h is marked by f.

(2) At most one prong is marked by f.

(3) If there is no marked prong, then every arc of § has a marked end.

(4) If there is a marked prong, it must be the last item marked.

(5) If there is a marked prong, the arc opposite the marked prong must not have a
marked end.

It may be that there is no marked end at all; in some sense this will be the generic case.

To see why property (5) is satisfied by the base marking, note in figure 31 that the arc
opposite 7 = (e, ¢') cannot have a marked end, because otherwise that arc would then
be some g;, and its interior would intersect the interior of g, contradicting the fact that
Ji, gr € dp have disjoint interiors.

A marked ideal triangulation is a pair (0, ) where § is a labelled ideal triangulation,
and g is a marking of §. Note that properties (1-4) are combinatorial properties, hence
Homeo(5) acts on marked ideal triangulations, and we may speak about the combinatorial
type of a marked ideal triangulation. The combinatorial type of (§, 1) is denoted {4, p}.

The combinatorial type of a marked ideal triangulation (4, ) may be represented by a
marked chord diagram. Let D be the chord diagram of 6. If u(2) is a marked end of ¢,
we write the numeral 1 adjacent to the corresponding chord end of D. If u(k) is a marked
prong, we write a star * next to the corresponding end gap of D; it is unnecessary to
actually write the k, because the value of k£ can be recovered as the least natural number
which is not an end marking. Figure 32 gives an example of a marked ideal triangulation



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 31

FIGURE 32. A marked ideal triangulation and its chord diagram

and its chord diagram; the end marked 1 is also the labelled end in this example.

The states of My may now be defined. There will be one state for each combinatorial
type of marked ideal triangulation, all of which are accept states. Furthermore there is
one failure state F, for each vertex v of X. The start state of M is the combinatorial type
of the base marking on dp itself.

We use the following convention for choosing the start state. We have already chosen a
labelled end for ég. Mark that end with £ = 1, and go around the ends in the clockwise
direction; as an end of a new arc is encountered, mark that end with the next value of k.
The end marked k is Tail(gx). Figure 33 shows start states for genus 1, 2, and 3, with
markings chosen by this convention.

FIGURE 33. The start states for genus 1, 2, and 3

Arrows of M.

Before discussing arrows of Mg, we need some observations and notation concerning
states. First observe how the mapping p: My — X is defined on a state s: identifying s
with a marked chord diagram, erasing the marking leaves a labelled chord diagram which
is identified with the image vertex D = ps. As mentioned earlier, for any arrow s —s '
where w € Ap, the image of this arrow under p will be the edge in X identified with w.

The arrows can be denoted in shorthand, using the fact that each element of Ag is either a

relabelling generator or a labelled elementary move generator. If wis a ROta—te(k)> relabelling

- Rotate(k .
generator then the arrow is denoted s Le()> s', and if w is a labelled elementary move

generator performed on a chord h then the arrow is denoted s Py &, In the next several
paragraphs we will describe further shorthand for determining the chord h.

Consider a marked ideal triangulation (4, ). If there is a marked prong, the triangle
having that prong as a corner is called the marked triangle, and the marked prong is



32 LEE MOSHER

indicated with a *. We usually orient the marked triangle so that the marked prong forms
a downward pointing angle, bisected by the —y direction, as in figure 34. The ends to
the Left and Right of the marked prong are denoted e, e® as in figure 34; formally the
marked prong is equal to the ordered pair (e, ef!). The arcs with these ends are denoted
kY h®. The third side of the marked triangle, the “arc opposite the 7, is denoted hOPP.
In a marked chord diagram, we usually place the “x” at the bottom of the diagram, so that
the chord ends e, e® and the chords h%, h®, hOPP are as shown in figure 34, depending
on whether the marked triangle is twisted or untwisted.

AN ik
* hOpp
ht R he bR
a5 &

hOpp

FIGURE 34. Items associated with the marked triangle

Given a marked ideal triangulation (4, ¢t), we define the combinatorial property of con-
sistency:

(1) If there is a marked end, then the end (1) is the labelled end.
(2) If there is no marked end, then the end e’ is the labelled end.

In a marked chord diagram, consistency means that if there is a marked chord end then the
labelling dot is located at the same chord end as the numeral 1; and if there is no marked
chord end then the labelling dot is just to the left of the *. Thus, in a consistent marked
chord diagram the marking determines the labelling; for this reason, we shall often leave
the labelling dot out of our chord diagrams, so any unlabelled but marked chord diagram
is assumed by default to be consistent. As we shall see, as long as an accept word consists
of labelled elementary moves, it stays among the consistent states; as soon as the word has
a relabelling generator it moves to an inconsistent state; and if any further letters occur it
moves to the failure states.

Note that the start state is consistent, by our convention for marking 5.

Now we describe arrows of Mg, first the arrows leading out of failure states. For each
generator o € Ag leading from a vertex v to a vertex w of X, there is an arrow F), 25 F,.
Thus, the set of failure states forms a dead end set: all arrows leading out of this set lead

back into it (from which it follows that the language Lo of accepted words is prefix closed).

Rotate(r)
w and

. .. . . . Rotate(r)
an accept state s lying over v. If s is inconsistent, there is a failure arrow s ——— F,,.
If s is consistent, then rotate the labelling dot r notches counterclockwise, leaving the

marking unsullied, to obtain an inconsistent state s’ lying over w, and define an arrow
Rotate(r)
—

Next we describe relabelling arrows. Consider a relabelling generator v

s'. See figure 35 for an example.
To describe labelled elementary move arrows, (’:lonsider a consistent marked ideal trialllqgu—
lation (4, ), and a labelled elementary move 6 — ¢’. There will be an arrow {6, u} — s,



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 33

3 3

2 2
Rotate(12)
1 1
4 4

* *

FIGURE 35. A relabelling arrow

whose tip s is some state lying over the vertex {¢'}, either the failure state Fysy or the
accept state {8', '} for some marking ' of §’. The rule for specifying s is given in three
cases:

(1) h has a marked end.
(2) h has no marked end but one of el or e

(3) None of the above.

Note that these cases are combinatorial properties of the triple (4, , h).

Case (3) can be dispensed with immediately: the tip of the arrow is the failure state
s = F{(;/}.

In each of cases (1) and (2), we must specify a marking 4 of §’, and the tip of the arrow
will be the state {§', ' }. Despite the fact that case (3) has been dispensed with, in certain
subcases of case (3) we will also specify a marking p'; this will be useful in describing the

R g an end of h.

algorithm for computing normal forms.

The rule for specifying p/ must be combinatorially invariant, that is, the chord diagram
for {8, u}, together with the chord for h, must determine the chord diagram for {d¢', '}.
Also, assuming that p is the base marking of §, then p/ must be the base marking of §’.
We shall keep these considerations in mind in defining the rule for p'.

Case 1: h has a marked end. Suppose that an end of h is marked with j. Assuming
for the moment that u is the base marking of §, we may derive the base marking p’ of ¢’
as follows. Since h has an end marked 7, then 2 = g;. Also, ¢ is combed along the arcs
g1,--- ,9j—1; since h is distinct from these arcs, then ¢’ is also combed along these arcs, so
1" places the marks 1,...,j — 1 on the same arc ends that p placed them. Finally, g; is
the first arc along which ¢’ is uncombed, and figure 36 shows the prong of ¢’ from which
g; emerges, which is therefore the marked prong of ¢'.

These properties of 1/ may be stated as a combinatorial property in the following man-
ner.

(1) The domain of ¢/ is 1 <1 < j.

(2) If 1 <@ <y, then p(i) is an end of §’ as well as of §, and we define p' (1) = (7).

(3) In £(9), let ¢’ = Pred(p(y)) and let ” = Succ(p(j)). Then the prong (e’,¢e”) is an

element of P(4'), and we define p/(5) = (¢/,€”).

We may now define an arrow {4, u} N {&',p'} in Mg. This arrow is called a j-marked
elementary move or a j-marked arrow, and is denoted in shorthand as {8, u} =2 {&', '}

Observe that the marked ideal triangulation (', ') is still consistent. To see why, if
J > 1 then by consistency of (4, 1), the labelled end of ¢ is p(1); since this is also an arc
end of ¢’ then it is the labelled end of ¢’ by definition of a labelled elementary move; but



34 LEE MOSHER

FIGURE 36. An elementary move 4§ Py §" where h = g; has an end
marked j

this end is also p/(1) by definition of ¢/, proving consistency. And if j = 1 then the rule for
a labelled elementary move says that the labelling is moved to ¢, the predecessor of u(1),
which is then the labelled end of ¢’; but this equals e” in ¢’, and since §’ has no marked
ends then consistency is proved.

To implement a j-marked arrow on chord diagrams, suppose s is the marked chord
diagram for {4, u}, and the elementary move is performed on the chord h with an end
marked j. Now erase all end markings greater than j, erase the chord h, place a * in the
gap vacated by the end marked j, then draw in the new chord to obtain the marked chord
diagram s’ for {¢', i'}. Some examples are given in figure 37.

Case 2: h has no marked end, but one of e* or e is an end of h. We define a parity

to be an element of the set {L, R}, and we often use the variable d to represent a parity.
Let * = pu(j) be the marked prong, so * = (e, ef!). Fix d € {L, R} so that e? is an end of
h.

Assuming for the moment that p is the base marking of §, then the base marking ' of
§" may be derived as follows. For 1 <7 < j then ¢ is combed along g; and h # g;, therefore
6" is combed along ¢;, so p' places the marks 1,...,7 — 1 on the same arc ends that u
placed them. Figure 38 shows the two situations where e” and e are ends of h: the prong
* 1s the one from which ¢; emerges in ¢, and when the elementary move is performed then
* coalesces with another prong of § to form a prong of §’, from which g; emerges in ¢’,
hence this prong is p/(j), marked * in ¢’. This determines the marking x', as shown in
figure 38.

The rule for ;' may be stated in a combinatorially invariant way as follows.

(1) The domain of 1’ is equal to the domain of u, namely {1,...,J}.
(2) If 1 << j then u(1) is an end of ¢ as well as of §, and we define p/(7) = u(1).
(3) If e? is an end of h for some parity d € {L,R}, in £(§) let ¢/ = Pred(e?) and
let e’ = Succ(ed). Then the prong (¢',¢”) is an element of P(¢') and we set
p(g) = (e, €e").
We now define an arrow {4, 1} SN {8, 1"} ThlS arrow is called a d-marked elementary
move or just a d-arrow, and is denoted {4, u } BN {0', 11’ }. We also say that this is a parity
arrow, and a j-marked arrow is a non-parity arrow.
Observe again that the marked ideal triangulation (6',4') is consistent. If j > 1 then
by consistency of (4, ;1) the labelled end of § is p4(1); and since this is not an end of h then
this is also the labelled end of §', and it is equal to u'(1), proving consistency. Whereas if



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 35
3
1
4
1
4
3 2
2
3
1
1
2 *
FIGURE 37. Leaving from the same state as the arrow in figure 35, there
are j-marked arrows for each 7 = 1,2,3,4. After doing the elementary
move, putting the % in the gap vacated by j, and erasing end marks

greater than j, then the chord diagram is rotated so that the % appears
at the bottom.

*

‘ Q
o ‘ o ‘
FIGURE 38. An elementary move ¢ "y §" where  has no marked end,
but h has either e’ or ef as an end



36 LEE MOSHER

j =1, then e’ is the labelled end in § by consistency; then if d = R, then e” is still an end
of §' so it is the labelled end of &, but it is also e’ in §’ proving consistency; whereas if
d = L then the label is first moved to the predecessor €’ of e’, which is then the labelled
end of §', but this is also ¢’ in §’, proving consistency.

To implement a parity d elementary move on the chord diagram s for {4, u}, first locate
the chord end e? adjacent to the *, then erase that chord, coalescing * and another gap
of s into a larger gap, leave the marking * in the larger gap, leave all end markings where
they are, then insert the opposite chord to form the chord diagram s’ for {¢’, '}, Some
examples are shown in figure 39.

2
1
1
4
N 2
3 ) / \
2
1
1
1
4 2
FIGURE 39. Some parity arrows. Parity is indicated by which side of
the * the tail of the arrow is closest to. The first example uses, once
again, the same initial state as figure 35; there is only a Right parity

arrow with this initial state, because only A has no marked ends. The
second example has both Left and Right parity arrows.

In each of cases 1 and 2, we have constructed an accept arrow of Mg. Collectively, these
arrows, the parity and non-parity arrows, will be called good elementary moves. Here are
a few random comments about good elementary moves.

Comment 1: Observe that the start state is consistent, and a good elementary move
always leads from a consistent state to a consistent state. Therefore:

Consistency lemma. Every path of good elementary moves in Mo, beginning at the start
state, stays among consistent states. o

This observation is what prompted us to change the normal forms from the early version
of [M], where the relabelling arrow was located at the beginning. When the relabelling
arrow is located at the end, then the consistency lemma makes it easy to keep track of the
labelled end, and there are some simplifications in the algorithm for computing normal
forms.



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 37

Comment 2: In figures, we depict good elementary moves vertically, drawing D above
D’'. Bad elementary moves, defined below in case 3, are depicted as nonvertical arrows.

Comment 3: If D — D' is a good elementary move, then the chord diagram D’ always
has a marked prong *, and the inserted chord in D’ is always the chord opposite the .

Comment 4: As shown by example in figure 39, given a consistent state D of Mg, there
may be both Right and Left arrows leading from D, or just one, or neither, depending
on which of the chords A%, h® have marked ends. For example, the start state never has
parity arrows, since every chord has a marked end.

Case 3: h has no marked end, and neither ¢ nor ef is an end of h. We have already

constructed a failure arrow {4, 1} LN Fisy. Nonetheless, in one subcase of case 3 we shall
specify a marking ' of §’, and we shall say that {4, u} y {6', '} is a bad elementary
move. This will not be an arrow in the automaton My, but it will be a useful relation
among states of My. In another subcase, we shall also see how wnverse good elementary
moves arise. Bad and inverse good elementary moves will be useful in describing the
algorithm for computing normal forms.

Recall the notation hOPP for the arc of § opposite the marked prong *. We consider
two subcases of case 3, distinguished by whether or not A = hOPP. Note that “h = hOPP”
is a combinatorial property of the triple (4, ., h).

Case 8.1: h # hOPP. Assuming p is the base marking of ¢, the base marking p/ for ¢’
is determined as follows. Let % = p(j) be the marked prong of §. Then § is combed along
the arcs g1,... ,¢;-1. Not being in case 1, then h has no marked end, so ¢’ is also combed
along the arcs ¢1,...,¢;-1, and p’ places the marks 1,... ,j — 1 on the same arcs that p
placed them. Not being in case 2, then h # k% A%, and being in case 3.1 then h # hOPP,
hence the prong #, from which ¢; emerges in 4, is still a prong of ¢’ and g; still emerges
from it, so p’ places the mark 7 on *.

This rule may be stated in a combinatorially invariant manner as follows:

(1) The domain of 4 is the same as p, namely {1,... ,j}.

(2) pla) = p'(i) for 1 <v < 3.
It is evident that (6’, ') is consistent. We shall say that {0, u} — {d', '} is a bad elemen-
tary move. We emphasize: this does not define an arrow in Mg, merely a relation among
states iIn M.

The chord diagram for a bad elementary move is easily implemented: starting with the
chord diagram D for {4, u}, the removed chord h has no marked end, no end adjacent to
the %, and is not opposite the *; hence the end markings and the * may all be left in place
as the chord is removed and the opposite chord is inserted, yielding the chord diagram
D’ for {¢§', '} In figures, bad elementary moves are depicted as nonvertical arrows, with
D' usually to the right of D, and with the removed chord of D darkened. An example is
shown in figure 40. In depicting bad elementary moves, there are no special conventions
for specifying the chord on which the move is performed, so we adopt the convention of
darkening that chord.

Case 8.2: h = hOPP. In this case, assuming that u is the base marking of 4, it is
impossible to give a combinatorially invariant description of the base marking u’ of §'.
The reason is that the elementary move §' — 4, in which ACPP is the inserted arc, gives
rise to a good elementary move {§', '} — {4, 1}, and this could be either a parity marked
elementary move of either parity d € {L, R}, or a nonparity elementary move marked by



38 LEE MOSHER

FIGURE 40. A bad elementary move

some value j = 1,... ,k; the combinatorial type {¢’, '} depends on the value of d or j,
and on the placing of additional end markings in {d§', '}. Whatever case applies, we refer
to {, u} — {&', p'} as an inverse good elementary move.

Normal forms. We have finished the construction of Mg, and the language Ly accepted
by My is our language of normal forms. In [M] it is proved that Ly contains a unique
representative for each element of MCGD whose initial vertex is the base vertex of X.
Here is a quick summary of the proof.

Suppose that § is an arbitrary unlabelled ideal triangulation on S. Our task is to define
a path of elementary moves g = oy — - -+ — dg = 4, so that when the ideal triangulation
d; is equipped with its base marking p;, then we obtain an accept edge in the automaton
{dn,un} — -+ = {do,10}. The path is defined in reverse order, as follows. Assume
by induction that dg, ... ,d, have been defined. Recall the Tightness proposition of [M],
which says that 4, and dp may be pulled tight with respect to one another. Let g; be the
first arc of dp along which ¢, is uncombed. Then ¢; must emerge from a certain prong of
dn, as shown in figure 31 (this is the marked prong “+”, using the base marking). Now let
h be the first arc of ¢ crossed by g; (this is the arc hOPP_ using the base marking). Then
dn+1 is obtained by performing the elementary move 4, LN dn+1. The main work of the
proof is to show (1) this sequence eventually stops at dp; and (2) {dn+1, tint1} — {In, fin}
1s an arrow in M.

The structure of the automaton M. Before proceeding with the description of the
algorithm for computing normal forms, we discuss the automaton Mgy and its language
Lo. As mentioned earlier, the language Ly forms an asynchronous automatic structure
for MCGD, and we must understand certain of its properties in order to construct a
synchronous automatic structure.

We have seen that the set of failure states is a dead end set. The accept states are
partitioned into consistent and inconsistent states; each relabelling arrow from a consistent
state goes to an inconsistent state, and each arrow from an inconsistent state goes to a
failure state. All arrows leading between consistent states are labelled elementary move
arrows. This forces each word in Ly to consist of a sequence of zero or more labelled
elementary moves, followed by zero or one relabelling move.

The consistent accept states can be partitioned into subsets called levels, forming a
sequence MEZ Mg, ... M} where k = 12g—6. First there is the base level ME, consisting
of those consistent marked chord diagrams where every chord has a marked end and no
prong is marked. The start state lies in M. Going to deeper levels, each consistent
accept state not in M has a prong marked by some k = 1,...,r, and this state lies
in ME. Recall that our convention in diagrams is to mark the prong with a *, and k is



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 39

characterized as the least integer > 1 which is not an end marking. Thus, the deepest level
M consists of states with no end markings.

If 1 <k < &, and if s is a state in some level above M, then there is a k-arrow leading
from s into the level ME; just do an elementary move on the chord of s with end marked
k. Notice that each elementary move arrow leading out of the start state (or any state in
MPE) leads to an accept state, because in the chord diagram for the start state each chord
has a marked end. Given 1 < k < x and a state D in M{, and given d € {L, R}, if the
chord h? has no marked end then there is a d-elementary move arrow leading from D to
another state in ME. Thus, each arrow either stays in the same level or leads to a lower
level, the lowest level being M.

Note that there are many inaccessible states in My. In particular, every state in M
except the start state is inaccessible. However, note also that our choice of a base vertex
in X and a start state in MJ is somewhat arbitrary: we could choose any state in Mg
as the start state, thereby choosing the image vertex in X as the base vertex. These will
all lead to different asynchronous automatic structures on MCGD.

We may count states in each level of Mg as follows. Let m, be the number of vertices
in X, i.e. the number of labelled chord diagrams. We have seen earlier that ms = 105 and
m3 = 50050. The number of states in M is m,, because there is a unique way to insert
a marked prong in a labelled chord diagram to make a consistent marked chord diagram:
insert the prong just counterclockwise of the labelled end. The number of states in M3 is
mg(k — 2), because the end marking 1 must be on the labelled end, and the marked prong
may be chosen freely among all k prongs except that it may not be one of the two prongs
opposite the marked chord. The number of states in M} is my(rk — 2)(rk — 4), because the
end marking 1 is determined, the end marking 2 may be chosen freely among the ends of
the remaining unmarked chords, and the prong marking may be chosen freely among the
prongs not opposite the two marked chords. In general, the number of states in M} is
mg(k —2)(k —4)...(k—2k+2). By far most of these states are inaccessible, especially in
the base level and the highest levels. On the other hand, it is possible to show that M}
is a strongly connected diagraph, hence all of its states are accepssible. If one wanted to
efficiently construct all the accessible states, it would be best to use a breadth or depth
first search algorithm beginning with the start state.

From the structure of Mg just described, every word in Ly may be factored as follows.
If w is an accepted word, then we may factor w into subwords as w = w* o---ow! or,
where the subword w/, if it is not empty, begins with a j-arrow and is followed by parity
arrows in M7, and the subword r is either empty or is a single relabelling move. We call
this the factorization of w into uncombing blocks; the idea is that as a new uncombing
block is entered, a new ideal arc is being uncombed. Any non-empty uncombing block w’
may be written uniquely as a single j-elementary move, followed by maximal subwords
of constant parity; the non-parity move is absorbed into the following subword of contant
parity, and we obtain the factorization of w’ into parity blocks. This factorization is crucial
to understanding synchronization.

ITI. AN ALGORITHM FOR COMPUTING NORMAL FORMS

To start the algorithm:

Input. A path of labelled elementary moves and relabelling moves, starting at the base



40 LEE MOSHER

vertex Do of X:
w::DO&Dlg---MDN

This path can be described with pencil and paper as a sequence of labelled chord
diagrams, with the initial diagram Dy chosen, say, by the convention given in figure 30.
An example is given in figure 41.

Throughout the description of the algorithm, we use the following notational conven-
tions. Capital letters like D or V, W, U will be used to denote labelled but unmarked chord
diagrams, and the lower case letter s will be used to denote marked chord diagrams, and
on a consistent state we will often omit the labelling. Given a marked chord diagram
denoted with subscripts or primes, such as s{, the corresponding unmarked chord diagram
psg will be denoted V. We will also use lower case letters like w, v for paths of marked or
unmarked chord diagrams.

WA 4p-pp

FIGURE 41. Example input for the algorithm

The algorithm will work by successively computing, for t = 0,... , N, the normal form
v! representing the groupoid element w(¢) where w(t) is the length ¢ prefix of w:

w(t) 3:D0 ﬂ>l)1 H ﬂ>l)t
Once v!™! is computed, then v! will be computed by homotoping the path v!~tw; through
a sequence of relators in X. In section V we shall estimate the number of relators used,
and we will prove that the total number of relators needed to calculate v” is bounded by
(129 — 6)N%; from the results of this section it will be clear that the task of deciding which
relator to apply at any moment takes constant time.
The algorithm is initialized by computing v° and v?!:

Initialization, step 1. Let sq be the start state of Mg. Set v° to be the empty path in
My based at sg.

This step can be implemented by marking the chord ends of the base vertex Dy, say by
the convention chosen in figure 33, which in genus 2 is reproduced in figure 42.

FIGURE 42. The normal form v° is the empty path based at the start
state sg.



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 41

Initialization, step 2. Given the start state so, the generator wy := (pso = Do) — Dy

lifts to an arrow sg —» sy, which is the normal form v'.

To justify this step, note that any arrow so —= sj is an accept arrow when sg is the

R . . . .
start state. If wy; := Dyg otate(r) Dy is a relabelling arrow this follows because sg is

) ) Rotat .
consistent, and we get a relabelling generator sg Le(r)> sg. If wy := Dy i> Dy is a

labelled elementary move, this follows because every chord in sg has a labelled end, so we
get a j-marked arrow sg —— sy where h has an end marked j.

Using Dy — Dy as given in figure 41, we see that this yields a j-marked arrow with
J = 8, as shown in figure 43. In figure 43 and later examples, we represent normal forms as
vertical paths going downward; unmarked paths in X are represented as nonvertical paths
going rightward.

FIGURE 43. vl consists of a single arrow, the j-marked arrow with
J = 8, coming out of the start state

Main loop. For each n = 1,... ,N, let v"7 1 = s — .-+ — s be the normal form
representing w(n — 1). Using the subroutine Do one move, compute the normal form v™
representing w(n).

1

The reason for backwards indexing of states in a normal form, such as v = sy —
-+ — 30, 1s that our algorithm will process normal forms from back to front.
Subroutine: Do one move. Let s — -+ — sg be a normal form, and let V = psg. Let

V = V' be a generator in Ay, and break into cases: for a relabelling generator, use the
subroutine Do a relabelling generator; otherwise use Do an elementary move generator.
The result 1s to compute the normal form representing the same groupoid element as psy —
o (psg = V) = VI,

Subroutine: Do a relabelling generator. Starting with a normal form s — -+ — g
. R . .
and a relabelling generator psg =V M V', break into cases depending on whether

or not 81 — sg 18 a relabelling arrow.



42 LEE MOSHER

. . R .
Case 1. If 51 — s 1s not a relabelling arrow, then the edge V M V' lifts to a
. Rotate(r) . . Rotate(r)
relabelling arrow sg ——— ', and the required normal form is sz — -+ — g ———
!
s,

An example of case 1 is shown in figure 44. We have already computed the normal
form v! for w(1) in figure 43. The next generator from figure 42 is a relabelling move
D Rotate(3)

1

resulting normal form v

D, and the last arrow of v! is not a relabelling arrow, so case 1 applies. The
2 is shown in figure 44.

: : . ) Rotate(3
FIGURE 44. % is obtained from v! by concatenating with a Le()>

relabelling arrow.

Case 2. If sq ROta—te(a)> 50 1s a relabelling arrow, then we can apply a pure relabelling

relator to replace p(sy) ROta—te(a)> p(so) =V ROta—te(r)> V! with p(s1) Rotate(n) V', where

n=r+a (modk). If n # 0 (mod k) then this generator lifts to a relabelling arrow
Rotate(n) . . Rotate(n)

sy —— §', and the required normal form is sy — -+ =5y ———> . fn =0

(mod k) then the required normal form is s — -+ — 7.

An example of case 2 is shown in figure 45. Starting from v?

the next generator Dy ROta—te(?)> Dj3 from figure 42, then the last letter of v? is a relabelling

arrow, so case 2 applies and we get v* as in figure 45.

as in figure 44, and using

A word of explanation about figure 45. In paper and pencil computations, we shall
sometimes redraw a certain state, connecting the two copies of that state via a ~ sign, as
in figure 45. These computations will also explicitly show the relators that are applied,
such as the relator in figure 45 which, despite the fourth side labelled =, is a three sided
relabelling relator. In general, the computations carried out by the subroutine Do one



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 43

FIGURE 45. ©* is obtained from v? by applying a relabelling rela-

. R 3
tor, which replaces the final M arrow, followed by the generator

D, Rotate(7) D37 with a Rotate(10) -
move are represented by such diagrams, whose input is the left hand vertical side of the
diagram followed by the bottom horizontal edge, and whose output is the right hand side.
When I do computations by hand, I usually do as little extra copying as necessary by not
copying the merged portion of the two normal forms, but for clarity’s sake the figures here
will always copy the entire merged portion.

This finishes the subroutine Do one relabelling generator. That was easy!

Subroutine: Do an elementary move generator. Starting with a normal form v :=
s — -+ — 30 and a labelled elementary move generator pso =V — V', do the following
steps to compute the normal form g’ = §hr — -+ = 8 representing the same groupoid
element as ps — -+ — psg =V — V.

Before giving a detailed explanation we give a brief overview, summarized schematically
in figure 46. The normal form will be computed in the backwards direction. If the final

arrow s; — Sg is a relabelling generator we process that by applying an elementary move—

Rotat ;
otate(n) pso = V i> V'’ with an elementary move

ps1 — V' followed by a relabelling move V' — V', Then we analyze the move ps; — V'’
into three cases: good, bad, or inverse good elementary move. In the good and inverse
good cases we quickly complete the computation of v’. To handle the bad case, we compute
markings on V" and V' to produce a bad elementary move s; — s} followed by a relabelling
arrow s; — s{. Then we enter a loop. Typically the loop will take a sequence of good
elementary moves s; — --- — s; followed by a bad one s; — 3;, and, by applying either a

relabelling relator, replacing psq

commutator or pentagon relator, replace it with a bad elementary move s; — s/, followed



44 LEE MOSHER

by a sequence of good ones s{, — -+ — s, the differences 1 — j and i’ — ;' will always
be either 1 or 2 (untill the final relator, when 3 can also occur). This has the effect of
“raising” the bad elementary move s; — 3;, to a higher one s; — s,, closer to the end
si = s’,. Eventually, one final relator will be used to produce not a bad elementary move

but instead an equation s; = s},. A schematic diagram of the computation is given in
figure 46.
Si:@
512;\. S12
5118§8 Sn
510.\. S10
S ;X‘ h Figure 46 Starting from an input normal form v :=
S ‘X‘ g Sg — --+ — 59 and an elementary move generator
o vl a := psg — V', we typically produce an output nor-
878 . ® S7 mal form v’ := s, — --- — s connected to v by
S @ ® St a sequence of relators and bad elementary moves, so
s ; - ; e the words v and v'a represent the same groupoid ele-
o g ments. In these computations, good elementary move
“® - @ ,4 arrows and relabelling arrows will be drawn vertically,
S e ® S3 whereas bad elementary moves, like rungs of a deformed
S, ; K ; S, ladder, will always be nonvertical, possibly with a non-
s, ; N ; g, zero vertical component. The deformation is caused by
v Vo, the different rate at which the endpoints of the rungs
Y0 > @50 are raised on the two sides of the ladder.
Step 1: Process a final relabelling arrow. In this step, suppose that s; Rotate(r) Sp 1s a

relabelling arrow. Apply an elementary move-relabelling relator, to replace the sequence

Rotate(r h . h' Rotate(n
PS1 —()> pso = V. — V' with a sequence ps; — V" #>

Rotate(r)

V. To explain

how this is done, under the relabelling move s, sp there is a 1-1 correspondence
between chords of so and of s;, and also between chord ends. In particular, the chord
h of sg corresponds to a chord A’ of sy, yielding the elementary move ps; — V. To
see how n is computed, let ¢; be the labelled chord end in s;. Enumerate the chord ends
of ps; as n; = Succi(el), so the labelled end of s; is g and the labelled end of sq is 7.
Consider the ends 17,... ,n,, and let a be the number of them which are ends of the chord
h. Enumerate the chord gaps as m; = (17;-1,7;), and among the gaps m1,... 7, let b
the the number into which an end of the opposite diagonal to i will be inserted. Then

n =r —a+ b modulo k. It may happen that n = 0 modulo &, in which case the sequence

R . . . !
ps1 m psg =V i> V' is replaced just with ps; L> V.

Figure 47 gives several examples, showing how different configurations of the ends of
h and its opposite diagonal can give rise to different values of ¢ and b. In figure 48,

3= & LN s1 M sp is followed by the
elementary move (pso = Ds) — Dy. Applying step 1, we obtain an elementary move
ps1 — VY followed by a relabelling arrow V| — (Vj = D).

Having completed step 1, we now rename everything to obtain the following data: an
accepted path sp — ...s1, followed by a labelled elementary move (ps; = V1) y Vi,

we continue our main example, where v



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 45

- F-a
e o 2 o
—> "%

No - N 0
a=1, b=0 a=2, b=1

FIGURE 47. Processing a final relabelling move with an elementary
move-relabelling relator

ls

%
FIGURE 48. Applying step 1 to start the computation of v*. The

normal form v3, read off from the right side of figure 45, is reproduced
here as the left side.

i@

Rotate(r)

followed possibly by a relabelling move V{ Vs

Step 2: Classify the elementary move (ps; = V1) y V{. This move will be classified
as either a good elementary move, an inverse good elementary move, or a bad elementary
move. Locate h in the chord diagram for s;. If h has a end marked j, or one of the ends
el e®, then the move is good. If h is the chord opposite the marked prong, then the move
is inverse good. Otherwise, the move is bad.

Step 3: Process the elementary move (ps; = Vq) LN V{, using whichever of the three
subroutines applies: Do a good elementary move, Do an inverse good elementary move,
or Do a bad elementary move.



46 LEE MOSHER

Subroutine: Do a good elementary move. Consider the state sy and the chord h. If
h has an end marked j, then compute the j-marked arrow sy — si; and if h has no marked
end but e? is an end of h for d € {L, R}, compute the parity d arrow s; — st . If a relabelling

Rotate(m . . Rotate(m
move V{ (m) Vy is appended, compute the relabelling arrow s} A sy. Then
. Rotate(m . .
S — v = §1 — sy, with §) (m) sy appended if necessary, is the normal form

required to finish the subroutine Do one move.

For example, in figure 48 the elementary move ps; — V/ is performed on the chord with
end marked j = 5, so we can compute the marking on V{ by doing a j-marked elementary
move on $1, as shown in figure 49. The marking on Vj is then obtained by computing

Rotate(9) . . .
the arrow on V/, also shown in figure 49. This completes the computation of
4 , 8 ;5 , Rotate(9) ,
5 6
8
4 9
3 513
2
1
5 6 7 2 3 4
8 1
4 9 S
2 5
3 6
2
1 w7
l/s /
¢5
23 4 1 2
1 3
S — Sy
5 4
6
* 7 *
23 4 i1 5
L 3
S —_—> So
5 4
6
* 7 ”

FIGURE 49. Finishing the computation of v*

The subroutine Do an inverse good elementary move is next. Roughly speaking, all
we do is cancel the inverse good elementary move with the last good elementary move.
However, there is one problem: the label might not return to its original position. More
precisely, consider a labelled elementary move § My §" with inserted chord h', and consider



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 47

the labelled elementary move on §’ performed on &’. If the label of § is not on an end of h,
then the i inverse move results in ¢ with the label in the same position, so there is a relator
R LN d; in our earlier terminology this is called an elementary move-relabelling
relator, although there are no relabelling moves in this partlcular relator. On the other
hand, 1f the label of § is on an end of & then the inverse move §' = 6" results in a labelled
ideal trlangulatlon 6" obtained from ¢ by rotating the label one notch clockwise, as shown

R 1
in figure 50. To cancel the effect of this rotation, we must apply a M relabelling
, ;;  Rotate(1)
move, producing an elementary move-relabelling relator 5 Ly 5 — ' —= 4.

This relator can be applied to replace the sequence ¢ g 5” by the sequence

5 Rotate(—1) 5"

v
v

@

FiGURE 50. Cancelling inverse labelled elementary moves, when the
first move is performed on the labelled arc

Applying these ideas to an inverse good elementary move, we obtain:

Subroutine: Do an inverse good elementary move, case 1. If the arrow ss — s
1s a Right arrow or a j-marked arrow with j # 1, so the move is not performed on the
labelled chord, then apply an elementary move-relabelling relator to replace the sequence
p(s2) — p(s1) = Vi — V{ with the constant sequence at p(sz) = VY. Then if there is an

. R . R
appended relabelling move V{ M Vg, append the relabelling arrow sq otate it 4
. . R . . .
obtain the required normal form sig — -+ — s9 M s". Otherwise, if there 1is no
appended relabelling move, then s — --- — s9 15 the required normal form.

Subroutine: Do an inverse good elementary move, case 2. If the arrow ss — s
18 a Left arrow or a 1-marked arrow, so the move s performed on the labelled chord, apply

an elementary move—relabelling relator to replace the sequence p(sz) — p(s1) = Vi — V{

Rotate(—1)

with the relabelling move p(sz) V{. Then if there is an appended relabelling

Rotate(r)

move V Vo with r £ 1 (mod k), apply another relabelling relator, replacing
p(s2) Rotate(Z1), Vi Rotate(r), Vo with p(sz2) Rotate(m) Vo where m = r — 1 (mod k),
Rotate(m)

and we obtain the required normal form sxg — --- — 89 ————— §''; whereas 1f r = 1
(mod k) then the effect of the relabelling relator will be to cancel the two relabelling moves,

resulting in the normal form s — --- — so. If there is no appended relabelling move,

Rotate(—1) . .
then s — -+« — sg —————— s'" 1s the required normal form.

An example of case 2 is shown in figure 51. The example shows the last arrow of a
normal form, a Left arrow, followed by a labelled elementary move. Applying step 2, the



48 LEE MOSHER

elementary move is classified as an inverse good, and then Do an inverse good elementary
move is applied.

apply relator

& > /@

FIGURE 51. Doing an inverse good elementary move

Now we come to the most laborious portion of the algorithm:

Subroutine: Do a bad elementary move. Initialize by computing the state sj: in the
chord diagram sy, since the chord h has no marked end, and is distinct from h*, h%, and
hOPP | then we may compute the bad elementary move sq — sy as described earlier. Now
loop through the subroutine Raising a bad elementary move.

Subroutine: Raising a bad elementary move. Given a normal form sg — «+- — 31,
and a bad elementary move s; — 3; for some 1 <1 < K, apply the case analysis below,
with the following effect. There is a unique relator in X having as two of its sides the
labelled elementary moves Vig1 — V; — Vj’. Moreover, the vertices on this relator may be
marked 1 a unique way so that one of the following 1s true:

(Another bad elementary move) For some (a,b) € {(1,1),(1,2),(2,1)}, there is a
bad elementary move sitq — %, and a path in the automaton s, — -+ — s

(Normal forms merging) For some (a,b) € {(2,2),(1,2),(2,1),(1,3),(3,1)} there

18 a path in the automaton S+, = 3;+b " 3;.

The possible outcomes are illustrated schematically in figure 52.

Before describing the case analysis, it should be clear how the subroutine Do a bad
elementary move will proceed: as long as the bad elementary move is raised to another
bad elementary move using relators of types Ia, I1a, or IIbi in figure 52, we are left with a
shorter and shorter initial segment of the original normal form sx — ... — s1. Once the
normal forms merge using a relator of type IIbii, Ib, Ic, Ilc, or IIbiii, we are done. The
normal forms must eventually merge, because there is no bad elementary move leading out
of the start state sx.

Now we describe the case analysis for Do a bad elementary move. To simplify the
notation, we assume that 1 = 7 = 1. Suppose the move s; — s} is performed on the chord
ho of s1, and suppose that under the move s, — sy the inserted chord is hy. If hg and
hq have no adjacent ends in s; then a commutator relator applies, otherwise a pentagon
relator applies.



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 49

s

_ / [
YA

FIGURE 52. Raising a bad elementary move. The figures are labelled
according to the case analysis below.

Case I: hg and h; have no adjacent ends in s;. The commutator relator in X may

be described as i i i i
Vl ¢] Vll 1 U 2 V2 3 Vl
in one direction, and in the opposite direction as

h h h h
Vl 1 V2 [} U 3 Vll 2 Vl

as shown in figure 53. We do not yet say in which direction these elementary moves are

o
Lo pé

FIGURE 53. A commutator relator

Now compute as follows. Locate hg and hs in the marked chord diagram s;. Decide
whether: (a) hg has neither a marked end nor an end adjacent to the marked prong of sz,
nor is hg opposite the marked prong of s2; (b) ho has a marked end or an end adjacent to
the marked prong of ss; or (¢) hg is opposite the marked prong of ss.

Note: if sy — s1 is a parity arrow then case (a) applies. For the end map induces up
a 1-1 correspondence between marked ends of s and of sy, and since hg is unmarked in
s1 then it is unmarked in s,. Also, all prongs outside the support of a parity elementary



50 LEE MOSHER

move are unmarked in both the source and target of the elementary move, and since hg
is not adjacent to a marked chord then the two triangles adjacent to hg are outside the
support of s; — s1, so the prongs opposite hg are unmarked.

Case Ia: Neither—nor. Compute the bad elementary move sg o, sh, so psy = U. Now
locate hs in s, and compute the arrow s fa, s7. Two examples are given in figure 54,
one with parity arrows and another with non-parity arrows.

In this case as in all later cases, the algorithm computes certain arrows, but to be
formally correct we must justify that these arrows exist; the reader may want to skip these
justifications at ﬁrst

The arrow s LN s} exists because hs has the same relationship with the marking in
sh as in s9, i.e. it either has a marked end or has an end adjacent to the marked prong.
Moreover the arrows sy, — s and s}, — s] are of the same type: both have the same parity,
or both are j-marked for the same j.

@
BB BB
= Y

FIGURE 54. Examples of case la

Case Ib: hg has either a marked end or end adjacent to the marked prong of s;. As
noted above, this happens only if the arrow s; — s1 is j-marked for some j, hence hj has
an end marked j. Compute the arrow s3 = s; — s}, in the automaton, so psh, = U. Now
locate h3 in sh, and compute the arrow s, —» 5. Two examples are given in figure 55,
one where s§ — s} is a parity arrow and one where it is non-parity.

To justify why the arrows s, —» s} exists, the end map sets up a 1-1 correspondence
between ends in sy and in s; which are marked by some ¢ < j. Therefore, since hg is
unmarked in sq, then if hy has a marked end in s; that marking must be > j. and it must
be > j since hjz is marked with j; it follows that after the arrow s} o, sh, then hj is still
marked j in s}. Also, if hg is adjacent to the marked prong of sy that prong must be
marked > 7, so hj is still marked j in s}. Thus, s, —> s} is a j-marked arrow.

Case Ic: hg 1s opposite the marked prong of s3. Again, this happens only if the arrow



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 51

2 %
1
Apply Relator

v

S
Z

I—‘NO.)

Apply Relator

5J/123
{48
4

FIGURE 55. Examples of case Ib

% %
%%@
%
{10

S9 — $1 1s j-marked for some j, hence hz has an end marked j. Since hg is opposite the
marked prong of s, then kg is the inserted chord under the arrow sz — sz, and psz = U.
Now locate hs in sz, and compute the arrow (s3 = s)) fa, s]. Examples are given in
figure 56. Note that occurences of case Ib and Ic are “orientation reversals” of each other;
c.f. figures 55,56.

The arrow (s3 = s)) Ja, 31 exists because hz, being marked by j in s, is also marked
by j in s3. Thus, the arrow s, —> s{ is j-marked.

Case II: hy and h; have adjacent ends in s;. The pentagon relator in X may be
described as

Vs vy s w s ey, My

and in the other direction

as shown in figure 57.
Now compute. Locate hg and hy in the marked chord diagram s;. Decide whether: (a)
ho has no marked end nor end adjacent to the marked prong of s,, nor is hg opposite the



52

LEE MOSHER

Apply Relator

FIGURE 57. A pentagon relator



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 53

marked prong of s3; (b) hg is opposite the marked prong of s3; or (¢) hg has a marked end
or an end adjacent to the marked prong of s,.

Case Ila: Neither—nor. Compute the bad elementary move s, o, s%, whose inserted
chord is hs, so psy = U. Now locate the chord hy in s§ and compute the arrow sy —3 s}, so
psh = W. Finally, locate the chord ks in s}, and compute the arrow sh, —> 5. Examples
are shown in figure 58.

To see why the arrows s} N sh and s fa, s} exist, first note that in figure 57, the
marking on sz must include either a or b in V5: the marking must include one of a—f,
since sy — 51 is an arrow; but ¢ and f are excluded because no mark can be on a prong
adjacent to or opposite hq; also d and ¢ are excluded because then the marking on s; would
include b in V7, v1olat1ng the fact that sq o, s} is a bad elementary move. It follows that
the marking on s} includes a or b in U, showing that s} LN sh is an arrow, of the same
type as sz — s1. Also, it follows that the marking on s} includes a in W, showmg that
there is an arrow s, — s}; this can be a parity or nonparity arrow, depending on whether
h3 has a marked end.

Apply Relator

£—
£~
£—

2 5
1
6
7
R
3 3 1
1 2 4 1 2 4 2 3
5 5 4
6 Apply Relator 6
_—
5 5 \(
1 12 1 12
2 3 3 2 3 3
— % —
4 4 4 4

FIGURE 58. Examples of case ITa



54 LEE MOSHER

Case IIb: hg 1s opposite the marked prong of sy. Then the arrow s3 — so has inserted
chord hg, so ps3 = U, and s3 — s is performed on h3. Locate the chord Ay in s3. Decide
whether: (i) hy has no marked end, no end adjacent to the marked prong of s3, and hy
is not opposite the marked prong of s3; (ii) hy has a marked end or end adjacent to the
marked prong of ss; (iii) hy is opposite the marked prong of ss; one of these must happen.

Case IIbi. Compute the bad elementary move s3 N sh, so psh, = W. Now locate the
chord hj3 in s}, and compute the arrow s, —3 s|. Examples are given in figure 59. Note
that cases of Ila and IIbi are orientation reversals of each other; c.f. figures 58,59.

To see why the arrow s} s, s} exists, note that the marking on s3 must include one of
d,e,j,kin U: since s3 LEN $9 1s an arrow then one of the marks ¢—d, i—k must be included,
but the marks ¢, are forbidden because no prong adjacent to or opposite hy is marked; it
follows that the marking on s, must include one of b, ¢, h,i in W, so s —» s/ is an arrow.

——

£—
£—

l
l

>
. -
&

[
%

FIGURE 59. Examples of case IIbi

Case IIbu: hy hasha marked end or end adjacent to the marked prong of s3. Compute
the arrow ss = sh — sh, so psh = W. Now locate the chord hj in s}, and compute
the arrow s, — s|. Examples are given in figure 60. Note that the orientation reversal



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 55

of an example of case IIbii is another example of case IIbii; it is instructive to study the
orientation reversals of the examples in figure 60.

To see why the arrow sl s, s} exists, note first that the marking on s3 includes one
of ¢—e or 1—k in U, because s3 £> 89 1s an arrow; we can rule out ¢ because either hy has
a marked end and no marked prong can be opposite an arc with a marked end (property
5 in the definition of a marking), or the unique marked prong is adjacent to hy; it follows
that the marking on s} includes one of a—c, h,i in W, so s, —> s is an arrow.

{

et

Apply Relator
_—

(.

N

Apply Relator
_—

& %V%\%
&9 %V%\%

l
l

FIGURE 60. Examples of case IIbii

Case Ilbui: hy 1is opposite the marked prong of s3. Then hy is the chord inserted under
S84 — 83, 80 psy = W. Locate the chord hj in s4, and compute the arrow (s4 = s4) LN sY.
An example is given in figure 61.

To see why the arrow (s4 = s)) fa, s} exists, note that the marking on s3 must include
one of c—¢ or i~k in U, since s3 —> s, is an arrow. However, ¢, ¢, and k may be eliminated
by the requirement that the unique marked prong is opposite hy. Also, 2 may be eliminated,
for if ¢ is included then b and ¢ are not included, so the marking on s, includes ¢« but not
b and e in V;, and by uniqueness of the marked prong a,c,d, and f are also not included,
but this violates the requirement that s £> s1 1s an arrow. Thus, the marking on s



56 LEE MOSHER

includes one of dor jin U. It follows that the marking on s4 includes one of b or h in W,
so (s4 = 8)) LN §} is an arrow.

=N w
§m
~N o
=N w

(&
~N o

% V

3 3 8
2 2 9
1 6 Apply Relator 1

_—

) ;LB
4 23 4 4 .2 4

(&)

FIGURE 61. Example of case IIbiii

Case Ilc: hg has a marked end or end adjacent to the marked prong of s3. Compute
the arrow (sg = s}) Lo, s%, whose inserted chord is h3; note that psy = U. Now locate the
chord h4 in s5, and compute the arrow 33 N sh, so psy = W. Finally, locate the chord
hs in s, and compute the arrow s/ L, s7. An example is given in figure 62. Note that
occurences of cases IIbiii and Ilc are orientation reversals of each other; c.f. figures 61, 62.

To see why the arrows sj KN sh and s L, s} exist, first note that the marking on s,
must include one of a or b in Vl, because hy is inserted under the arrow s3 — s1; however,
b is eliminated since sy Lo, s} is a bad elementary move, so a is included. It follows that
the marking on s, includes one of a, b, or ¢ in V3; let the numerical value of this marking
be n. By hypothesis, the marking on s includes some end of kg or prong adjacent to hg in
V3; let the numerical value of this marking be m. Then m > n, for after the arrow s; — 51
there is no marked end of hg, nor marked prong adjacent to hg, because s; —= s is a
bad elementary move. If a or ¢ is marked with n in s we obtain a contradiction, since the
prong marking is greater than all end markings. Thus, b is marked with n in s3. It follows
that after the arrow (s = 34) Lo, sh, the marking on s includes b in U. It then follows
that there is an arrow sy —> s, and that the marking on s} includes a in W. Finally, it
follows that there is an arrow sh —> s/.

This finishes the subroutine Do a bad elementary move. A few comments:

Comment 1: Strictly speaking, we have gone around a relator in two ways to obtain
markings on ps] = V{/, and we should check that these two markings are identical. It
is obvious that the markings are identical outside of the support of the relator, and by
checking cases one may see that the markings are identical in the support of the relator;
alternatively, use the results of [M].



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 57

56 56 4
78 78 J
3
4 9 4 9 2
1 6
3
23 . Apply Relator 271 .
— ]
24/ 4 4 2 4 4

FIGURE 62. Example of case Ilc

Comment 2: When the arrows on the left side of the relator are all parity arrows, then
the relator must be case Ia, Ila, ITbi, or IIbii. Moreover, the arrows on the right side must
also be parity arrows. Moreover, in cases I, Ila, and IIbi all of the arrows in the relator
have the same parity; in case IIbii, the arrows on the left side have the parities dd’ for some
choice of d # d' € {L, R}, and the arrows on the right side have parities d'd. The diagrams
for each of these cases, figures 54,58.,59.60, each show an example where the arrows are all
parity arrows. This observation can be used to make some computational shortcuts: once
it has been determined that the arrows on the left hand side of the relator are all parity
arrows, and once the top chord diagram on the right hand side of the relator has been
computed, then the parities of the arrows on the right hand side are determined, and from
this information the arrows may be computed.

This completes the description of the algorithm for computing normal forms.

Finally, observe from the description of the algorithm that £y is an asynchronous auto-
matic structure, because the input and output normal forms under any run of the subrou-
tine Do one move are asynchronous fellow travellers.

Examples of doing a bad elementary move.

Figures 63,64 show some examples of applying the subroutine Do a bad elementary
move. Figure 63 finishes the computation of the normal form for the example word given
in figure 41, using two more applications of Do a bad elementary move. The left side
of the figure shows v* as computed in figure 49, and the bottom of the figure shows the
last two generators Dy — Ds — Dg from figure 41. Then v° is computed from v* using
an elementary move-relabelling relator, followed by a run of the subroutine Do a bad
elementary move, using relators of types Ila, Ilc; then v% is computed using relators of
types Ila, IIbi. Some of the relators used in figures 63 and 64 were described in figures
54-62, and the numerals written on these relators refer to the relevant figure.

Figure 64 shows another application of Do a bad elementary move. This is a more



%% %&%ﬁ%&%ﬁ%ﬁ %ﬂ%ﬂ%ﬂ%ﬁ%
%w %¢%¢%{%ﬁ%ﬁ%ﬁ%ﬁ%ﬁ%ﬁ% M

% % % %f%/% %

@%%\w% %f% %
// .



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 59

typical example than figure 63: given the fact that an arbitrary element of £y has at most
k = 12g — 6 nonparity arrows, if the word is very long the relators do not interact very
often with nonparity arrows.

IV. INTERLUDE: THE SUFFIX UNIQUENESS PROPERTY FOR AN AUTOMATIC STRUCTURE

In this section, we describe some properties of Ly, as a motivation for our proof in the
next section that the computation of normal forms in £y runs in quadratic time.

In [ECHLPT] it is proved that an automatic group has a quadratic time algorithm for
the word problem. We define a property of automatic structures called suffiz uniqueness,
and using this property we give another description of a quadratic time algorithm for the
word problem. Our algorithm is more efficient than the one described in [ECHLPT], as
can be seen by comparing the proofs. For asynchronous automatic structures, the method
of [ECHLPT] yields an exponential time algorithm; the property of suffix uniqueness
applies equally well to asynchronous automatic structures, and in this case we obtain an
exponential time algorithm as well.

Let G be a groupoid with finite generating set A, and let £ be a synchronous or asyn-
chronous automatic structure over G, with word acceptor M and fellow traveller constant
K. Let By be the set of elements in G represented by words of length < K in the gen-
erating set A; elements of By do not have to start at the base point of £. Let ,L£ be
the set of suffixes of £ of length between 1 and n. Assuming that M has no inaccessible
states, then , L 1s the set of all nontrivial paths in M of length at most n ending at an
accept state. We say that £ satisfies suffiz uniqueness if it is prefix closed, no two normal
forms represent the same element of G, and there exists an integer n > 1, a finite subset
S C nL X By, and a function F: S — L, with the following property:

If w,w' € L are K-fellow travellers, then setting ¢ = w™'w’ € By, there exists a
unique suffix s of w such that (s,g) € S, and F(s,g) is a suffix of w’. Moreover,
writing w = ws and w’ = W' F(s,g), then @ and &' are K-fellow travellers.

For example, from the description of the subroutine Do one move it follows that the
asynchronous automatic structure Ly for the groupoid MCGD satisfies suffix uniqueness,
with fellow traveller constant K = 1 and maximal suffix length n = 3.

From the suffix uniqueness property, we obtain an algorithm for the word problem as
follows. Given an arbitrary word w = wjy ---wys, by induction compute the normal form
0™ representing w(m) = wy -+ wy,. To do this, suppose v = v™~! is computed. We must
compute the normal form v’ = v™ representing w™ lw,,. We compute v’ by induction,
producing longer and longer suffixes of v’. Set a9 = v and @, = v'. Since ap and ) are
K-fellow travellers, then we may factor ap uniquely as v = a15¢ so that (sg,w,,) € S, and
then set sj = F(s,wy,), so s’ is a suffix of v" and v' = @ s{, for some a}. It follows that a;
and a} are K-fellow travellers, so we may continue by induction. Since a; is decreasing in
length, eventually we compute v’ = s';... s s{.

Note that this algorithm is exactly the same as the algorithm described in the previous
section, for computing normal forms in Ly representing elements of MCGD.

The computation time of this algorithm may be estimated as follows. Since § is finite,
then the number of steps J in the computation of v’ is bounded by a linear function of the
length of v. If the structure £ is asynchronous, then Length(v™) is growing exponentially,
and we have an exponential time algorithm for the computation of v . If the structure £ is



60 LEE MOSHER

synchronous, then Length(v™) is growing linearly, and we have a quadratic time algorithm
for computing vM.

From this argument, the most we can conclude is that the algorithm described in §III
runs in exponential time. However, we can perhaps do better using the following ideas.

Let £, L' be asynchronous automatic structures on a groupoid G with generating set A.
We say that L' is a factorization of L if, for each v € £ and v’ € L’ such that v = v’, there
exists a sequence 0 = ng < ny < --- < ny = Length(v) with steps of bounded length such
that o(n;) =v'(j) for j = 0,...,J. Suppose moreover that £ and £’ both satisfy suffix
uniqueness, and that £ is an automatic structure. Then the above described algorithm for
the word problem, using the asynchronous structure L, runs in quadratic time, improving
the a priori fact that the algorithm runs in exponential time. The reason is that lengths of
normal forms in £’ grow linearly, and the factors have bounded length, therefore lengths
of normal forms in £ grow linearly, hence the algorithm runs in quadratic time.

In the next section we use this technique for showing that normal forms in Ly can be
computed in quadratic time, by finding an automatic structure £; for MCGD that is a
factorization of Lg.

V. DEHN TWISTS, SYNCHRONOUS NORMAL
FORMS, AND QUADRATIC COMPUTATION TIME

The key to understanding the synchronous normal forms is to see how Dehn twists arise
in the asynchronous normal forms L£o. This is described in the Dehn twist lemma of [M],
which we review here. A word in Ly will be factored into subwords which represent either
Dehn twists or fractions of Dehn twists; this leads to a language £; which is a factorization
of Ly as in the last section. The properties of this factorization are used in [M] to prove that
L1 is an automatic structure for MCGD. For our present purposes, we use the language
L1 to prove that the algorithm described above, for computing normal forms in Ly, runs
in quadratic time:

Theorem: Quadratic computation time. Given a word v of relabelling moves and
labelled elementary moves, with Length(v) = K, the algorithm computes the normal form
of v using at most (12g — 12)K? relators.

Comment 1: As we shall see, the number 12¢g — 12 is the maximum length of a factor
in the Dehn twist factorization.

Comment 2: At any stage of the algorithm, the time needed to apply the next relator is
bounded by a constant, hence the algorithm computes the normal form of v in quadratic
time.

Comment 3: For genus 2 we need at most 12K? relators. In any given run of the
algorithm, the author is able to apply the required relator using at most 2 minutes of time,
leading to a computation time of at most 25 K% minutes (experience shows that this is a
very conservative estimate).

Dehn twist blocks.

Consider an ideal triangulation ¢ and a prong of § marked with a *. Then (4, %) is
the special case of a marked ideal triangulation, with no end markings; we call this a
prong marked ideal triangulation or prmit. We use A to denote (d,%). Choose a parity
d € {L, R}; we use —d to denote the opposite parity. Consider the arc h™% of §, equipped
with a transverse orientation pointing into the marked triangle. The arc h™? forms a



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 61

simple closed curve in S, whose regular neighborhood N is an annulus, and the transverse
orientation points towards one of the boundary components of N, a simple closed curve
we denote v = y(A,d). Let 7 = 7(A, d) be the Dehn twist of parity d around ~; see figure
65. Our parity convention for Dehn twists is that a Right Dehn twist is a positive one, i.e.
on an oriented annulus A = R x [0,1]/(z,y) = (¢ + 1,y) forming a regular neighborhood
of v, the Dehn twist is given by the linear map (x,y) — (2 + y,y) which takes a vertical
segment to a segment of positive slope, 1.e. a segment that slopes up and to the Right.

bq
-
-

1(AR)

s

S e m e == T

FIGURE 65. The Dehn twist 7(A, R)

The following lemma is basically the first part of the Dehn twist lemma of [M]:

Dehn twist lemma (part I). Let --- LN As BN Ay BN Ag be a (finite or infinite)
sequence of d-elementary moves ending with A = Ag. Let 7 = 7(A,d) be the Dehn
twist defined above. Then there exists a constant K = K(A,d), depending only on the
combinatorial type of A, such that 7(A;) = Ay for all i > 0.

The proof is sketched below.

The sequence A BN Ag is called a Dehn twist sequence of parity d. The
number K is called the Dehn twist length. Note that after taking combinatorial types,
then {Ax} BN {Ao} is a closed path in My, lying entirely in M}: the path is
closed because Ag and Ax = 7(Ap) have the same combinatorial type, and it is in level
1 because there are no end markings. We call this a Dehn twist block of parity d in M};
later, after putting in end markings, we shall define Dehn twist blocks in higher levels.

Some examples are given in figures 66—69. Figure 66 shows a Left Dehn twist block on a
torus, of length 1. All Left Dehn twist blocks in M} on a torus are orientation preserving
conjugate to this one, and all Right Dehn twist blocks are orientation reversing conjugate.

Figure 67 shows a Right Dehn twist block of length 1, on a surface of genus 2, obtained
by putting a marked prong into the second elementary move of figure 5. This example
exhibits a characteristic property of Dehn twist sequences of length 1 when the genus is at
least 2: the Dehn twist length is 1 if and only if A7¢ is a boundary arc of a 1-handle piece,
and the * is inside the 1-handle piece. Figure 68 shows an example of a Right Dehn twist
block of length 2.

In figure 69, note that a single elementary move returns to the original state, completing
a simple closed loop w in My and thereby defining a mapping class ®, but ® is not a Dehn




62 LEE MOSHER

FIGURE 66. A Left Dehn twist block on a torus: /A is obtained from
Ag by a Left Dehn twist about the curve ~.

FIGURE 67. A Right Dehn twist block of length 1 on a surface of genus
2

twist. The separating closed curve ~ is invariant under ®; on the left component the
restricted mapping class is the identity, and on the right component the restricted class
has some finite order k& whose value we leave as an exercise. The mapping class ®* is a
Dehn twist 7, and the non-simple closed loop w* in Mg is a Dehn twist block of length k.

Now we give the formula for Dehn twist lengths K(A,d), and we sketch the proof of
the Dehn twist lemma. The curve 4 cuts off certain half-arcs of §, namely those half-arcs
in the annulus bounded by v and 2 7¢. These half-arcs determine a subset of £(§) denoted
E* = E"(A,d). In figure 65 these half-arcs are labelled with a *. In figures 66 and 67,
‘5*‘ = 2. In figure 68, ‘5*‘ = 3. And in figure 69, ‘5*‘ = 8. Note that the arc hOPP always

has at least one end in £*. Define & = g*(A,d) = &* —E(hOPP). Let K(A,d) = ‘é‘*‘



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 63

b ¢
S

FIGURE 68. A Right Dehn twist block of length 2 on a surface of genus
2. The shaded arcs of As should be included in Ay and Ag as well, but

are omitted from the diagram for clarity.

g

&

FIGURE 69. What is the Dehn twist length? (Hint: see figure 24c¢)

Thus, K(A,d) = [£*| — 2 or |£*| — 1 depending on whether or not h9PP has one or
two ends in £*. In figures 66, 67, 68 only one end of A°PP is in £*, so K(A,d)=1,1,2
respectively. In figure 69 both ends of hOPP are in £ *, so K(A,d) = 6.

The number K (A, d) may be computed from the chord diagram of A as follows. Recall
that the “marked triangle” is the triangle having the marked prong as a corner. Locate
the chord corresponding to h~%. The endpoints of this chord separate the remaining chord
ends into two subsets; the subset containing ¢? corresponds to £ *. Now count the number



64 LEE MOSHER

of elements in £ *, subtract 1 if the marked triangle is twisted (because then only one end
of hOPP is in & *), and subtract 2 if the marked triangle is untwisted (because both ends of
hOPP are in € *); the result is K(A, d); see figure 70. In figures 66-69, only figure 69 has an
untwisted marked triangle, hence only in that case is 2 subtracted to compute K (A, d); in
the other cases 1 is subtracted. Other examples of computing K (A, d) are given in figure

/}
* £ (OR)

FIGURE 70. If the marked triangle is untwisted then both ends of hOPP
are in £*; but if it is twisted only one end of A°OPP is in & *.

£ (AL) £(AR)

*

KAL) =12-1=11 KOR) =14 -2 = 12

FIGURE 71. Examples of computing K (A, d)

The key observation in proving the Dehn twist lemma is that for any prong marked
ideal triangulation A and any d € {L, R}, the arc hOPP is obtained up to isotopy from h¢
by letting the Dehn twist 7(A,d)™! act on a half-arc representing e?, where the half-arc is
chosen to intersect ~ exactly once. This is illustrated in figure 72, which shows separately
the cases where the marked triangle is twisted and untwisted. Note in the twisted case
that h¢ and hOPP each have a unique end in € *, and the twist about ~ takes h? to hOPP,
But in the untwisted case where h? and hOPP have both ends in £*, the twist does not
taéie h? to hOPP: by allowing the twist to act only on the end e? of h?, we thereby obtain
hPP,

This observation is applied as follows. Let A; be obtained from A; by removing h?pp.

After removing h?pp, the marked prong is now located in a complementary 4-gon of A..



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 65

FIGURE 72. Up to isotopy, h°PP is obtained from h% by letting

(A, R)™!, the Left Dehn twist about 7, act on the half-arc representing

ek,

Note that A; may be recovered from A; by triangulating this 4-gon using an arc opposite
the marked prong. Consider the good elementary move A;4+; — A;. Note that Al is
obtained from A1 by inserting hg_plp and then removing h;i_i_l. Using the key observation,
it follows that A; is obtained from A4 by letting 7~ act on the half-arc representing e;i_i_l.
Travelling along the sequence AK, e ,Al, AO, then 77! acts in turn on a representative
half-arc of each end in é‘; Since these half-arcs represent all the points in Ax N v, it
follows that T_l(AK) = AO, hence 771 (Ax) = Ag so 7(Ag) = Ag. In order to get the
full periodicity statement 7(A;) = A1k, note that h;? = h;_i‘_il so T(Ay,d) = 7(Ait1,d),
and also K(A;,d) = ‘éﬂ = ‘éj_i_l‘ = K(A;41,d). This finishes the proof of the Dehn twist
lemma.

We can now determine the range of possible Dehn twist lengths. Obviously K (A, d) > 1.
To determine when equality is acheived, note that |E*(A,d)] > 2 with the minimum
acheived if and only if A7¢ is the boundary of a 1-handle piece and the * is inside the
1-handle piece, in which case the marked triangle is inside the 1-handle piece and therefore
twisted; this is the only way the Dehn twist length can be 1, because if | £*(A, d)| = 3 then
the marked triangle is still twisted so the Dehn twist length is 2. To find the maximum
Dehn twist length, recall that £(§) = 12¢g — 6. Now h~? cuts off one subset of £(d) of
size at least 2, and h7¢ itself has 2 ends, hence ‘5*(A,d)‘ <12g—6-2-2=12g — 10.
This size is acheived if and only if A7¢ is on the boundary of a 1-handle piece and the *
is outside the 1-handle piece, in which case the marked triangle is untwisted and so the
Dehn twist length is 129 — 10 — 2 = 12g — 12. Also, when | £*(A,d)| = 12¢g — 11 then the
Dehn twist length is at most 12g — 11 — 1 = 12¢g — 12. Therefore we have an optimal upper
bound of 12g — 12 for the Dehn twist length. An example of a maximal length Dehn twist
sequence on a surface of genus 2 is given in figure 72. It is an exercise to show that this is
the unique maximal length Right Dehn twist block in genus 2.

An automaton for synchronous normal forms. First we define a new generating set
Ay for MCGD, over which the new automaton M is defined. The set A; is obtained from
Ay by adding Dehn twist generators and fractions thereof.

In the last section we defined Dehn twist blocks in M}. Define a Dehn twist generator
to be the path in X obtained by projecting a Dehn twist block from M} to X. Every



66 LEE MOSHER

Lo AN
P T
* 4
o] &P

BB

FiGUure 73. A Right Dehn twist block in genus 2, of maximal length
12

Dehn twist generator is a closed curve in X, so it defines a group element in MCG. Define
a fractional Dehn twist generator to be any subword of a Dehn twist generator; this may
not be a closed curve, and so may not define a group element.

Define a new alphabet A4; to be the set of all relabelling generators, Dehn twist gener-
ators, and fractional Dehn twist generators. Note that every labelled elementary move is
either a full or fractional Dehn twist generator, so Ag C Ay. There is a map from A; to
MCGD, taking each generator to its homotopy class.

Consider a full or fractional Dehn twist generator w = wy---w,. Let s o5 22

- 2% s, be any path in M that lifts w and stays among the accept states. This path is
called a full or fractional Dehn twist block if the subpath sy — --- — s, stays in a single
level of M; we allow sqg — s1 to drop between levels.

Chord dlagrams of Dehn tw1st blocks in arbitrary levels are understood as follows.
Suppose that sg BN $1 BN sy 1s a full Dehn twist block in level 1, of parity d.
Thus, none of the chord diagrams have labelled ends, and each s; — s,41 is a parity d arrow.
Dehn twist blocks in higher levels are obtained by introducing end markings, as follows.
Recall the set of chord ends £* = & *(sq,d): the two ends of hy? divide the remaining
chord ends of sg into two subsets, one of which contains e?, that subset being &£ *(sg,d). If
end markings 1,... ;k—1 are mtroduced to form a new state sj, and 1f none of the labelled
ends are in £ U Opp(E*), then we obtain a Dehn twist block s BN sh BN st
staying entirely in level k; figure 74 shows an example. Then if additional end markmgs
k?
prong is then chosen, we obtain a Dehn twist block s| N sh BN s where the

,{ — 1 are inserted so that the end e is marked Wlth k, and if a dlfferent marked



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 67

first move drops from level [ to level k£ and the rest of the block stays in level k. Figure 75
shows an example, adding end markings to the example from figure 74.

123 23 123 123
4 1 4 4 4
R R R
— — —

FiGURE 74. A Right Dehn twist block in level 5

, 3 L 23 .23
5 1 4 4 4
4 6
5 R R
—> —_— —>
3 7
2
1* * * *

FIGURE 75. A Right Dehn twist block which drops from level 8 to level
5

Chord diagrams of fractional Dehn twist blocks are constructed similarly, except that
the restrictions on end markings are somewhat weaker. Suppose sg — s1 — -+ — Sy,
is a fractional Dehn twist block in level 1, of parity d. Instead of worrying about all of
£*, only worry about those ends in €* which will eventually become e? for one of the
states sg,...,8p—1, i.e. those ends which lie on a chord that will eventually be removed
in performing one of the elementary moves in the block; let that set be denoted £#. To
get a fractional Dehn twist block that stays in level k, we may mark chord ends of s¢ with
1,...,k —1 as long as the marked ends are not in €% U Opp(€ #). To get a fractional
Dehn twist block that drops from level [ to level k, add more end markings k,... [ —1
so that e? is marked with k, and then move the marked prong if desired. An example of
a fractional Dehn twist block in level 6 is given in figure 76, adding an end marking to
the first two moves in figure 74. This example cannot be extended to any longer full or
fractional Dehn twist block, because in the final state of the block the end e® in the final
state is marked with a 5, so the move on h® drops down to level 5.

FIGURE 76. A Right fractional Dehn twist block in level 6, which
cannot be extended to a longer block



68 LEE MOSHER

Now we are ready to define the automaton M. Its state set is (almost) the same as
the state set of My. In addition to the old arrows of Mg, we add new arrows representing
Dehn twist blocks and fractional Dehn twist blocks, which jump over the corresponding
path in Mg. In order to preserve uniqueness, we require that fractional Dehn twists can
occur only at the very beginning of a parity block, so the states of M; must remember
whether a full Dehn twist has just occured.

To define the states of M;: the failure states, and inconsistent accept states are the
same as for M. For every consistent accept state s of Mg, we define three accept states
in My, namely (s,0), (s, L), and (s, R), whose meanings are as follows. In state (s,d) the
previous letter was a full Dehn twist of parity d, and in state (s, O) the previous letter was
not a full Dehn twist. If sg is the start state of Mg then (sg,0) is the start state of M;.

Now we define arrows of My. The arrows coming out of failure states and inconsistent
states all lead to failure states as before. For every relabelling arrow s — s’ of Mo,
noting that s is a consistent state and s’ is inconsistent, we define three relabelling arrows
(s,0) = &', (s,L) = s, and (s, R) — &', all named with the same relabelling generator.

Consider now a consistent accept state sg of M. Consider also a full or fractional Dehn
twist block sg — s — ... — s, of parity d, ending at s, in level k, and let w be the
full or fractional Dehn twist generator to which this block projects. If w is full, construct
arrows from the states (so,0),(s0,R), (s0,L) to the state (s,,d), all named with w. If
w is fractional and sp is in level k, construct arrows from the states (sg, 0), (s0,~d) to
($n,O), both named with w; the arrow from (sg, d) named with w leads to the appropriate
failure state. If w is fractional and sg is not in level k, construct arrows from the states
(s0,0),(50,L),(s0,R) to (sp,0), all named with w. All other arrows which have not been
specifically constructed here should lead to the appropriate failure state.

The effect of this construction is that a fractional Dehn twist block cannot follow a full
Dehn twist block of the same parity, unless the fractional block drops down to a lower
level.

The language £1 accepted by M; is related to the language Ly in the following man-
ner. Given any word w € Lo, recall that w is factored into uncombing blocks, and each
uncombing block is in turn factored into parity blocks. Now look at a parity block. Using
the Dehn twist lemma, that block can be factored in a unique manner as a fractional Dehn
twist block, followed by some number of full Dehn twist blocks. Doing this factorization
for each parity block in Ly, one obtains a word w’ in the generators Ay, such that w and
w’ represent the same element of MCGD, and w’ € £;. We say that w’ is the Dehn twist
factorization of w.

Synchronization.

In this section we review the results of [M] that are used to prove that £, satisfies the
fellow traveller property. We shall use these results to prove directly that our algorithm
for the word problem runs in quadratic time.

Given a word w := wy - - - wy, recall the notation for a prefix subword w(t) := wy - - - wy.
We also use notation for an infix subword w(, j| := w;41---w;. Note that if a < b < ¢
then wla, blw[b, ¢] = wla, ¢] and w(a)wla,b] = w(b).

Consider two normal forms v,w € Ly, such that « = v7 ' w is an elementary move
generator. In applying the subroutine Do one move to the word va, the algorithm applies
some number of relators to obtain w, and we want to estimate that number. The most
interesting case is when the algorithm classifies the move a as a bad elementary move, in

1



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 69

which case the estimate will arise by studying how Dehn twist boundaries interact with
the operations of the algorithm. Understanding this interaction is also the key to proving
the synchronous fellow traveller property for £;.

Let v',w’ € L1 be the Dehn twist factorizations of v,w, with Length(v') = M and

Length(w’) = N. Thus, we may write v = v[sg,81] 0 -+ 0 v[sy—1,5m] Where v, =
V[$m—1,8m], and similarly w! = w[t,_1,t,]. We think of the parameter values sg,... , s
and tg,...,tny as “Dehn twist boundaries”. We regard v], and w!, as individual letters

of Ay, but they may also be regarded as words in Ay and as such we may speak of their
subwords.

To start, we study how Dehn twist boundaries interact under the situation where « is
a good or inverse good elementary move, or more generally when one of v, w is a prefix
subword of the other. Supposing v is a prefix subword of w, then there exists n < N — 1
such that ¢, < sy < tpa1, and we say that w' extends v’ by N — n Dehn twist units,
namely w(snr, tny1],wy g, ... ,wy. All but the first of these units are letters of w'; the
first unit is a suffix of wj, |, possibly the whole word, but either way it forms a letter in
the alphabet A;. To compare Dehn twist boundaries in this situation:

Good proposition. Suppose w’ extends v’ by K Dehn twist units. Then w'(N—t) extends
v'(M —t) by at most K Dehn twist units, for allt > 0.

Proof. The boundaries of the Dehn twist factorizations of v and w are identical up until
the last parity block in v; suppose that v'(A) and w'(A) end at the beginning of that parity
block. In that parity block, the initial fractional Dehn twist factors of v and w may have
different lengths, but for the rest of the parity block the full Dehn twist factors have the
same length, hence if A < B < M then one of v'(B) or w'(B) extends the other by at
most one Dehn twist unit. It follows that if t,, < spr < t,,41, then t,,1 < spr—1 < tpy1, s0
w'(N — 1) extends v'(M — 1) by at most K Dehn twist units. Now continue by induction.
o

Now suppose that « is a bad elementary move. The algorithm Do a bad elementary move
applies a sequence of relators, producing a sequence of bad elementary moves connecting
shorter and shorter initial subwords of v and w, until reaching identical initial subwords.
More precisely, there exists P > 1 and sequences 0 < 19 <11 < --- <1p, 0 < jp < j1 <
-+ < jp with the following properties:

(1) If 0 < p < P then v(i,) and w(y,) differ by a bad elementary move; we say that
v(ip) and w(j,) are matching bem ends (bem is the acronym for “bad elementary
move” ).

(2) If 1 < p < P then there exists (a,b) € {(1,1),(1,2),(2,1)} such that 1,1 +a =1,
and j,—1 +b=j,.

(3) There exists (a,b) € {(1,1),(1,2),(2,1),(2,2)} such that ig+a = i; and jo+b = j;.
Furthermore:

(3a) If (a,b) = (2,2) then v(ig) = w(Jo).
(3b) If (a,b) € {(1,1),(1,2),(2,1)} then one of v(ig),w(jo) extends the other by a
single good elementary move.

(4) In particular, |ig — jo| < 1. We refer to the intervals [ig,i1] and [jo, 1] as the
wrreqular regions.

Remark: in [M] we also say, in case (3b), that v(ip) and w(jo) are matching bem ends
(despite the fact that their difference is a good or inverse good elementary move).



70 LEE MOSHER

The relation between the Dehn twist factorizations of v and w is given in the following,
which although not stated explicitly in [M] is proved implicitly:

Bad proposition. Suppose o = v 1w is a bad elementary move. Recall the notation

80y... 8y and to, ... ,tx for the Dehn twist boundaries of v,w, and note that v(syr) and
w(ty) are matching bem ends. Then there exists a constant A > 0 such that v(sy—,) and
w(tn—q) are matching bem ends for 0 < a < A. Moreover, one of the following happens:

(1) One of v(spr—a) and w(tn—a) extends the other by one Dehn twist unit.
or

(2) v(spr—a) and w(tn_a) differ by 2 elementary moves (one bad and one good), and
one of v(spr—a—1) and w(ty_a—1) extends the other by at most two Dehn twist
units.

The point of this proposition is that as you move backwards along v and w, moving syn-
chronously one Dehn twist block per step, then the corresponding Dehn twist boundaries
will be matching bem ends, hence differing by a single generator in Ag. This continues
until you reach the irregular regions, at which time the difference can become as large as
two Dehn twist units.

Sketch of proof. We have defined three progressively finer factorizations of normal forms in
Lo: the uncombing block factorization, the parity block factorization, and the Dehn twist
factorization. Corresponding to each of these is a proposition in [M] which describes the
interaction of the factorization with bem ends: bemsrespect combing blocks, bemsrespect
parity blocks, and the second part of the Dehn twist lemma. We invoke these in the proof.

Now look at the final Dehn twist blocks v[sar—1, s3] and w[ty_1,tn], and go case by
case through the different possibilities.

If v[spr—1,sp] is a full uncombing block, then by bemsrespect combing blocks it follows
that w[ty_1,tn] is also a full combing block, and v(sy—1),w(tn—1) differ by a single
elementary move, either good, bad, or inverse good. If it is good or inverse good, then
evidently one of v}, ; or w',_; extends the other by one Dehn twist unit, proving item
(1) of the Bad proposition. It it is bad, then the proof continues by induction.

If v[spr—1,sa] is a full Dehn twist block, then by the second part of the Dehn twist
lemma it follows that w[ty_1,tx] is also a full Dehn twist block, and v(sp—1), w(tn—1)
differ by a single bad elementary move. The proof now continues by induction.

The remaining case is where v[spr—1, sy, w[tn—1,tn] are fractional Dehn twist blocks
which are not full uncombing blocks. In this case, either v(spr—1) and w(ty—_1) differ by a
bad elementary move, or both are in the irregular regions; this follows from bemsrespect
parity blocks. When they differ by a bad elementary move, continue by induction as before.

When both sy;_1 and £ 51 are in the irregular regions, then the proof of synchronization
in [M] analyzes carefully where the Dehn twist boundaries may occur. Roughly speaking,
since the two sides of the relation in the irregular regions are quite short, they cannot
throw off the synchronization by too much. The conclusions of the argument from [M] are
as follows, proving item (2) of the Bad proposition: the irregular region is of type (2,2) as
in (3a) above; the relation which applies is always of type IIbii; the words v'(M — 1) and
w'(N — 1) differ by two elementary moves (one bad and one good); and one of v'(M — 2),
w'(N —2) extends the other by at most two Dehn twist units. This argument is summarized
in figure 18 of [M], the last figure of section III.2. There are three cases to the argument,
and in figure 77 we present examples for each of the three cases, paralleling the schematic



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 71

pictures in figure 18 of [M]. These cases are distinguished as follows. We assume that
all the arrows in the relator IIbii are parity arrows, with parities LR on the left side and
RL on the right side. The arrows below the relator on the left and right have the same
parity, say L; these arrows are part of the final letters of v}, and w/y. The three cases are
distinguished by whether the arrow above the relator is no parity, Left parity, or Right
parity. If no parity, the example in figure 77a is typical: v'(M — 2) extends w'(M — 2) by
at most two Dehn twist units, each unit being a single elementary move; it could happen
that the no parity arrow pictured is an entire Dehn twist block, in which case the Dehn
twist boundary ty_; would be one arrow lower in figure 77a, and v'(M — 2) would extend
w'(M — 2) by a single Dehn twist unit. If Left parity, the example in figure 77b is typical:
v'(M — 2) extends w'(M — 2) by one Dehn twist unit, consisting of a single elementary
move. If Right parity, the example in figure 77¢ is typical: v/(M — 2) extends w'(M — 2)
by at most two Dehn twist units, one being a single elementary move and the second being
a fractional Dehn twist generator; the example in figure 77c shows the second unit being
a single elementary move, but the letter w'(M — 2) = w[ty_2,tn—1] can be any full or
fractional Dehn twist generator, in which case the second unit can be an arbitrarily long
fractional Dehn twist generator. The general argument given in [M] shows that figures
77a—c are typical: the irregular regions affect the Dehn twist boundaries in one of the
three ways exemplified in these figures.

. ty . ty . ty

(@) (b) (©

FIGURE 77. Dehn twist boundaries in the irregular regions



72 LEE MOSHER

The Good and Bad propositions may be used to prove the synchronous fellow trav-
eller property for Ly, as follows. Consider v',w’ € Ly, with M = Length(v') and
N = Length(w’). Let d; denote distance measured with the generating set A;. Not-
ing that each letter in A; is a word of length at most 12¢g — 12 in the letters of Ag, to
prove the fellow traveller property it suffices to assume that do(v’,w’) = 1 and prove that
dy(v'(t),w'(t) < 4 for all t. The case where v’,w’ differ by a relabelling generator is easy.

Suppose v, w’ differ by an elementary move generator. Applying the Good and bad
propositions we see that dy (v (M —t),w'(N —t)) < 2 for all ¢. This shows that |M —N| < 2,
so dy(v'(t),w'(t)) < 4 for all t.

From this argument we obtain the following important fact which is needed in estimating
computation time:

Lemma: Length grows additively. Given v,w € Ly such that do(v,w) < 1, if v/ w0’ €
L1 are the Dehn twist factorizations, then ‘Length(v’) — Length(w’)‘ <2. o

Proofoftheorem: Quadratic computation time. Considerv,w € Lo with do(7,w) <
1, and o = v 'w. Let the Dehn twist factorizations be o', w’ € L;.

We claim that the number of relators used by the subroutine Do one move to compute
w from va is at most (12g — 12) Length(v’). If the generator a = v 'w is a relabelling
generator, then only 1 relator is used. If « is a good or inverse good elementary move,
then at most 2 relators are used.

Suppose that « is a bad elementary move, and apply the Bad proposition. For 1 <
a < A, consider the relators that are applied by the algorithm to compute the (possibly
fractional) Dehn twist block w[t y—4,tN—q+1] from the Dehn twist block v[sar—a, Sar—a+1]-
These relators are all of types Ia, Ila, or IIbi, each relator touching one of the good
elementary moves in v[spr—q,Sa—a+1] and no two relators touching the same one, but
there are at most 12¢g — 12 elementary moves since this is a Dehn twist block or fraction
thereof. Thus, at most 12¢g — 12 relators are used. Also, the algorithm uses at most 12¢g — 12
relators to compute w[tn_4,tN—a+1] from v[sar—a, spr— a+1]: if these are full Dehn twist
blocks then it follows as before; and if these are fractional Dehn twist blocks then except
for the top relator, each relator touches some elementary move in v[sy—a, Spr—a41] and
no two relators touch the same one, but there are at most 12g — 13 elementary moves in a
fractional Dehn twist block, and adding one more for the top relator gives 12¢g — 12. This
proves the claim.

Taking this claim together with the lemma Length grows additively, we reach the conclu-
sion that for any word v of length K in the generators Ag, the number of relators used by the
algorithm to compute the normal form of v is at most (129 —12)[1+3+5+-- -+ (2K —1)] =
(12g — 12) K2

Remark: The constant 12g—12 can be improved slightly, by noticing that in constructing
the relators touching a Dehn twist block, if the block has full length 12¢ — 12 then there
must be at least one relator of type IIbi which touches two moves in the block, so the
number of relators adjacent to a Dehn twist block is at most 12g — 13. Therefore the
number of relators needed by the algorithm is at most (129 — 13)K?2.

BIBLIOGRAPHY

. Epstein, J. Cannon, D. Holt, S. Levy, . Paterson, . urston, ord processing in
ECHLPT] D. E in, J. C D. Holt, S. L M. P W. Th Word ] ]
groups, Jones & Bartlett, 1992.



A USER’S GUIDE TO THE MAPPING CLASS GROUP: ONCE PUNCTURED SURFACES 73

[Har] J. Harer, The wvirtual cohomological dimension of the mapping class group of an oriented
surface, Invent. Math. 84 (1986), 157-176.

[Hat] A. Hatcher, On triangulations of surfaces, Topology Appl. 40 (1991), no. 2, 189-194.

[M] L. Mosher, Mapping class groups are automatic, Preprint (1993).

[STT] D. D. Sleator, R. E. Tarjan, W. P. Thurston, Rotation distance, triangulations, and hyperbolic

geometry, J. Amer. Math. Soc. 1 (1988), 647-681.

MATHEMATICAL SCIENCES RESEARCH INSTITUTE, BERKELEY CA 94720
E-mail address: mosher@msri.org



